1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/userfaultfd.c 4 * 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 8 * 9 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 11 */ 12 13 #include <linux/list.h> 14 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/seq_file.h> 21 #include <linux/file.h> 22 #include <linux/bug.h> 23 #include <linux/anon_inodes.h> 24 #include <linux/syscalls.h> 25 #include <linux/userfaultfd_k.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ioctl.h> 28 #include <linux/security.h> 29 #include <linux/hugetlb.h> 30 31 int sysctl_unprivileged_userfaultfd __read_mostly = 1; 32 33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 34 35 enum userfaultfd_state { 36 UFFD_STATE_WAIT_API, 37 UFFD_STATE_RUNNING, 38 }; 39 40 /* 41 * Start with fault_pending_wqh and fault_wqh so they're more likely 42 * to be in the same cacheline. 43 * 44 * Locking order: 45 * fd_wqh.lock 46 * fault_pending_wqh.lock 47 * fault_wqh.lock 48 * event_wqh.lock 49 * 50 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, 51 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's 52 * also taken in IRQ context. 53 */ 54 struct userfaultfd_ctx { 55 /* waitqueue head for the pending (i.e. not read) userfaults */ 56 wait_queue_head_t fault_pending_wqh; 57 /* waitqueue head for the userfaults */ 58 wait_queue_head_t fault_wqh; 59 /* waitqueue head for the pseudo fd to wakeup poll/read */ 60 wait_queue_head_t fd_wqh; 61 /* waitqueue head for events */ 62 wait_queue_head_t event_wqh; 63 /* a refile sequence protected by fault_pending_wqh lock */ 64 seqcount_spinlock_t refile_seq; 65 /* pseudo fd refcounting */ 66 refcount_t refcount; 67 /* userfaultfd syscall flags */ 68 unsigned int flags; 69 /* features requested from the userspace */ 70 unsigned int features; 71 /* state machine */ 72 enum userfaultfd_state state; 73 /* released */ 74 bool released; 75 /* memory mappings are changing because of non-cooperative event */ 76 bool mmap_changing; 77 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 78 struct mm_struct *mm; 79 }; 80 81 struct userfaultfd_fork_ctx { 82 struct userfaultfd_ctx *orig; 83 struct userfaultfd_ctx *new; 84 struct list_head list; 85 }; 86 87 struct userfaultfd_unmap_ctx { 88 struct userfaultfd_ctx *ctx; 89 unsigned long start; 90 unsigned long end; 91 struct list_head list; 92 }; 93 94 struct userfaultfd_wait_queue { 95 struct uffd_msg msg; 96 wait_queue_entry_t wq; 97 struct userfaultfd_ctx *ctx; 98 bool waken; 99 }; 100 101 struct userfaultfd_wake_range { 102 unsigned long start; 103 unsigned long len; 104 }; 105 106 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 107 int wake_flags, void *key) 108 { 109 struct userfaultfd_wake_range *range = key; 110 int ret; 111 struct userfaultfd_wait_queue *uwq; 112 unsigned long start, len; 113 114 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 115 ret = 0; 116 /* len == 0 means wake all */ 117 start = range->start; 118 len = range->len; 119 if (len && (start > uwq->msg.arg.pagefault.address || 120 start + len <= uwq->msg.arg.pagefault.address)) 121 goto out; 122 WRITE_ONCE(uwq->waken, true); 123 /* 124 * The Program-Order guarantees provided by the scheduler 125 * ensure uwq->waken is visible before the task is woken. 126 */ 127 ret = wake_up_state(wq->private, mode); 128 if (ret) { 129 /* 130 * Wake only once, autoremove behavior. 131 * 132 * After the effect of list_del_init is visible to the other 133 * CPUs, the waitqueue may disappear from under us, see the 134 * !list_empty_careful() in handle_userfault(). 135 * 136 * try_to_wake_up() has an implicit smp_mb(), and the 137 * wq->private is read before calling the extern function 138 * "wake_up_state" (which in turns calls try_to_wake_up). 139 */ 140 list_del_init(&wq->entry); 141 } 142 out: 143 return ret; 144 } 145 146 /** 147 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 148 * context. 149 * @ctx: [in] Pointer to the userfaultfd context. 150 */ 151 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 152 { 153 refcount_inc(&ctx->refcount); 154 } 155 156 /** 157 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 158 * context. 159 * @ctx: [in] Pointer to userfaultfd context. 160 * 161 * The userfaultfd context reference must have been previously acquired either 162 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 163 */ 164 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 165 { 166 if (refcount_dec_and_test(&ctx->refcount)) { 167 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 168 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 169 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 170 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 171 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 172 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 173 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 174 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 175 mmdrop(ctx->mm); 176 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 177 } 178 } 179 180 static inline void msg_init(struct uffd_msg *msg) 181 { 182 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 183 /* 184 * Must use memset to zero out the paddings or kernel data is 185 * leaked to userland. 186 */ 187 memset(msg, 0, sizeof(struct uffd_msg)); 188 } 189 190 static inline struct uffd_msg userfault_msg(unsigned long address, 191 unsigned int flags, 192 unsigned long reason, 193 unsigned int features) 194 { 195 struct uffd_msg msg; 196 msg_init(&msg); 197 msg.event = UFFD_EVENT_PAGEFAULT; 198 msg.arg.pagefault.address = address; 199 if (flags & FAULT_FLAG_WRITE) 200 /* 201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE 203 * was not set in a UFFD_EVENT_PAGEFAULT, it means it 204 * was a read fault, otherwise if set it means it's 205 * a write fault. 206 */ 207 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 208 if (reason & VM_UFFD_WP) 209 /* 210 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 211 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was 212 * not set in a UFFD_EVENT_PAGEFAULT, it means it was 213 * a missing fault, otherwise if set it means it's a 214 * write protect fault. 215 */ 216 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 217 if (features & UFFD_FEATURE_THREAD_ID) 218 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 219 return msg; 220 } 221 222 #ifdef CONFIG_HUGETLB_PAGE 223 /* 224 * Same functionality as userfaultfd_must_wait below with modifications for 225 * hugepmd ranges. 226 */ 227 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 228 struct vm_area_struct *vma, 229 unsigned long address, 230 unsigned long flags, 231 unsigned long reason) 232 { 233 struct mm_struct *mm = ctx->mm; 234 pte_t *ptep, pte; 235 bool ret = true; 236 237 mmap_assert_locked(mm); 238 239 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); 240 241 if (!ptep) 242 goto out; 243 244 ret = false; 245 pte = huge_ptep_get(ptep); 246 247 /* 248 * Lockless access: we're in a wait_event so it's ok if it 249 * changes under us. 250 */ 251 if (huge_pte_none(pte)) 252 ret = true; 253 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 254 ret = true; 255 out: 256 return ret; 257 } 258 #else 259 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 260 struct vm_area_struct *vma, 261 unsigned long address, 262 unsigned long flags, 263 unsigned long reason) 264 { 265 return false; /* should never get here */ 266 } 267 #endif /* CONFIG_HUGETLB_PAGE */ 268 269 /* 270 * Verify the pagetables are still not ok after having reigstered into 271 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 272 * userfault that has already been resolved, if userfaultfd_read and 273 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 274 * threads. 275 */ 276 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 277 unsigned long address, 278 unsigned long flags, 279 unsigned long reason) 280 { 281 struct mm_struct *mm = ctx->mm; 282 pgd_t *pgd; 283 p4d_t *p4d; 284 pud_t *pud; 285 pmd_t *pmd, _pmd; 286 pte_t *pte; 287 bool ret = true; 288 289 mmap_assert_locked(mm); 290 291 pgd = pgd_offset(mm, address); 292 if (!pgd_present(*pgd)) 293 goto out; 294 p4d = p4d_offset(pgd, address); 295 if (!p4d_present(*p4d)) 296 goto out; 297 pud = pud_offset(p4d, address); 298 if (!pud_present(*pud)) 299 goto out; 300 pmd = pmd_offset(pud, address); 301 /* 302 * READ_ONCE must function as a barrier with narrower scope 303 * and it must be equivalent to: 304 * _pmd = *pmd; barrier(); 305 * 306 * This is to deal with the instability (as in 307 * pmd_trans_unstable) of the pmd. 308 */ 309 _pmd = READ_ONCE(*pmd); 310 if (pmd_none(_pmd)) 311 goto out; 312 313 ret = false; 314 if (!pmd_present(_pmd)) 315 goto out; 316 317 if (pmd_trans_huge(_pmd)) { 318 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) 319 ret = true; 320 goto out; 321 } 322 323 /* 324 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 325 * and use the standard pte_offset_map() instead of parsing _pmd. 326 */ 327 pte = pte_offset_map(pmd, address); 328 /* 329 * Lockless access: we're in a wait_event so it's ok if it 330 * changes under us. 331 */ 332 if (pte_none(*pte)) 333 ret = true; 334 if (!pte_write(*pte) && (reason & VM_UFFD_WP)) 335 ret = true; 336 pte_unmap(pte); 337 338 out: 339 return ret; 340 } 341 342 static inline long userfaultfd_get_blocking_state(unsigned int flags) 343 { 344 if (flags & FAULT_FLAG_INTERRUPTIBLE) 345 return TASK_INTERRUPTIBLE; 346 347 if (flags & FAULT_FLAG_KILLABLE) 348 return TASK_KILLABLE; 349 350 return TASK_UNINTERRUPTIBLE; 351 } 352 353 /* 354 * The locking rules involved in returning VM_FAULT_RETRY depending on 355 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 356 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 357 * recommendation in __lock_page_or_retry is not an understatement. 358 * 359 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released 360 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 361 * not set. 362 * 363 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 364 * set, VM_FAULT_RETRY can still be returned if and only if there are 365 * fatal_signal_pending()s, and the mmap_lock must be released before 366 * returning it. 367 */ 368 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 369 { 370 struct mm_struct *mm = vmf->vma->vm_mm; 371 struct userfaultfd_ctx *ctx; 372 struct userfaultfd_wait_queue uwq; 373 vm_fault_t ret = VM_FAULT_SIGBUS; 374 bool must_wait; 375 long blocking_state; 376 377 /* 378 * We don't do userfault handling for the final child pid update. 379 * 380 * We also don't do userfault handling during 381 * coredumping. hugetlbfs has the special 382 * follow_hugetlb_page() to skip missing pages in the 383 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 384 * the no_page_table() helper in follow_page_mask(), but the 385 * shmem_vm_ops->fault method is invoked even during 386 * coredumping without mmap_lock and it ends up here. 387 */ 388 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 389 goto out; 390 391 /* 392 * Coredumping runs without mmap_lock so we can only check that 393 * the mmap_lock is held, if PF_DUMPCORE was not set. 394 */ 395 mmap_assert_locked(mm); 396 397 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 398 if (!ctx) 399 goto out; 400 401 BUG_ON(ctx->mm != mm); 402 403 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); 404 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); 405 406 if (ctx->features & UFFD_FEATURE_SIGBUS) 407 goto out; 408 409 /* 410 * If it's already released don't get it. This avoids to loop 411 * in __get_user_pages if userfaultfd_release waits on the 412 * caller of handle_userfault to release the mmap_lock. 413 */ 414 if (unlikely(READ_ONCE(ctx->released))) { 415 /* 416 * Don't return VM_FAULT_SIGBUS in this case, so a non 417 * cooperative manager can close the uffd after the 418 * last UFFDIO_COPY, without risking to trigger an 419 * involuntary SIGBUS if the process was starting the 420 * userfaultfd while the userfaultfd was still armed 421 * (but after the last UFFDIO_COPY). If the uffd 422 * wasn't already closed when the userfault reached 423 * this point, that would normally be solved by 424 * userfaultfd_must_wait returning 'false'. 425 * 426 * If we were to return VM_FAULT_SIGBUS here, the non 427 * cooperative manager would be instead forced to 428 * always call UFFDIO_UNREGISTER before it can safely 429 * close the uffd. 430 */ 431 ret = VM_FAULT_NOPAGE; 432 goto out; 433 } 434 435 /* 436 * Check that we can return VM_FAULT_RETRY. 437 * 438 * NOTE: it should become possible to return VM_FAULT_RETRY 439 * even if FAULT_FLAG_TRIED is set without leading to gup() 440 * -EBUSY failures, if the userfaultfd is to be extended for 441 * VM_UFFD_WP tracking and we intend to arm the userfault 442 * without first stopping userland access to the memory. For 443 * VM_UFFD_MISSING userfaults this is enough for now. 444 */ 445 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 446 /* 447 * Validate the invariant that nowait must allow retry 448 * to be sure not to return SIGBUS erroneously on 449 * nowait invocations. 450 */ 451 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 452 #ifdef CONFIG_DEBUG_VM 453 if (printk_ratelimit()) { 454 printk(KERN_WARNING 455 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 456 vmf->flags); 457 dump_stack(); 458 } 459 #endif 460 goto out; 461 } 462 463 /* 464 * Handle nowait, not much to do other than tell it to retry 465 * and wait. 466 */ 467 ret = VM_FAULT_RETRY; 468 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 469 goto out; 470 471 /* take the reference before dropping the mmap_lock */ 472 userfaultfd_ctx_get(ctx); 473 474 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 475 uwq.wq.private = current; 476 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason, 477 ctx->features); 478 uwq.ctx = ctx; 479 uwq.waken = false; 480 481 blocking_state = userfaultfd_get_blocking_state(vmf->flags); 482 483 spin_lock_irq(&ctx->fault_pending_wqh.lock); 484 /* 485 * After the __add_wait_queue the uwq is visible to userland 486 * through poll/read(). 487 */ 488 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 489 /* 490 * The smp_mb() after __set_current_state prevents the reads 491 * following the spin_unlock to happen before the list_add in 492 * __add_wait_queue. 493 */ 494 set_current_state(blocking_state); 495 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 496 497 if (!is_vm_hugetlb_page(vmf->vma)) 498 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 499 reason); 500 else 501 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, 502 vmf->address, 503 vmf->flags, reason); 504 mmap_read_unlock(mm); 505 506 if (likely(must_wait && !READ_ONCE(ctx->released))) { 507 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 508 schedule(); 509 } 510 511 __set_current_state(TASK_RUNNING); 512 513 /* 514 * Here we race with the list_del; list_add in 515 * userfaultfd_ctx_read(), however because we don't ever run 516 * list_del_init() to refile across the two lists, the prev 517 * and next pointers will never point to self. list_add also 518 * would never let any of the two pointers to point to 519 * self. So list_empty_careful won't risk to see both pointers 520 * pointing to self at any time during the list refile. The 521 * only case where list_del_init() is called is the full 522 * removal in the wake function and there we don't re-list_add 523 * and it's fine not to block on the spinlock. The uwq on this 524 * kernel stack can be released after the list_del_init. 525 */ 526 if (!list_empty_careful(&uwq.wq.entry)) { 527 spin_lock_irq(&ctx->fault_pending_wqh.lock); 528 /* 529 * No need of list_del_init(), the uwq on the stack 530 * will be freed shortly anyway. 531 */ 532 list_del(&uwq.wq.entry); 533 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 534 } 535 536 /* 537 * ctx may go away after this if the userfault pseudo fd is 538 * already released. 539 */ 540 userfaultfd_ctx_put(ctx); 541 542 out: 543 return ret; 544 } 545 546 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 547 struct userfaultfd_wait_queue *ewq) 548 { 549 struct userfaultfd_ctx *release_new_ctx; 550 551 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 552 goto out; 553 554 ewq->ctx = ctx; 555 init_waitqueue_entry(&ewq->wq, current); 556 release_new_ctx = NULL; 557 558 spin_lock_irq(&ctx->event_wqh.lock); 559 /* 560 * After the __add_wait_queue the uwq is visible to userland 561 * through poll/read(). 562 */ 563 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 564 for (;;) { 565 set_current_state(TASK_KILLABLE); 566 if (ewq->msg.event == 0) 567 break; 568 if (READ_ONCE(ctx->released) || 569 fatal_signal_pending(current)) { 570 /* 571 * &ewq->wq may be queued in fork_event, but 572 * __remove_wait_queue ignores the head 573 * parameter. It would be a problem if it 574 * didn't. 575 */ 576 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 577 if (ewq->msg.event == UFFD_EVENT_FORK) { 578 struct userfaultfd_ctx *new; 579 580 new = (struct userfaultfd_ctx *) 581 (unsigned long) 582 ewq->msg.arg.reserved.reserved1; 583 release_new_ctx = new; 584 } 585 break; 586 } 587 588 spin_unlock_irq(&ctx->event_wqh.lock); 589 590 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 591 schedule(); 592 593 spin_lock_irq(&ctx->event_wqh.lock); 594 } 595 __set_current_state(TASK_RUNNING); 596 spin_unlock_irq(&ctx->event_wqh.lock); 597 598 if (release_new_ctx) { 599 struct vm_area_struct *vma; 600 struct mm_struct *mm = release_new_ctx->mm; 601 602 /* the various vma->vm_userfaultfd_ctx still points to it */ 603 mmap_write_lock(mm); 604 /* no task can run (and in turn coredump) yet */ 605 VM_WARN_ON(!mmget_still_valid(mm)); 606 for (vma = mm->mmap; vma; vma = vma->vm_next) 607 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 608 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 609 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 610 } 611 mmap_write_unlock(mm); 612 613 userfaultfd_ctx_put(release_new_ctx); 614 } 615 616 /* 617 * ctx may go away after this if the userfault pseudo fd is 618 * already released. 619 */ 620 out: 621 WRITE_ONCE(ctx->mmap_changing, false); 622 userfaultfd_ctx_put(ctx); 623 } 624 625 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 626 struct userfaultfd_wait_queue *ewq) 627 { 628 ewq->msg.event = 0; 629 wake_up_locked(&ctx->event_wqh); 630 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 631 } 632 633 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 634 { 635 struct userfaultfd_ctx *ctx = NULL, *octx; 636 struct userfaultfd_fork_ctx *fctx; 637 638 octx = vma->vm_userfaultfd_ctx.ctx; 639 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 640 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 641 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 642 return 0; 643 } 644 645 list_for_each_entry(fctx, fcs, list) 646 if (fctx->orig == octx) { 647 ctx = fctx->new; 648 break; 649 } 650 651 if (!ctx) { 652 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 653 if (!fctx) 654 return -ENOMEM; 655 656 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 657 if (!ctx) { 658 kfree(fctx); 659 return -ENOMEM; 660 } 661 662 refcount_set(&ctx->refcount, 1); 663 ctx->flags = octx->flags; 664 ctx->state = UFFD_STATE_RUNNING; 665 ctx->features = octx->features; 666 ctx->released = false; 667 ctx->mmap_changing = false; 668 ctx->mm = vma->vm_mm; 669 mmgrab(ctx->mm); 670 671 userfaultfd_ctx_get(octx); 672 WRITE_ONCE(octx->mmap_changing, true); 673 fctx->orig = octx; 674 fctx->new = ctx; 675 list_add_tail(&fctx->list, fcs); 676 } 677 678 vma->vm_userfaultfd_ctx.ctx = ctx; 679 return 0; 680 } 681 682 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 683 { 684 struct userfaultfd_ctx *ctx = fctx->orig; 685 struct userfaultfd_wait_queue ewq; 686 687 msg_init(&ewq.msg); 688 689 ewq.msg.event = UFFD_EVENT_FORK; 690 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 691 692 userfaultfd_event_wait_completion(ctx, &ewq); 693 } 694 695 void dup_userfaultfd_complete(struct list_head *fcs) 696 { 697 struct userfaultfd_fork_ctx *fctx, *n; 698 699 list_for_each_entry_safe(fctx, n, fcs, list) { 700 dup_fctx(fctx); 701 list_del(&fctx->list); 702 kfree(fctx); 703 } 704 } 705 706 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 707 struct vm_userfaultfd_ctx *vm_ctx) 708 { 709 struct userfaultfd_ctx *ctx; 710 711 ctx = vma->vm_userfaultfd_ctx.ctx; 712 713 if (!ctx) 714 return; 715 716 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 717 vm_ctx->ctx = ctx; 718 userfaultfd_ctx_get(ctx); 719 WRITE_ONCE(ctx->mmap_changing, true); 720 } else { 721 /* Drop uffd context if remap feature not enabled */ 722 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 723 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 724 } 725 } 726 727 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 728 unsigned long from, unsigned long to, 729 unsigned long len) 730 { 731 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 732 struct userfaultfd_wait_queue ewq; 733 734 if (!ctx) 735 return; 736 737 if (to & ~PAGE_MASK) { 738 userfaultfd_ctx_put(ctx); 739 return; 740 } 741 742 msg_init(&ewq.msg); 743 744 ewq.msg.event = UFFD_EVENT_REMAP; 745 ewq.msg.arg.remap.from = from; 746 ewq.msg.arg.remap.to = to; 747 ewq.msg.arg.remap.len = len; 748 749 userfaultfd_event_wait_completion(ctx, &ewq); 750 } 751 752 bool userfaultfd_remove(struct vm_area_struct *vma, 753 unsigned long start, unsigned long end) 754 { 755 struct mm_struct *mm = vma->vm_mm; 756 struct userfaultfd_ctx *ctx; 757 struct userfaultfd_wait_queue ewq; 758 759 ctx = vma->vm_userfaultfd_ctx.ctx; 760 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 761 return true; 762 763 userfaultfd_ctx_get(ctx); 764 WRITE_ONCE(ctx->mmap_changing, true); 765 mmap_read_unlock(mm); 766 767 msg_init(&ewq.msg); 768 769 ewq.msg.event = UFFD_EVENT_REMOVE; 770 ewq.msg.arg.remove.start = start; 771 ewq.msg.arg.remove.end = end; 772 773 userfaultfd_event_wait_completion(ctx, &ewq); 774 775 return false; 776 } 777 778 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 779 unsigned long start, unsigned long end) 780 { 781 struct userfaultfd_unmap_ctx *unmap_ctx; 782 783 list_for_each_entry(unmap_ctx, unmaps, list) 784 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 785 unmap_ctx->end == end) 786 return true; 787 788 return false; 789 } 790 791 int userfaultfd_unmap_prep(struct vm_area_struct *vma, 792 unsigned long start, unsigned long end, 793 struct list_head *unmaps) 794 { 795 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 796 struct userfaultfd_unmap_ctx *unmap_ctx; 797 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 798 799 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 800 has_unmap_ctx(ctx, unmaps, start, end)) 801 continue; 802 803 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 804 if (!unmap_ctx) 805 return -ENOMEM; 806 807 userfaultfd_ctx_get(ctx); 808 WRITE_ONCE(ctx->mmap_changing, true); 809 unmap_ctx->ctx = ctx; 810 unmap_ctx->start = start; 811 unmap_ctx->end = end; 812 list_add_tail(&unmap_ctx->list, unmaps); 813 } 814 815 return 0; 816 } 817 818 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 819 { 820 struct userfaultfd_unmap_ctx *ctx, *n; 821 struct userfaultfd_wait_queue ewq; 822 823 list_for_each_entry_safe(ctx, n, uf, list) { 824 msg_init(&ewq.msg); 825 826 ewq.msg.event = UFFD_EVENT_UNMAP; 827 ewq.msg.arg.remove.start = ctx->start; 828 ewq.msg.arg.remove.end = ctx->end; 829 830 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 831 832 list_del(&ctx->list); 833 kfree(ctx); 834 } 835 } 836 837 static int userfaultfd_release(struct inode *inode, struct file *file) 838 { 839 struct userfaultfd_ctx *ctx = file->private_data; 840 struct mm_struct *mm = ctx->mm; 841 struct vm_area_struct *vma, *prev; 842 /* len == 0 means wake all */ 843 struct userfaultfd_wake_range range = { .len = 0, }; 844 unsigned long new_flags; 845 bool still_valid; 846 847 WRITE_ONCE(ctx->released, true); 848 849 if (!mmget_not_zero(mm)) 850 goto wakeup; 851 852 /* 853 * Flush page faults out of all CPUs. NOTE: all page faults 854 * must be retried without returning VM_FAULT_SIGBUS if 855 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 856 * changes while handle_userfault released the mmap_lock. So 857 * it's critical that released is set to true (above), before 858 * taking the mmap_lock for writing. 859 */ 860 mmap_write_lock(mm); 861 still_valid = mmget_still_valid(mm); 862 prev = NULL; 863 for (vma = mm->mmap; vma; vma = vma->vm_next) { 864 cond_resched(); 865 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 866 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 867 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 868 prev = vma; 869 continue; 870 } 871 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 872 if (still_valid) { 873 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 874 new_flags, vma->anon_vma, 875 vma->vm_file, vma->vm_pgoff, 876 vma_policy(vma), 877 NULL_VM_UFFD_CTX); 878 if (prev) 879 vma = prev; 880 else 881 prev = vma; 882 } 883 vma->vm_flags = new_flags; 884 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 885 } 886 mmap_write_unlock(mm); 887 mmput(mm); 888 wakeup: 889 /* 890 * After no new page faults can wait on this fault_*wqh, flush 891 * the last page faults that may have been already waiting on 892 * the fault_*wqh. 893 */ 894 spin_lock_irq(&ctx->fault_pending_wqh.lock); 895 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 896 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 897 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 898 899 /* Flush pending events that may still wait on event_wqh */ 900 wake_up_all(&ctx->event_wqh); 901 902 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 903 userfaultfd_ctx_put(ctx); 904 return 0; 905 } 906 907 /* fault_pending_wqh.lock must be hold by the caller */ 908 static inline struct userfaultfd_wait_queue *find_userfault_in( 909 wait_queue_head_t *wqh) 910 { 911 wait_queue_entry_t *wq; 912 struct userfaultfd_wait_queue *uwq; 913 914 lockdep_assert_held(&wqh->lock); 915 916 uwq = NULL; 917 if (!waitqueue_active(wqh)) 918 goto out; 919 /* walk in reverse to provide FIFO behavior to read userfaults */ 920 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 921 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 922 out: 923 return uwq; 924 } 925 926 static inline struct userfaultfd_wait_queue *find_userfault( 927 struct userfaultfd_ctx *ctx) 928 { 929 return find_userfault_in(&ctx->fault_pending_wqh); 930 } 931 932 static inline struct userfaultfd_wait_queue *find_userfault_evt( 933 struct userfaultfd_ctx *ctx) 934 { 935 return find_userfault_in(&ctx->event_wqh); 936 } 937 938 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 939 { 940 struct userfaultfd_ctx *ctx = file->private_data; 941 __poll_t ret; 942 943 poll_wait(file, &ctx->fd_wqh, wait); 944 945 switch (ctx->state) { 946 case UFFD_STATE_WAIT_API: 947 return EPOLLERR; 948 case UFFD_STATE_RUNNING: 949 /* 950 * poll() never guarantees that read won't block. 951 * userfaults can be waken before they're read(). 952 */ 953 if (unlikely(!(file->f_flags & O_NONBLOCK))) 954 return EPOLLERR; 955 /* 956 * lockless access to see if there are pending faults 957 * __pollwait last action is the add_wait_queue but 958 * the spin_unlock would allow the waitqueue_active to 959 * pass above the actual list_add inside 960 * add_wait_queue critical section. So use a full 961 * memory barrier to serialize the list_add write of 962 * add_wait_queue() with the waitqueue_active read 963 * below. 964 */ 965 ret = 0; 966 smp_mb(); 967 if (waitqueue_active(&ctx->fault_pending_wqh)) 968 ret = EPOLLIN; 969 else if (waitqueue_active(&ctx->event_wqh)) 970 ret = EPOLLIN; 971 972 return ret; 973 default: 974 WARN_ON_ONCE(1); 975 return EPOLLERR; 976 } 977 } 978 979 static const struct file_operations userfaultfd_fops; 980 981 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, 982 struct userfaultfd_ctx *new, 983 struct uffd_msg *msg) 984 { 985 int fd; 986 987 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new, 988 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS)); 989 if (fd < 0) 990 return fd; 991 992 msg->arg.reserved.reserved1 = 0; 993 msg->arg.fork.ufd = fd; 994 return 0; 995 } 996 997 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 998 struct uffd_msg *msg) 999 { 1000 ssize_t ret; 1001 DECLARE_WAITQUEUE(wait, current); 1002 struct userfaultfd_wait_queue *uwq; 1003 /* 1004 * Handling fork event requires sleeping operations, so 1005 * we drop the event_wqh lock, then do these ops, then 1006 * lock it back and wake up the waiter. While the lock is 1007 * dropped the ewq may go away so we keep track of it 1008 * carefully. 1009 */ 1010 LIST_HEAD(fork_event); 1011 struct userfaultfd_ctx *fork_nctx = NULL; 1012 1013 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1014 spin_lock_irq(&ctx->fd_wqh.lock); 1015 __add_wait_queue(&ctx->fd_wqh, &wait); 1016 for (;;) { 1017 set_current_state(TASK_INTERRUPTIBLE); 1018 spin_lock(&ctx->fault_pending_wqh.lock); 1019 uwq = find_userfault(ctx); 1020 if (uwq) { 1021 /* 1022 * Use a seqcount to repeat the lockless check 1023 * in wake_userfault() to avoid missing 1024 * wakeups because during the refile both 1025 * waitqueue could become empty if this is the 1026 * only userfault. 1027 */ 1028 write_seqcount_begin(&ctx->refile_seq); 1029 1030 /* 1031 * The fault_pending_wqh.lock prevents the uwq 1032 * to disappear from under us. 1033 * 1034 * Refile this userfault from 1035 * fault_pending_wqh to fault_wqh, it's not 1036 * pending anymore after we read it. 1037 * 1038 * Use list_del() by hand (as 1039 * userfaultfd_wake_function also uses 1040 * list_del_init() by hand) to be sure nobody 1041 * changes __remove_wait_queue() to use 1042 * list_del_init() in turn breaking the 1043 * !list_empty_careful() check in 1044 * handle_userfault(). The uwq->wq.head list 1045 * must never be empty at any time during the 1046 * refile, or the waitqueue could disappear 1047 * from under us. The "wait_queue_head_t" 1048 * parameter of __remove_wait_queue() is unused 1049 * anyway. 1050 */ 1051 list_del(&uwq->wq.entry); 1052 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1053 1054 write_seqcount_end(&ctx->refile_seq); 1055 1056 /* careful to always initialize msg if ret == 0 */ 1057 *msg = uwq->msg; 1058 spin_unlock(&ctx->fault_pending_wqh.lock); 1059 ret = 0; 1060 break; 1061 } 1062 spin_unlock(&ctx->fault_pending_wqh.lock); 1063 1064 spin_lock(&ctx->event_wqh.lock); 1065 uwq = find_userfault_evt(ctx); 1066 if (uwq) { 1067 *msg = uwq->msg; 1068 1069 if (uwq->msg.event == UFFD_EVENT_FORK) { 1070 fork_nctx = (struct userfaultfd_ctx *) 1071 (unsigned long) 1072 uwq->msg.arg.reserved.reserved1; 1073 list_move(&uwq->wq.entry, &fork_event); 1074 /* 1075 * fork_nctx can be freed as soon as 1076 * we drop the lock, unless we take a 1077 * reference on it. 1078 */ 1079 userfaultfd_ctx_get(fork_nctx); 1080 spin_unlock(&ctx->event_wqh.lock); 1081 ret = 0; 1082 break; 1083 } 1084 1085 userfaultfd_event_complete(ctx, uwq); 1086 spin_unlock(&ctx->event_wqh.lock); 1087 ret = 0; 1088 break; 1089 } 1090 spin_unlock(&ctx->event_wqh.lock); 1091 1092 if (signal_pending(current)) { 1093 ret = -ERESTARTSYS; 1094 break; 1095 } 1096 if (no_wait) { 1097 ret = -EAGAIN; 1098 break; 1099 } 1100 spin_unlock_irq(&ctx->fd_wqh.lock); 1101 schedule(); 1102 spin_lock_irq(&ctx->fd_wqh.lock); 1103 } 1104 __remove_wait_queue(&ctx->fd_wqh, &wait); 1105 __set_current_state(TASK_RUNNING); 1106 spin_unlock_irq(&ctx->fd_wqh.lock); 1107 1108 if (!ret && msg->event == UFFD_EVENT_FORK) { 1109 ret = resolve_userfault_fork(ctx, fork_nctx, msg); 1110 spin_lock_irq(&ctx->event_wqh.lock); 1111 if (!list_empty(&fork_event)) { 1112 /* 1113 * The fork thread didn't abort, so we can 1114 * drop the temporary refcount. 1115 */ 1116 userfaultfd_ctx_put(fork_nctx); 1117 1118 uwq = list_first_entry(&fork_event, 1119 typeof(*uwq), 1120 wq.entry); 1121 /* 1122 * If fork_event list wasn't empty and in turn 1123 * the event wasn't already released by fork 1124 * (the event is allocated on fork kernel 1125 * stack), put the event back to its place in 1126 * the event_wq. fork_event head will be freed 1127 * as soon as we return so the event cannot 1128 * stay queued there no matter the current 1129 * "ret" value. 1130 */ 1131 list_del(&uwq->wq.entry); 1132 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1133 1134 /* 1135 * Leave the event in the waitqueue and report 1136 * error to userland if we failed to resolve 1137 * the userfault fork. 1138 */ 1139 if (likely(!ret)) 1140 userfaultfd_event_complete(ctx, uwq); 1141 } else { 1142 /* 1143 * Here the fork thread aborted and the 1144 * refcount from the fork thread on fork_nctx 1145 * has already been released. We still hold 1146 * the reference we took before releasing the 1147 * lock above. If resolve_userfault_fork 1148 * failed we've to drop it because the 1149 * fork_nctx has to be freed in such case. If 1150 * it succeeded we'll hold it because the new 1151 * uffd references it. 1152 */ 1153 if (ret) 1154 userfaultfd_ctx_put(fork_nctx); 1155 } 1156 spin_unlock_irq(&ctx->event_wqh.lock); 1157 } 1158 1159 return ret; 1160 } 1161 1162 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1163 size_t count, loff_t *ppos) 1164 { 1165 struct userfaultfd_ctx *ctx = file->private_data; 1166 ssize_t _ret, ret = 0; 1167 struct uffd_msg msg; 1168 int no_wait = file->f_flags & O_NONBLOCK; 1169 1170 if (ctx->state == UFFD_STATE_WAIT_API) 1171 return -EINVAL; 1172 1173 for (;;) { 1174 if (count < sizeof(msg)) 1175 return ret ? ret : -EINVAL; 1176 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); 1177 if (_ret < 0) 1178 return ret ? ret : _ret; 1179 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1180 return ret ? ret : -EFAULT; 1181 ret += sizeof(msg); 1182 buf += sizeof(msg); 1183 count -= sizeof(msg); 1184 /* 1185 * Allow to read more than one fault at time but only 1186 * block if waiting for the very first one. 1187 */ 1188 no_wait = O_NONBLOCK; 1189 } 1190 } 1191 1192 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1193 struct userfaultfd_wake_range *range) 1194 { 1195 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1196 /* wake all in the range and autoremove */ 1197 if (waitqueue_active(&ctx->fault_pending_wqh)) 1198 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1199 range); 1200 if (waitqueue_active(&ctx->fault_wqh)) 1201 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1202 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1203 } 1204 1205 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1206 struct userfaultfd_wake_range *range) 1207 { 1208 unsigned seq; 1209 bool need_wakeup; 1210 1211 /* 1212 * To be sure waitqueue_active() is not reordered by the CPU 1213 * before the pagetable update, use an explicit SMP memory 1214 * barrier here. PT lock release or mmap_read_unlock(mm) still 1215 * have release semantics that can allow the 1216 * waitqueue_active() to be reordered before the pte update. 1217 */ 1218 smp_mb(); 1219 1220 /* 1221 * Use waitqueue_active because it's very frequent to 1222 * change the address space atomically even if there are no 1223 * userfaults yet. So we take the spinlock only when we're 1224 * sure we've userfaults to wake. 1225 */ 1226 do { 1227 seq = read_seqcount_begin(&ctx->refile_seq); 1228 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1229 waitqueue_active(&ctx->fault_wqh); 1230 cond_resched(); 1231 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1232 if (need_wakeup) 1233 __wake_userfault(ctx, range); 1234 } 1235 1236 static __always_inline int validate_range(struct mm_struct *mm, 1237 __u64 *start, __u64 len) 1238 { 1239 __u64 task_size = mm->task_size; 1240 1241 *start = untagged_addr(*start); 1242 1243 if (*start & ~PAGE_MASK) 1244 return -EINVAL; 1245 if (len & ~PAGE_MASK) 1246 return -EINVAL; 1247 if (!len) 1248 return -EINVAL; 1249 if (*start < mmap_min_addr) 1250 return -EINVAL; 1251 if (*start >= task_size) 1252 return -EINVAL; 1253 if (len > task_size - *start) 1254 return -EINVAL; 1255 return 0; 1256 } 1257 1258 static inline bool vma_can_userfault(struct vm_area_struct *vma, 1259 unsigned long vm_flags) 1260 { 1261 /* FIXME: add WP support to hugetlbfs and shmem */ 1262 return vma_is_anonymous(vma) || 1263 ((is_vm_hugetlb_page(vma) || vma_is_shmem(vma)) && 1264 !(vm_flags & VM_UFFD_WP)); 1265 } 1266 1267 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1268 unsigned long arg) 1269 { 1270 struct mm_struct *mm = ctx->mm; 1271 struct vm_area_struct *vma, *prev, *cur; 1272 int ret; 1273 struct uffdio_register uffdio_register; 1274 struct uffdio_register __user *user_uffdio_register; 1275 unsigned long vm_flags, new_flags; 1276 bool found; 1277 bool basic_ioctls; 1278 unsigned long start, end, vma_end; 1279 1280 user_uffdio_register = (struct uffdio_register __user *) arg; 1281 1282 ret = -EFAULT; 1283 if (copy_from_user(&uffdio_register, user_uffdio_register, 1284 sizeof(uffdio_register)-sizeof(__u64))) 1285 goto out; 1286 1287 ret = -EINVAL; 1288 if (!uffdio_register.mode) 1289 goto out; 1290 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| 1291 UFFDIO_REGISTER_MODE_WP)) 1292 goto out; 1293 vm_flags = 0; 1294 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1295 vm_flags |= VM_UFFD_MISSING; 1296 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) 1297 vm_flags |= VM_UFFD_WP; 1298 1299 ret = validate_range(mm, &uffdio_register.range.start, 1300 uffdio_register.range.len); 1301 if (ret) 1302 goto out; 1303 1304 start = uffdio_register.range.start; 1305 end = start + uffdio_register.range.len; 1306 1307 ret = -ENOMEM; 1308 if (!mmget_not_zero(mm)) 1309 goto out; 1310 1311 mmap_write_lock(mm); 1312 if (!mmget_still_valid(mm)) 1313 goto out_unlock; 1314 vma = find_vma_prev(mm, start, &prev); 1315 if (!vma) 1316 goto out_unlock; 1317 1318 /* check that there's at least one vma in the range */ 1319 ret = -EINVAL; 1320 if (vma->vm_start >= end) 1321 goto out_unlock; 1322 1323 /* 1324 * If the first vma contains huge pages, make sure start address 1325 * is aligned to huge page size. 1326 */ 1327 if (is_vm_hugetlb_page(vma)) { 1328 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1329 1330 if (start & (vma_hpagesize - 1)) 1331 goto out_unlock; 1332 } 1333 1334 /* 1335 * Search for not compatible vmas. 1336 */ 1337 found = false; 1338 basic_ioctls = false; 1339 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1340 cond_resched(); 1341 1342 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1343 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1344 1345 /* check not compatible vmas */ 1346 ret = -EINVAL; 1347 if (!vma_can_userfault(cur, vm_flags)) 1348 goto out_unlock; 1349 1350 /* 1351 * UFFDIO_COPY will fill file holes even without 1352 * PROT_WRITE. This check enforces that if this is a 1353 * MAP_SHARED, the process has write permission to the backing 1354 * file. If VM_MAYWRITE is set it also enforces that on a 1355 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1356 * F_WRITE_SEAL can be taken until the vma is destroyed. 1357 */ 1358 ret = -EPERM; 1359 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1360 goto out_unlock; 1361 1362 /* 1363 * If this vma contains ending address, and huge pages 1364 * check alignment. 1365 */ 1366 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1367 end > cur->vm_start) { 1368 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1369 1370 ret = -EINVAL; 1371 1372 if (end & (vma_hpagesize - 1)) 1373 goto out_unlock; 1374 } 1375 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) 1376 goto out_unlock; 1377 1378 /* 1379 * Check that this vma isn't already owned by a 1380 * different userfaultfd. We can't allow more than one 1381 * userfaultfd to own a single vma simultaneously or we 1382 * wouldn't know which one to deliver the userfaults to. 1383 */ 1384 ret = -EBUSY; 1385 if (cur->vm_userfaultfd_ctx.ctx && 1386 cur->vm_userfaultfd_ctx.ctx != ctx) 1387 goto out_unlock; 1388 1389 /* 1390 * Note vmas containing huge pages 1391 */ 1392 if (is_vm_hugetlb_page(cur)) 1393 basic_ioctls = true; 1394 1395 found = true; 1396 } 1397 BUG_ON(!found); 1398 1399 if (vma->vm_start < start) 1400 prev = vma; 1401 1402 ret = 0; 1403 do { 1404 cond_resched(); 1405 1406 BUG_ON(!vma_can_userfault(vma, vm_flags)); 1407 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1408 vma->vm_userfaultfd_ctx.ctx != ctx); 1409 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1410 1411 /* 1412 * Nothing to do: this vma is already registered into this 1413 * userfaultfd and with the right tracking mode too. 1414 */ 1415 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1416 (vma->vm_flags & vm_flags) == vm_flags) 1417 goto skip; 1418 1419 if (vma->vm_start > start) 1420 start = vma->vm_start; 1421 vma_end = min(end, vma->vm_end); 1422 1423 new_flags = (vma->vm_flags & 1424 ~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags; 1425 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1426 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1427 vma_policy(vma), 1428 ((struct vm_userfaultfd_ctx){ ctx })); 1429 if (prev) { 1430 vma = prev; 1431 goto next; 1432 } 1433 if (vma->vm_start < start) { 1434 ret = split_vma(mm, vma, start, 1); 1435 if (ret) 1436 break; 1437 } 1438 if (vma->vm_end > end) { 1439 ret = split_vma(mm, vma, end, 0); 1440 if (ret) 1441 break; 1442 } 1443 next: 1444 /* 1445 * In the vma_merge() successful mprotect-like case 8: 1446 * the next vma was merged into the current one and 1447 * the current one has not been updated yet. 1448 */ 1449 vma->vm_flags = new_flags; 1450 vma->vm_userfaultfd_ctx.ctx = ctx; 1451 1452 skip: 1453 prev = vma; 1454 start = vma->vm_end; 1455 vma = vma->vm_next; 1456 } while (vma && vma->vm_start < end); 1457 out_unlock: 1458 mmap_write_unlock(mm); 1459 mmput(mm); 1460 if (!ret) { 1461 __u64 ioctls_out; 1462 1463 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1464 UFFD_API_RANGE_IOCTLS; 1465 1466 /* 1467 * Declare the WP ioctl only if the WP mode is 1468 * specified and all checks passed with the range 1469 */ 1470 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) 1471 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); 1472 1473 /* 1474 * Now that we scanned all vmas we can already tell 1475 * userland which ioctls methods are guaranteed to 1476 * succeed on this range. 1477 */ 1478 if (put_user(ioctls_out, &user_uffdio_register->ioctls)) 1479 ret = -EFAULT; 1480 } 1481 out: 1482 return ret; 1483 } 1484 1485 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1486 unsigned long arg) 1487 { 1488 struct mm_struct *mm = ctx->mm; 1489 struct vm_area_struct *vma, *prev, *cur; 1490 int ret; 1491 struct uffdio_range uffdio_unregister; 1492 unsigned long new_flags; 1493 bool found; 1494 unsigned long start, end, vma_end; 1495 const void __user *buf = (void __user *)arg; 1496 1497 ret = -EFAULT; 1498 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1499 goto out; 1500 1501 ret = validate_range(mm, &uffdio_unregister.start, 1502 uffdio_unregister.len); 1503 if (ret) 1504 goto out; 1505 1506 start = uffdio_unregister.start; 1507 end = start + uffdio_unregister.len; 1508 1509 ret = -ENOMEM; 1510 if (!mmget_not_zero(mm)) 1511 goto out; 1512 1513 mmap_write_lock(mm); 1514 if (!mmget_still_valid(mm)) 1515 goto out_unlock; 1516 vma = find_vma_prev(mm, start, &prev); 1517 if (!vma) 1518 goto out_unlock; 1519 1520 /* check that there's at least one vma in the range */ 1521 ret = -EINVAL; 1522 if (vma->vm_start >= end) 1523 goto out_unlock; 1524 1525 /* 1526 * If the first vma contains huge pages, make sure start address 1527 * is aligned to huge page size. 1528 */ 1529 if (is_vm_hugetlb_page(vma)) { 1530 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1531 1532 if (start & (vma_hpagesize - 1)) 1533 goto out_unlock; 1534 } 1535 1536 /* 1537 * Search for not compatible vmas. 1538 */ 1539 found = false; 1540 ret = -EINVAL; 1541 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1542 cond_resched(); 1543 1544 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1545 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1546 1547 /* 1548 * Check not compatible vmas, not strictly required 1549 * here as not compatible vmas cannot have an 1550 * userfaultfd_ctx registered on them, but this 1551 * provides for more strict behavior to notice 1552 * unregistration errors. 1553 */ 1554 if (!vma_can_userfault(cur, cur->vm_flags)) 1555 goto out_unlock; 1556 1557 found = true; 1558 } 1559 BUG_ON(!found); 1560 1561 if (vma->vm_start < start) 1562 prev = vma; 1563 1564 ret = 0; 1565 do { 1566 cond_resched(); 1567 1568 BUG_ON(!vma_can_userfault(vma, vma->vm_flags)); 1569 1570 /* 1571 * Nothing to do: this vma is already registered into this 1572 * userfaultfd and with the right tracking mode too. 1573 */ 1574 if (!vma->vm_userfaultfd_ctx.ctx) 1575 goto skip; 1576 1577 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1578 1579 if (vma->vm_start > start) 1580 start = vma->vm_start; 1581 vma_end = min(end, vma->vm_end); 1582 1583 if (userfaultfd_missing(vma)) { 1584 /* 1585 * Wake any concurrent pending userfault while 1586 * we unregister, so they will not hang 1587 * permanently and it avoids userland to call 1588 * UFFDIO_WAKE explicitly. 1589 */ 1590 struct userfaultfd_wake_range range; 1591 range.start = start; 1592 range.len = vma_end - start; 1593 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1594 } 1595 1596 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 1597 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1598 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1599 vma_policy(vma), 1600 NULL_VM_UFFD_CTX); 1601 if (prev) { 1602 vma = prev; 1603 goto next; 1604 } 1605 if (vma->vm_start < start) { 1606 ret = split_vma(mm, vma, start, 1); 1607 if (ret) 1608 break; 1609 } 1610 if (vma->vm_end > end) { 1611 ret = split_vma(mm, vma, end, 0); 1612 if (ret) 1613 break; 1614 } 1615 next: 1616 /* 1617 * In the vma_merge() successful mprotect-like case 8: 1618 * the next vma was merged into the current one and 1619 * the current one has not been updated yet. 1620 */ 1621 vma->vm_flags = new_flags; 1622 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1623 1624 skip: 1625 prev = vma; 1626 start = vma->vm_end; 1627 vma = vma->vm_next; 1628 } while (vma && vma->vm_start < end); 1629 out_unlock: 1630 mmap_write_unlock(mm); 1631 mmput(mm); 1632 out: 1633 return ret; 1634 } 1635 1636 /* 1637 * userfaultfd_wake may be used in combination with the 1638 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1639 */ 1640 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1641 unsigned long arg) 1642 { 1643 int ret; 1644 struct uffdio_range uffdio_wake; 1645 struct userfaultfd_wake_range range; 1646 const void __user *buf = (void __user *)arg; 1647 1648 ret = -EFAULT; 1649 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1650 goto out; 1651 1652 ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len); 1653 if (ret) 1654 goto out; 1655 1656 range.start = uffdio_wake.start; 1657 range.len = uffdio_wake.len; 1658 1659 /* 1660 * len == 0 means wake all and we don't want to wake all here, 1661 * so check it again to be sure. 1662 */ 1663 VM_BUG_ON(!range.len); 1664 1665 wake_userfault(ctx, &range); 1666 ret = 0; 1667 1668 out: 1669 return ret; 1670 } 1671 1672 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1673 unsigned long arg) 1674 { 1675 __s64 ret; 1676 struct uffdio_copy uffdio_copy; 1677 struct uffdio_copy __user *user_uffdio_copy; 1678 struct userfaultfd_wake_range range; 1679 1680 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1681 1682 ret = -EAGAIN; 1683 if (READ_ONCE(ctx->mmap_changing)) 1684 goto out; 1685 1686 ret = -EFAULT; 1687 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1688 /* don't copy "copy" last field */ 1689 sizeof(uffdio_copy)-sizeof(__s64))) 1690 goto out; 1691 1692 ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len); 1693 if (ret) 1694 goto out; 1695 /* 1696 * double check for wraparound just in case. copy_from_user() 1697 * will later check uffdio_copy.src + uffdio_copy.len to fit 1698 * in the userland range. 1699 */ 1700 ret = -EINVAL; 1701 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1702 goto out; 1703 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) 1704 goto out; 1705 if (mmget_not_zero(ctx->mm)) { 1706 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1707 uffdio_copy.len, &ctx->mmap_changing, 1708 uffdio_copy.mode); 1709 mmput(ctx->mm); 1710 } else { 1711 return -ESRCH; 1712 } 1713 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1714 return -EFAULT; 1715 if (ret < 0) 1716 goto out; 1717 BUG_ON(!ret); 1718 /* len == 0 would wake all */ 1719 range.len = ret; 1720 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1721 range.start = uffdio_copy.dst; 1722 wake_userfault(ctx, &range); 1723 } 1724 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1725 out: 1726 return ret; 1727 } 1728 1729 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1730 unsigned long arg) 1731 { 1732 __s64 ret; 1733 struct uffdio_zeropage uffdio_zeropage; 1734 struct uffdio_zeropage __user *user_uffdio_zeropage; 1735 struct userfaultfd_wake_range range; 1736 1737 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1738 1739 ret = -EAGAIN; 1740 if (READ_ONCE(ctx->mmap_changing)) 1741 goto out; 1742 1743 ret = -EFAULT; 1744 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1745 /* don't copy "zeropage" last field */ 1746 sizeof(uffdio_zeropage)-sizeof(__s64))) 1747 goto out; 1748 1749 ret = validate_range(ctx->mm, &uffdio_zeropage.range.start, 1750 uffdio_zeropage.range.len); 1751 if (ret) 1752 goto out; 1753 ret = -EINVAL; 1754 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1755 goto out; 1756 1757 if (mmget_not_zero(ctx->mm)) { 1758 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1759 uffdio_zeropage.range.len, 1760 &ctx->mmap_changing); 1761 mmput(ctx->mm); 1762 } else { 1763 return -ESRCH; 1764 } 1765 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1766 return -EFAULT; 1767 if (ret < 0) 1768 goto out; 1769 /* len == 0 would wake all */ 1770 BUG_ON(!ret); 1771 range.len = ret; 1772 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1773 range.start = uffdio_zeropage.range.start; 1774 wake_userfault(ctx, &range); 1775 } 1776 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1777 out: 1778 return ret; 1779 } 1780 1781 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, 1782 unsigned long arg) 1783 { 1784 int ret; 1785 struct uffdio_writeprotect uffdio_wp; 1786 struct uffdio_writeprotect __user *user_uffdio_wp; 1787 struct userfaultfd_wake_range range; 1788 bool mode_wp, mode_dontwake; 1789 1790 if (READ_ONCE(ctx->mmap_changing)) 1791 return -EAGAIN; 1792 1793 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; 1794 1795 if (copy_from_user(&uffdio_wp, user_uffdio_wp, 1796 sizeof(struct uffdio_writeprotect))) 1797 return -EFAULT; 1798 1799 ret = validate_range(ctx->mm, &uffdio_wp.range.start, 1800 uffdio_wp.range.len); 1801 if (ret) 1802 return ret; 1803 1804 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | 1805 UFFDIO_WRITEPROTECT_MODE_WP)) 1806 return -EINVAL; 1807 1808 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; 1809 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; 1810 1811 if (mode_wp && mode_dontwake) 1812 return -EINVAL; 1813 1814 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start, 1815 uffdio_wp.range.len, mode_wp, 1816 &ctx->mmap_changing); 1817 if (ret) 1818 return ret; 1819 1820 if (!mode_wp && !mode_dontwake) { 1821 range.start = uffdio_wp.range.start; 1822 range.len = uffdio_wp.range.len; 1823 wake_userfault(ctx, &range); 1824 } 1825 return ret; 1826 } 1827 1828 static inline unsigned int uffd_ctx_features(__u64 user_features) 1829 { 1830 /* 1831 * For the current set of features the bits just coincide 1832 */ 1833 return (unsigned int)user_features; 1834 } 1835 1836 /* 1837 * userland asks for a certain API version and we return which bits 1838 * and ioctl commands are implemented in this kernel for such API 1839 * version or -EINVAL if unknown. 1840 */ 1841 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1842 unsigned long arg) 1843 { 1844 struct uffdio_api uffdio_api; 1845 void __user *buf = (void __user *)arg; 1846 int ret; 1847 __u64 features; 1848 1849 ret = -EINVAL; 1850 if (ctx->state != UFFD_STATE_WAIT_API) 1851 goto out; 1852 ret = -EFAULT; 1853 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1854 goto out; 1855 features = uffdio_api.features; 1856 ret = -EINVAL; 1857 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) 1858 goto err_out; 1859 ret = -EPERM; 1860 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) 1861 goto err_out; 1862 /* report all available features and ioctls to userland */ 1863 uffdio_api.features = UFFD_API_FEATURES; 1864 uffdio_api.ioctls = UFFD_API_IOCTLS; 1865 ret = -EFAULT; 1866 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1867 goto out; 1868 ctx->state = UFFD_STATE_RUNNING; 1869 /* only enable the requested features for this uffd context */ 1870 ctx->features = uffd_ctx_features(features); 1871 ret = 0; 1872 out: 1873 return ret; 1874 err_out: 1875 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1876 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1877 ret = -EFAULT; 1878 goto out; 1879 } 1880 1881 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1882 unsigned long arg) 1883 { 1884 int ret = -EINVAL; 1885 struct userfaultfd_ctx *ctx = file->private_data; 1886 1887 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) 1888 return -EINVAL; 1889 1890 switch(cmd) { 1891 case UFFDIO_API: 1892 ret = userfaultfd_api(ctx, arg); 1893 break; 1894 case UFFDIO_REGISTER: 1895 ret = userfaultfd_register(ctx, arg); 1896 break; 1897 case UFFDIO_UNREGISTER: 1898 ret = userfaultfd_unregister(ctx, arg); 1899 break; 1900 case UFFDIO_WAKE: 1901 ret = userfaultfd_wake(ctx, arg); 1902 break; 1903 case UFFDIO_COPY: 1904 ret = userfaultfd_copy(ctx, arg); 1905 break; 1906 case UFFDIO_ZEROPAGE: 1907 ret = userfaultfd_zeropage(ctx, arg); 1908 break; 1909 case UFFDIO_WRITEPROTECT: 1910 ret = userfaultfd_writeprotect(ctx, arg); 1911 break; 1912 } 1913 return ret; 1914 } 1915 1916 #ifdef CONFIG_PROC_FS 1917 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 1918 { 1919 struct userfaultfd_ctx *ctx = f->private_data; 1920 wait_queue_entry_t *wq; 1921 unsigned long pending = 0, total = 0; 1922 1923 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1924 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 1925 pending++; 1926 total++; 1927 } 1928 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 1929 total++; 1930 } 1931 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1932 1933 /* 1934 * If more protocols will be added, there will be all shown 1935 * separated by a space. Like this: 1936 * protocols: aa:... bb:... 1937 */ 1938 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 1939 pending, total, UFFD_API, ctx->features, 1940 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 1941 } 1942 #endif 1943 1944 static const struct file_operations userfaultfd_fops = { 1945 #ifdef CONFIG_PROC_FS 1946 .show_fdinfo = userfaultfd_show_fdinfo, 1947 #endif 1948 .release = userfaultfd_release, 1949 .poll = userfaultfd_poll, 1950 .read = userfaultfd_read, 1951 .unlocked_ioctl = userfaultfd_ioctl, 1952 .compat_ioctl = compat_ptr_ioctl, 1953 .llseek = noop_llseek, 1954 }; 1955 1956 static void init_once_userfaultfd_ctx(void *mem) 1957 { 1958 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 1959 1960 init_waitqueue_head(&ctx->fault_pending_wqh); 1961 init_waitqueue_head(&ctx->fault_wqh); 1962 init_waitqueue_head(&ctx->event_wqh); 1963 init_waitqueue_head(&ctx->fd_wqh); 1964 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); 1965 } 1966 1967 SYSCALL_DEFINE1(userfaultfd, int, flags) 1968 { 1969 struct userfaultfd_ctx *ctx; 1970 int fd; 1971 1972 if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE)) 1973 return -EPERM; 1974 1975 BUG_ON(!current->mm); 1976 1977 /* Check the UFFD_* constants for consistency. */ 1978 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 1979 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 1980 1981 if (flags & ~UFFD_SHARED_FCNTL_FLAGS) 1982 return -EINVAL; 1983 1984 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 1985 if (!ctx) 1986 return -ENOMEM; 1987 1988 refcount_set(&ctx->refcount, 1); 1989 ctx->flags = flags; 1990 ctx->features = 0; 1991 ctx->state = UFFD_STATE_WAIT_API; 1992 ctx->released = false; 1993 ctx->mmap_changing = false; 1994 ctx->mm = current->mm; 1995 /* prevent the mm struct to be freed */ 1996 mmgrab(ctx->mm); 1997 1998 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx, 1999 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); 2000 if (fd < 0) { 2001 mmdrop(ctx->mm); 2002 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 2003 } 2004 return fd; 2005 } 2006 2007 static int __init userfaultfd_init(void) 2008 { 2009 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 2010 sizeof(struct userfaultfd_ctx), 2011 0, 2012 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2013 init_once_userfaultfd_ctx); 2014 return 0; 2015 } 2016 __initcall(userfaultfd_init); 2017