xref: /openbmc/linux/fs/userfaultfd.c (revision d5a05299)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12 
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 #include <linux/swapops.h>
33 #include <linux/miscdevice.h>
34 
35 static int sysctl_unprivileged_userfaultfd __read_mostly;
36 
37 #ifdef CONFIG_SYSCTL
38 static struct ctl_table vm_userfaultfd_table[] = {
39 	{
40 		.procname	= "unprivileged_userfaultfd",
41 		.data		= &sysctl_unprivileged_userfaultfd,
42 		.maxlen		= sizeof(sysctl_unprivileged_userfaultfd),
43 		.mode		= 0644,
44 		.proc_handler	= proc_dointvec_minmax,
45 		.extra1		= SYSCTL_ZERO,
46 		.extra2		= SYSCTL_ONE,
47 	},
48 	{ }
49 };
50 #endif
51 
52 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
53 
54 /*
55  * Start with fault_pending_wqh and fault_wqh so they're more likely
56  * to be in the same cacheline.
57  *
58  * Locking order:
59  *	fd_wqh.lock
60  *		fault_pending_wqh.lock
61  *			fault_wqh.lock
62  *		event_wqh.lock
63  *
64  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
65  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
66  * also taken in IRQ context.
67  */
68 struct userfaultfd_ctx {
69 	/* waitqueue head for the pending (i.e. not read) userfaults */
70 	wait_queue_head_t fault_pending_wqh;
71 	/* waitqueue head for the userfaults */
72 	wait_queue_head_t fault_wqh;
73 	/* waitqueue head for the pseudo fd to wakeup poll/read */
74 	wait_queue_head_t fd_wqh;
75 	/* waitqueue head for events */
76 	wait_queue_head_t event_wqh;
77 	/* a refile sequence protected by fault_pending_wqh lock */
78 	seqcount_spinlock_t refile_seq;
79 	/* pseudo fd refcounting */
80 	refcount_t refcount;
81 	/* userfaultfd syscall flags */
82 	unsigned int flags;
83 	/* features requested from the userspace */
84 	unsigned int features;
85 	/* released */
86 	bool released;
87 	/* memory mappings are changing because of non-cooperative event */
88 	atomic_t mmap_changing;
89 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
90 	struct mm_struct *mm;
91 };
92 
93 struct userfaultfd_fork_ctx {
94 	struct userfaultfd_ctx *orig;
95 	struct userfaultfd_ctx *new;
96 	struct list_head list;
97 };
98 
99 struct userfaultfd_unmap_ctx {
100 	struct userfaultfd_ctx *ctx;
101 	unsigned long start;
102 	unsigned long end;
103 	struct list_head list;
104 };
105 
106 struct userfaultfd_wait_queue {
107 	struct uffd_msg msg;
108 	wait_queue_entry_t wq;
109 	struct userfaultfd_ctx *ctx;
110 	bool waken;
111 };
112 
113 struct userfaultfd_wake_range {
114 	unsigned long start;
115 	unsigned long len;
116 };
117 
118 /* internal indication that UFFD_API ioctl was successfully executed */
119 #define UFFD_FEATURE_INITIALIZED		(1u << 31)
120 
121 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
122 {
123 	return ctx->features & UFFD_FEATURE_INITIALIZED;
124 }
125 
126 /*
127  * Whether WP_UNPOPULATED is enabled on the uffd context.  It is only
128  * meaningful when userfaultfd_wp()==true on the vma and when it's
129  * anonymous.
130  */
131 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
132 {
133 	struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
134 
135 	if (!ctx)
136 		return false;
137 
138 	return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
139 }
140 
141 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
142 				     vm_flags_t flags)
143 {
144 	const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
145 
146 	vm_flags_reset(vma, flags);
147 	/*
148 	 * For shared mappings, we want to enable writenotify while
149 	 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
150 	 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
151 	 */
152 	if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
153 		vma_set_page_prot(vma);
154 }
155 
156 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
157 				     int wake_flags, void *key)
158 {
159 	struct userfaultfd_wake_range *range = key;
160 	int ret;
161 	struct userfaultfd_wait_queue *uwq;
162 	unsigned long start, len;
163 
164 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
165 	ret = 0;
166 	/* len == 0 means wake all */
167 	start = range->start;
168 	len = range->len;
169 	if (len && (start > uwq->msg.arg.pagefault.address ||
170 		    start + len <= uwq->msg.arg.pagefault.address))
171 		goto out;
172 	WRITE_ONCE(uwq->waken, true);
173 	/*
174 	 * The Program-Order guarantees provided by the scheduler
175 	 * ensure uwq->waken is visible before the task is woken.
176 	 */
177 	ret = wake_up_state(wq->private, mode);
178 	if (ret) {
179 		/*
180 		 * Wake only once, autoremove behavior.
181 		 *
182 		 * After the effect of list_del_init is visible to the other
183 		 * CPUs, the waitqueue may disappear from under us, see the
184 		 * !list_empty_careful() in handle_userfault().
185 		 *
186 		 * try_to_wake_up() has an implicit smp_mb(), and the
187 		 * wq->private is read before calling the extern function
188 		 * "wake_up_state" (which in turns calls try_to_wake_up).
189 		 */
190 		list_del_init(&wq->entry);
191 	}
192 out:
193 	return ret;
194 }
195 
196 /**
197  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
198  * context.
199  * @ctx: [in] Pointer to the userfaultfd context.
200  */
201 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
202 {
203 	refcount_inc(&ctx->refcount);
204 }
205 
206 /**
207  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
208  * context.
209  * @ctx: [in] Pointer to userfaultfd context.
210  *
211  * The userfaultfd context reference must have been previously acquired either
212  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
213  */
214 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
215 {
216 	if (refcount_dec_and_test(&ctx->refcount)) {
217 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
218 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
219 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
220 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
221 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
222 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
223 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
224 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
225 		mmdrop(ctx->mm);
226 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
227 	}
228 }
229 
230 static inline void msg_init(struct uffd_msg *msg)
231 {
232 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
233 	/*
234 	 * Must use memset to zero out the paddings or kernel data is
235 	 * leaked to userland.
236 	 */
237 	memset(msg, 0, sizeof(struct uffd_msg));
238 }
239 
240 static inline struct uffd_msg userfault_msg(unsigned long address,
241 					    unsigned long real_address,
242 					    unsigned int flags,
243 					    unsigned long reason,
244 					    unsigned int features)
245 {
246 	struct uffd_msg msg;
247 
248 	msg_init(&msg);
249 	msg.event = UFFD_EVENT_PAGEFAULT;
250 
251 	msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
252 				    real_address : address;
253 
254 	/*
255 	 * These flags indicate why the userfault occurred:
256 	 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
257 	 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
258 	 * - Neither of these flags being set indicates a MISSING fault.
259 	 *
260 	 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
261 	 * fault. Otherwise, it was a read fault.
262 	 */
263 	if (flags & FAULT_FLAG_WRITE)
264 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
265 	if (reason & VM_UFFD_WP)
266 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
267 	if (reason & VM_UFFD_MINOR)
268 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
269 	if (features & UFFD_FEATURE_THREAD_ID)
270 		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
271 	return msg;
272 }
273 
274 #ifdef CONFIG_HUGETLB_PAGE
275 /*
276  * Same functionality as userfaultfd_must_wait below with modifications for
277  * hugepmd ranges.
278  */
279 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
280 					 struct vm_area_struct *vma,
281 					 unsigned long address,
282 					 unsigned long flags,
283 					 unsigned long reason)
284 {
285 	pte_t *ptep, pte;
286 	bool ret = true;
287 
288 	mmap_assert_locked(ctx->mm);
289 
290 	ptep = hugetlb_walk(vma, address, vma_mmu_pagesize(vma));
291 	if (!ptep)
292 		goto out;
293 
294 	ret = false;
295 	pte = huge_ptep_get(ptep);
296 
297 	/*
298 	 * Lockless access: we're in a wait_event so it's ok if it
299 	 * changes under us.  PTE markers should be handled the same as none
300 	 * ptes here.
301 	 */
302 	if (huge_pte_none_mostly(pte))
303 		ret = true;
304 	if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
305 		ret = true;
306 out:
307 	return ret;
308 }
309 #else
310 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
311 					 struct vm_area_struct *vma,
312 					 unsigned long address,
313 					 unsigned long flags,
314 					 unsigned long reason)
315 {
316 	return false;	/* should never get here */
317 }
318 #endif /* CONFIG_HUGETLB_PAGE */
319 
320 /*
321  * Verify the pagetables are still not ok after having reigstered into
322  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
323  * userfault that has already been resolved, if userfaultfd_read and
324  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
325  * threads.
326  */
327 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
328 					 unsigned long address,
329 					 unsigned long flags,
330 					 unsigned long reason)
331 {
332 	struct mm_struct *mm = ctx->mm;
333 	pgd_t *pgd;
334 	p4d_t *p4d;
335 	pud_t *pud;
336 	pmd_t *pmd, _pmd;
337 	pte_t *pte;
338 	bool ret = true;
339 
340 	mmap_assert_locked(mm);
341 
342 	pgd = pgd_offset(mm, address);
343 	if (!pgd_present(*pgd))
344 		goto out;
345 	p4d = p4d_offset(pgd, address);
346 	if (!p4d_present(*p4d))
347 		goto out;
348 	pud = pud_offset(p4d, address);
349 	if (!pud_present(*pud))
350 		goto out;
351 	pmd = pmd_offset(pud, address);
352 	/*
353 	 * READ_ONCE must function as a barrier with narrower scope
354 	 * and it must be equivalent to:
355 	 *	_pmd = *pmd; barrier();
356 	 *
357 	 * This is to deal with the instability (as in
358 	 * pmd_trans_unstable) of the pmd.
359 	 */
360 	_pmd = READ_ONCE(*pmd);
361 	if (pmd_none(_pmd))
362 		goto out;
363 
364 	ret = false;
365 	if (!pmd_present(_pmd))
366 		goto out;
367 
368 	if (pmd_trans_huge(_pmd)) {
369 		if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
370 			ret = true;
371 		goto out;
372 	}
373 
374 	/*
375 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
376 	 * and use the standard pte_offset_map() instead of parsing _pmd.
377 	 */
378 	pte = pte_offset_map(pmd, address);
379 	/*
380 	 * Lockless access: we're in a wait_event so it's ok if it
381 	 * changes under us.  PTE markers should be handled the same as none
382 	 * ptes here.
383 	 */
384 	if (pte_none_mostly(*pte))
385 		ret = true;
386 	if (!pte_write(*pte) && (reason & VM_UFFD_WP))
387 		ret = true;
388 	pte_unmap(pte);
389 
390 out:
391 	return ret;
392 }
393 
394 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
395 {
396 	if (flags & FAULT_FLAG_INTERRUPTIBLE)
397 		return TASK_INTERRUPTIBLE;
398 
399 	if (flags & FAULT_FLAG_KILLABLE)
400 		return TASK_KILLABLE;
401 
402 	return TASK_UNINTERRUPTIBLE;
403 }
404 
405 /*
406  * The locking rules involved in returning VM_FAULT_RETRY depending on
407  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
408  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
409  * recommendation in __lock_page_or_retry is not an understatement.
410  *
411  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
412  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
413  * not set.
414  *
415  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
416  * set, VM_FAULT_RETRY can still be returned if and only if there are
417  * fatal_signal_pending()s, and the mmap_lock must be released before
418  * returning it.
419  */
420 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
421 {
422 	struct vm_area_struct *vma = vmf->vma;
423 	struct mm_struct *mm = vma->vm_mm;
424 	struct userfaultfd_ctx *ctx;
425 	struct userfaultfd_wait_queue uwq;
426 	vm_fault_t ret = VM_FAULT_SIGBUS;
427 	bool must_wait;
428 	unsigned int blocking_state;
429 
430 	/*
431 	 * We don't do userfault handling for the final child pid update.
432 	 *
433 	 * We also don't do userfault handling during
434 	 * coredumping. hugetlbfs has the special
435 	 * follow_hugetlb_page() to skip missing pages in the
436 	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
437 	 * the no_page_table() helper in follow_page_mask(), but the
438 	 * shmem_vm_ops->fault method is invoked even during
439 	 * coredumping without mmap_lock and it ends up here.
440 	 */
441 	if (current->flags & (PF_EXITING|PF_DUMPCORE))
442 		goto out;
443 
444 	/*
445 	 * Coredumping runs without mmap_lock so we can only check that
446 	 * the mmap_lock is held, if PF_DUMPCORE was not set.
447 	 */
448 	mmap_assert_locked(mm);
449 
450 	ctx = vma->vm_userfaultfd_ctx.ctx;
451 	if (!ctx)
452 		goto out;
453 
454 	BUG_ON(ctx->mm != mm);
455 
456 	/* Any unrecognized flag is a bug. */
457 	VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
458 	/* 0 or > 1 flags set is a bug; we expect exactly 1. */
459 	VM_BUG_ON(!reason || (reason & (reason - 1)));
460 
461 	if (ctx->features & UFFD_FEATURE_SIGBUS)
462 		goto out;
463 	if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
464 		goto out;
465 
466 	/*
467 	 * If it's already released don't get it. This avoids to loop
468 	 * in __get_user_pages if userfaultfd_release waits on the
469 	 * caller of handle_userfault to release the mmap_lock.
470 	 */
471 	if (unlikely(READ_ONCE(ctx->released))) {
472 		/*
473 		 * Don't return VM_FAULT_SIGBUS in this case, so a non
474 		 * cooperative manager can close the uffd after the
475 		 * last UFFDIO_COPY, without risking to trigger an
476 		 * involuntary SIGBUS if the process was starting the
477 		 * userfaultfd while the userfaultfd was still armed
478 		 * (but after the last UFFDIO_COPY). If the uffd
479 		 * wasn't already closed when the userfault reached
480 		 * this point, that would normally be solved by
481 		 * userfaultfd_must_wait returning 'false'.
482 		 *
483 		 * If we were to return VM_FAULT_SIGBUS here, the non
484 		 * cooperative manager would be instead forced to
485 		 * always call UFFDIO_UNREGISTER before it can safely
486 		 * close the uffd.
487 		 */
488 		ret = VM_FAULT_NOPAGE;
489 		goto out;
490 	}
491 
492 	/*
493 	 * Check that we can return VM_FAULT_RETRY.
494 	 *
495 	 * NOTE: it should become possible to return VM_FAULT_RETRY
496 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
497 	 * -EBUSY failures, if the userfaultfd is to be extended for
498 	 * VM_UFFD_WP tracking and we intend to arm the userfault
499 	 * without first stopping userland access to the memory. For
500 	 * VM_UFFD_MISSING userfaults this is enough for now.
501 	 */
502 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
503 		/*
504 		 * Validate the invariant that nowait must allow retry
505 		 * to be sure not to return SIGBUS erroneously on
506 		 * nowait invocations.
507 		 */
508 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
509 #ifdef CONFIG_DEBUG_VM
510 		if (printk_ratelimit()) {
511 			printk(KERN_WARNING
512 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
513 			       vmf->flags);
514 			dump_stack();
515 		}
516 #endif
517 		goto out;
518 	}
519 
520 	/*
521 	 * Handle nowait, not much to do other than tell it to retry
522 	 * and wait.
523 	 */
524 	ret = VM_FAULT_RETRY;
525 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
526 		goto out;
527 
528 	/* take the reference before dropping the mmap_lock */
529 	userfaultfd_ctx_get(ctx);
530 
531 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
532 	uwq.wq.private = current;
533 	uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
534 				reason, ctx->features);
535 	uwq.ctx = ctx;
536 	uwq.waken = false;
537 
538 	blocking_state = userfaultfd_get_blocking_state(vmf->flags);
539 
540         /*
541          * Take the vma lock now, in order to safely call
542          * userfaultfd_huge_must_wait() later. Since acquiring the
543          * (sleepable) vma lock can modify the current task state, that
544          * must be before explicitly calling set_current_state().
545          */
546 	if (is_vm_hugetlb_page(vma))
547 		hugetlb_vma_lock_read(vma);
548 
549 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
550 	/*
551 	 * After the __add_wait_queue the uwq is visible to userland
552 	 * through poll/read().
553 	 */
554 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
555 	/*
556 	 * The smp_mb() after __set_current_state prevents the reads
557 	 * following the spin_unlock to happen before the list_add in
558 	 * __add_wait_queue.
559 	 */
560 	set_current_state(blocking_state);
561 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
562 
563 	if (!is_vm_hugetlb_page(vma))
564 		must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
565 						  reason);
566 	else
567 		must_wait = userfaultfd_huge_must_wait(ctx, vma,
568 						       vmf->address,
569 						       vmf->flags, reason);
570 	if (is_vm_hugetlb_page(vma))
571 		hugetlb_vma_unlock_read(vma);
572 	mmap_read_unlock(mm);
573 
574 	if (likely(must_wait && !READ_ONCE(ctx->released))) {
575 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
576 		schedule();
577 	}
578 
579 	__set_current_state(TASK_RUNNING);
580 
581 	/*
582 	 * Here we race with the list_del; list_add in
583 	 * userfaultfd_ctx_read(), however because we don't ever run
584 	 * list_del_init() to refile across the two lists, the prev
585 	 * and next pointers will never point to self. list_add also
586 	 * would never let any of the two pointers to point to
587 	 * self. So list_empty_careful won't risk to see both pointers
588 	 * pointing to self at any time during the list refile. The
589 	 * only case where list_del_init() is called is the full
590 	 * removal in the wake function and there we don't re-list_add
591 	 * and it's fine not to block on the spinlock. The uwq on this
592 	 * kernel stack can be released after the list_del_init.
593 	 */
594 	if (!list_empty_careful(&uwq.wq.entry)) {
595 		spin_lock_irq(&ctx->fault_pending_wqh.lock);
596 		/*
597 		 * No need of list_del_init(), the uwq on the stack
598 		 * will be freed shortly anyway.
599 		 */
600 		list_del(&uwq.wq.entry);
601 		spin_unlock_irq(&ctx->fault_pending_wqh.lock);
602 	}
603 
604 	/*
605 	 * ctx may go away after this if the userfault pseudo fd is
606 	 * already released.
607 	 */
608 	userfaultfd_ctx_put(ctx);
609 
610 out:
611 	return ret;
612 }
613 
614 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
615 					      struct userfaultfd_wait_queue *ewq)
616 {
617 	struct userfaultfd_ctx *release_new_ctx;
618 
619 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
620 		goto out;
621 
622 	ewq->ctx = ctx;
623 	init_waitqueue_entry(&ewq->wq, current);
624 	release_new_ctx = NULL;
625 
626 	spin_lock_irq(&ctx->event_wqh.lock);
627 	/*
628 	 * After the __add_wait_queue the uwq is visible to userland
629 	 * through poll/read().
630 	 */
631 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
632 	for (;;) {
633 		set_current_state(TASK_KILLABLE);
634 		if (ewq->msg.event == 0)
635 			break;
636 		if (READ_ONCE(ctx->released) ||
637 		    fatal_signal_pending(current)) {
638 			/*
639 			 * &ewq->wq may be queued in fork_event, but
640 			 * __remove_wait_queue ignores the head
641 			 * parameter. It would be a problem if it
642 			 * didn't.
643 			 */
644 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
645 			if (ewq->msg.event == UFFD_EVENT_FORK) {
646 				struct userfaultfd_ctx *new;
647 
648 				new = (struct userfaultfd_ctx *)
649 					(unsigned long)
650 					ewq->msg.arg.reserved.reserved1;
651 				release_new_ctx = new;
652 			}
653 			break;
654 		}
655 
656 		spin_unlock_irq(&ctx->event_wqh.lock);
657 
658 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
659 		schedule();
660 
661 		spin_lock_irq(&ctx->event_wqh.lock);
662 	}
663 	__set_current_state(TASK_RUNNING);
664 	spin_unlock_irq(&ctx->event_wqh.lock);
665 
666 	if (release_new_ctx) {
667 		struct vm_area_struct *vma;
668 		struct mm_struct *mm = release_new_ctx->mm;
669 		VMA_ITERATOR(vmi, mm, 0);
670 
671 		/* the various vma->vm_userfaultfd_ctx still points to it */
672 		mmap_write_lock(mm);
673 		for_each_vma(vmi, vma) {
674 			if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
675 				vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
676 				userfaultfd_set_vm_flags(vma,
677 							 vma->vm_flags & ~__VM_UFFD_FLAGS);
678 			}
679 		}
680 		mmap_write_unlock(mm);
681 
682 		userfaultfd_ctx_put(release_new_ctx);
683 	}
684 
685 	/*
686 	 * ctx may go away after this if the userfault pseudo fd is
687 	 * already released.
688 	 */
689 out:
690 	atomic_dec(&ctx->mmap_changing);
691 	VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
692 	userfaultfd_ctx_put(ctx);
693 }
694 
695 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
696 				       struct userfaultfd_wait_queue *ewq)
697 {
698 	ewq->msg.event = 0;
699 	wake_up_locked(&ctx->event_wqh);
700 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
701 }
702 
703 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
704 {
705 	struct userfaultfd_ctx *ctx = NULL, *octx;
706 	struct userfaultfd_fork_ctx *fctx;
707 
708 	octx = vma->vm_userfaultfd_ctx.ctx;
709 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
710 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
711 		userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
712 		return 0;
713 	}
714 
715 	list_for_each_entry(fctx, fcs, list)
716 		if (fctx->orig == octx) {
717 			ctx = fctx->new;
718 			break;
719 		}
720 
721 	if (!ctx) {
722 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
723 		if (!fctx)
724 			return -ENOMEM;
725 
726 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
727 		if (!ctx) {
728 			kfree(fctx);
729 			return -ENOMEM;
730 		}
731 
732 		refcount_set(&ctx->refcount, 1);
733 		ctx->flags = octx->flags;
734 		ctx->features = octx->features;
735 		ctx->released = false;
736 		atomic_set(&ctx->mmap_changing, 0);
737 		ctx->mm = vma->vm_mm;
738 		mmgrab(ctx->mm);
739 
740 		userfaultfd_ctx_get(octx);
741 		atomic_inc(&octx->mmap_changing);
742 		fctx->orig = octx;
743 		fctx->new = ctx;
744 		list_add_tail(&fctx->list, fcs);
745 	}
746 
747 	vma->vm_userfaultfd_ctx.ctx = ctx;
748 	return 0;
749 }
750 
751 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
752 {
753 	struct userfaultfd_ctx *ctx = fctx->orig;
754 	struct userfaultfd_wait_queue ewq;
755 
756 	msg_init(&ewq.msg);
757 
758 	ewq.msg.event = UFFD_EVENT_FORK;
759 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
760 
761 	userfaultfd_event_wait_completion(ctx, &ewq);
762 }
763 
764 void dup_userfaultfd_complete(struct list_head *fcs)
765 {
766 	struct userfaultfd_fork_ctx *fctx, *n;
767 
768 	list_for_each_entry_safe(fctx, n, fcs, list) {
769 		dup_fctx(fctx);
770 		list_del(&fctx->list);
771 		kfree(fctx);
772 	}
773 }
774 
775 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
776 			     struct vm_userfaultfd_ctx *vm_ctx)
777 {
778 	struct userfaultfd_ctx *ctx;
779 
780 	ctx = vma->vm_userfaultfd_ctx.ctx;
781 
782 	if (!ctx)
783 		return;
784 
785 	if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
786 		vm_ctx->ctx = ctx;
787 		userfaultfd_ctx_get(ctx);
788 		atomic_inc(&ctx->mmap_changing);
789 	} else {
790 		/* Drop uffd context if remap feature not enabled */
791 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
792 		userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
793 	}
794 }
795 
796 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
797 				 unsigned long from, unsigned long to,
798 				 unsigned long len)
799 {
800 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
801 	struct userfaultfd_wait_queue ewq;
802 
803 	if (!ctx)
804 		return;
805 
806 	if (to & ~PAGE_MASK) {
807 		userfaultfd_ctx_put(ctx);
808 		return;
809 	}
810 
811 	msg_init(&ewq.msg);
812 
813 	ewq.msg.event = UFFD_EVENT_REMAP;
814 	ewq.msg.arg.remap.from = from;
815 	ewq.msg.arg.remap.to = to;
816 	ewq.msg.arg.remap.len = len;
817 
818 	userfaultfd_event_wait_completion(ctx, &ewq);
819 }
820 
821 bool userfaultfd_remove(struct vm_area_struct *vma,
822 			unsigned long start, unsigned long end)
823 {
824 	struct mm_struct *mm = vma->vm_mm;
825 	struct userfaultfd_ctx *ctx;
826 	struct userfaultfd_wait_queue ewq;
827 
828 	ctx = vma->vm_userfaultfd_ctx.ctx;
829 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
830 		return true;
831 
832 	userfaultfd_ctx_get(ctx);
833 	atomic_inc(&ctx->mmap_changing);
834 	mmap_read_unlock(mm);
835 
836 	msg_init(&ewq.msg);
837 
838 	ewq.msg.event = UFFD_EVENT_REMOVE;
839 	ewq.msg.arg.remove.start = start;
840 	ewq.msg.arg.remove.end = end;
841 
842 	userfaultfd_event_wait_completion(ctx, &ewq);
843 
844 	return false;
845 }
846 
847 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
848 			  unsigned long start, unsigned long end)
849 {
850 	struct userfaultfd_unmap_ctx *unmap_ctx;
851 
852 	list_for_each_entry(unmap_ctx, unmaps, list)
853 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
854 		    unmap_ctx->end == end)
855 			return true;
856 
857 	return false;
858 }
859 
860 int userfaultfd_unmap_prep(struct mm_struct *mm, unsigned long start,
861 			   unsigned long end, struct list_head *unmaps)
862 {
863 	VMA_ITERATOR(vmi, mm, start);
864 	struct vm_area_struct *vma;
865 
866 	for_each_vma_range(vmi, vma, end) {
867 		struct userfaultfd_unmap_ctx *unmap_ctx;
868 		struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
869 
870 		if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
871 		    has_unmap_ctx(ctx, unmaps, start, end))
872 			continue;
873 
874 		unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
875 		if (!unmap_ctx)
876 			return -ENOMEM;
877 
878 		userfaultfd_ctx_get(ctx);
879 		atomic_inc(&ctx->mmap_changing);
880 		unmap_ctx->ctx = ctx;
881 		unmap_ctx->start = start;
882 		unmap_ctx->end = end;
883 		list_add_tail(&unmap_ctx->list, unmaps);
884 	}
885 
886 	return 0;
887 }
888 
889 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
890 {
891 	struct userfaultfd_unmap_ctx *ctx, *n;
892 	struct userfaultfd_wait_queue ewq;
893 
894 	list_for_each_entry_safe(ctx, n, uf, list) {
895 		msg_init(&ewq.msg);
896 
897 		ewq.msg.event = UFFD_EVENT_UNMAP;
898 		ewq.msg.arg.remove.start = ctx->start;
899 		ewq.msg.arg.remove.end = ctx->end;
900 
901 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
902 
903 		list_del(&ctx->list);
904 		kfree(ctx);
905 	}
906 }
907 
908 static int userfaultfd_release(struct inode *inode, struct file *file)
909 {
910 	struct userfaultfd_ctx *ctx = file->private_data;
911 	struct mm_struct *mm = ctx->mm;
912 	struct vm_area_struct *vma, *prev;
913 	/* len == 0 means wake all */
914 	struct userfaultfd_wake_range range = { .len = 0, };
915 	unsigned long new_flags;
916 	VMA_ITERATOR(vmi, mm, 0);
917 
918 	WRITE_ONCE(ctx->released, true);
919 
920 	if (!mmget_not_zero(mm))
921 		goto wakeup;
922 
923 	/*
924 	 * Flush page faults out of all CPUs. NOTE: all page faults
925 	 * must be retried without returning VM_FAULT_SIGBUS if
926 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
927 	 * changes while handle_userfault released the mmap_lock. So
928 	 * it's critical that released is set to true (above), before
929 	 * taking the mmap_lock for writing.
930 	 */
931 	mmap_write_lock(mm);
932 	prev = NULL;
933 	for_each_vma(vmi, vma) {
934 		cond_resched();
935 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
936 		       !!(vma->vm_flags & __VM_UFFD_FLAGS));
937 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
938 			prev = vma;
939 			continue;
940 		}
941 		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
942 		prev = vma_merge(&vmi, mm, prev, vma->vm_start, vma->vm_end,
943 				 new_flags, vma->anon_vma,
944 				 vma->vm_file, vma->vm_pgoff,
945 				 vma_policy(vma),
946 				 NULL_VM_UFFD_CTX, anon_vma_name(vma));
947 		if (prev) {
948 			vma = prev;
949 		} else {
950 			prev = vma;
951 		}
952 
953 		userfaultfd_set_vm_flags(vma, new_flags);
954 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
955 	}
956 	mmap_write_unlock(mm);
957 	mmput(mm);
958 wakeup:
959 	/*
960 	 * After no new page faults can wait on this fault_*wqh, flush
961 	 * the last page faults that may have been already waiting on
962 	 * the fault_*wqh.
963 	 */
964 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
965 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
966 	__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
967 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
968 
969 	/* Flush pending events that may still wait on event_wqh */
970 	wake_up_all(&ctx->event_wqh);
971 
972 	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
973 	userfaultfd_ctx_put(ctx);
974 	return 0;
975 }
976 
977 /* fault_pending_wqh.lock must be hold by the caller */
978 static inline struct userfaultfd_wait_queue *find_userfault_in(
979 		wait_queue_head_t *wqh)
980 {
981 	wait_queue_entry_t *wq;
982 	struct userfaultfd_wait_queue *uwq;
983 
984 	lockdep_assert_held(&wqh->lock);
985 
986 	uwq = NULL;
987 	if (!waitqueue_active(wqh))
988 		goto out;
989 	/* walk in reverse to provide FIFO behavior to read userfaults */
990 	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
991 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
992 out:
993 	return uwq;
994 }
995 
996 static inline struct userfaultfd_wait_queue *find_userfault(
997 		struct userfaultfd_ctx *ctx)
998 {
999 	return find_userfault_in(&ctx->fault_pending_wqh);
1000 }
1001 
1002 static inline struct userfaultfd_wait_queue *find_userfault_evt(
1003 		struct userfaultfd_ctx *ctx)
1004 {
1005 	return find_userfault_in(&ctx->event_wqh);
1006 }
1007 
1008 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
1009 {
1010 	struct userfaultfd_ctx *ctx = file->private_data;
1011 	__poll_t ret;
1012 
1013 	poll_wait(file, &ctx->fd_wqh, wait);
1014 
1015 	if (!userfaultfd_is_initialized(ctx))
1016 		return EPOLLERR;
1017 
1018 	/*
1019 	 * poll() never guarantees that read won't block.
1020 	 * userfaults can be waken before they're read().
1021 	 */
1022 	if (unlikely(!(file->f_flags & O_NONBLOCK)))
1023 		return EPOLLERR;
1024 	/*
1025 	 * lockless access to see if there are pending faults
1026 	 * __pollwait last action is the add_wait_queue but
1027 	 * the spin_unlock would allow the waitqueue_active to
1028 	 * pass above the actual list_add inside
1029 	 * add_wait_queue critical section. So use a full
1030 	 * memory barrier to serialize the list_add write of
1031 	 * add_wait_queue() with the waitqueue_active read
1032 	 * below.
1033 	 */
1034 	ret = 0;
1035 	smp_mb();
1036 	if (waitqueue_active(&ctx->fault_pending_wqh))
1037 		ret = EPOLLIN;
1038 	else if (waitqueue_active(&ctx->event_wqh))
1039 		ret = EPOLLIN;
1040 
1041 	return ret;
1042 }
1043 
1044 static const struct file_operations userfaultfd_fops;
1045 
1046 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1047 				  struct inode *inode,
1048 				  struct uffd_msg *msg)
1049 {
1050 	int fd;
1051 
1052 	fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
1053 			O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
1054 	if (fd < 0)
1055 		return fd;
1056 
1057 	msg->arg.reserved.reserved1 = 0;
1058 	msg->arg.fork.ufd = fd;
1059 	return 0;
1060 }
1061 
1062 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1063 				    struct uffd_msg *msg, struct inode *inode)
1064 {
1065 	ssize_t ret;
1066 	DECLARE_WAITQUEUE(wait, current);
1067 	struct userfaultfd_wait_queue *uwq;
1068 	/*
1069 	 * Handling fork event requires sleeping operations, so
1070 	 * we drop the event_wqh lock, then do these ops, then
1071 	 * lock it back and wake up the waiter. While the lock is
1072 	 * dropped the ewq may go away so we keep track of it
1073 	 * carefully.
1074 	 */
1075 	LIST_HEAD(fork_event);
1076 	struct userfaultfd_ctx *fork_nctx = NULL;
1077 
1078 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1079 	spin_lock_irq(&ctx->fd_wqh.lock);
1080 	__add_wait_queue(&ctx->fd_wqh, &wait);
1081 	for (;;) {
1082 		set_current_state(TASK_INTERRUPTIBLE);
1083 		spin_lock(&ctx->fault_pending_wqh.lock);
1084 		uwq = find_userfault(ctx);
1085 		if (uwq) {
1086 			/*
1087 			 * Use a seqcount to repeat the lockless check
1088 			 * in wake_userfault() to avoid missing
1089 			 * wakeups because during the refile both
1090 			 * waitqueue could become empty if this is the
1091 			 * only userfault.
1092 			 */
1093 			write_seqcount_begin(&ctx->refile_seq);
1094 
1095 			/*
1096 			 * The fault_pending_wqh.lock prevents the uwq
1097 			 * to disappear from under us.
1098 			 *
1099 			 * Refile this userfault from
1100 			 * fault_pending_wqh to fault_wqh, it's not
1101 			 * pending anymore after we read it.
1102 			 *
1103 			 * Use list_del() by hand (as
1104 			 * userfaultfd_wake_function also uses
1105 			 * list_del_init() by hand) to be sure nobody
1106 			 * changes __remove_wait_queue() to use
1107 			 * list_del_init() in turn breaking the
1108 			 * !list_empty_careful() check in
1109 			 * handle_userfault(). The uwq->wq.head list
1110 			 * must never be empty at any time during the
1111 			 * refile, or the waitqueue could disappear
1112 			 * from under us. The "wait_queue_head_t"
1113 			 * parameter of __remove_wait_queue() is unused
1114 			 * anyway.
1115 			 */
1116 			list_del(&uwq->wq.entry);
1117 			add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1118 
1119 			write_seqcount_end(&ctx->refile_seq);
1120 
1121 			/* careful to always initialize msg if ret == 0 */
1122 			*msg = uwq->msg;
1123 			spin_unlock(&ctx->fault_pending_wqh.lock);
1124 			ret = 0;
1125 			break;
1126 		}
1127 		spin_unlock(&ctx->fault_pending_wqh.lock);
1128 
1129 		spin_lock(&ctx->event_wqh.lock);
1130 		uwq = find_userfault_evt(ctx);
1131 		if (uwq) {
1132 			*msg = uwq->msg;
1133 
1134 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1135 				fork_nctx = (struct userfaultfd_ctx *)
1136 					(unsigned long)
1137 					uwq->msg.arg.reserved.reserved1;
1138 				list_move(&uwq->wq.entry, &fork_event);
1139 				/*
1140 				 * fork_nctx can be freed as soon as
1141 				 * we drop the lock, unless we take a
1142 				 * reference on it.
1143 				 */
1144 				userfaultfd_ctx_get(fork_nctx);
1145 				spin_unlock(&ctx->event_wqh.lock);
1146 				ret = 0;
1147 				break;
1148 			}
1149 
1150 			userfaultfd_event_complete(ctx, uwq);
1151 			spin_unlock(&ctx->event_wqh.lock);
1152 			ret = 0;
1153 			break;
1154 		}
1155 		spin_unlock(&ctx->event_wqh.lock);
1156 
1157 		if (signal_pending(current)) {
1158 			ret = -ERESTARTSYS;
1159 			break;
1160 		}
1161 		if (no_wait) {
1162 			ret = -EAGAIN;
1163 			break;
1164 		}
1165 		spin_unlock_irq(&ctx->fd_wqh.lock);
1166 		schedule();
1167 		spin_lock_irq(&ctx->fd_wqh.lock);
1168 	}
1169 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1170 	__set_current_state(TASK_RUNNING);
1171 	spin_unlock_irq(&ctx->fd_wqh.lock);
1172 
1173 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1174 		ret = resolve_userfault_fork(fork_nctx, inode, msg);
1175 		spin_lock_irq(&ctx->event_wqh.lock);
1176 		if (!list_empty(&fork_event)) {
1177 			/*
1178 			 * The fork thread didn't abort, so we can
1179 			 * drop the temporary refcount.
1180 			 */
1181 			userfaultfd_ctx_put(fork_nctx);
1182 
1183 			uwq = list_first_entry(&fork_event,
1184 					       typeof(*uwq),
1185 					       wq.entry);
1186 			/*
1187 			 * If fork_event list wasn't empty and in turn
1188 			 * the event wasn't already released by fork
1189 			 * (the event is allocated on fork kernel
1190 			 * stack), put the event back to its place in
1191 			 * the event_wq. fork_event head will be freed
1192 			 * as soon as we return so the event cannot
1193 			 * stay queued there no matter the current
1194 			 * "ret" value.
1195 			 */
1196 			list_del(&uwq->wq.entry);
1197 			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1198 
1199 			/*
1200 			 * Leave the event in the waitqueue and report
1201 			 * error to userland if we failed to resolve
1202 			 * the userfault fork.
1203 			 */
1204 			if (likely(!ret))
1205 				userfaultfd_event_complete(ctx, uwq);
1206 		} else {
1207 			/*
1208 			 * Here the fork thread aborted and the
1209 			 * refcount from the fork thread on fork_nctx
1210 			 * has already been released. We still hold
1211 			 * the reference we took before releasing the
1212 			 * lock above. If resolve_userfault_fork
1213 			 * failed we've to drop it because the
1214 			 * fork_nctx has to be freed in such case. If
1215 			 * it succeeded we'll hold it because the new
1216 			 * uffd references it.
1217 			 */
1218 			if (ret)
1219 				userfaultfd_ctx_put(fork_nctx);
1220 		}
1221 		spin_unlock_irq(&ctx->event_wqh.lock);
1222 	}
1223 
1224 	return ret;
1225 }
1226 
1227 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1228 				size_t count, loff_t *ppos)
1229 {
1230 	struct userfaultfd_ctx *ctx = file->private_data;
1231 	ssize_t _ret, ret = 0;
1232 	struct uffd_msg msg;
1233 	int no_wait = file->f_flags & O_NONBLOCK;
1234 	struct inode *inode = file_inode(file);
1235 
1236 	if (!userfaultfd_is_initialized(ctx))
1237 		return -EINVAL;
1238 
1239 	for (;;) {
1240 		if (count < sizeof(msg))
1241 			return ret ? ret : -EINVAL;
1242 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1243 		if (_ret < 0)
1244 			return ret ? ret : _ret;
1245 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1246 			return ret ? ret : -EFAULT;
1247 		ret += sizeof(msg);
1248 		buf += sizeof(msg);
1249 		count -= sizeof(msg);
1250 		/*
1251 		 * Allow to read more than one fault at time but only
1252 		 * block if waiting for the very first one.
1253 		 */
1254 		no_wait = O_NONBLOCK;
1255 	}
1256 }
1257 
1258 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1259 			     struct userfaultfd_wake_range *range)
1260 {
1261 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
1262 	/* wake all in the range and autoremove */
1263 	if (waitqueue_active(&ctx->fault_pending_wqh))
1264 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1265 				     range);
1266 	if (waitqueue_active(&ctx->fault_wqh))
1267 		__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1268 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1269 }
1270 
1271 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1272 					   struct userfaultfd_wake_range *range)
1273 {
1274 	unsigned seq;
1275 	bool need_wakeup;
1276 
1277 	/*
1278 	 * To be sure waitqueue_active() is not reordered by the CPU
1279 	 * before the pagetable update, use an explicit SMP memory
1280 	 * barrier here. PT lock release or mmap_read_unlock(mm) still
1281 	 * have release semantics that can allow the
1282 	 * waitqueue_active() to be reordered before the pte update.
1283 	 */
1284 	smp_mb();
1285 
1286 	/*
1287 	 * Use waitqueue_active because it's very frequent to
1288 	 * change the address space atomically even if there are no
1289 	 * userfaults yet. So we take the spinlock only when we're
1290 	 * sure we've userfaults to wake.
1291 	 */
1292 	do {
1293 		seq = read_seqcount_begin(&ctx->refile_seq);
1294 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1295 			waitqueue_active(&ctx->fault_wqh);
1296 		cond_resched();
1297 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1298 	if (need_wakeup)
1299 		__wake_userfault(ctx, range);
1300 }
1301 
1302 static __always_inline int validate_range(struct mm_struct *mm,
1303 					  __u64 start, __u64 len)
1304 {
1305 	__u64 task_size = mm->task_size;
1306 
1307 	if (start & ~PAGE_MASK)
1308 		return -EINVAL;
1309 	if (len & ~PAGE_MASK)
1310 		return -EINVAL;
1311 	if (!len)
1312 		return -EINVAL;
1313 	if (start < mmap_min_addr)
1314 		return -EINVAL;
1315 	if (start >= task_size)
1316 		return -EINVAL;
1317 	if (len > task_size - start)
1318 		return -EINVAL;
1319 	return 0;
1320 }
1321 
1322 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1323 				unsigned long arg)
1324 {
1325 	struct mm_struct *mm = ctx->mm;
1326 	struct vm_area_struct *vma, *prev, *cur;
1327 	int ret;
1328 	struct uffdio_register uffdio_register;
1329 	struct uffdio_register __user *user_uffdio_register;
1330 	unsigned long vm_flags, new_flags;
1331 	bool found;
1332 	bool basic_ioctls;
1333 	unsigned long start, end, vma_end;
1334 	struct vma_iterator vmi;
1335 	pgoff_t pgoff;
1336 
1337 	user_uffdio_register = (struct uffdio_register __user *) arg;
1338 
1339 	ret = -EFAULT;
1340 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1341 			   sizeof(uffdio_register)-sizeof(__u64)))
1342 		goto out;
1343 
1344 	ret = -EINVAL;
1345 	if (!uffdio_register.mode)
1346 		goto out;
1347 	if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1348 		goto out;
1349 	vm_flags = 0;
1350 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1351 		vm_flags |= VM_UFFD_MISSING;
1352 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1353 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1354 		goto out;
1355 #endif
1356 		vm_flags |= VM_UFFD_WP;
1357 	}
1358 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1359 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1360 		goto out;
1361 #endif
1362 		vm_flags |= VM_UFFD_MINOR;
1363 	}
1364 
1365 	ret = validate_range(mm, uffdio_register.range.start,
1366 			     uffdio_register.range.len);
1367 	if (ret)
1368 		goto out;
1369 
1370 	start = uffdio_register.range.start;
1371 	end = start + uffdio_register.range.len;
1372 
1373 	ret = -ENOMEM;
1374 	if (!mmget_not_zero(mm))
1375 		goto out;
1376 
1377 	ret = -EINVAL;
1378 	mmap_write_lock(mm);
1379 	vma_iter_init(&vmi, mm, start);
1380 	vma = vma_find(&vmi, end);
1381 	if (!vma)
1382 		goto out_unlock;
1383 
1384 	/*
1385 	 * If the first vma contains huge pages, make sure start address
1386 	 * is aligned to huge page size.
1387 	 */
1388 	if (is_vm_hugetlb_page(vma)) {
1389 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1390 
1391 		if (start & (vma_hpagesize - 1))
1392 			goto out_unlock;
1393 	}
1394 
1395 	/*
1396 	 * Search for not compatible vmas.
1397 	 */
1398 	found = false;
1399 	basic_ioctls = false;
1400 	cur = vma;
1401 	do {
1402 		cond_resched();
1403 
1404 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1405 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1406 
1407 		/* check not compatible vmas */
1408 		ret = -EINVAL;
1409 		if (!vma_can_userfault(cur, vm_flags))
1410 			goto out_unlock;
1411 
1412 		/*
1413 		 * UFFDIO_COPY will fill file holes even without
1414 		 * PROT_WRITE. This check enforces that if this is a
1415 		 * MAP_SHARED, the process has write permission to the backing
1416 		 * file. If VM_MAYWRITE is set it also enforces that on a
1417 		 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1418 		 * F_WRITE_SEAL can be taken until the vma is destroyed.
1419 		 */
1420 		ret = -EPERM;
1421 		if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1422 			goto out_unlock;
1423 
1424 		/*
1425 		 * If this vma contains ending address, and huge pages
1426 		 * check alignment.
1427 		 */
1428 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1429 		    end > cur->vm_start) {
1430 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1431 
1432 			ret = -EINVAL;
1433 
1434 			if (end & (vma_hpagesize - 1))
1435 				goto out_unlock;
1436 		}
1437 		if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1438 			goto out_unlock;
1439 
1440 		/*
1441 		 * Check that this vma isn't already owned by a
1442 		 * different userfaultfd. We can't allow more than one
1443 		 * userfaultfd to own a single vma simultaneously or we
1444 		 * wouldn't know which one to deliver the userfaults to.
1445 		 */
1446 		ret = -EBUSY;
1447 		if (cur->vm_userfaultfd_ctx.ctx &&
1448 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1449 			goto out_unlock;
1450 
1451 		/*
1452 		 * Note vmas containing huge pages
1453 		 */
1454 		if (is_vm_hugetlb_page(cur))
1455 			basic_ioctls = true;
1456 
1457 		found = true;
1458 	} for_each_vma_range(vmi, cur, end);
1459 	BUG_ON(!found);
1460 
1461 	vma_iter_set(&vmi, start);
1462 	prev = vma_prev(&vmi);
1463 	if (vma->vm_start < start)
1464 		prev = vma;
1465 
1466 	ret = 0;
1467 	for_each_vma_range(vmi, vma, end) {
1468 		cond_resched();
1469 
1470 		BUG_ON(!vma_can_userfault(vma, vm_flags));
1471 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1472 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1473 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1474 
1475 		/*
1476 		 * Nothing to do: this vma is already registered into this
1477 		 * userfaultfd and with the right tracking mode too.
1478 		 */
1479 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1480 		    (vma->vm_flags & vm_flags) == vm_flags)
1481 			goto skip;
1482 
1483 		if (vma->vm_start > start)
1484 			start = vma->vm_start;
1485 		vma_end = min(end, vma->vm_end);
1486 
1487 		new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1488 		pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
1489 		prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags,
1490 				 vma->anon_vma, vma->vm_file, pgoff,
1491 				 vma_policy(vma),
1492 				 ((struct vm_userfaultfd_ctx){ ctx }),
1493 				 anon_vma_name(vma));
1494 		if (prev) {
1495 			/* vma_merge() invalidated the mas */
1496 			vma = prev;
1497 			goto next;
1498 		}
1499 		if (vma->vm_start < start) {
1500 			ret = split_vma(&vmi, vma, start, 1);
1501 			if (ret)
1502 				break;
1503 		}
1504 		if (vma->vm_end > end) {
1505 			ret = split_vma(&vmi, vma, end, 0);
1506 			if (ret)
1507 				break;
1508 		}
1509 	next:
1510 		/*
1511 		 * In the vma_merge() successful mprotect-like case 8:
1512 		 * the next vma was merged into the current one and
1513 		 * the current one has not been updated yet.
1514 		 */
1515 		userfaultfd_set_vm_flags(vma, new_flags);
1516 		vma->vm_userfaultfd_ctx.ctx = ctx;
1517 
1518 		if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1519 			hugetlb_unshare_all_pmds(vma);
1520 
1521 	skip:
1522 		prev = vma;
1523 		start = vma->vm_end;
1524 	}
1525 
1526 out_unlock:
1527 	mmap_write_unlock(mm);
1528 	mmput(mm);
1529 	if (!ret) {
1530 		__u64 ioctls_out;
1531 
1532 		ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1533 		    UFFD_API_RANGE_IOCTLS;
1534 
1535 		/*
1536 		 * Declare the WP ioctl only if the WP mode is
1537 		 * specified and all checks passed with the range
1538 		 */
1539 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1540 			ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1541 
1542 		/* CONTINUE ioctl is only supported for MINOR ranges. */
1543 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1544 			ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1545 
1546 		/*
1547 		 * Now that we scanned all vmas we can already tell
1548 		 * userland which ioctls methods are guaranteed to
1549 		 * succeed on this range.
1550 		 */
1551 		if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1552 			ret = -EFAULT;
1553 	}
1554 out:
1555 	return ret;
1556 }
1557 
1558 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1559 				  unsigned long arg)
1560 {
1561 	struct mm_struct *mm = ctx->mm;
1562 	struct vm_area_struct *vma, *prev, *cur;
1563 	int ret;
1564 	struct uffdio_range uffdio_unregister;
1565 	unsigned long new_flags;
1566 	bool found;
1567 	unsigned long start, end, vma_end;
1568 	const void __user *buf = (void __user *)arg;
1569 	struct vma_iterator vmi;
1570 	pgoff_t pgoff;
1571 
1572 	ret = -EFAULT;
1573 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1574 		goto out;
1575 
1576 	ret = validate_range(mm, uffdio_unregister.start,
1577 			     uffdio_unregister.len);
1578 	if (ret)
1579 		goto out;
1580 
1581 	start = uffdio_unregister.start;
1582 	end = start + uffdio_unregister.len;
1583 
1584 	ret = -ENOMEM;
1585 	if (!mmget_not_zero(mm))
1586 		goto out;
1587 
1588 	mmap_write_lock(mm);
1589 	ret = -EINVAL;
1590 	vma_iter_init(&vmi, mm, start);
1591 	vma = vma_find(&vmi, end);
1592 	if (!vma)
1593 		goto out_unlock;
1594 
1595 	/*
1596 	 * If the first vma contains huge pages, make sure start address
1597 	 * is aligned to huge page size.
1598 	 */
1599 	if (is_vm_hugetlb_page(vma)) {
1600 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1601 
1602 		if (start & (vma_hpagesize - 1))
1603 			goto out_unlock;
1604 	}
1605 
1606 	/*
1607 	 * Search for not compatible vmas.
1608 	 */
1609 	found = false;
1610 	cur = vma;
1611 	do {
1612 		cond_resched();
1613 
1614 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1615 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1616 
1617 		/*
1618 		 * Check not compatible vmas, not strictly required
1619 		 * here as not compatible vmas cannot have an
1620 		 * userfaultfd_ctx registered on them, but this
1621 		 * provides for more strict behavior to notice
1622 		 * unregistration errors.
1623 		 */
1624 		if (!vma_can_userfault(cur, cur->vm_flags))
1625 			goto out_unlock;
1626 
1627 		found = true;
1628 	} for_each_vma_range(vmi, cur, end);
1629 	BUG_ON(!found);
1630 
1631 	vma_iter_set(&vmi, start);
1632 	prev = vma_prev(&vmi);
1633 	if (vma->vm_start < start)
1634 		prev = vma;
1635 
1636 	ret = 0;
1637 	for_each_vma_range(vmi, vma, end) {
1638 		cond_resched();
1639 
1640 		BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1641 
1642 		/*
1643 		 * Nothing to do: this vma is already registered into this
1644 		 * userfaultfd and with the right tracking mode too.
1645 		 */
1646 		if (!vma->vm_userfaultfd_ctx.ctx)
1647 			goto skip;
1648 
1649 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1650 
1651 		if (vma->vm_start > start)
1652 			start = vma->vm_start;
1653 		vma_end = min(end, vma->vm_end);
1654 
1655 		if (userfaultfd_missing(vma)) {
1656 			/*
1657 			 * Wake any concurrent pending userfault while
1658 			 * we unregister, so they will not hang
1659 			 * permanently and it avoids userland to call
1660 			 * UFFDIO_WAKE explicitly.
1661 			 */
1662 			struct userfaultfd_wake_range range;
1663 			range.start = start;
1664 			range.len = vma_end - start;
1665 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1666 		}
1667 
1668 		/* Reset ptes for the whole vma range if wr-protected */
1669 		if (userfaultfd_wp(vma))
1670 			uffd_wp_range(vma, start, vma_end - start, false);
1671 
1672 		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1673 		pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
1674 		prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags,
1675 				 vma->anon_vma, vma->vm_file, pgoff,
1676 				 vma_policy(vma),
1677 				 NULL_VM_UFFD_CTX, anon_vma_name(vma));
1678 		if (prev) {
1679 			vma = prev;
1680 			goto next;
1681 		}
1682 		if (vma->vm_start < start) {
1683 			ret = split_vma(&vmi, vma, start, 1);
1684 			if (ret)
1685 				break;
1686 		}
1687 		if (vma->vm_end > end) {
1688 			ret = split_vma(&vmi, vma, end, 0);
1689 			if (ret)
1690 				break;
1691 		}
1692 	next:
1693 		/*
1694 		 * In the vma_merge() successful mprotect-like case 8:
1695 		 * the next vma was merged into the current one and
1696 		 * the current one has not been updated yet.
1697 		 */
1698 		userfaultfd_set_vm_flags(vma, new_flags);
1699 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1700 
1701 	skip:
1702 		prev = vma;
1703 		start = vma->vm_end;
1704 	}
1705 
1706 out_unlock:
1707 	mmap_write_unlock(mm);
1708 	mmput(mm);
1709 out:
1710 	return ret;
1711 }
1712 
1713 /*
1714  * userfaultfd_wake may be used in combination with the
1715  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1716  */
1717 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1718 			    unsigned long arg)
1719 {
1720 	int ret;
1721 	struct uffdio_range uffdio_wake;
1722 	struct userfaultfd_wake_range range;
1723 	const void __user *buf = (void __user *)arg;
1724 
1725 	ret = -EFAULT;
1726 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1727 		goto out;
1728 
1729 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1730 	if (ret)
1731 		goto out;
1732 
1733 	range.start = uffdio_wake.start;
1734 	range.len = uffdio_wake.len;
1735 
1736 	/*
1737 	 * len == 0 means wake all and we don't want to wake all here,
1738 	 * so check it again to be sure.
1739 	 */
1740 	VM_BUG_ON(!range.len);
1741 
1742 	wake_userfault(ctx, &range);
1743 	ret = 0;
1744 
1745 out:
1746 	return ret;
1747 }
1748 
1749 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1750 			    unsigned long arg)
1751 {
1752 	__s64 ret;
1753 	struct uffdio_copy uffdio_copy;
1754 	struct uffdio_copy __user *user_uffdio_copy;
1755 	struct userfaultfd_wake_range range;
1756 	uffd_flags_t flags = 0;
1757 
1758 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1759 
1760 	ret = -EAGAIN;
1761 	if (atomic_read(&ctx->mmap_changing))
1762 		goto out;
1763 
1764 	ret = -EFAULT;
1765 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1766 			   /* don't copy "copy" last field */
1767 			   sizeof(uffdio_copy)-sizeof(__s64)))
1768 		goto out;
1769 
1770 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1771 	if (ret)
1772 		goto out;
1773 	/*
1774 	 * double check for wraparound just in case. copy_from_user()
1775 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1776 	 * in the userland range.
1777 	 */
1778 	ret = -EINVAL;
1779 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1780 		goto out;
1781 	if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1782 		goto out;
1783 	if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1784 		flags |= MFILL_ATOMIC_WP;
1785 	if (mmget_not_zero(ctx->mm)) {
1786 		ret = mfill_atomic_copy(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1787 					uffdio_copy.len, &ctx->mmap_changing,
1788 					flags);
1789 		mmput(ctx->mm);
1790 	} else {
1791 		return -ESRCH;
1792 	}
1793 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1794 		return -EFAULT;
1795 	if (ret < 0)
1796 		goto out;
1797 	BUG_ON(!ret);
1798 	/* len == 0 would wake all */
1799 	range.len = ret;
1800 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1801 		range.start = uffdio_copy.dst;
1802 		wake_userfault(ctx, &range);
1803 	}
1804 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1805 out:
1806 	return ret;
1807 }
1808 
1809 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1810 				unsigned long arg)
1811 {
1812 	__s64 ret;
1813 	struct uffdio_zeropage uffdio_zeropage;
1814 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1815 	struct userfaultfd_wake_range range;
1816 
1817 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1818 
1819 	ret = -EAGAIN;
1820 	if (atomic_read(&ctx->mmap_changing))
1821 		goto out;
1822 
1823 	ret = -EFAULT;
1824 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1825 			   /* don't copy "zeropage" last field */
1826 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1827 		goto out;
1828 
1829 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1830 			     uffdio_zeropage.range.len);
1831 	if (ret)
1832 		goto out;
1833 	ret = -EINVAL;
1834 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1835 		goto out;
1836 
1837 	if (mmget_not_zero(ctx->mm)) {
1838 		ret = mfill_atomic_zeropage(ctx->mm, uffdio_zeropage.range.start,
1839 					   uffdio_zeropage.range.len,
1840 					   &ctx->mmap_changing);
1841 		mmput(ctx->mm);
1842 	} else {
1843 		return -ESRCH;
1844 	}
1845 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1846 		return -EFAULT;
1847 	if (ret < 0)
1848 		goto out;
1849 	/* len == 0 would wake all */
1850 	BUG_ON(!ret);
1851 	range.len = ret;
1852 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1853 		range.start = uffdio_zeropage.range.start;
1854 		wake_userfault(ctx, &range);
1855 	}
1856 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1857 out:
1858 	return ret;
1859 }
1860 
1861 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1862 				    unsigned long arg)
1863 {
1864 	int ret;
1865 	struct uffdio_writeprotect uffdio_wp;
1866 	struct uffdio_writeprotect __user *user_uffdio_wp;
1867 	struct userfaultfd_wake_range range;
1868 	bool mode_wp, mode_dontwake;
1869 
1870 	if (atomic_read(&ctx->mmap_changing))
1871 		return -EAGAIN;
1872 
1873 	user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1874 
1875 	if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1876 			   sizeof(struct uffdio_writeprotect)))
1877 		return -EFAULT;
1878 
1879 	ret = validate_range(ctx->mm, uffdio_wp.range.start,
1880 			     uffdio_wp.range.len);
1881 	if (ret)
1882 		return ret;
1883 
1884 	if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1885 			       UFFDIO_WRITEPROTECT_MODE_WP))
1886 		return -EINVAL;
1887 
1888 	mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1889 	mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1890 
1891 	if (mode_wp && mode_dontwake)
1892 		return -EINVAL;
1893 
1894 	if (mmget_not_zero(ctx->mm)) {
1895 		ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1896 					  uffdio_wp.range.len, mode_wp,
1897 					  &ctx->mmap_changing);
1898 		mmput(ctx->mm);
1899 	} else {
1900 		return -ESRCH;
1901 	}
1902 
1903 	if (ret)
1904 		return ret;
1905 
1906 	if (!mode_wp && !mode_dontwake) {
1907 		range.start = uffdio_wp.range.start;
1908 		range.len = uffdio_wp.range.len;
1909 		wake_userfault(ctx, &range);
1910 	}
1911 	return ret;
1912 }
1913 
1914 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1915 {
1916 	__s64 ret;
1917 	struct uffdio_continue uffdio_continue;
1918 	struct uffdio_continue __user *user_uffdio_continue;
1919 	struct userfaultfd_wake_range range;
1920 	uffd_flags_t flags = 0;
1921 
1922 	user_uffdio_continue = (struct uffdio_continue __user *)arg;
1923 
1924 	ret = -EAGAIN;
1925 	if (atomic_read(&ctx->mmap_changing))
1926 		goto out;
1927 
1928 	ret = -EFAULT;
1929 	if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1930 			   /* don't copy the output fields */
1931 			   sizeof(uffdio_continue) - (sizeof(__s64))))
1932 		goto out;
1933 
1934 	ret = validate_range(ctx->mm, uffdio_continue.range.start,
1935 			     uffdio_continue.range.len);
1936 	if (ret)
1937 		goto out;
1938 
1939 	ret = -EINVAL;
1940 	/* double check for wraparound just in case. */
1941 	if (uffdio_continue.range.start + uffdio_continue.range.len <=
1942 	    uffdio_continue.range.start) {
1943 		goto out;
1944 	}
1945 	if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1946 				     UFFDIO_CONTINUE_MODE_WP))
1947 		goto out;
1948 	if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1949 		flags |= MFILL_ATOMIC_WP;
1950 
1951 	if (mmget_not_zero(ctx->mm)) {
1952 		ret = mfill_atomic_continue(ctx->mm, uffdio_continue.range.start,
1953 					    uffdio_continue.range.len,
1954 					    &ctx->mmap_changing, flags);
1955 		mmput(ctx->mm);
1956 	} else {
1957 		return -ESRCH;
1958 	}
1959 
1960 	if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1961 		return -EFAULT;
1962 	if (ret < 0)
1963 		goto out;
1964 
1965 	/* len == 0 would wake all */
1966 	BUG_ON(!ret);
1967 	range.len = ret;
1968 	if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1969 		range.start = uffdio_continue.range.start;
1970 		wake_userfault(ctx, &range);
1971 	}
1972 	ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1973 
1974 out:
1975 	return ret;
1976 }
1977 
1978 static inline unsigned int uffd_ctx_features(__u64 user_features)
1979 {
1980 	/*
1981 	 * For the current set of features the bits just coincide. Set
1982 	 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1983 	 */
1984 	return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1985 }
1986 
1987 /*
1988  * userland asks for a certain API version and we return which bits
1989  * and ioctl commands are implemented in this kernel for such API
1990  * version or -EINVAL if unknown.
1991  */
1992 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1993 			   unsigned long arg)
1994 {
1995 	struct uffdio_api uffdio_api;
1996 	void __user *buf = (void __user *)arg;
1997 	unsigned int ctx_features;
1998 	int ret;
1999 	__u64 features;
2000 
2001 	ret = -EFAULT;
2002 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
2003 		goto out;
2004 	features = uffdio_api.features;
2005 	ret = -EINVAL;
2006 	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
2007 		goto err_out;
2008 	ret = -EPERM;
2009 	if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
2010 		goto err_out;
2011 	/* report all available features and ioctls to userland */
2012 	uffdio_api.features = UFFD_API_FEATURES;
2013 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
2014 	uffdio_api.features &=
2015 		~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
2016 #endif
2017 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
2018 	uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
2019 #endif
2020 #ifndef CONFIG_PTE_MARKER_UFFD_WP
2021 	uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
2022 	uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
2023 #endif
2024 	uffdio_api.ioctls = UFFD_API_IOCTLS;
2025 	ret = -EFAULT;
2026 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2027 		goto out;
2028 
2029 	/* only enable the requested features for this uffd context */
2030 	ctx_features = uffd_ctx_features(features);
2031 	ret = -EINVAL;
2032 	if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2033 		goto err_out;
2034 
2035 	ret = 0;
2036 out:
2037 	return ret;
2038 err_out:
2039 	memset(&uffdio_api, 0, sizeof(uffdio_api));
2040 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2041 		ret = -EFAULT;
2042 	goto out;
2043 }
2044 
2045 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2046 			      unsigned long arg)
2047 {
2048 	int ret = -EINVAL;
2049 	struct userfaultfd_ctx *ctx = file->private_data;
2050 
2051 	if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2052 		return -EINVAL;
2053 
2054 	switch(cmd) {
2055 	case UFFDIO_API:
2056 		ret = userfaultfd_api(ctx, arg);
2057 		break;
2058 	case UFFDIO_REGISTER:
2059 		ret = userfaultfd_register(ctx, arg);
2060 		break;
2061 	case UFFDIO_UNREGISTER:
2062 		ret = userfaultfd_unregister(ctx, arg);
2063 		break;
2064 	case UFFDIO_WAKE:
2065 		ret = userfaultfd_wake(ctx, arg);
2066 		break;
2067 	case UFFDIO_COPY:
2068 		ret = userfaultfd_copy(ctx, arg);
2069 		break;
2070 	case UFFDIO_ZEROPAGE:
2071 		ret = userfaultfd_zeropage(ctx, arg);
2072 		break;
2073 	case UFFDIO_WRITEPROTECT:
2074 		ret = userfaultfd_writeprotect(ctx, arg);
2075 		break;
2076 	case UFFDIO_CONTINUE:
2077 		ret = userfaultfd_continue(ctx, arg);
2078 		break;
2079 	}
2080 	return ret;
2081 }
2082 
2083 #ifdef CONFIG_PROC_FS
2084 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2085 {
2086 	struct userfaultfd_ctx *ctx = f->private_data;
2087 	wait_queue_entry_t *wq;
2088 	unsigned long pending = 0, total = 0;
2089 
2090 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
2091 	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2092 		pending++;
2093 		total++;
2094 	}
2095 	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2096 		total++;
2097 	}
2098 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2099 
2100 	/*
2101 	 * If more protocols will be added, there will be all shown
2102 	 * separated by a space. Like this:
2103 	 *	protocols: aa:... bb:...
2104 	 */
2105 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2106 		   pending, total, UFFD_API, ctx->features,
2107 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2108 }
2109 #endif
2110 
2111 static const struct file_operations userfaultfd_fops = {
2112 #ifdef CONFIG_PROC_FS
2113 	.show_fdinfo	= userfaultfd_show_fdinfo,
2114 #endif
2115 	.release	= userfaultfd_release,
2116 	.poll		= userfaultfd_poll,
2117 	.read		= userfaultfd_read,
2118 	.unlocked_ioctl = userfaultfd_ioctl,
2119 	.compat_ioctl	= compat_ptr_ioctl,
2120 	.llseek		= noop_llseek,
2121 };
2122 
2123 static void init_once_userfaultfd_ctx(void *mem)
2124 {
2125 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2126 
2127 	init_waitqueue_head(&ctx->fault_pending_wqh);
2128 	init_waitqueue_head(&ctx->fault_wqh);
2129 	init_waitqueue_head(&ctx->event_wqh);
2130 	init_waitqueue_head(&ctx->fd_wqh);
2131 	seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2132 }
2133 
2134 static int new_userfaultfd(int flags)
2135 {
2136 	struct userfaultfd_ctx *ctx;
2137 	int fd;
2138 
2139 	BUG_ON(!current->mm);
2140 
2141 	/* Check the UFFD_* constants for consistency.  */
2142 	BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2143 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2144 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2145 
2146 	if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2147 		return -EINVAL;
2148 
2149 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2150 	if (!ctx)
2151 		return -ENOMEM;
2152 
2153 	refcount_set(&ctx->refcount, 1);
2154 	ctx->flags = flags;
2155 	ctx->features = 0;
2156 	ctx->released = false;
2157 	atomic_set(&ctx->mmap_changing, 0);
2158 	ctx->mm = current->mm;
2159 	/* prevent the mm struct to be freed */
2160 	mmgrab(ctx->mm);
2161 
2162 	fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2163 			O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2164 	if (fd < 0) {
2165 		mmdrop(ctx->mm);
2166 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2167 	}
2168 	return fd;
2169 }
2170 
2171 static inline bool userfaultfd_syscall_allowed(int flags)
2172 {
2173 	/* Userspace-only page faults are always allowed */
2174 	if (flags & UFFD_USER_MODE_ONLY)
2175 		return true;
2176 
2177 	/*
2178 	 * The user is requesting a userfaultfd which can handle kernel faults.
2179 	 * Privileged users are always allowed to do this.
2180 	 */
2181 	if (capable(CAP_SYS_PTRACE))
2182 		return true;
2183 
2184 	/* Otherwise, access to kernel fault handling is sysctl controlled. */
2185 	return sysctl_unprivileged_userfaultfd;
2186 }
2187 
2188 SYSCALL_DEFINE1(userfaultfd, int, flags)
2189 {
2190 	if (!userfaultfd_syscall_allowed(flags))
2191 		return -EPERM;
2192 
2193 	return new_userfaultfd(flags);
2194 }
2195 
2196 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2197 {
2198 	if (cmd != USERFAULTFD_IOC_NEW)
2199 		return -EINVAL;
2200 
2201 	return new_userfaultfd(flags);
2202 }
2203 
2204 static const struct file_operations userfaultfd_dev_fops = {
2205 	.unlocked_ioctl = userfaultfd_dev_ioctl,
2206 	.compat_ioctl = userfaultfd_dev_ioctl,
2207 	.owner = THIS_MODULE,
2208 	.llseek = noop_llseek,
2209 };
2210 
2211 static struct miscdevice userfaultfd_misc = {
2212 	.minor = MISC_DYNAMIC_MINOR,
2213 	.name = "userfaultfd",
2214 	.fops = &userfaultfd_dev_fops
2215 };
2216 
2217 static int __init userfaultfd_init(void)
2218 {
2219 	int ret;
2220 
2221 	ret = misc_register(&userfaultfd_misc);
2222 	if (ret)
2223 		return ret;
2224 
2225 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2226 						sizeof(struct userfaultfd_ctx),
2227 						0,
2228 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2229 						init_once_userfaultfd_ctx);
2230 #ifdef CONFIG_SYSCTL
2231 	register_sysctl_init("vm", vm_userfaultfd_table);
2232 #endif
2233 	return 0;
2234 }
2235 __initcall(userfaultfd_init);
2236