1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/userfaultfd.c 4 * 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 8 * 9 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 11 */ 12 13 #include <linux/list.h> 14 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/mmu_notifier.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 #include <linux/swapops.h> 33 #include <linux/miscdevice.h> 34 35 static int sysctl_unprivileged_userfaultfd __read_mostly; 36 37 #ifdef CONFIG_SYSCTL 38 static struct ctl_table vm_userfaultfd_table[] = { 39 { 40 .procname = "unprivileged_userfaultfd", 41 .data = &sysctl_unprivileged_userfaultfd, 42 .maxlen = sizeof(sysctl_unprivileged_userfaultfd), 43 .mode = 0644, 44 .proc_handler = proc_dointvec_minmax, 45 .extra1 = SYSCTL_ZERO, 46 .extra2 = SYSCTL_ONE, 47 }, 48 { } 49 }; 50 #endif 51 52 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 53 54 /* 55 * Start with fault_pending_wqh and fault_wqh so they're more likely 56 * to be in the same cacheline. 57 * 58 * Locking order: 59 * fd_wqh.lock 60 * fault_pending_wqh.lock 61 * fault_wqh.lock 62 * event_wqh.lock 63 * 64 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, 65 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's 66 * also taken in IRQ context. 67 */ 68 struct userfaultfd_ctx { 69 /* waitqueue head for the pending (i.e. not read) userfaults */ 70 wait_queue_head_t fault_pending_wqh; 71 /* waitqueue head for the userfaults */ 72 wait_queue_head_t fault_wqh; 73 /* waitqueue head for the pseudo fd to wakeup poll/read */ 74 wait_queue_head_t fd_wqh; 75 /* waitqueue head for events */ 76 wait_queue_head_t event_wqh; 77 /* a refile sequence protected by fault_pending_wqh lock */ 78 seqcount_spinlock_t refile_seq; 79 /* pseudo fd refcounting */ 80 refcount_t refcount; 81 /* userfaultfd syscall flags */ 82 unsigned int flags; 83 /* features requested from the userspace */ 84 unsigned int features; 85 /* released */ 86 bool released; 87 /* memory mappings are changing because of non-cooperative event */ 88 atomic_t mmap_changing; 89 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 90 struct mm_struct *mm; 91 }; 92 93 struct userfaultfd_fork_ctx { 94 struct userfaultfd_ctx *orig; 95 struct userfaultfd_ctx *new; 96 struct list_head list; 97 }; 98 99 struct userfaultfd_unmap_ctx { 100 struct userfaultfd_ctx *ctx; 101 unsigned long start; 102 unsigned long end; 103 struct list_head list; 104 }; 105 106 struct userfaultfd_wait_queue { 107 struct uffd_msg msg; 108 wait_queue_entry_t wq; 109 struct userfaultfd_ctx *ctx; 110 bool waken; 111 }; 112 113 struct userfaultfd_wake_range { 114 unsigned long start; 115 unsigned long len; 116 }; 117 118 /* internal indication that UFFD_API ioctl was successfully executed */ 119 #define UFFD_FEATURE_INITIALIZED (1u << 31) 120 121 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx) 122 { 123 return ctx->features & UFFD_FEATURE_INITIALIZED; 124 } 125 126 /* 127 * Whether WP_UNPOPULATED is enabled on the uffd context. It is only 128 * meaningful when userfaultfd_wp()==true on the vma and when it's 129 * anonymous. 130 */ 131 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma) 132 { 133 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 134 135 if (!ctx) 136 return false; 137 138 return ctx->features & UFFD_FEATURE_WP_UNPOPULATED; 139 } 140 141 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma, 142 vm_flags_t flags) 143 { 144 const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP; 145 146 vm_flags_reset(vma, flags); 147 /* 148 * For shared mappings, we want to enable writenotify while 149 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply 150 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes. 151 */ 152 if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed) 153 vma_set_page_prot(vma); 154 } 155 156 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 157 int wake_flags, void *key) 158 { 159 struct userfaultfd_wake_range *range = key; 160 int ret; 161 struct userfaultfd_wait_queue *uwq; 162 unsigned long start, len; 163 164 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 165 ret = 0; 166 /* len == 0 means wake all */ 167 start = range->start; 168 len = range->len; 169 if (len && (start > uwq->msg.arg.pagefault.address || 170 start + len <= uwq->msg.arg.pagefault.address)) 171 goto out; 172 WRITE_ONCE(uwq->waken, true); 173 /* 174 * The Program-Order guarantees provided by the scheduler 175 * ensure uwq->waken is visible before the task is woken. 176 */ 177 ret = wake_up_state(wq->private, mode); 178 if (ret) { 179 /* 180 * Wake only once, autoremove behavior. 181 * 182 * After the effect of list_del_init is visible to the other 183 * CPUs, the waitqueue may disappear from under us, see the 184 * !list_empty_careful() in handle_userfault(). 185 * 186 * try_to_wake_up() has an implicit smp_mb(), and the 187 * wq->private is read before calling the extern function 188 * "wake_up_state" (which in turns calls try_to_wake_up). 189 */ 190 list_del_init(&wq->entry); 191 } 192 out: 193 return ret; 194 } 195 196 /** 197 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 198 * context. 199 * @ctx: [in] Pointer to the userfaultfd context. 200 */ 201 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 202 { 203 refcount_inc(&ctx->refcount); 204 } 205 206 /** 207 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 208 * context. 209 * @ctx: [in] Pointer to userfaultfd context. 210 * 211 * The userfaultfd context reference must have been previously acquired either 212 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 213 */ 214 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 215 { 216 if (refcount_dec_and_test(&ctx->refcount)) { 217 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 218 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 219 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 220 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 221 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 222 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 223 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 224 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 225 mmdrop(ctx->mm); 226 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 227 } 228 } 229 230 static inline void msg_init(struct uffd_msg *msg) 231 { 232 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 233 /* 234 * Must use memset to zero out the paddings or kernel data is 235 * leaked to userland. 236 */ 237 memset(msg, 0, sizeof(struct uffd_msg)); 238 } 239 240 static inline struct uffd_msg userfault_msg(unsigned long address, 241 unsigned long real_address, 242 unsigned int flags, 243 unsigned long reason, 244 unsigned int features) 245 { 246 struct uffd_msg msg; 247 248 msg_init(&msg); 249 msg.event = UFFD_EVENT_PAGEFAULT; 250 251 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ? 252 real_address : address; 253 254 /* 255 * These flags indicate why the userfault occurred: 256 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault. 257 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault. 258 * - Neither of these flags being set indicates a MISSING fault. 259 * 260 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write 261 * fault. Otherwise, it was a read fault. 262 */ 263 if (flags & FAULT_FLAG_WRITE) 264 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 265 if (reason & VM_UFFD_WP) 266 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 267 if (reason & VM_UFFD_MINOR) 268 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR; 269 if (features & UFFD_FEATURE_THREAD_ID) 270 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 271 return msg; 272 } 273 274 #ifdef CONFIG_HUGETLB_PAGE 275 /* 276 * Same functionality as userfaultfd_must_wait below with modifications for 277 * hugepmd ranges. 278 */ 279 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 280 struct vm_area_struct *vma, 281 unsigned long address, 282 unsigned long flags, 283 unsigned long reason) 284 { 285 pte_t *ptep, pte; 286 bool ret = true; 287 288 mmap_assert_locked(ctx->mm); 289 290 ptep = hugetlb_walk(vma, address, vma_mmu_pagesize(vma)); 291 if (!ptep) 292 goto out; 293 294 ret = false; 295 pte = huge_ptep_get(ptep); 296 297 /* 298 * Lockless access: we're in a wait_event so it's ok if it 299 * changes under us. PTE markers should be handled the same as none 300 * ptes here. 301 */ 302 if (huge_pte_none_mostly(pte)) 303 ret = true; 304 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 305 ret = true; 306 out: 307 return ret; 308 } 309 #else 310 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 311 struct vm_area_struct *vma, 312 unsigned long address, 313 unsigned long flags, 314 unsigned long reason) 315 { 316 return false; /* should never get here */ 317 } 318 #endif /* CONFIG_HUGETLB_PAGE */ 319 320 /* 321 * Verify the pagetables are still not ok after having reigstered into 322 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 323 * userfault that has already been resolved, if userfaultfd_read and 324 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 325 * threads. 326 */ 327 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 328 unsigned long address, 329 unsigned long flags, 330 unsigned long reason) 331 { 332 struct mm_struct *mm = ctx->mm; 333 pgd_t *pgd; 334 p4d_t *p4d; 335 pud_t *pud; 336 pmd_t *pmd, _pmd; 337 pte_t *pte; 338 pte_t ptent; 339 bool ret = true; 340 341 mmap_assert_locked(mm); 342 343 pgd = pgd_offset(mm, address); 344 if (!pgd_present(*pgd)) 345 goto out; 346 p4d = p4d_offset(pgd, address); 347 if (!p4d_present(*p4d)) 348 goto out; 349 pud = pud_offset(p4d, address); 350 if (!pud_present(*pud)) 351 goto out; 352 pmd = pmd_offset(pud, address); 353 again: 354 _pmd = pmdp_get_lockless(pmd); 355 if (pmd_none(_pmd)) 356 goto out; 357 358 ret = false; 359 if (!pmd_present(_pmd) || pmd_devmap(_pmd)) 360 goto out; 361 362 if (pmd_trans_huge(_pmd)) { 363 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) 364 ret = true; 365 goto out; 366 } 367 368 pte = pte_offset_map(pmd, address); 369 if (!pte) { 370 ret = true; 371 goto again; 372 } 373 /* 374 * Lockless access: we're in a wait_event so it's ok if it 375 * changes under us. PTE markers should be handled the same as none 376 * ptes here. 377 */ 378 ptent = ptep_get(pte); 379 if (pte_none_mostly(ptent)) 380 ret = true; 381 if (!pte_write(ptent) && (reason & VM_UFFD_WP)) 382 ret = true; 383 pte_unmap(pte); 384 385 out: 386 return ret; 387 } 388 389 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags) 390 { 391 if (flags & FAULT_FLAG_INTERRUPTIBLE) 392 return TASK_INTERRUPTIBLE; 393 394 if (flags & FAULT_FLAG_KILLABLE) 395 return TASK_KILLABLE; 396 397 return TASK_UNINTERRUPTIBLE; 398 } 399 400 /* 401 * The locking rules involved in returning VM_FAULT_RETRY depending on 402 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 403 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 404 * recommendation in __lock_page_or_retry is not an understatement. 405 * 406 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released 407 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 408 * not set. 409 * 410 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 411 * set, VM_FAULT_RETRY can still be returned if and only if there are 412 * fatal_signal_pending()s, and the mmap_lock must be released before 413 * returning it. 414 */ 415 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 416 { 417 struct vm_area_struct *vma = vmf->vma; 418 struct mm_struct *mm = vma->vm_mm; 419 struct userfaultfd_ctx *ctx; 420 struct userfaultfd_wait_queue uwq; 421 vm_fault_t ret = VM_FAULT_SIGBUS; 422 bool must_wait; 423 unsigned int blocking_state; 424 425 /* 426 * We don't do userfault handling for the final child pid update. 427 * 428 * We also don't do userfault handling during 429 * coredumping. hugetlbfs has the special 430 * hugetlb_follow_page_mask() to skip missing pages in the 431 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 432 * the no_page_table() helper in follow_page_mask(), but the 433 * shmem_vm_ops->fault method is invoked even during 434 * coredumping without mmap_lock and it ends up here. 435 */ 436 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 437 goto out; 438 439 /* 440 * Coredumping runs without mmap_lock so we can only check that 441 * the mmap_lock is held, if PF_DUMPCORE was not set. 442 */ 443 mmap_assert_locked(mm); 444 445 ctx = vma->vm_userfaultfd_ctx.ctx; 446 if (!ctx) 447 goto out; 448 449 BUG_ON(ctx->mm != mm); 450 451 /* Any unrecognized flag is a bug. */ 452 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS); 453 /* 0 or > 1 flags set is a bug; we expect exactly 1. */ 454 VM_BUG_ON(!reason || (reason & (reason - 1))); 455 456 if (ctx->features & UFFD_FEATURE_SIGBUS) 457 goto out; 458 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY)) 459 goto out; 460 461 /* 462 * If it's already released don't get it. This avoids to loop 463 * in __get_user_pages if userfaultfd_release waits on the 464 * caller of handle_userfault to release the mmap_lock. 465 */ 466 if (unlikely(READ_ONCE(ctx->released))) { 467 /* 468 * Don't return VM_FAULT_SIGBUS in this case, so a non 469 * cooperative manager can close the uffd after the 470 * last UFFDIO_COPY, without risking to trigger an 471 * involuntary SIGBUS if the process was starting the 472 * userfaultfd while the userfaultfd was still armed 473 * (but after the last UFFDIO_COPY). If the uffd 474 * wasn't already closed when the userfault reached 475 * this point, that would normally be solved by 476 * userfaultfd_must_wait returning 'false'. 477 * 478 * If we were to return VM_FAULT_SIGBUS here, the non 479 * cooperative manager would be instead forced to 480 * always call UFFDIO_UNREGISTER before it can safely 481 * close the uffd. 482 */ 483 ret = VM_FAULT_NOPAGE; 484 goto out; 485 } 486 487 /* 488 * Check that we can return VM_FAULT_RETRY. 489 * 490 * NOTE: it should become possible to return VM_FAULT_RETRY 491 * even if FAULT_FLAG_TRIED is set without leading to gup() 492 * -EBUSY failures, if the userfaultfd is to be extended for 493 * VM_UFFD_WP tracking and we intend to arm the userfault 494 * without first stopping userland access to the memory. For 495 * VM_UFFD_MISSING userfaults this is enough for now. 496 */ 497 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 498 /* 499 * Validate the invariant that nowait must allow retry 500 * to be sure not to return SIGBUS erroneously on 501 * nowait invocations. 502 */ 503 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 504 #ifdef CONFIG_DEBUG_VM 505 if (printk_ratelimit()) { 506 printk(KERN_WARNING 507 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 508 vmf->flags); 509 dump_stack(); 510 } 511 #endif 512 goto out; 513 } 514 515 /* 516 * Handle nowait, not much to do other than tell it to retry 517 * and wait. 518 */ 519 ret = VM_FAULT_RETRY; 520 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 521 goto out; 522 523 /* take the reference before dropping the mmap_lock */ 524 userfaultfd_ctx_get(ctx); 525 526 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 527 uwq.wq.private = current; 528 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags, 529 reason, ctx->features); 530 uwq.ctx = ctx; 531 uwq.waken = false; 532 533 blocking_state = userfaultfd_get_blocking_state(vmf->flags); 534 535 /* 536 * Take the vma lock now, in order to safely call 537 * userfaultfd_huge_must_wait() later. Since acquiring the 538 * (sleepable) vma lock can modify the current task state, that 539 * must be before explicitly calling set_current_state(). 540 */ 541 if (is_vm_hugetlb_page(vma)) 542 hugetlb_vma_lock_read(vma); 543 544 spin_lock_irq(&ctx->fault_pending_wqh.lock); 545 /* 546 * After the __add_wait_queue the uwq is visible to userland 547 * through poll/read(). 548 */ 549 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 550 /* 551 * The smp_mb() after __set_current_state prevents the reads 552 * following the spin_unlock to happen before the list_add in 553 * __add_wait_queue. 554 */ 555 set_current_state(blocking_state); 556 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 557 558 if (!is_vm_hugetlb_page(vma)) 559 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 560 reason); 561 else 562 must_wait = userfaultfd_huge_must_wait(ctx, vma, 563 vmf->address, 564 vmf->flags, reason); 565 if (is_vm_hugetlb_page(vma)) 566 hugetlb_vma_unlock_read(vma); 567 mmap_read_unlock(mm); 568 569 if (likely(must_wait && !READ_ONCE(ctx->released))) { 570 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 571 schedule(); 572 } 573 574 __set_current_state(TASK_RUNNING); 575 576 /* 577 * Here we race with the list_del; list_add in 578 * userfaultfd_ctx_read(), however because we don't ever run 579 * list_del_init() to refile across the two lists, the prev 580 * and next pointers will never point to self. list_add also 581 * would never let any of the two pointers to point to 582 * self. So list_empty_careful won't risk to see both pointers 583 * pointing to self at any time during the list refile. The 584 * only case where list_del_init() is called is the full 585 * removal in the wake function and there we don't re-list_add 586 * and it's fine not to block on the spinlock. The uwq on this 587 * kernel stack can be released after the list_del_init. 588 */ 589 if (!list_empty_careful(&uwq.wq.entry)) { 590 spin_lock_irq(&ctx->fault_pending_wqh.lock); 591 /* 592 * No need of list_del_init(), the uwq on the stack 593 * will be freed shortly anyway. 594 */ 595 list_del(&uwq.wq.entry); 596 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 597 } 598 599 /* 600 * ctx may go away after this if the userfault pseudo fd is 601 * already released. 602 */ 603 userfaultfd_ctx_put(ctx); 604 605 out: 606 return ret; 607 } 608 609 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 610 struct userfaultfd_wait_queue *ewq) 611 { 612 struct userfaultfd_ctx *release_new_ctx; 613 614 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 615 goto out; 616 617 ewq->ctx = ctx; 618 init_waitqueue_entry(&ewq->wq, current); 619 release_new_ctx = NULL; 620 621 spin_lock_irq(&ctx->event_wqh.lock); 622 /* 623 * After the __add_wait_queue the uwq is visible to userland 624 * through poll/read(). 625 */ 626 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 627 for (;;) { 628 set_current_state(TASK_KILLABLE); 629 if (ewq->msg.event == 0) 630 break; 631 if (READ_ONCE(ctx->released) || 632 fatal_signal_pending(current)) { 633 /* 634 * &ewq->wq may be queued in fork_event, but 635 * __remove_wait_queue ignores the head 636 * parameter. It would be a problem if it 637 * didn't. 638 */ 639 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 640 if (ewq->msg.event == UFFD_EVENT_FORK) { 641 struct userfaultfd_ctx *new; 642 643 new = (struct userfaultfd_ctx *) 644 (unsigned long) 645 ewq->msg.arg.reserved.reserved1; 646 release_new_ctx = new; 647 } 648 break; 649 } 650 651 spin_unlock_irq(&ctx->event_wqh.lock); 652 653 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 654 schedule(); 655 656 spin_lock_irq(&ctx->event_wqh.lock); 657 } 658 __set_current_state(TASK_RUNNING); 659 spin_unlock_irq(&ctx->event_wqh.lock); 660 661 if (release_new_ctx) { 662 struct vm_area_struct *vma; 663 struct mm_struct *mm = release_new_ctx->mm; 664 VMA_ITERATOR(vmi, mm, 0); 665 666 /* the various vma->vm_userfaultfd_ctx still points to it */ 667 mmap_write_lock(mm); 668 for_each_vma(vmi, vma) { 669 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 670 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 671 userfaultfd_set_vm_flags(vma, 672 vma->vm_flags & ~__VM_UFFD_FLAGS); 673 } 674 } 675 mmap_write_unlock(mm); 676 677 userfaultfd_ctx_put(release_new_ctx); 678 } 679 680 /* 681 * ctx may go away after this if the userfault pseudo fd is 682 * already released. 683 */ 684 out: 685 atomic_dec(&ctx->mmap_changing); 686 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0); 687 userfaultfd_ctx_put(ctx); 688 } 689 690 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 691 struct userfaultfd_wait_queue *ewq) 692 { 693 ewq->msg.event = 0; 694 wake_up_locked(&ctx->event_wqh); 695 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 696 } 697 698 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 699 { 700 struct userfaultfd_ctx *ctx = NULL, *octx; 701 struct userfaultfd_fork_ctx *fctx; 702 703 octx = vma->vm_userfaultfd_ctx.ctx; 704 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 705 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 706 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS); 707 return 0; 708 } 709 710 list_for_each_entry(fctx, fcs, list) 711 if (fctx->orig == octx) { 712 ctx = fctx->new; 713 break; 714 } 715 716 if (!ctx) { 717 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 718 if (!fctx) 719 return -ENOMEM; 720 721 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 722 if (!ctx) { 723 kfree(fctx); 724 return -ENOMEM; 725 } 726 727 refcount_set(&ctx->refcount, 1); 728 ctx->flags = octx->flags; 729 ctx->features = octx->features; 730 ctx->released = false; 731 atomic_set(&ctx->mmap_changing, 0); 732 ctx->mm = vma->vm_mm; 733 mmgrab(ctx->mm); 734 735 userfaultfd_ctx_get(octx); 736 atomic_inc(&octx->mmap_changing); 737 fctx->orig = octx; 738 fctx->new = ctx; 739 list_add_tail(&fctx->list, fcs); 740 } 741 742 vma->vm_userfaultfd_ctx.ctx = ctx; 743 return 0; 744 } 745 746 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 747 { 748 struct userfaultfd_ctx *ctx = fctx->orig; 749 struct userfaultfd_wait_queue ewq; 750 751 msg_init(&ewq.msg); 752 753 ewq.msg.event = UFFD_EVENT_FORK; 754 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 755 756 userfaultfd_event_wait_completion(ctx, &ewq); 757 } 758 759 void dup_userfaultfd_complete(struct list_head *fcs) 760 { 761 struct userfaultfd_fork_ctx *fctx, *n; 762 763 list_for_each_entry_safe(fctx, n, fcs, list) { 764 dup_fctx(fctx); 765 list_del(&fctx->list); 766 kfree(fctx); 767 } 768 } 769 770 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 771 struct vm_userfaultfd_ctx *vm_ctx) 772 { 773 struct userfaultfd_ctx *ctx; 774 775 ctx = vma->vm_userfaultfd_ctx.ctx; 776 777 if (!ctx) 778 return; 779 780 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 781 vm_ctx->ctx = ctx; 782 userfaultfd_ctx_get(ctx); 783 atomic_inc(&ctx->mmap_changing); 784 } else { 785 /* Drop uffd context if remap feature not enabled */ 786 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 787 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS); 788 } 789 } 790 791 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 792 unsigned long from, unsigned long to, 793 unsigned long len) 794 { 795 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 796 struct userfaultfd_wait_queue ewq; 797 798 if (!ctx) 799 return; 800 801 if (to & ~PAGE_MASK) { 802 userfaultfd_ctx_put(ctx); 803 return; 804 } 805 806 msg_init(&ewq.msg); 807 808 ewq.msg.event = UFFD_EVENT_REMAP; 809 ewq.msg.arg.remap.from = from; 810 ewq.msg.arg.remap.to = to; 811 ewq.msg.arg.remap.len = len; 812 813 userfaultfd_event_wait_completion(ctx, &ewq); 814 } 815 816 bool userfaultfd_remove(struct vm_area_struct *vma, 817 unsigned long start, unsigned long end) 818 { 819 struct mm_struct *mm = vma->vm_mm; 820 struct userfaultfd_ctx *ctx; 821 struct userfaultfd_wait_queue ewq; 822 823 ctx = vma->vm_userfaultfd_ctx.ctx; 824 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 825 return true; 826 827 userfaultfd_ctx_get(ctx); 828 atomic_inc(&ctx->mmap_changing); 829 mmap_read_unlock(mm); 830 831 msg_init(&ewq.msg); 832 833 ewq.msg.event = UFFD_EVENT_REMOVE; 834 ewq.msg.arg.remove.start = start; 835 ewq.msg.arg.remove.end = end; 836 837 userfaultfd_event_wait_completion(ctx, &ewq); 838 839 return false; 840 } 841 842 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 843 unsigned long start, unsigned long end) 844 { 845 struct userfaultfd_unmap_ctx *unmap_ctx; 846 847 list_for_each_entry(unmap_ctx, unmaps, list) 848 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 849 unmap_ctx->end == end) 850 return true; 851 852 return false; 853 } 854 855 int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start, 856 unsigned long end, struct list_head *unmaps) 857 { 858 struct userfaultfd_unmap_ctx *unmap_ctx; 859 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 860 861 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 862 has_unmap_ctx(ctx, unmaps, start, end)) 863 return 0; 864 865 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 866 if (!unmap_ctx) 867 return -ENOMEM; 868 869 userfaultfd_ctx_get(ctx); 870 atomic_inc(&ctx->mmap_changing); 871 unmap_ctx->ctx = ctx; 872 unmap_ctx->start = start; 873 unmap_ctx->end = end; 874 list_add_tail(&unmap_ctx->list, unmaps); 875 876 return 0; 877 } 878 879 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 880 { 881 struct userfaultfd_unmap_ctx *ctx, *n; 882 struct userfaultfd_wait_queue ewq; 883 884 list_for_each_entry_safe(ctx, n, uf, list) { 885 msg_init(&ewq.msg); 886 887 ewq.msg.event = UFFD_EVENT_UNMAP; 888 ewq.msg.arg.remove.start = ctx->start; 889 ewq.msg.arg.remove.end = ctx->end; 890 891 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 892 893 list_del(&ctx->list); 894 kfree(ctx); 895 } 896 } 897 898 static int userfaultfd_release(struct inode *inode, struct file *file) 899 { 900 struct userfaultfd_ctx *ctx = file->private_data; 901 struct mm_struct *mm = ctx->mm; 902 struct vm_area_struct *vma, *prev; 903 /* len == 0 means wake all */ 904 struct userfaultfd_wake_range range = { .len = 0, }; 905 unsigned long new_flags; 906 VMA_ITERATOR(vmi, mm, 0); 907 908 WRITE_ONCE(ctx->released, true); 909 910 if (!mmget_not_zero(mm)) 911 goto wakeup; 912 913 /* 914 * Flush page faults out of all CPUs. NOTE: all page faults 915 * must be retried without returning VM_FAULT_SIGBUS if 916 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 917 * changes while handle_userfault released the mmap_lock. So 918 * it's critical that released is set to true (above), before 919 * taking the mmap_lock for writing. 920 */ 921 mmap_write_lock(mm); 922 prev = NULL; 923 for_each_vma(vmi, vma) { 924 cond_resched(); 925 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 926 !!(vma->vm_flags & __VM_UFFD_FLAGS)); 927 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 928 prev = vma; 929 continue; 930 } 931 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 932 prev = vma_merge(&vmi, mm, prev, vma->vm_start, vma->vm_end, 933 new_flags, vma->anon_vma, 934 vma->vm_file, vma->vm_pgoff, 935 vma_policy(vma), 936 NULL_VM_UFFD_CTX, anon_vma_name(vma)); 937 if (prev) { 938 vma = prev; 939 } else { 940 prev = vma; 941 } 942 943 userfaultfd_set_vm_flags(vma, new_flags); 944 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 945 } 946 mmap_write_unlock(mm); 947 mmput(mm); 948 wakeup: 949 /* 950 * After no new page faults can wait on this fault_*wqh, flush 951 * the last page faults that may have been already waiting on 952 * the fault_*wqh. 953 */ 954 spin_lock_irq(&ctx->fault_pending_wqh.lock); 955 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 956 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 957 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 958 959 /* Flush pending events that may still wait on event_wqh */ 960 wake_up_all(&ctx->event_wqh); 961 962 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 963 userfaultfd_ctx_put(ctx); 964 return 0; 965 } 966 967 /* fault_pending_wqh.lock must be hold by the caller */ 968 static inline struct userfaultfd_wait_queue *find_userfault_in( 969 wait_queue_head_t *wqh) 970 { 971 wait_queue_entry_t *wq; 972 struct userfaultfd_wait_queue *uwq; 973 974 lockdep_assert_held(&wqh->lock); 975 976 uwq = NULL; 977 if (!waitqueue_active(wqh)) 978 goto out; 979 /* walk in reverse to provide FIFO behavior to read userfaults */ 980 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 981 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 982 out: 983 return uwq; 984 } 985 986 static inline struct userfaultfd_wait_queue *find_userfault( 987 struct userfaultfd_ctx *ctx) 988 { 989 return find_userfault_in(&ctx->fault_pending_wqh); 990 } 991 992 static inline struct userfaultfd_wait_queue *find_userfault_evt( 993 struct userfaultfd_ctx *ctx) 994 { 995 return find_userfault_in(&ctx->event_wqh); 996 } 997 998 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 999 { 1000 struct userfaultfd_ctx *ctx = file->private_data; 1001 __poll_t ret; 1002 1003 poll_wait(file, &ctx->fd_wqh, wait); 1004 1005 if (!userfaultfd_is_initialized(ctx)) 1006 return EPOLLERR; 1007 1008 /* 1009 * poll() never guarantees that read won't block. 1010 * userfaults can be waken before they're read(). 1011 */ 1012 if (unlikely(!(file->f_flags & O_NONBLOCK))) 1013 return EPOLLERR; 1014 /* 1015 * lockless access to see if there are pending faults 1016 * __pollwait last action is the add_wait_queue but 1017 * the spin_unlock would allow the waitqueue_active to 1018 * pass above the actual list_add inside 1019 * add_wait_queue critical section. So use a full 1020 * memory barrier to serialize the list_add write of 1021 * add_wait_queue() with the waitqueue_active read 1022 * below. 1023 */ 1024 ret = 0; 1025 smp_mb(); 1026 if (waitqueue_active(&ctx->fault_pending_wqh)) 1027 ret = EPOLLIN; 1028 else if (waitqueue_active(&ctx->event_wqh)) 1029 ret = EPOLLIN; 1030 1031 return ret; 1032 } 1033 1034 static const struct file_operations userfaultfd_fops; 1035 1036 static int resolve_userfault_fork(struct userfaultfd_ctx *new, 1037 struct inode *inode, 1038 struct uffd_msg *msg) 1039 { 1040 int fd; 1041 1042 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new, 1043 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode); 1044 if (fd < 0) 1045 return fd; 1046 1047 msg->arg.reserved.reserved1 = 0; 1048 msg->arg.fork.ufd = fd; 1049 return 0; 1050 } 1051 1052 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1053 struct uffd_msg *msg, struct inode *inode) 1054 { 1055 ssize_t ret; 1056 DECLARE_WAITQUEUE(wait, current); 1057 struct userfaultfd_wait_queue *uwq; 1058 /* 1059 * Handling fork event requires sleeping operations, so 1060 * we drop the event_wqh lock, then do these ops, then 1061 * lock it back and wake up the waiter. While the lock is 1062 * dropped the ewq may go away so we keep track of it 1063 * carefully. 1064 */ 1065 LIST_HEAD(fork_event); 1066 struct userfaultfd_ctx *fork_nctx = NULL; 1067 1068 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1069 spin_lock_irq(&ctx->fd_wqh.lock); 1070 __add_wait_queue(&ctx->fd_wqh, &wait); 1071 for (;;) { 1072 set_current_state(TASK_INTERRUPTIBLE); 1073 spin_lock(&ctx->fault_pending_wqh.lock); 1074 uwq = find_userfault(ctx); 1075 if (uwq) { 1076 /* 1077 * Use a seqcount to repeat the lockless check 1078 * in wake_userfault() to avoid missing 1079 * wakeups because during the refile both 1080 * waitqueue could become empty if this is the 1081 * only userfault. 1082 */ 1083 write_seqcount_begin(&ctx->refile_seq); 1084 1085 /* 1086 * The fault_pending_wqh.lock prevents the uwq 1087 * to disappear from under us. 1088 * 1089 * Refile this userfault from 1090 * fault_pending_wqh to fault_wqh, it's not 1091 * pending anymore after we read it. 1092 * 1093 * Use list_del() by hand (as 1094 * userfaultfd_wake_function also uses 1095 * list_del_init() by hand) to be sure nobody 1096 * changes __remove_wait_queue() to use 1097 * list_del_init() in turn breaking the 1098 * !list_empty_careful() check in 1099 * handle_userfault(). The uwq->wq.head list 1100 * must never be empty at any time during the 1101 * refile, or the waitqueue could disappear 1102 * from under us. The "wait_queue_head_t" 1103 * parameter of __remove_wait_queue() is unused 1104 * anyway. 1105 */ 1106 list_del(&uwq->wq.entry); 1107 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1108 1109 write_seqcount_end(&ctx->refile_seq); 1110 1111 /* careful to always initialize msg if ret == 0 */ 1112 *msg = uwq->msg; 1113 spin_unlock(&ctx->fault_pending_wqh.lock); 1114 ret = 0; 1115 break; 1116 } 1117 spin_unlock(&ctx->fault_pending_wqh.lock); 1118 1119 spin_lock(&ctx->event_wqh.lock); 1120 uwq = find_userfault_evt(ctx); 1121 if (uwq) { 1122 *msg = uwq->msg; 1123 1124 if (uwq->msg.event == UFFD_EVENT_FORK) { 1125 fork_nctx = (struct userfaultfd_ctx *) 1126 (unsigned long) 1127 uwq->msg.arg.reserved.reserved1; 1128 list_move(&uwq->wq.entry, &fork_event); 1129 /* 1130 * fork_nctx can be freed as soon as 1131 * we drop the lock, unless we take a 1132 * reference on it. 1133 */ 1134 userfaultfd_ctx_get(fork_nctx); 1135 spin_unlock(&ctx->event_wqh.lock); 1136 ret = 0; 1137 break; 1138 } 1139 1140 userfaultfd_event_complete(ctx, uwq); 1141 spin_unlock(&ctx->event_wqh.lock); 1142 ret = 0; 1143 break; 1144 } 1145 spin_unlock(&ctx->event_wqh.lock); 1146 1147 if (signal_pending(current)) { 1148 ret = -ERESTARTSYS; 1149 break; 1150 } 1151 if (no_wait) { 1152 ret = -EAGAIN; 1153 break; 1154 } 1155 spin_unlock_irq(&ctx->fd_wqh.lock); 1156 schedule(); 1157 spin_lock_irq(&ctx->fd_wqh.lock); 1158 } 1159 __remove_wait_queue(&ctx->fd_wqh, &wait); 1160 __set_current_state(TASK_RUNNING); 1161 spin_unlock_irq(&ctx->fd_wqh.lock); 1162 1163 if (!ret && msg->event == UFFD_EVENT_FORK) { 1164 ret = resolve_userfault_fork(fork_nctx, inode, msg); 1165 spin_lock_irq(&ctx->event_wqh.lock); 1166 if (!list_empty(&fork_event)) { 1167 /* 1168 * The fork thread didn't abort, so we can 1169 * drop the temporary refcount. 1170 */ 1171 userfaultfd_ctx_put(fork_nctx); 1172 1173 uwq = list_first_entry(&fork_event, 1174 typeof(*uwq), 1175 wq.entry); 1176 /* 1177 * If fork_event list wasn't empty and in turn 1178 * the event wasn't already released by fork 1179 * (the event is allocated on fork kernel 1180 * stack), put the event back to its place in 1181 * the event_wq. fork_event head will be freed 1182 * as soon as we return so the event cannot 1183 * stay queued there no matter the current 1184 * "ret" value. 1185 */ 1186 list_del(&uwq->wq.entry); 1187 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1188 1189 /* 1190 * Leave the event in the waitqueue and report 1191 * error to userland if we failed to resolve 1192 * the userfault fork. 1193 */ 1194 if (likely(!ret)) 1195 userfaultfd_event_complete(ctx, uwq); 1196 } else { 1197 /* 1198 * Here the fork thread aborted and the 1199 * refcount from the fork thread on fork_nctx 1200 * has already been released. We still hold 1201 * the reference we took before releasing the 1202 * lock above. If resolve_userfault_fork 1203 * failed we've to drop it because the 1204 * fork_nctx has to be freed in such case. If 1205 * it succeeded we'll hold it because the new 1206 * uffd references it. 1207 */ 1208 if (ret) 1209 userfaultfd_ctx_put(fork_nctx); 1210 } 1211 spin_unlock_irq(&ctx->event_wqh.lock); 1212 } 1213 1214 return ret; 1215 } 1216 1217 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1218 size_t count, loff_t *ppos) 1219 { 1220 struct userfaultfd_ctx *ctx = file->private_data; 1221 ssize_t _ret, ret = 0; 1222 struct uffd_msg msg; 1223 int no_wait = file->f_flags & O_NONBLOCK; 1224 struct inode *inode = file_inode(file); 1225 1226 if (!userfaultfd_is_initialized(ctx)) 1227 return -EINVAL; 1228 1229 for (;;) { 1230 if (count < sizeof(msg)) 1231 return ret ? ret : -EINVAL; 1232 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode); 1233 if (_ret < 0) 1234 return ret ? ret : _ret; 1235 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1236 return ret ? ret : -EFAULT; 1237 ret += sizeof(msg); 1238 buf += sizeof(msg); 1239 count -= sizeof(msg); 1240 /* 1241 * Allow to read more than one fault at time but only 1242 * block if waiting for the very first one. 1243 */ 1244 no_wait = O_NONBLOCK; 1245 } 1246 } 1247 1248 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1249 struct userfaultfd_wake_range *range) 1250 { 1251 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1252 /* wake all in the range and autoremove */ 1253 if (waitqueue_active(&ctx->fault_pending_wqh)) 1254 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1255 range); 1256 if (waitqueue_active(&ctx->fault_wqh)) 1257 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1258 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1259 } 1260 1261 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1262 struct userfaultfd_wake_range *range) 1263 { 1264 unsigned seq; 1265 bool need_wakeup; 1266 1267 /* 1268 * To be sure waitqueue_active() is not reordered by the CPU 1269 * before the pagetable update, use an explicit SMP memory 1270 * barrier here. PT lock release or mmap_read_unlock(mm) still 1271 * have release semantics that can allow the 1272 * waitqueue_active() to be reordered before the pte update. 1273 */ 1274 smp_mb(); 1275 1276 /* 1277 * Use waitqueue_active because it's very frequent to 1278 * change the address space atomically even if there are no 1279 * userfaults yet. So we take the spinlock only when we're 1280 * sure we've userfaults to wake. 1281 */ 1282 do { 1283 seq = read_seqcount_begin(&ctx->refile_seq); 1284 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1285 waitqueue_active(&ctx->fault_wqh); 1286 cond_resched(); 1287 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1288 if (need_wakeup) 1289 __wake_userfault(ctx, range); 1290 } 1291 1292 static __always_inline int validate_range(struct mm_struct *mm, 1293 __u64 start, __u64 len) 1294 { 1295 __u64 task_size = mm->task_size; 1296 1297 if (start & ~PAGE_MASK) 1298 return -EINVAL; 1299 if (len & ~PAGE_MASK) 1300 return -EINVAL; 1301 if (!len) 1302 return -EINVAL; 1303 if (start < mmap_min_addr) 1304 return -EINVAL; 1305 if (start >= task_size) 1306 return -EINVAL; 1307 if (len > task_size - start) 1308 return -EINVAL; 1309 return 0; 1310 } 1311 1312 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1313 unsigned long arg) 1314 { 1315 struct mm_struct *mm = ctx->mm; 1316 struct vm_area_struct *vma, *prev, *cur; 1317 int ret; 1318 struct uffdio_register uffdio_register; 1319 struct uffdio_register __user *user_uffdio_register; 1320 unsigned long vm_flags, new_flags; 1321 bool found; 1322 bool basic_ioctls; 1323 unsigned long start, end, vma_end; 1324 struct vma_iterator vmi; 1325 pgoff_t pgoff; 1326 1327 user_uffdio_register = (struct uffdio_register __user *) arg; 1328 1329 ret = -EFAULT; 1330 if (copy_from_user(&uffdio_register, user_uffdio_register, 1331 sizeof(uffdio_register)-sizeof(__u64))) 1332 goto out; 1333 1334 ret = -EINVAL; 1335 if (!uffdio_register.mode) 1336 goto out; 1337 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES) 1338 goto out; 1339 vm_flags = 0; 1340 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1341 vm_flags |= VM_UFFD_MISSING; 1342 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1343 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1344 goto out; 1345 #endif 1346 vm_flags |= VM_UFFD_WP; 1347 } 1348 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) { 1349 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1350 goto out; 1351 #endif 1352 vm_flags |= VM_UFFD_MINOR; 1353 } 1354 1355 ret = validate_range(mm, uffdio_register.range.start, 1356 uffdio_register.range.len); 1357 if (ret) 1358 goto out; 1359 1360 start = uffdio_register.range.start; 1361 end = start + uffdio_register.range.len; 1362 1363 ret = -ENOMEM; 1364 if (!mmget_not_zero(mm)) 1365 goto out; 1366 1367 ret = -EINVAL; 1368 mmap_write_lock(mm); 1369 vma_iter_init(&vmi, mm, start); 1370 vma = vma_find(&vmi, end); 1371 if (!vma) 1372 goto out_unlock; 1373 1374 /* 1375 * If the first vma contains huge pages, make sure start address 1376 * is aligned to huge page size. 1377 */ 1378 if (is_vm_hugetlb_page(vma)) { 1379 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1380 1381 if (start & (vma_hpagesize - 1)) 1382 goto out_unlock; 1383 } 1384 1385 /* 1386 * Search for not compatible vmas. 1387 */ 1388 found = false; 1389 basic_ioctls = false; 1390 cur = vma; 1391 do { 1392 cond_resched(); 1393 1394 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1395 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1396 1397 /* check not compatible vmas */ 1398 ret = -EINVAL; 1399 if (!vma_can_userfault(cur, vm_flags)) 1400 goto out_unlock; 1401 1402 /* 1403 * UFFDIO_COPY will fill file holes even without 1404 * PROT_WRITE. This check enforces that if this is a 1405 * MAP_SHARED, the process has write permission to the backing 1406 * file. If VM_MAYWRITE is set it also enforces that on a 1407 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1408 * F_WRITE_SEAL can be taken until the vma is destroyed. 1409 */ 1410 ret = -EPERM; 1411 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1412 goto out_unlock; 1413 1414 /* 1415 * If this vma contains ending address, and huge pages 1416 * check alignment. 1417 */ 1418 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1419 end > cur->vm_start) { 1420 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1421 1422 ret = -EINVAL; 1423 1424 if (end & (vma_hpagesize - 1)) 1425 goto out_unlock; 1426 } 1427 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) 1428 goto out_unlock; 1429 1430 /* 1431 * Check that this vma isn't already owned by a 1432 * different userfaultfd. We can't allow more than one 1433 * userfaultfd to own a single vma simultaneously or we 1434 * wouldn't know which one to deliver the userfaults to. 1435 */ 1436 ret = -EBUSY; 1437 if (cur->vm_userfaultfd_ctx.ctx && 1438 cur->vm_userfaultfd_ctx.ctx != ctx) 1439 goto out_unlock; 1440 1441 /* 1442 * Note vmas containing huge pages 1443 */ 1444 if (is_vm_hugetlb_page(cur)) 1445 basic_ioctls = true; 1446 1447 found = true; 1448 } for_each_vma_range(vmi, cur, end); 1449 BUG_ON(!found); 1450 1451 vma_iter_set(&vmi, start); 1452 prev = vma_prev(&vmi); 1453 if (vma->vm_start < start) 1454 prev = vma; 1455 1456 ret = 0; 1457 for_each_vma_range(vmi, vma, end) { 1458 cond_resched(); 1459 1460 BUG_ON(!vma_can_userfault(vma, vm_flags)); 1461 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1462 vma->vm_userfaultfd_ctx.ctx != ctx); 1463 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1464 1465 /* 1466 * Nothing to do: this vma is already registered into this 1467 * userfaultfd and with the right tracking mode too. 1468 */ 1469 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1470 (vma->vm_flags & vm_flags) == vm_flags) 1471 goto skip; 1472 1473 if (vma->vm_start > start) 1474 start = vma->vm_start; 1475 vma_end = min(end, vma->vm_end); 1476 1477 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags; 1478 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 1479 prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags, 1480 vma->anon_vma, vma->vm_file, pgoff, 1481 vma_policy(vma), 1482 ((struct vm_userfaultfd_ctx){ ctx }), 1483 anon_vma_name(vma)); 1484 if (prev) { 1485 /* vma_merge() invalidated the mas */ 1486 vma = prev; 1487 goto next; 1488 } 1489 if (vma->vm_start < start) { 1490 ret = split_vma(&vmi, vma, start, 1); 1491 if (ret) 1492 break; 1493 } 1494 if (vma->vm_end > end) { 1495 ret = split_vma(&vmi, vma, end, 0); 1496 if (ret) 1497 break; 1498 } 1499 next: 1500 /* 1501 * In the vma_merge() successful mprotect-like case 8: 1502 * the next vma was merged into the current one and 1503 * the current one has not been updated yet. 1504 */ 1505 userfaultfd_set_vm_flags(vma, new_flags); 1506 vma->vm_userfaultfd_ctx.ctx = ctx; 1507 1508 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma)) 1509 hugetlb_unshare_all_pmds(vma); 1510 1511 skip: 1512 prev = vma; 1513 start = vma->vm_end; 1514 } 1515 1516 out_unlock: 1517 mmap_write_unlock(mm); 1518 mmput(mm); 1519 if (!ret) { 1520 __u64 ioctls_out; 1521 1522 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1523 UFFD_API_RANGE_IOCTLS; 1524 1525 /* 1526 * Declare the WP ioctl only if the WP mode is 1527 * specified and all checks passed with the range 1528 */ 1529 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) 1530 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); 1531 1532 /* CONTINUE ioctl is only supported for MINOR ranges. */ 1533 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR)) 1534 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE); 1535 1536 /* 1537 * Now that we scanned all vmas we can already tell 1538 * userland which ioctls methods are guaranteed to 1539 * succeed on this range. 1540 */ 1541 if (put_user(ioctls_out, &user_uffdio_register->ioctls)) 1542 ret = -EFAULT; 1543 } 1544 out: 1545 return ret; 1546 } 1547 1548 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1549 unsigned long arg) 1550 { 1551 struct mm_struct *mm = ctx->mm; 1552 struct vm_area_struct *vma, *prev, *cur; 1553 int ret; 1554 struct uffdio_range uffdio_unregister; 1555 unsigned long new_flags; 1556 bool found; 1557 unsigned long start, end, vma_end; 1558 const void __user *buf = (void __user *)arg; 1559 struct vma_iterator vmi; 1560 pgoff_t pgoff; 1561 1562 ret = -EFAULT; 1563 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1564 goto out; 1565 1566 ret = validate_range(mm, uffdio_unregister.start, 1567 uffdio_unregister.len); 1568 if (ret) 1569 goto out; 1570 1571 start = uffdio_unregister.start; 1572 end = start + uffdio_unregister.len; 1573 1574 ret = -ENOMEM; 1575 if (!mmget_not_zero(mm)) 1576 goto out; 1577 1578 mmap_write_lock(mm); 1579 ret = -EINVAL; 1580 vma_iter_init(&vmi, mm, start); 1581 vma = vma_find(&vmi, end); 1582 if (!vma) 1583 goto out_unlock; 1584 1585 /* 1586 * If the first vma contains huge pages, make sure start address 1587 * is aligned to huge page size. 1588 */ 1589 if (is_vm_hugetlb_page(vma)) { 1590 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1591 1592 if (start & (vma_hpagesize - 1)) 1593 goto out_unlock; 1594 } 1595 1596 /* 1597 * Search for not compatible vmas. 1598 */ 1599 found = false; 1600 cur = vma; 1601 do { 1602 cond_resched(); 1603 1604 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1605 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1606 1607 /* 1608 * Check not compatible vmas, not strictly required 1609 * here as not compatible vmas cannot have an 1610 * userfaultfd_ctx registered on them, but this 1611 * provides for more strict behavior to notice 1612 * unregistration errors. 1613 */ 1614 if (!vma_can_userfault(cur, cur->vm_flags)) 1615 goto out_unlock; 1616 1617 found = true; 1618 } for_each_vma_range(vmi, cur, end); 1619 BUG_ON(!found); 1620 1621 vma_iter_set(&vmi, start); 1622 prev = vma_prev(&vmi); 1623 if (vma->vm_start < start) 1624 prev = vma; 1625 1626 ret = 0; 1627 for_each_vma_range(vmi, vma, end) { 1628 cond_resched(); 1629 1630 BUG_ON(!vma_can_userfault(vma, vma->vm_flags)); 1631 1632 /* 1633 * Nothing to do: this vma is already registered into this 1634 * userfaultfd and with the right tracking mode too. 1635 */ 1636 if (!vma->vm_userfaultfd_ctx.ctx) 1637 goto skip; 1638 1639 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1640 1641 if (vma->vm_start > start) 1642 start = vma->vm_start; 1643 vma_end = min(end, vma->vm_end); 1644 1645 if (userfaultfd_missing(vma)) { 1646 /* 1647 * Wake any concurrent pending userfault while 1648 * we unregister, so they will not hang 1649 * permanently and it avoids userland to call 1650 * UFFDIO_WAKE explicitly. 1651 */ 1652 struct userfaultfd_wake_range range; 1653 range.start = start; 1654 range.len = vma_end - start; 1655 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1656 } 1657 1658 /* Reset ptes for the whole vma range if wr-protected */ 1659 if (userfaultfd_wp(vma)) 1660 uffd_wp_range(vma, start, vma_end - start, false); 1661 1662 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 1663 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 1664 prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags, 1665 vma->anon_vma, vma->vm_file, pgoff, 1666 vma_policy(vma), 1667 NULL_VM_UFFD_CTX, anon_vma_name(vma)); 1668 if (prev) { 1669 vma = prev; 1670 goto next; 1671 } 1672 if (vma->vm_start < start) { 1673 ret = split_vma(&vmi, vma, start, 1); 1674 if (ret) 1675 break; 1676 } 1677 if (vma->vm_end > end) { 1678 ret = split_vma(&vmi, vma, end, 0); 1679 if (ret) 1680 break; 1681 } 1682 next: 1683 /* 1684 * In the vma_merge() successful mprotect-like case 8: 1685 * the next vma was merged into the current one and 1686 * the current one has not been updated yet. 1687 */ 1688 userfaultfd_set_vm_flags(vma, new_flags); 1689 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1690 1691 skip: 1692 prev = vma; 1693 start = vma->vm_end; 1694 } 1695 1696 out_unlock: 1697 mmap_write_unlock(mm); 1698 mmput(mm); 1699 out: 1700 return ret; 1701 } 1702 1703 /* 1704 * userfaultfd_wake may be used in combination with the 1705 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1706 */ 1707 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1708 unsigned long arg) 1709 { 1710 int ret; 1711 struct uffdio_range uffdio_wake; 1712 struct userfaultfd_wake_range range; 1713 const void __user *buf = (void __user *)arg; 1714 1715 ret = -EFAULT; 1716 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1717 goto out; 1718 1719 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1720 if (ret) 1721 goto out; 1722 1723 range.start = uffdio_wake.start; 1724 range.len = uffdio_wake.len; 1725 1726 /* 1727 * len == 0 means wake all and we don't want to wake all here, 1728 * so check it again to be sure. 1729 */ 1730 VM_BUG_ON(!range.len); 1731 1732 wake_userfault(ctx, &range); 1733 ret = 0; 1734 1735 out: 1736 return ret; 1737 } 1738 1739 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1740 unsigned long arg) 1741 { 1742 __s64 ret; 1743 struct uffdio_copy uffdio_copy; 1744 struct uffdio_copy __user *user_uffdio_copy; 1745 struct userfaultfd_wake_range range; 1746 uffd_flags_t flags = 0; 1747 1748 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1749 1750 ret = -EAGAIN; 1751 if (atomic_read(&ctx->mmap_changing)) 1752 goto out; 1753 1754 ret = -EFAULT; 1755 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1756 /* don't copy "copy" last field */ 1757 sizeof(uffdio_copy)-sizeof(__s64))) 1758 goto out; 1759 1760 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1761 if (ret) 1762 goto out; 1763 /* 1764 * double check for wraparound just in case. copy_from_user() 1765 * will later check uffdio_copy.src + uffdio_copy.len to fit 1766 * in the userland range. 1767 */ 1768 ret = -EINVAL; 1769 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1770 goto out; 1771 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) 1772 goto out; 1773 if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP) 1774 flags |= MFILL_ATOMIC_WP; 1775 if (mmget_not_zero(ctx->mm)) { 1776 ret = mfill_atomic_copy(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1777 uffdio_copy.len, &ctx->mmap_changing, 1778 flags); 1779 mmput(ctx->mm); 1780 } else { 1781 return -ESRCH; 1782 } 1783 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1784 return -EFAULT; 1785 if (ret < 0) 1786 goto out; 1787 BUG_ON(!ret); 1788 /* len == 0 would wake all */ 1789 range.len = ret; 1790 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1791 range.start = uffdio_copy.dst; 1792 wake_userfault(ctx, &range); 1793 } 1794 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1795 out: 1796 return ret; 1797 } 1798 1799 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1800 unsigned long arg) 1801 { 1802 __s64 ret; 1803 struct uffdio_zeropage uffdio_zeropage; 1804 struct uffdio_zeropage __user *user_uffdio_zeropage; 1805 struct userfaultfd_wake_range range; 1806 1807 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1808 1809 ret = -EAGAIN; 1810 if (atomic_read(&ctx->mmap_changing)) 1811 goto out; 1812 1813 ret = -EFAULT; 1814 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1815 /* don't copy "zeropage" last field */ 1816 sizeof(uffdio_zeropage)-sizeof(__s64))) 1817 goto out; 1818 1819 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1820 uffdio_zeropage.range.len); 1821 if (ret) 1822 goto out; 1823 ret = -EINVAL; 1824 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1825 goto out; 1826 1827 if (mmget_not_zero(ctx->mm)) { 1828 ret = mfill_atomic_zeropage(ctx->mm, uffdio_zeropage.range.start, 1829 uffdio_zeropage.range.len, 1830 &ctx->mmap_changing); 1831 mmput(ctx->mm); 1832 } else { 1833 return -ESRCH; 1834 } 1835 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1836 return -EFAULT; 1837 if (ret < 0) 1838 goto out; 1839 /* len == 0 would wake all */ 1840 BUG_ON(!ret); 1841 range.len = ret; 1842 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1843 range.start = uffdio_zeropage.range.start; 1844 wake_userfault(ctx, &range); 1845 } 1846 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1847 out: 1848 return ret; 1849 } 1850 1851 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, 1852 unsigned long arg) 1853 { 1854 int ret; 1855 struct uffdio_writeprotect uffdio_wp; 1856 struct uffdio_writeprotect __user *user_uffdio_wp; 1857 struct userfaultfd_wake_range range; 1858 bool mode_wp, mode_dontwake; 1859 1860 if (atomic_read(&ctx->mmap_changing)) 1861 return -EAGAIN; 1862 1863 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; 1864 1865 if (copy_from_user(&uffdio_wp, user_uffdio_wp, 1866 sizeof(struct uffdio_writeprotect))) 1867 return -EFAULT; 1868 1869 ret = validate_range(ctx->mm, uffdio_wp.range.start, 1870 uffdio_wp.range.len); 1871 if (ret) 1872 return ret; 1873 1874 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | 1875 UFFDIO_WRITEPROTECT_MODE_WP)) 1876 return -EINVAL; 1877 1878 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; 1879 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; 1880 1881 if (mode_wp && mode_dontwake) 1882 return -EINVAL; 1883 1884 if (mmget_not_zero(ctx->mm)) { 1885 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start, 1886 uffdio_wp.range.len, mode_wp, 1887 &ctx->mmap_changing); 1888 mmput(ctx->mm); 1889 } else { 1890 return -ESRCH; 1891 } 1892 1893 if (ret) 1894 return ret; 1895 1896 if (!mode_wp && !mode_dontwake) { 1897 range.start = uffdio_wp.range.start; 1898 range.len = uffdio_wp.range.len; 1899 wake_userfault(ctx, &range); 1900 } 1901 return ret; 1902 } 1903 1904 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg) 1905 { 1906 __s64 ret; 1907 struct uffdio_continue uffdio_continue; 1908 struct uffdio_continue __user *user_uffdio_continue; 1909 struct userfaultfd_wake_range range; 1910 uffd_flags_t flags = 0; 1911 1912 user_uffdio_continue = (struct uffdio_continue __user *)arg; 1913 1914 ret = -EAGAIN; 1915 if (atomic_read(&ctx->mmap_changing)) 1916 goto out; 1917 1918 ret = -EFAULT; 1919 if (copy_from_user(&uffdio_continue, user_uffdio_continue, 1920 /* don't copy the output fields */ 1921 sizeof(uffdio_continue) - (sizeof(__s64)))) 1922 goto out; 1923 1924 ret = validate_range(ctx->mm, uffdio_continue.range.start, 1925 uffdio_continue.range.len); 1926 if (ret) 1927 goto out; 1928 1929 ret = -EINVAL; 1930 /* double check for wraparound just in case. */ 1931 if (uffdio_continue.range.start + uffdio_continue.range.len <= 1932 uffdio_continue.range.start) { 1933 goto out; 1934 } 1935 if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE | 1936 UFFDIO_CONTINUE_MODE_WP)) 1937 goto out; 1938 if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP) 1939 flags |= MFILL_ATOMIC_WP; 1940 1941 if (mmget_not_zero(ctx->mm)) { 1942 ret = mfill_atomic_continue(ctx->mm, uffdio_continue.range.start, 1943 uffdio_continue.range.len, 1944 &ctx->mmap_changing, flags); 1945 mmput(ctx->mm); 1946 } else { 1947 return -ESRCH; 1948 } 1949 1950 if (unlikely(put_user(ret, &user_uffdio_continue->mapped))) 1951 return -EFAULT; 1952 if (ret < 0) 1953 goto out; 1954 1955 /* len == 0 would wake all */ 1956 BUG_ON(!ret); 1957 range.len = ret; 1958 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) { 1959 range.start = uffdio_continue.range.start; 1960 wake_userfault(ctx, &range); 1961 } 1962 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN; 1963 1964 out: 1965 return ret; 1966 } 1967 1968 static inline unsigned int uffd_ctx_features(__u64 user_features) 1969 { 1970 /* 1971 * For the current set of features the bits just coincide. Set 1972 * UFFD_FEATURE_INITIALIZED to mark the features as enabled. 1973 */ 1974 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED; 1975 } 1976 1977 /* 1978 * userland asks for a certain API version and we return which bits 1979 * and ioctl commands are implemented in this kernel for such API 1980 * version or -EINVAL if unknown. 1981 */ 1982 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1983 unsigned long arg) 1984 { 1985 struct uffdio_api uffdio_api; 1986 void __user *buf = (void __user *)arg; 1987 unsigned int ctx_features; 1988 int ret; 1989 __u64 features; 1990 1991 ret = -EFAULT; 1992 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1993 goto out; 1994 features = uffdio_api.features; 1995 ret = -EINVAL; 1996 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) 1997 goto err_out; 1998 ret = -EPERM; 1999 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) 2000 goto err_out; 2001 /* report all available features and ioctls to userland */ 2002 uffdio_api.features = UFFD_API_FEATURES; 2003 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 2004 uffdio_api.features &= 2005 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM); 2006 #endif 2007 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 2008 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP; 2009 #endif 2010 #ifndef CONFIG_PTE_MARKER_UFFD_WP 2011 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM; 2012 uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED; 2013 #endif 2014 uffdio_api.ioctls = UFFD_API_IOCTLS; 2015 ret = -EFAULT; 2016 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2017 goto out; 2018 2019 /* only enable the requested features for this uffd context */ 2020 ctx_features = uffd_ctx_features(features); 2021 ret = -EINVAL; 2022 if (cmpxchg(&ctx->features, 0, ctx_features) != 0) 2023 goto err_out; 2024 2025 ret = 0; 2026 out: 2027 return ret; 2028 err_out: 2029 memset(&uffdio_api, 0, sizeof(uffdio_api)); 2030 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2031 ret = -EFAULT; 2032 goto out; 2033 } 2034 2035 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 2036 unsigned long arg) 2037 { 2038 int ret = -EINVAL; 2039 struct userfaultfd_ctx *ctx = file->private_data; 2040 2041 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx)) 2042 return -EINVAL; 2043 2044 switch(cmd) { 2045 case UFFDIO_API: 2046 ret = userfaultfd_api(ctx, arg); 2047 break; 2048 case UFFDIO_REGISTER: 2049 ret = userfaultfd_register(ctx, arg); 2050 break; 2051 case UFFDIO_UNREGISTER: 2052 ret = userfaultfd_unregister(ctx, arg); 2053 break; 2054 case UFFDIO_WAKE: 2055 ret = userfaultfd_wake(ctx, arg); 2056 break; 2057 case UFFDIO_COPY: 2058 ret = userfaultfd_copy(ctx, arg); 2059 break; 2060 case UFFDIO_ZEROPAGE: 2061 ret = userfaultfd_zeropage(ctx, arg); 2062 break; 2063 case UFFDIO_WRITEPROTECT: 2064 ret = userfaultfd_writeprotect(ctx, arg); 2065 break; 2066 case UFFDIO_CONTINUE: 2067 ret = userfaultfd_continue(ctx, arg); 2068 break; 2069 } 2070 return ret; 2071 } 2072 2073 #ifdef CONFIG_PROC_FS 2074 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 2075 { 2076 struct userfaultfd_ctx *ctx = f->private_data; 2077 wait_queue_entry_t *wq; 2078 unsigned long pending = 0, total = 0; 2079 2080 spin_lock_irq(&ctx->fault_pending_wqh.lock); 2081 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 2082 pending++; 2083 total++; 2084 } 2085 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 2086 total++; 2087 } 2088 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 2089 2090 /* 2091 * If more protocols will be added, there will be all shown 2092 * separated by a space. Like this: 2093 * protocols: aa:... bb:... 2094 */ 2095 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 2096 pending, total, UFFD_API, ctx->features, 2097 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 2098 } 2099 #endif 2100 2101 static const struct file_operations userfaultfd_fops = { 2102 #ifdef CONFIG_PROC_FS 2103 .show_fdinfo = userfaultfd_show_fdinfo, 2104 #endif 2105 .release = userfaultfd_release, 2106 .poll = userfaultfd_poll, 2107 .read = userfaultfd_read, 2108 .unlocked_ioctl = userfaultfd_ioctl, 2109 .compat_ioctl = compat_ptr_ioctl, 2110 .llseek = noop_llseek, 2111 }; 2112 2113 static void init_once_userfaultfd_ctx(void *mem) 2114 { 2115 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 2116 2117 init_waitqueue_head(&ctx->fault_pending_wqh); 2118 init_waitqueue_head(&ctx->fault_wqh); 2119 init_waitqueue_head(&ctx->event_wqh); 2120 init_waitqueue_head(&ctx->fd_wqh); 2121 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); 2122 } 2123 2124 static int new_userfaultfd(int flags) 2125 { 2126 struct userfaultfd_ctx *ctx; 2127 int fd; 2128 2129 BUG_ON(!current->mm); 2130 2131 /* Check the UFFD_* constants for consistency. */ 2132 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS); 2133 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 2134 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 2135 2136 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY)) 2137 return -EINVAL; 2138 2139 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 2140 if (!ctx) 2141 return -ENOMEM; 2142 2143 refcount_set(&ctx->refcount, 1); 2144 ctx->flags = flags; 2145 ctx->features = 0; 2146 ctx->released = false; 2147 atomic_set(&ctx->mmap_changing, 0); 2148 ctx->mm = current->mm; 2149 /* prevent the mm struct to be freed */ 2150 mmgrab(ctx->mm); 2151 2152 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx, 2153 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL); 2154 if (fd < 0) { 2155 mmdrop(ctx->mm); 2156 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 2157 } 2158 return fd; 2159 } 2160 2161 static inline bool userfaultfd_syscall_allowed(int flags) 2162 { 2163 /* Userspace-only page faults are always allowed */ 2164 if (flags & UFFD_USER_MODE_ONLY) 2165 return true; 2166 2167 /* 2168 * The user is requesting a userfaultfd which can handle kernel faults. 2169 * Privileged users are always allowed to do this. 2170 */ 2171 if (capable(CAP_SYS_PTRACE)) 2172 return true; 2173 2174 /* Otherwise, access to kernel fault handling is sysctl controlled. */ 2175 return sysctl_unprivileged_userfaultfd; 2176 } 2177 2178 SYSCALL_DEFINE1(userfaultfd, int, flags) 2179 { 2180 if (!userfaultfd_syscall_allowed(flags)) 2181 return -EPERM; 2182 2183 return new_userfaultfd(flags); 2184 } 2185 2186 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags) 2187 { 2188 if (cmd != USERFAULTFD_IOC_NEW) 2189 return -EINVAL; 2190 2191 return new_userfaultfd(flags); 2192 } 2193 2194 static const struct file_operations userfaultfd_dev_fops = { 2195 .unlocked_ioctl = userfaultfd_dev_ioctl, 2196 .compat_ioctl = userfaultfd_dev_ioctl, 2197 .owner = THIS_MODULE, 2198 .llseek = noop_llseek, 2199 }; 2200 2201 static struct miscdevice userfaultfd_misc = { 2202 .minor = MISC_DYNAMIC_MINOR, 2203 .name = "userfaultfd", 2204 .fops = &userfaultfd_dev_fops 2205 }; 2206 2207 static int __init userfaultfd_init(void) 2208 { 2209 int ret; 2210 2211 ret = misc_register(&userfaultfd_misc); 2212 if (ret) 2213 return ret; 2214 2215 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 2216 sizeof(struct userfaultfd_ctx), 2217 0, 2218 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2219 init_once_userfaultfd_ctx); 2220 #ifdef CONFIG_SYSCTL 2221 register_sysctl_init("vm", vm_userfaultfd_table); 2222 #endif 2223 return 0; 2224 } 2225 __initcall(userfaultfd_init); 2226