1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/userfaultfd.c 4 * 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 8 * 9 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 11 */ 12 13 #include <linux/list.h> 14 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/mmu_notifier.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 #include <linux/swapops.h> 33 #include <linux/miscdevice.h> 34 35 int sysctl_unprivileged_userfaultfd __read_mostly; 36 37 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 38 39 /* 40 * Start with fault_pending_wqh and fault_wqh so they're more likely 41 * to be in the same cacheline. 42 * 43 * Locking order: 44 * fd_wqh.lock 45 * fault_pending_wqh.lock 46 * fault_wqh.lock 47 * event_wqh.lock 48 * 49 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, 50 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's 51 * also taken in IRQ context. 52 */ 53 struct userfaultfd_ctx { 54 /* waitqueue head for the pending (i.e. not read) userfaults */ 55 wait_queue_head_t fault_pending_wqh; 56 /* waitqueue head for the userfaults */ 57 wait_queue_head_t fault_wqh; 58 /* waitqueue head for the pseudo fd to wakeup poll/read */ 59 wait_queue_head_t fd_wqh; 60 /* waitqueue head for events */ 61 wait_queue_head_t event_wqh; 62 /* a refile sequence protected by fault_pending_wqh lock */ 63 seqcount_spinlock_t refile_seq; 64 /* pseudo fd refcounting */ 65 refcount_t refcount; 66 /* userfaultfd syscall flags */ 67 unsigned int flags; 68 /* features requested from the userspace */ 69 unsigned int features; 70 /* released */ 71 bool released; 72 /* memory mappings are changing because of non-cooperative event */ 73 atomic_t mmap_changing; 74 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 75 struct mm_struct *mm; 76 }; 77 78 struct userfaultfd_fork_ctx { 79 struct userfaultfd_ctx *orig; 80 struct userfaultfd_ctx *new; 81 struct list_head list; 82 }; 83 84 struct userfaultfd_unmap_ctx { 85 struct userfaultfd_ctx *ctx; 86 unsigned long start; 87 unsigned long end; 88 struct list_head list; 89 }; 90 91 struct userfaultfd_wait_queue { 92 struct uffd_msg msg; 93 wait_queue_entry_t wq; 94 struct userfaultfd_ctx *ctx; 95 bool waken; 96 }; 97 98 struct userfaultfd_wake_range { 99 unsigned long start; 100 unsigned long len; 101 }; 102 103 /* internal indication that UFFD_API ioctl was successfully executed */ 104 #define UFFD_FEATURE_INITIALIZED (1u << 31) 105 106 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx) 107 { 108 return ctx->features & UFFD_FEATURE_INITIALIZED; 109 } 110 111 /* 112 * Whether WP_UNPOPULATED is enabled on the uffd context. It is only 113 * meaningful when userfaultfd_wp()==true on the vma and when it's 114 * anonymous. 115 */ 116 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma) 117 { 118 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 119 120 if (!ctx) 121 return false; 122 123 return ctx->features & UFFD_FEATURE_WP_UNPOPULATED; 124 } 125 126 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma, 127 vm_flags_t flags) 128 { 129 const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP; 130 131 vm_flags_reset(vma, flags); 132 /* 133 * For shared mappings, we want to enable writenotify while 134 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply 135 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes. 136 */ 137 if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed) 138 vma_set_page_prot(vma); 139 } 140 141 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 142 int wake_flags, void *key) 143 { 144 struct userfaultfd_wake_range *range = key; 145 int ret; 146 struct userfaultfd_wait_queue *uwq; 147 unsigned long start, len; 148 149 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 150 ret = 0; 151 /* len == 0 means wake all */ 152 start = range->start; 153 len = range->len; 154 if (len && (start > uwq->msg.arg.pagefault.address || 155 start + len <= uwq->msg.arg.pagefault.address)) 156 goto out; 157 WRITE_ONCE(uwq->waken, true); 158 /* 159 * The Program-Order guarantees provided by the scheduler 160 * ensure uwq->waken is visible before the task is woken. 161 */ 162 ret = wake_up_state(wq->private, mode); 163 if (ret) { 164 /* 165 * Wake only once, autoremove behavior. 166 * 167 * After the effect of list_del_init is visible to the other 168 * CPUs, the waitqueue may disappear from under us, see the 169 * !list_empty_careful() in handle_userfault(). 170 * 171 * try_to_wake_up() has an implicit smp_mb(), and the 172 * wq->private is read before calling the extern function 173 * "wake_up_state" (which in turns calls try_to_wake_up). 174 */ 175 list_del_init(&wq->entry); 176 } 177 out: 178 return ret; 179 } 180 181 /** 182 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 183 * context. 184 * @ctx: [in] Pointer to the userfaultfd context. 185 */ 186 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 187 { 188 refcount_inc(&ctx->refcount); 189 } 190 191 /** 192 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 193 * context. 194 * @ctx: [in] Pointer to userfaultfd context. 195 * 196 * The userfaultfd context reference must have been previously acquired either 197 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 198 */ 199 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 200 { 201 if (refcount_dec_and_test(&ctx->refcount)) { 202 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 203 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 204 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 205 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 206 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 207 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 208 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 209 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 210 mmdrop(ctx->mm); 211 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 212 } 213 } 214 215 static inline void msg_init(struct uffd_msg *msg) 216 { 217 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 218 /* 219 * Must use memset to zero out the paddings or kernel data is 220 * leaked to userland. 221 */ 222 memset(msg, 0, sizeof(struct uffd_msg)); 223 } 224 225 static inline struct uffd_msg userfault_msg(unsigned long address, 226 unsigned long real_address, 227 unsigned int flags, 228 unsigned long reason, 229 unsigned int features) 230 { 231 struct uffd_msg msg; 232 233 msg_init(&msg); 234 msg.event = UFFD_EVENT_PAGEFAULT; 235 236 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ? 237 real_address : address; 238 239 /* 240 * These flags indicate why the userfault occurred: 241 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault. 242 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault. 243 * - Neither of these flags being set indicates a MISSING fault. 244 * 245 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write 246 * fault. Otherwise, it was a read fault. 247 */ 248 if (flags & FAULT_FLAG_WRITE) 249 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 250 if (reason & VM_UFFD_WP) 251 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 252 if (reason & VM_UFFD_MINOR) 253 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR; 254 if (features & UFFD_FEATURE_THREAD_ID) 255 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 256 return msg; 257 } 258 259 #ifdef CONFIG_HUGETLB_PAGE 260 /* 261 * Same functionality as userfaultfd_must_wait below with modifications for 262 * hugepmd ranges. 263 */ 264 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 265 struct vm_area_struct *vma, 266 unsigned long address, 267 unsigned long flags, 268 unsigned long reason) 269 { 270 pte_t *ptep, pte; 271 bool ret = true; 272 273 mmap_assert_locked(ctx->mm); 274 275 ptep = hugetlb_walk(vma, address, vma_mmu_pagesize(vma)); 276 if (!ptep) 277 goto out; 278 279 ret = false; 280 pte = huge_ptep_get(ptep); 281 282 /* 283 * Lockless access: we're in a wait_event so it's ok if it 284 * changes under us. PTE markers should be handled the same as none 285 * ptes here. 286 */ 287 if (huge_pte_none_mostly(pte)) 288 ret = true; 289 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 290 ret = true; 291 out: 292 return ret; 293 } 294 #else 295 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 296 struct vm_area_struct *vma, 297 unsigned long address, 298 unsigned long flags, 299 unsigned long reason) 300 { 301 return false; /* should never get here */ 302 } 303 #endif /* CONFIG_HUGETLB_PAGE */ 304 305 /* 306 * Verify the pagetables are still not ok after having reigstered into 307 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 308 * userfault that has already been resolved, if userfaultfd_read and 309 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 310 * threads. 311 */ 312 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 313 unsigned long address, 314 unsigned long flags, 315 unsigned long reason) 316 { 317 struct mm_struct *mm = ctx->mm; 318 pgd_t *pgd; 319 p4d_t *p4d; 320 pud_t *pud; 321 pmd_t *pmd, _pmd; 322 pte_t *pte; 323 bool ret = true; 324 325 mmap_assert_locked(mm); 326 327 pgd = pgd_offset(mm, address); 328 if (!pgd_present(*pgd)) 329 goto out; 330 p4d = p4d_offset(pgd, address); 331 if (!p4d_present(*p4d)) 332 goto out; 333 pud = pud_offset(p4d, address); 334 if (!pud_present(*pud)) 335 goto out; 336 pmd = pmd_offset(pud, address); 337 /* 338 * READ_ONCE must function as a barrier with narrower scope 339 * and it must be equivalent to: 340 * _pmd = *pmd; barrier(); 341 * 342 * This is to deal with the instability (as in 343 * pmd_trans_unstable) of the pmd. 344 */ 345 _pmd = READ_ONCE(*pmd); 346 if (pmd_none(_pmd)) 347 goto out; 348 349 ret = false; 350 if (!pmd_present(_pmd)) 351 goto out; 352 353 if (pmd_trans_huge(_pmd)) { 354 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) 355 ret = true; 356 goto out; 357 } 358 359 /* 360 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 361 * and use the standard pte_offset_map() instead of parsing _pmd. 362 */ 363 pte = pte_offset_map(pmd, address); 364 /* 365 * Lockless access: we're in a wait_event so it's ok if it 366 * changes under us. PTE markers should be handled the same as none 367 * ptes here. 368 */ 369 if (pte_none_mostly(*pte)) 370 ret = true; 371 if (!pte_write(*pte) && (reason & VM_UFFD_WP)) 372 ret = true; 373 pte_unmap(pte); 374 375 out: 376 return ret; 377 } 378 379 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags) 380 { 381 if (flags & FAULT_FLAG_INTERRUPTIBLE) 382 return TASK_INTERRUPTIBLE; 383 384 if (flags & FAULT_FLAG_KILLABLE) 385 return TASK_KILLABLE; 386 387 return TASK_UNINTERRUPTIBLE; 388 } 389 390 /* 391 * The locking rules involved in returning VM_FAULT_RETRY depending on 392 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 393 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 394 * recommendation in __lock_page_or_retry is not an understatement. 395 * 396 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released 397 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 398 * not set. 399 * 400 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 401 * set, VM_FAULT_RETRY can still be returned if and only if there are 402 * fatal_signal_pending()s, and the mmap_lock must be released before 403 * returning it. 404 */ 405 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 406 { 407 struct vm_area_struct *vma = vmf->vma; 408 struct mm_struct *mm = vma->vm_mm; 409 struct userfaultfd_ctx *ctx; 410 struct userfaultfd_wait_queue uwq; 411 vm_fault_t ret = VM_FAULT_SIGBUS; 412 bool must_wait; 413 unsigned int blocking_state; 414 415 /* 416 * We don't do userfault handling for the final child pid update. 417 * 418 * We also don't do userfault handling during 419 * coredumping. hugetlbfs has the special 420 * follow_hugetlb_page() to skip missing pages in the 421 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 422 * the no_page_table() helper in follow_page_mask(), but the 423 * shmem_vm_ops->fault method is invoked even during 424 * coredumping without mmap_lock and it ends up here. 425 */ 426 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 427 goto out; 428 429 /* 430 * Coredumping runs without mmap_lock so we can only check that 431 * the mmap_lock is held, if PF_DUMPCORE was not set. 432 */ 433 mmap_assert_locked(mm); 434 435 ctx = vma->vm_userfaultfd_ctx.ctx; 436 if (!ctx) 437 goto out; 438 439 BUG_ON(ctx->mm != mm); 440 441 /* Any unrecognized flag is a bug. */ 442 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS); 443 /* 0 or > 1 flags set is a bug; we expect exactly 1. */ 444 VM_BUG_ON(!reason || (reason & (reason - 1))); 445 446 if (ctx->features & UFFD_FEATURE_SIGBUS) 447 goto out; 448 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY)) 449 goto out; 450 451 /* 452 * If it's already released don't get it. This avoids to loop 453 * in __get_user_pages if userfaultfd_release waits on the 454 * caller of handle_userfault to release the mmap_lock. 455 */ 456 if (unlikely(READ_ONCE(ctx->released))) { 457 /* 458 * Don't return VM_FAULT_SIGBUS in this case, so a non 459 * cooperative manager can close the uffd after the 460 * last UFFDIO_COPY, without risking to trigger an 461 * involuntary SIGBUS if the process was starting the 462 * userfaultfd while the userfaultfd was still armed 463 * (but after the last UFFDIO_COPY). If the uffd 464 * wasn't already closed when the userfault reached 465 * this point, that would normally be solved by 466 * userfaultfd_must_wait returning 'false'. 467 * 468 * If we were to return VM_FAULT_SIGBUS here, the non 469 * cooperative manager would be instead forced to 470 * always call UFFDIO_UNREGISTER before it can safely 471 * close the uffd. 472 */ 473 ret = VM_FAULT_NOPAGE; 474 goto out; 475 } 476 477 /* 478 * Check that we can return VM_FAULT_RETRY. 479 * 480 * NOTE: it should become possible to return VM_FAULT_RETRY 481 * even if FAULT_FLAG_TRIED is set without leading to gup() 482 * -EBUSY failures, if the userfaultfd is to be extended for 483 * VM_UFFD_WP tracking and we intend to arm the userfault 484 * without first stopping userland access to the memory. For 485 * VM_UFFD_MISSING userfaults this is enough for now. 486 */ 487 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 488 /* 489 * Validate the invariant that nowait must allow retry 490 * to be sure not to return SIGBUS erroneously on 491 * nowait invocations. 492 */ 493 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 494 #ifdef CONFIG_DEBUG_VM 495 if (printk_ratelimit()) { 496 printk(KERN_WARNING 497 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 498 vmf->flags); 499 dump_stack(); 500 } 501 #endif 502 goto out; 503 } 504 505 /* 506 * Handle nowait, not much to do other than tell it to retry 507 * and wait. 508 */ 509 ret = VM_FAULT_RETRY; 510 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 511 goto out; 512 513 /* take the reference before dropping the mmap_lock */ 514 userfaultfd_ctx_get(ctx); 515 516 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 517 uwq.wq.private = current; 518 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags, 519 reason, ctx->features); 520 uwq.ctx = ctx; 521 uwq.waken = false; 522 523 blocking_state = userfaultfd_get_blocking_state(vmf->flags); 524 525 /* 526 * Take the vma lock now, in order to safely call 527 * userfaultfd_huge_must_wait() later. Since acquiring the 528 * (sleepable) vma lock can modify the current task state, that 529 * must be before explicitly calling set_current_state(). 530 */ 531 if (is_vm_hugetlb_page(vma)) 532 hugetlb_vma_lock_read(vma); 533 534 spin_lock_irq(&ctx->fault_pending_wqh.lock); 535 /* 536 * After the __add_wait_queue the uwq is visible to userland 537 * through poll/read(). 538 */ 539 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 540 /* 541 * The smp_mb() after __set_current_state prevents the reads 542 * following the spin_unlock to happen before the list_add in 543 * __add_wait_queue. 544 */ 545 set_current_state(blocking_state); 546 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 547 548 if (!is_vm_hugetlb_page(vma)) 549 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 550 reason); 551 else 552 must_wait = userfaultfd_huge_must_wait(ctx, vma, 553 vmf->address, 554 vmf->flags, reason); 555 if (is_vm_hugetlb_page(vma)) 556 hugetlb_vma_unlock_read(vma); 557 mmap_read_unlock(mm); 558 559 if (likely(must_wait && !READ_ONCE(ctx->released))) { 560 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 561 schedule(); 562 } 563 564 __set_current_state(TASK_RUNNING); 565 566 /* 567 * Here we race with the list_del; list_add in 568 * userfaultfd_ctx_read(), however because we don't ever run 569 * list_del_init() to refile across the two lists, the prev 570 * and next pointers will never point to self. list_add also 571 * would never let any of the two pointers to point to 572 * self. So list_empty_careful won't risk to see both pointers 573 * pointing to self at any time during the list refile. The 574 * only case where list_del_init() is called is the full 575 * removal in the wake function and there we don't re-list_add 576 * and it's fine not to block on the spinlock. The uwq on this 577 * kernel stack can be released after the list_del_init. 578 */ 579 if (!list_empty_careful(&uwq.wq.entry)) { 580 spin_lock_irq(&ctx->fault_pending_wqh.lock); 581 /* 582 * No need of list_del_init(), the uwq on the stack 583 * will be freed shortly anyway. 584 */ 585 list_del(&uwq.wq.entry); 586 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 587 } 588 589 /* 590 * ctx may go away after this if the userfault pseudo fd is 591 * already released. 592 */ 593 userfaultfd_ctx_put(ctx); 594 595 out: 596 return ret; 597 } 598 599 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 600 struct userfaultfd_wait_queue *ewq) 601 { 602 struct userfaultfd_ctx *release_new_ctx; 603 604 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 605 goto out; 606 607 ewq->ctx = ctx; 608 init_waitqueue_entry(&ewq->wq, current); 609 release_new_ctx = NULL; 610 611 spin_lock_irq(&ctx->event_wqh.lock); 612 /* 613 * After the __add_wait_queue the uwq is visible to userland 614 * through poll/read(). 615 */ 616 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 617 for (;;) { 618 set_current_state(TASK_KILLABLE); 619 if (ewq->msg.event == 0) 620 break; 621 if (READ_ONCE(ctx->released) || 622 fatal_signal_pending(current)) { 623 /* 624 * &ewq->wq may be queued in fork_event, but 625 * __remove_wait_queue ignores the head 626 * parameter. It would be a problem if it 627 * didn't. 628 */ 629 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 630 if (ewq->msg.event == UFFD_EVENT_FORK) { 631 struct userfaultfd_ctx *new; 632 633 new = (struct userfaultfd_ctx *) 634 (unsigned long) 635 ewq->msg.arg.reserved.reserved1; 636 release_new_ctx = new; 637 } 638 break; 639 } 640 641 spin_unlock_irq(&ctx->event_wqh.lock); 642 643 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 644 schedule(); 645 646 spin_lock_irq(&ctx->event_wqh.lock); 647 } 648 __set_current_state(TASK_RUNNING); 649 spin_unlock_irq(&ctx->event_wqh.lock); 650 651 if (release_new_ctx) { 652 struct vm_area_struct *vma; 653 struct mm_struct *mm = release_new_ctx->mm; 654 VMA_ITERATOR(vmi, mm, 0); 655 656 /* the various vma->vm_userfaultfd_ctx still points to it */ 657 mmap_write_lock(mm); 658 for_each_vma(vmi, vma) { 659 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 660 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 661 userfaultfd_set_vm_flags(vma, 662 vma->vm_flags & ~__VM_UFFD_FLAGS); 663 } 664 } 665 mmap_write_unlock(mm); 666 667 userfaultfd_ctx_put(release_new_ctx); 668 } 669 670 /* 671 * ctx may go away after this if the userfault pseudo fd is 672 * already released. 673 */ 674 out: 675 atomic_dec(&ctx->mmap_changing); 676 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0); 677 userfaultfd_ctx_put(ctx); 678 } 679 680 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 681 struct userfaultfd_wait_queue *ewq) 682 { 683 ewq->msg.event = 0; 684 wake_up_locked(&ctx->event_wqh); 685 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 686 } 687 688 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 689 { 690 struct userfaultfd_ctx *ctx = NULL, *octx; 691 struct userfaultfd_fork_ctx *fctx; 692 693 octx = vma->vm_userfaultfd_ctx.ctx; 694 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 695 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 696 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS); 697 return 0; 698 } 699 700 list_for_each_entry(fctx, fcs, list) 701 if (fctx->orig == octx) { 702 ctx = fctx->new; 703 break; 704 } 705 706 if (!ctx) { 707 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 708 if (!fctx) 709 return -ENOMEM; 710 711 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 712 if (!ctx) { 713 kfree(fctx); 714 return -ENOMEM; 715 } 716 717 refcount_set(&ctx->refcount, 1); 718 ctx->flags = octx->flags; 719 ctx->features = octx->features; 720 ctx->released = false; 721 atomic_set(&ctx->mmap_changing, 0); 722 ctx->mm = vma->vm_mm; 723 mmgrab(ctx->mm); 724 725 userfaultfd_ctx_get(octx); 726 atomic_inc(&octx->mmap_changing); 727 fctx->orig = octx; 728 fctx->new = ctx; 729 list_add_tail(&fctx->list, fcs); 730 } 731 732 vma->vm_userfaultfd_ctx.ctx = ctx; 733 return 0; 734 } 735 736 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 737 { 738 struct userfaultfd_ctx *ctx = fctx->orig; 739 struct userfaultfd_wait_queue ewq; 740 741 msg_init(&ewq.msg); 742 743 ewq.msg.event = UFFD_EVENT_FORK; 744 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 745 746 userfaultfd_event_wait_completion(ctx, &ewq); 747 } 748 749 void dup_userfaultfd_complete(struct list_head *fcs) 750 { 751 struct userfaultfd_fork_ctx *fctx, *n; 752 753 list_for_each_entry_safe(fctx, n, fcs, list) { 754 dup_fctx(fctx); 755 list_del(&fctx->list); 756 kfree(fctx); 757 } 758 } 759 760 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 761 struct vm_userfaultfd_ctx *vm_ctx) 762 { 763 struct userfaultfd_ctx *ctx; 764 765 ctx = vma->vm_userfaultfd_ctx.ctx; 766 767 if (!ctx) 768 return; 769 770 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 771 vm_ctx->ctx = ctx; 772 userfaultfd_ctx_get(ctx); 773 atomic_inc(&ctx->mmap_changing); 774 } else { 775 /* Drop uffd context if remap feature not enabled */ 776 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 777 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS); 778 } 779 } 780 781 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 782 unsigned long from, unsigned long to, 783 unsigned long len) 784 { 785 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 786 struct userfaultfd_wait_queue ewq; 787 788 if (!ctx) 789 return; 790 791 if (to & ~PAGE_MASK) { 792 userfaultfd_ctx_put(ctx); 793 return; 794 } 795 796 msg_init(&ewq.msg); 797 798 ewq.msg.event = UFFD_EVENT_REMAP; 799 ewq.msg.arg.remap.from = from; 800 ewq.msg.arg.remap.to = to; 801 ewq.msg.arg.remap.len = len; 802 803 userfaultfd_event_wait_completion(ctx, &ewq); 804 } 805 806 bool userfaultfd_remove(struct vm_area_struct *vma, 807 unsigned long start, unsigned long end) 808 { 809 struct mm_struct *mm = vma->vm_mm; 810 struct userfaultfd_ctx *ctx; 811 struct userfaultfd_wait_queue ewq; 812 813 ctx = vma->vm_userfaultfd_ctx.ctx; 814 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 815 return true; 816 817 userfaultfd_ctx_get(ctx); 818 atomic_inc(&ctx->mmap_changing); 819 mmap_read_unlock(mm); 820 821 msg_init(&ewq.msg); 822 823 ewq.msg.event = UFFD_EVENT_REMOVE; 824 ewq.msg.arg.remove.start = start; 825 ewq.msg.arg.remove.end = end; 826 827 userfaultfd_event_wait_completion(ctx, &ewq); 828 829 return false; 830 } 831 832 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 833 unsigned long start, unsigned long end) 834 { 835 struct userfaultfd_unmap_ctx *unmap_ctx; 836 837 list_for_each_entry(unmap_ctx, unmaps, list) 838 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 839 unmap_ctx->end == end) 840 return true; 841 842 return false; 843 } 844 845 int userfaultfd_unmap_prep(struct mm_struct *mm, unsigned long start, 846 unsigned long end, struct list_head *unmaps) 847 { 848 VMA_ITERATOR(vmi, mm, start); 849 struct vm_area_struct *vma; 850 851 for_each_vma_range(vmi, vma, end) { 852 struct userfaultfd_unmap_ctx *unmap_ctx; 853 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 854 855 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 856 has_unmap_ctx(ctx, unmaps, start, end)) 857 continue; 858 859 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 860 if (!unmap_ctx) 861 return -ENOMEM; 862 863 userfaultfd_ctx_get(ctx); 864 atomic_inc(&ctx->mmap_changing); 865 unmap_ctx->ctx = ctx; 866 unmap_ctx->start = start; 867 unmap_ctx->end = end; 868 list_add_tail(&unmap_ctx->list, unmaps); 869 } 870 871 return 0; 872 } 873 874 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 875 { 876 struct userfaultfd_unmap_ctx *ctx, *n; 877 struct userfaultfd_wait_queue ewq; 878 879 list_for_each_entry_safe(ctx, n, uf, list) { 880 msg_init(&ewq.msg); 881 882 ewq.msg.event = UFFD_EVENT_UNMAP; 883 ewq.msg.arg.remove.start = ctx->start; 884 ewq.msg.arg.remove.end = ctx->end; 885 886 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 887 888 list_del(&ctx->list); 889 kfree(ctx); 890 } 891 } 892 893 static int userfaultfd_release(struct inode *inode, struct file *file) 894 { 895 struct userfaultfd_ctx *ctx = file->private_data; 896 struct mm_struct *mm = ctx->mm; 897 struct vm_area_struct *vma, *prev; 898 /* len == 0 means wake all */ 899 struct userfaultfd_wake_range range = { .len = 0, }; 900 unsigned long new_flags; 901 VMA_ITERATOR(vmi, mm, 0); 902 903 WRITE_ONCE(ctx->released, true); 904 905 if (!mmget_not_zero(mm)) 906 goto wakeup; 907 908 /* 909 * Flush page faults out of all CPUs. NOTE: all page faults 910 * must be retried without returning VM_FAULT_SIGBUS if 911 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 912 * changes while handle_userfault released the mmap_lock. So 913 * it's critical that released is set to true (above), before 914 * taking the mmap_lock for writing. 915 */ 916 mmap_write_lock(mm); 917 prev = NULL; 918 for_each_vma(vmi, vma) { 919 cond_resched(); 920 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 921 !!(vma->vm_flags & __VM_UFFD_FLAGS)); 922 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 923 prev = vma; 924 continue; 925 } 926 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 927 prev = vma_merge(&vmi, mm, prev, vma->vm_start, vma->vm_end, 928 new_flags, vma->anon_vma, 929 vma->vm_file, vma->vm_pgoff, 930 vma_policy(vma), 931 NULL_VM_UFFD_CTX, anon_vma_name(vma)); 932 if (prev) { 933 vma = prev; 934 } else { 935 prev = vma; 936 } 937 938 userfaultfd_set_vm_flags(vma, new_flags); 939 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 940 } 941 mmap_write_unlock(mm); 942 mmput(mm); 943 wakeup: 944 /* 945 * After no new page faults can wait on this fault_*wqh, flush 946 * the last page faults that may have been already waiting on 947 * the fault_*wqh. 948 */ 949 spin_lock_irq(&ctx->fault_pending_wqh.lock); 950 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 951 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 952 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 953 954 /* Flush pending events that may still wait on event_wqh */ 955 wake_up_all(&ctx->event_wqh); 956 957 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 958 userfaultfd_ctx_put(ctx); 959 return 0; 960 } 961 962 /* fault_pending_wqh.lock must be hold by the caller */ 963 static inline struct userfaultfd_wait_queue *find_userfault_in( 964 wait_queue_head_t *wqh) 965 { 966 wait_queue_entry_t *wq; 967 struct userfaultfd_wait_queue *uwq; 968 969 lockdep_assert_held(&wqh->lock); 970 971 uwq = NULL; 972 if (!waitqueue_active(wqh)) 973 goto out; 974 /* walk in reverse to provide FIFO behavior to read userfaults */ 975 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 976 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 977 out: 978 return uwq; 979 } 980 981 static inline struct userfaultfd_wait_queue *find_userfault( 982 struct userfaultfd_ctx *ctx) 983 { 984 return find_userfault_in(&ctx->fault_pending_wqh); 985 } 986 987 static inline struct userfaultfd_wait_queue *find_userfault_evt( 988 struct userfaultfd_ctx *ctx) 989 { 990 return find_userfault_in(&ctx->event_wqh); 991 } 992 993 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 994 { 995 struct userfaultfd_ctx *ctx = file->private_data; 996 __poll_t ret; 997 998 poll_wait(file, &ctx->fd_wqh, wait); 999 1000 if (!userfaultfd_is_initialized(ctx)) 1001 return EPOLLERR; 1002 1003 /* 1004 * poll() never guarantees that read won't block. 1005 * userfaults can be waken before they're read(). 1006 */ 1007 if (unlikely(!(file->f_flags & O_NONBLOCK))) 1008 return EPOLLERR; 1009 /* 1010 * lockless access to see if there are pending faults 1011 * __pollwait last action is the add_wait_queue but 1012 * the spin_unlock would allow the waitqueue_active to 1013 * pass above the actual list_add inside 1014 * add_wait_queue critical section. So use a full 1015 * memory barrier to serialize the list_add write of 1016 * add_wait_queue() with the waitqueue_active read 1017 * below. 1018 */ 1019 ret = 0; 1020 smp_mb(); 1021 if (waitqueue_active(&ctx->fault_pending_wqh)) 1022 ret = EPOLLIN; 1023 else if (waitqueue_active(&ctx->event_wqh)) 1024 ret = EPOLLIN; 1025 1026 return ret; 1027 } 1028 1029 static const struct file_operations userfaultfd_fops; 1030 1031 static int resolve_userfault_fork(struct userfaultfd_ctx *new, 1032 struct inode *inode, 1033 struct uffd_msg *msg) 1034 { 1035 int fd; 1036 1037 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new, 1038 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode); 1039 if (fd < 0) 1040 return fd; 1041 1042 msg->arg.reserved.reserved1 = 0; 1043 msg->arg.fork.ufd = fd; 1044 return 0; 1045 } 1046 1047 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1048 struct uffd_msg *msg, struct inode *inode) 1049 { 1050 ssize_t ret; 1051 DECLARE_WAITQUEUE(wait, current); 1052 struct userfaultfd_wait_queue *uwq; 1053 /* 1054 * Handling fork event requires sleeping operations, so 1055 * we drop the event_wqh lock, then do these ops, then 1056 * lock it back and wake up the waiter. While the lock is 1057 * dropped the ewq may go away so we keep track of it 1058 * carefully. 1059 */ 1060 LIST_HEAD(fork_event); 1061 struct userfaultfd_ctx *fork_nctx = NULL; 1062 1063 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1064 spin_lock_irq(&ctx->fd_wqh.lock); 1065 __add_wait_queue(&ctx->fd_wqh, &wait); 1066 for (;;) { 1067 set_current_state(TASK_INTERRUPTIBLE); 1068 spin_lock(&ctx->fault_pending_wqh.lock); 1069 uwq = find_userfault(ctx); 1070 if (uwq) { 1071 /* 1072 * Use a seqcount to repeat the lockless check 1073 * in wake_userfault() to avoid missing 1074 * wakeups because during the refile both 1075 * waitqueue could become empty if this is the 1076 * only userfault. 1077 */ 1078 write_seqcount_begin(&ctx->refile_seq); 1079 1080 /* 1081 * The fault_pending_wqh.lock prevents the uwq 1082 * to disappear from under us. 1083 * 1084 * Refile this userfault from 1085 * fault_pending_wqh to fault_wqh, it's not 1086 * pending anymore after we read it. 1087 * 1088 * Use list_del() by hand (as 1089 * userfaultfd_wake_function also uses 1090 * list_del_init() by hand) to be sure nobody 1091 * changes __remove_wait_queue() to use 1092 * list_del_init() in turn breaking the 1093 * !list_empty_careful() check in 1094 * handle_userfault(). The uwq->wq.head list 1095 * must never be empty at any time during the 1096 * refile, or the waitqueue could disappear 1097 * from under us. The "wait_queue_head_t" 1098 * parameter of __remove_wait_queue() is unused 1099 * anyway. 1100 */ 1101 list_del(&uwq->wq.entry); 1102 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1103 1104 write_seqcount_end(&ctx->refile_seq); 1105 1106 /* careful to always initialize msg if ret == 0 */ 1107 *msg = uwq->msg; 1108 spin_unlock(&ctx->fault_pending_wqh.lock); 1109 ret = 0; 1110 break; 1111 } 1112 spin_unlock(&ctx->fault_pending_wqh.lock); 1113 1114 spin_lock(&ctx->event_wqh.lock); 1115 uwq = find_userfault_evt(ctx); 1116 if (uwq) { 1117 *msg = uwq->msg; 1118 1119 if (uwq->msg.event == UFFD_EVENT_FORK) { 1120 fork_nctx = (struct userfaultfd_ctx *) 1121 (unsigned long) 1122 uwq->msg.arg.reserved.reserved1; 1123 list_move(&uwq->wq.entry, &fork_event); 1124 /* 1125 * fork_nctx can be freed as soon as 1126 * we drop the lock, unless we take a 1127 * reference on it. 1128 */ 1129 userfaultfd_ctx_get(fork_nctx); 1130 spin_unlock(&ctx->event_wqh.lock); 1131 ret = 0; 1132 break; 1133 } 1134 1135 userfaultfd_event_complete(ctx, uwq); 1136 spin_unlock(&ctx->event_wqh.lock); 1137 ret = 0; 1138 break; 1139 } 1140 spin_unlock(&ctx->event_wqh.lock); 1141 1142 if (signal_pending(current)) { 1143 ret = -ERESTARTSYS; 1144 break; 1145 } 1146 if (no_wait) { 1147 ret = -EAGAIN; 1148 break; 1149 } 1150 spin_unlock_irq(&ctx->fd_wqh.lock); 1151 schedule(); 1152 spin_lock_irq(&ctx->fd_wqh.lock); 1153 } 1154 __remove_wait_queue(&ctx->fd_wqh, &wait); 1155 __set_current_state(TASK_RUNNING); 1156 spin_unlock_irq(&ctx->fd_wqh.lock); 1157 1158 if (!ret && msg->event == UFFD_EVENT_FORK) { 1159 ret = resolve_userfault_fork(fork_nctx, inode, msg); 1160 spin_lock_irq(&ctx->event_wqh.lock); 1161 if (!list_empty(&fork_event)) { 1162 /* 1163 * The fork thread didn't abort, so we can 1164 * drop the temporary refcount. 1165 */ 1166 userfaultfd_ctx_put(fork_nctx); 1167 1168 uwq = list_first_entry(&fork_event, 1169 typeof(*uwq), 1170 wq.entry); 1171 /* 1172 * If fork_event list wasn't empty and in turn 1173 * the event wasn't already released by fork 1174 * (the event is allocated on fork kernel 1175 * stack), put the event back to its place in 1176 * the event_wq. fork_event head will be freed 1177 * as soon as we return so the event cannot 1178 * stay queued there no matter the current 1179 * "ret" value. 1180 */ 1181 list_del(&uwq->wq.entry); 1182 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1183 1184 /* 1185 * Leave the event in the waitqueue and report 1186 * error to userland if we failed to resolve 1187 * the userfault fork. 1188 */ 1189 if (likely(!ret)) 1190 userfaultfd_event_complete(ctx, uwq); 1191 } else { 1192 /* 1193 * Here the fork thread aborted and the 1194 * refcount from the fork thread on fork_nctx 1195 * has already been released. We still hold 1196 * the reference we took before releasing the 1197 * lock above. If resolve_userfault_fork 1198 * failed we've to drop it because the 1199 * fork_nctx has to be freed in such case. If 1200 * it succeeded we'll hold it because the new 1201 * uffd references it. 1202 */ 1203 if (ret) 1204 userfaultfd_ctx_put(fork_nctx); 1205 } 1206 spin_unlock_irq(&ctx->event_wqh.lock); 1207 } 1208 1209 return ret; 1210 } 1211 1212 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1213 size_t count, loff_t *ppos) 1214 { 1215 struct userfaultfd_ctx *ctx = file->private_data; 1216 ssize_t _ret, ret = 0; 1217 struct uffd_msg msg; 1218 int no_wait = file->f_flags & O_NONBLOCK; 1219 struct inode *inode = file_inode(file); 1220 1221 if (!userfaultfd_is_initialized(ctx)) 1222 return -EINVAL; 1223 1224 for (;;) { 1225 if (count < sizeof(msg)) 1226 return ret ? ret : -EINVAL; 1227 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode); 1228 if (_ret < 0) 1229 return ret ? ret : _ret; 1230 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1231 return ret ? ret : -EFAULT; 1232 ret += sizeof(msg); 1233 buf += sizeof(msg); 1234 count -= sizeof(msg); 1235 /* 1236 * Allow to read more than one fault at time but only 1237 * block if waiting for the very first one. 1238 */ 1239 no_wait = O_NONBLOCK; 1240 } 1241 } 1242 1243 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1244 struct userfaultfd_wake_range *range) 1245 { 1246 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1247 /* wake all in the range and autoremove */ 1248 if (waitqueue_active(&ctx->fault_pending_wqh)) 1249 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1250 range); 1251 if (waitqueue_active(&ctx->fault_wqh)) 1252 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1253 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1254 } 1255 1256 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1257 struct userfaultfd_wake_range *range) 1258 { 1259 unsigned seq; 1260 bool need_wakeup; 1261 1262 /* 1263 * To be sure waitqueue_active() is not reordered by the CPU 1264 * before the pagetable update, use an explicit SMP memory 1265 * barrier here. PT lock release or mmap_read_unlock(mm) still 1266 * have release semantics that can allow the 1267 * waitqueue_active() to be reordered before the pte update. 1268 */ 1269 smp_mb(); 1270 1271 /* 1272 * Use waitqueue_active because it's very frequent to 1273 * change the address space atomically even if there are no 1274 * userfaults yet. So we take the spinlock only when we're 1275 * sure we've userfaults to wake. 1276 */ 1277 do { 1278 seq = read_seqcount_begin(&ctx->refile_seq); 1279 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1280 waitqueue_active(&ctx->fault_wqh); 1281 cond_resched(); 1282 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1283 if (need_wakeup) 1284 __wake_userfault(ctx, range); 1285 } 1286 1287 static __always_inline int validate_range(struct mm_struct *mm, 1288 __u64 start, __u64 len) 1289 { 1290 __u64 task_size = mm->task_size; 1291 1292 if (start & ~PAGE_MASK) 1293 return -EINVAL; 1294 if (len & ~PAGE_MASK) 1295 return -EINVAL; 1296 if (!len) 1297 return -EINVAL; 1298 if (start < mmap_min_addr) 1299 return -EINVAL; 1300 if (start >= task_size) 1301 return -EINVAL; 1302 if (len > task_size - start) 1303 return -EINVAL; 1304 return 0; 1305 } 1306 1307 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1308 unsigned long arg) 1309 { 1310 struct mm_struct *mm = ctx->mm; 1311 struct vm_area_struct *vma, *prev, *cur; 1312 int ret; 1313 struct uffdio_register uffdio_register; 1314 struct uffdio_register __user *user_uffdio_register; 1315 unsigned long vm_flags, new_flags; 1316 bool found; 1317 bool basic_ioctls; 1318 unsigned long start, end, vma_end; 1319 struct vma_iterator vmi; 1320 1321 user_uffdio_register = (struct uffdio_register __user *) arg; 1322 1323 ret = -EFAULT; 1324 if (copy_from_user(&uffdio_register, user_uffdio_register, 1325 sizeof(uffdio_register)-sizeof(__u64))) 1326 goto out; 1327 1328 ret = -EINVAL; 1329 if (!uffdio_register.mode) 1330 goto out; 1331 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES) 1332 goto out; 1333 vm_flags = 0; 1334 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1335 vm_flags |= VM_UFFD_MISSING; 1336 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1337 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1338 goto out; 1339 #endif 1340 vm_flags |= VM_UFFD_WP; 1341 } 1342 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) { 1343 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1344 goto out; 1345 #endif 1346 vm_flags |= VM_UFFD_MINOR; 1347 } 1348 1349 ret = validate_range(mm, uffdio_register.range.start, 1350 uffdio_register.range.len); 1351 if (ret) 1352 goto out; 1353 1354 start = uffdio_register.range.start; 1355 end = start + uffdio_register.range.len; 1356 1357 ret = -ENOMEM; 1358 if (!mmget_not_zero(mm)) 1359 goto out; 1360 1361 ret = -EINVAL; 1362 mmap_write_lock(mm); 1363 vma_iter_init(&vmi, mm, start); 1364 vma = vma_find(&vmi, end); 1365 if (!vma) 1366 goto out_unlock; 1367 1368 /* 1369 * If the first vma contains huge pages, make sure start address 1370 * is aligned to huge page size. 1371 */ 1372 if (is_vm_hugetlb_page(vma)) { 1373 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1374 1375 if (start & (vma_hpagesize - 1)) 1376 goto out_unlock; 1377 } 1378 1379 /* 1380 * Search for not compatible vmas. 1381 */ 1382 found = false; 1383 basic_ioctls = false; 1384 cur = vma; 1385 do { 1386 cond_resched(); 1387 1388 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1389 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1390 1391 /* check not compatible vmas */ 1392 ret = -EINVAL; 1393 if (!vma_can_userfault(cur, vm_flags)) 1394 goto out_unlock; 1395 1396 /* 1397 * UFFDIO_COPY will fill file holes even without 1398 * PROT_WRITE. This check enforces that if this is a 1399 * MAP_SHARED, the process has write permission to the backing 1400 * file. If VM_MAYWRITE is set it also enforces that on a 1401 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1402 * F_WRITE_SEAL can be taken until the vma is destroyed. 1403 */ 1404 ret = -EPERM; 1405 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1406 goto out_unlock; 1407 1408 /* 1409 * If this vma contains ending address, and huge pages 1410 * check alignment. 1411 */ 1412 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1413 end > cur->vm_start) { 1414 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1415 1416 ret = -EINVAL; 1417 1418 if (end & (vma_hpagesize - 1)) 1419 goto out_unlock; 1420 } 1421 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) 1422 goto out_unlock; 1423 1424 /* 1425 * Check that this vma isn't already owned by a 1426 * different userfaultfd. We can't allow more than one 1427 * userfaultfd to own a single vma simultaneously or we 1428 * wouldn't know which one to deliver the userfaults to. 1429 */ 1430 ret = -EBUSY; 1431 if (cur->vm_userfaultfd_ctx.ctx && 1432 cur->vm_userfaultfd_ctx.ctx != ctx) 1433 goto out_unlock; 1434 1435 /* 1436 * Note vmas containing huge pages 1437 */ 1438 if (is_vm_hugetlb_page(cur)) 1439 basic_ioctls = true; 1440 1441 found = true; 1442 } for_each_vma_range(vmi, cur, end); 1443 BUG_ON(!found); 1444 1445 vma_iter_set(&vmi, start); 1446 prev = vma_prev(&vmi); 1447 1448 ret = 0; 1449 for_each_vma_range(vmi, vma, end) { 1450 cond_resched(); 1451 1452 BUG_ON(!vma_can_userfault(vma, vm_flags)); 1453 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1454 vma->vm_userfaultfd_ctx.ctx != ctx); 1455 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1456 1457 /* 1458 * Nothing to do: this vma is already registered into this 1459 * userfaultfd and with the right tracking mode too. 1460 */ 1461 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1462 (vma->vm_flags & vm_flags) == vm_flags) 1463 goto skip; 1464 1465 if (vma->vm_start > start) 1466 start = vma->vm_start; 1467 vma_end = min(end, vma->vm_end); 1468 1469 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags; 1470 prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags, 1471 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1472 vma_policy(vma), 1473 ((struct vm_userfaultfd_ctx){ ctx }), 1474 anon_vma_name(vma)); 1475 if (prev) { 1476 /* vma_merge() invalidated the mas */ 1477 vma = prev; 1478 goto next; 1479 } 1480 if (vma->vm_start < start) { 1481 ret = split_vma(&vmi, vma, start, 1); 1482 if (ret) 1483 break; 1484 } 1485 if (vma->vm_end > end) { 1486 ret = split_vma(&vmi, vma, end, 0); 1487 if (ret) 1488 break; 1489 } 1490 next: 1491 /* 1492 * In the vma_merge() successful mprotect-like case 8: 1493 * the next vma was merged into the current one and 1494 * the current one has not been updated yet. 1495 */ 1496 userfaultfd_set_vm_flags(vma, new_flags); 1497 vma->vm_userfaultfd_ctx.ctx = ctx; 1498 1499 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma)) 1500 hugetlb_unshare_all_pmds(vma); 1501 1502 skip: 1503 prev = vma; 1504 start = vma->vm_end; 1505 } 1506 1507 out_unlock: 1508 mmap_write_unlock(mm); 1509 mmput(mm); 1510 if (!ret) { 1511 __u64 ioctls_out; 1512 1513 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1514 UFFD_API_RANGE_IOCTLS; 1515 1516 /* 1517 * Declare the WP ioctl only if the WP mode is 1518 * specified and all checks passed with the range 1519 */ 1520 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) 1521 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); 1522 1523 /* CONTINUE ioctl is only supported for MINOR ranges. */ 1524 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR)) 1525 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE); 1526 1527 /* 1528 * Now that we scanned all vmas we can already tell 1529 * userland which ioctls methods are guaranteed to 1530 * succeed on this range. 1531 */ 1532 if (put_user(ioctls_out, &user_uffdio_register->ioctls)) 1533 ret = -EFAULT; 1534 } 1535 out: 1536 return ret; 1537 } 1538 1539 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1540 unsigned long arg) 1541 { 1542 struct mm_struct *mm = ctx->mm; 1543 struct vm_area_struct *vma, *prev, *cur; 1544 int ret; 1545 struct uffdio_range uffdio_unregister; 1546 unsigned long new_flags; 1547 bool found; 1548 unsigned long start, end, vma_end; 1549 const void __user *buf = (void __user *)arg; 1550 struct vma_iterator vmi; 1551 1552 ret = -EFAULT; 1553 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1554 goto out; 1555 1556 ret = validate_range(mm, uffdio_unregister.start, 1557 uffdio_unregister.len); 1558 if (ret) 1559 goto out; 1560 1561 start = uffdio_unregister.start; 1562 end = start + uffdio_unregister.len; 1563 1564 ret = -ENOMEM; 1565 if (!mmget_not_zero(mm)) 1566 goto out; 1567 1568 mmap_write_lock(mm); 1569 ret = -EINVAL; 1570 vma_iter_init(&vmi, mm, start); 1571 vma = vma_find(&vmi, end); 1572 if (!vma) 1573 goto out_unlock; 1574 1575 /* 1576 * If the first vma contains huge pages, make sure start address 1577 * is aligned to huge page size. 1578 */ 1579 if (is_vm_hugetlb_page(vma)) { 1580 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1581 1582 if (start & (vma_hpagesize - 1)) 1583 goto out_unlock; 1584 } 1585 1586 /* 1587 * Search for not compatible vmas. 1588 */ 1589 found = false; 1590 cur = vma; 1591 do { 1592 cond_resched(); 1593 1594 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1595 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1596 1597 /* 1598 * Check not compatible vmas, not strictly required 1599 * here as not compatible vmas cannot have an 1600 * userfaultfd_ctx registered on them, but this 1601 * provides for more strict behavior to notice 1602 * unregistration errors. 1603 */ 1604 if (!vma_can_userfault(cur, cur->vm_flags)) 1605 goto out_unlock; 1606 1607 found = true; 1608 } for_each_vma_range(vmi, cur, end); 1609 BUG_ON(!found); 1610 1611 vma_iter_set(&vmi, start); 1612 prev = vma_prev(&vmi); 1613 ret = 0; 1614 for_each_vma_range(vmi, vma, end) { 1615 cond_resched(); 1616 1617 BUG_ON(!vma_can_userfault(vma, vma->vm_flags)); 1618 1619 /* 1620 * Nothing to do: this vma is already registered into this 1621 * userfaultfd and with the right tracking mode too. 1622 */ 1623 if (!vma->vm_userfaultfd_ctx.ctx) 1624 goto skip; 1625 1626 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1627 1628 if (vma->vm_start > start) 1629 start = vma->vm_start; 1630 vma_end = min(end, vma->vm_end); 1631 1632 if (userfaultfd_missing(vma)) { 1633 /* 1634 * Wake any concurrent pending userfault while 1635 * we unregister, so they will not hang 1636 * permanently and it avoids userland to call 1637 * UFFDIO_WAKE explicitly. 1638 */ 1639 struct userfaultfd_wake_range range; 1640 range.start = start; 1641 range.len = vma_end - start; 1642 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1643 } 1644 1645 /* Reset ptes for the whole vma range if wr-protected */ 1646 if (userfaultfd_wp(vma)) 1647 uffd_wp_range(vma, start, vma_end - start, false); 1648 1649 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 1650 prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags, 1651 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1652 vma_policy(vma), 1653 NULL_VM_UFFD_CTX, anon_vma_name(vma)); 1654 if (prev) { 1655 vma = prev; 1656 goto next; 1657 } 1658 if (vma->vm_start < start) { 1659 ret = split_vma(&vmi, vma, start, 1); 1660 if (ret) 1661 break; 1662 } 1663 if (vma->vm_end > end) { 1664 ret = split_vma(&vmi, vma, end, 0); 1665 if (ret) 1666 break; 1667 } 1668 next: 1669 /* 1670 * In the vma_merge() successful mprotect-like case 8: 1671 * the next vma was merged into the current one and 1672 * the current one has not been updated yet. 1673 */ 1674 userfaultfd_set_vm_flags(vma, new_flags); 1675 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1676 1677 skip: 1678 prev = vma; 1679 start = vma->vm_end; 1680 } 1681 1682 out_unlock: 1683 mmap_write_unlock(mm); 1684 mmput(mm); 1685 out: 1686 return ret; 1687 } 1688 1689 /* 1690 * userfaultfd_wake may be used in combination with the 1691 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1692 */ 1693 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1694 unsigned long arg) 1695 { 1696 int ret; 1697 struct uffdio_range uffdio_wake; 1698 struct userfaultfd_wake_range range; 1699 const void __user *buf = (void __user *)arg; 1700 1701 ret = -EFAULT; 1702 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1703 goto out; 1704 1705 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1706 if (ret) 1707 goto out; 1708 1709 range.start = uffdio_wake.start; 1710 range.len = uffdio_wake.len; 1711 1712 /* 1713 * len == 0 means wake all and we don't want to wake all here, 1714 * so check it again to be sure. 1715 */ 1716 VM_BUG_ON(!range.len); 1717 1718 wake_userfault(ctx, &range); 1719 ret = 0; 1720 1721 out: 1722 return ret; 1723 } 1724 1725 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1726 unsigned long arg) 1727 { 1728 __s64 ret; 1729 struct uffdio_copy uffdio_copy; 1730 struct uffdio_copy __user *user_uffdio_copy; 1731 struct userfaultfd_wake_range range; 1732 uffd_flags_t flags = 0; 1733 1734 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1735 1736 ret = -EAGAIN; 1737 if (atomic_read(&ctx->mmap_changing)) 1738 goto out; 1739 1740 ret = -EFAULT; 1741 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1742 /* don't copy "copy" last field */ 1743 sizeof(uffdio_copy)-sizeof(__s64))) 1744 goto out; 1745 1746 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1747 if (ret) 1748 goto out; 1749 /* 1750 * double check for wraparound just in case. copy_from_user() 1751 * will later check uffdio_copy.src + uffdio_copy.len to fit 1752 * in the userland range. 1753 */ 1754 ret = -EINVAL; 1755 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1756 goto out; 1757 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) 1758 goto out; 1759 if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP) 1760 flags |= MFILL_ATOMIC_WP; 1761 if (mmget_not_zero(ctx->mm)) { 1762 ret = mfill_atomic_copy(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1763 uffdio_copy.len, &ctx->mmap_changing, 1764 flags); 1765 mmput(ctx->mm); 1766 } else { 1767 return -ESRCH; 1768 } 1769 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1770 return -EFAULT; 1771 if (ret < 0) 1772 goto out; 1773 BUG_ON(!ret); 1774 /* len == 0 would wake all */ 1775 range.len = ret; 1776 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1777 range.start = uffdio_copy.dst; 1778 wake_userfault(ctx, &range); 1779 } 1780 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1781 out: 1782 return ret; 1783 } 1784 1785 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1786 unsigned long arg) 1787 { 1788 __s64 ret; 1789 struct uffdio_zeropage uffdio_zeropage; 1790 struct uffdio_zeropage __user *user_uffdio_zeropage; 1791 struct userfaultfd_wake_range range; 1792 1793 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1794 1795 ret = -EAGAIN; 1796 if (atomic_read(&ctx->mmap_changing)) 1797 goto out; 1798 1799 ret = -EFAULT; 1800 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1801 /* don't copy "zeropage" last field */ 1802 sizeof(uffdio_zeropage)-sizeof(__s64))) 1803 goto out; 1804 1805 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1806 uffdio_zeropage.range.len); 1807 if (ret) 1808 goto out; 1809 ret = -EINVAL; 1810 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1811 goto out; 1812 1813 if (mmget_not_zero(ctx->mm)) { 1814 ret = mfill_atomic_zeropage(ctx->mm, uffdio_zeropage.range.start, 1815 uffdio_zeropage.range.len, 1816 &ctx->mmap_changing); 1817 mmput(ctx->mm); 1818 } else { 1819 return -ESRCH; 1820 } 1821 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1822 return -EFAULT; 1823 if (ret < 0) 1824 goto out; 1825 /* len == 0 would wake all */ 1826 BUG_ON(!ret); 1827 range.len = ret; 1828 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1829 range.start = uffdio_zeropage.range.start; 1830 wake_userfault(ctx, &range); 1831 } 1832 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1833 out: 1834 return ret; 1835 } 1836 1837 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, 1838 unsigned long arg) 1839 { 1840 int ret; 1841 struct uffdio_writeprotect uffdio_wp; 1842 struct uffdio_writeprotect __user *user_uffdio_wp; 1843 struct userfaultfd_wake_range range; 1844 bool mode_wp, mode_dontwake; 1845 1846 if (atomic_read(&ctx->mmap_changing)) 1847 return -EAGAIN; 1848 1849 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; 1850 1851 if (copy_from_user(&uffdio_wp, user_uffdio_wp, 1852 sizeof(struct uffdio_writeprotect))) 1853 return -EFAULT; 1854 1855 ret = validate_range(ctx->mm, uffdio_wp.range.start, 1856 uffdio_wp.range.len); 1857 if (ret) 1858 return ret; 1859 1860 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | 1861 UFFDIO_WRITEPROTECT_MODE_WP)) 1862 return -EINVAL; 1863 1864 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; 1865 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; 1866 1867 if (mode_wp && mode_dontwake) 1868 return -EINVAL; 1869 1870 if (mmget_not_zero(ctx->mm)) { 1871 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start, 1872 uffdio_wp.range.len, mode_wp, 1873 &ctx->mmap_changing); 1874 mmput(ctx->mm); 1875 } else { 1876 return -ESRCH; 1877 } 1878 1879 if (ret) 1880 return ret; 1881 1882 if (!mode_wp && !mode_dontwake) { 1883 range.start = uffdio_wp.range.start; 1884 range.len = uffdio_wp.range.len; 1885 wake_userfault(ctx, &range); 1886 } 1887 return ret; 1888 } 1889 1890 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg) 1891 { 1892 __s64 ret; 1893 struct uffdio_continue uffdio_continue; 1894 struct uffdio_continue __user *user_uffdio_continue; 1895 struct userfaultfd_wake_range range; 1896 uffd_flags_t flags = 0; 1897 1898 user_uffdio_continue = (struct uffdio_continue __user *)arg; 1899 1900 ret = -EAGAIN; 1901 if (atomic_read(&ctx->mmap_changing)) 1902 goto out; 1903 1904 ret = -EFAULT; 1905 if (copy_from_user(&uffdio_continue, user_uffdio_continue, 1906 /* don't copy the output fields */ 1907 sizeof(uffdio_continue) - (sizeof(__s64)))) 1908 goto out; 1909 1910 ret = validate_range(ctx->mm, uffdio_continue.range.start, 1911 uffdio_continue.range.len); 1912 if (ret) 1913 goto out; 1914 1915 ret = -EINVAL; 1916 /* double check for wraparound just in case. */ 1917 if (uffdio_continue.range.start + uffdio_continue.range.len <= 1918 uffdio_continue.range.start) { 1919 goto out; 1920 } 1921 if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE | 1922 UFFDIO_CONTINUE_MODE_WP)) 1923 goto out; 1924 if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP) 1925 flags |= MFILL_ATOMIC_WP; 1926 1927 if (mmget_not_zero(ctx->mm)) { 1928 ret = mfill_atomic_continue(ctx->mm, uffdio_continue.range.start, 1929 uffdio_continue.range.len, 1930 &ctx->mmap_changing, flags); 1931 mmput(ctx->mm); 1932 } else { 1933 return -ESRCH; 1934 } 1935 1936 if (unlikely(put_user(ret, &user_uffdio_continue->mapped))) 1937 return -EFAULT; 1938 if (ret < 0) 1939 goto out; 1940 1941 /* len == 0 would wake all */ 1942 BUG_ON(!ret); 1943 range.len = ret; 1944 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) { 1945 range.start = uffdio_continue.range.start; 1946 wake_userfault(ctx, &range); 1947 } 1948 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN; 1949 1950 out: 1951 return ret; 1952 } 1953 1954 static inline unsigned int uffd_ctx_features(__u64 user_features) 1955 { 1956 /* 1957 * For the current set of features the bits just coincide. Set 1958 * UFFD_FEATURE_INITIALIZED to mark the features as enabled. 1959 */ 1960 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED; 1961 } 1962 1963 /* 1964 * userland asks for a certain API version and we return which bits 1965 * and ioctl commands are implemented in this kernel for such API 1966 * version or -EINVAL if unknown. 1967 */ 1968 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1969 unsigned long arg) 1970 { 1971 struct uffdio_api uffdio_api; 1972 void __user *buf = (void __user *)arg; 1973 unsigned int ctx_features; 1974 int ret; 1975 __u64 features; 1976 1977 ret = -EFAULT; 1978 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1979 goto out; 1980 features = uffdio_api.features; 1981 ret = -EINVAL; 1982 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) 1983 goto err_out; 1984 ret = -EPERM; 1985 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) 1986 goto err_out; 1987 /* report all available features and ioctls to userland */ 1988 uffdio_api.features = UFFD_API_FEATURES; 1989 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1990 uffdio_api.features &= 1991 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM); 1992 #endif 1993 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1994 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP; 1995 #endif 1996 #ifndef CONFIG_PTE_MARKER_UFFD_WP 1997 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM; 1998 uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED; 1999 #endif 2000 uffdio_api.ioctls = UFFD_API_IOCTLS; 2001 ret = -EFAULT; 2002 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2003 goto out; 2004 2005 /* only enable the requested features for this uffd context */ 2006 ctx_features = uffd_ctx_features(features); 2007 ret = -EINVAL; 2008 if (cmpxchg(&ctx->features, 0, ctx_features) != 0) 2009 goto err_out; 2010 2011 ret = 0; 2012 out: 2013 return ret; 2014 err_out: 2015 memset(&uffdio_api, 0, sizeof(uffdio_api)); 2016 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2017 ret = -EFAULT; 2018 goto out; 2019 } 2020 2021 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 2022 unsigned long arg) 2023 { 2024 int ret = -EINVAL; 2025 struct userfaultfd_ctx *ctx = file->private_data; 2026 2027 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx)) 2028 return -EINVAL; 2029 2030 switch(cmd) { 2031 case UFFDIO_API: 2032 ret = userfaultfd_api(ctx, arg); 2033 break; 2034 case UFFDIO_REGISTER: 2035 ret = userfaultfd_register(ctx, arg); 2036 break; 2037 case UFFDIO_UNREGISTER: 2038 ret = userfaultfd_unregister(ctx, arg); 2039 break; 2040 case UFFDIO_WAKE: 2041 ret = userfaultfd_wake(ctx, arg); 2042 break; 2043 case UFFDIO_COPY: 2044 ret = userfaultfd_copy(ctx, arg); 2045 break; 2046 case UFFDIO_ZEROPAGE: 2047 ret = userfaultfd_zeropage(ctx, arg); 2048 break; 2049 case UFFDIO_WRITEPROTECT: 2050 ret = userfaultfd_writeprotect(ctx, arg); 2051 break; 2052 case UFFDIO_CONTINUE: 2053 ret = userfaultfd_continue(ctx, arg); 2054 break; 2055 } 2056 return ret; 2057 } 2058 2059 #ifdef CONFIG_PROC_FS 2060 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 2061 { 2062 struct userfaultfd_ctx *ctx = f->private_data; 2063 wait_queue_entry_t *wq; 2064 unsigned long pending = 0, total = 0; 2065 2066 spin_lock_irq(&ctx->fault_pending_wqh.lock); 2067 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 2068 pending++; 2069 total++; 2070 } 2071 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 2072 total++; 2073 } 2074 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 2075 2076 /* 2077 * If more protocols will be added, there will be all shown 2078 * separated by a space. Like this: 2079 * protocols: aa:... bb:... 2080 */ 2081 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 2082 pending, total, UFFD_API, ctx->features, 2083 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 2084 } 2085 #endif 2086 2087 static const struct file_operations userfaultfd_fops = { 2088 #ifdef CONFIG_PROC_FS 2089 .show_fdinfo = userfaultfd_show_fdinfo, 2090 #endif 2091 .release = userfaultfd_release, 2092 .poll = userfaultfd_poll, 2093 .read = userfaultfd_read, 2094 .unlocked_ioctl = userfaultfd_ioctl, 2095 .compat_ioctl = compat_ptr_ioctl, 2096 .llseek = noop_llseek, 2097 }; 2098 2099 static void init_once_userfaultfd_ctx(void *mem) 2100 { 2101 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 2102 2103 init_waitqueue_head(&ctx->fault_pending_wqh); 2104 init_waitqueue_head(&ctx->fault_wqh); 2105 init_waitqueue_head(&ctx->event_wqh); 2106 init_waitqueue_head(&ctx->fd_wqh); 2107 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); 2108 } 2109 2110 static int new_userfaultfd(int flags) 2111 { 2112 struct userfaultfd_ctx *ctx; 2113 int fd; 2114 2115 BUG_ON(!current->mm); 2116 2117 /* Check the UFFD_* constants for consistency. */ 2118 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS); 2119 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 2120 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 2121 2122 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY)) 2123 return -EINVAL; 2124 2125 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 2126 if (!ctx) 2127 return -ENOMEM; 2128 2129 refcount_set(&ctx->refcount, 1); 2130 ctx->flags = flags; 2131 ctx->features = 0; 2132 ctx->released = false; 2133 atomic_set(&ctx->mmap_changing, 0); 2134 ctx->mm = current->mm; 2135 /* prevent the mm struct to be freed */ 2136 mmgrab(ctx->mm); 2137 2138 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx, 2139 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL); 2140 if (fd < 0) { 2141 mmdrop(ctx->mm); 2142 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 2143 } 2144 return fd; 2145 } 2146 2147 static inline bool userfaultfd_syscall_allowed(int flags) 2148 { 2149 /* Userspace-only page faults are always allowed */ 2150 if (flags & UFFD_USER_MODE_ONLY) 2151 return true; 2152 2153 /* 2154 * The user is requesting a userfaultfd which can handle kernel faults. 2155 * Privileged users are always allowed to do this. 2156 */ 2157 if (capable(CAP_SYS_PTRACE)) 2158 return true; 2159 2160 /* Otherwise, access to kernel fault handling is sysctl controlled. */ 2161 return sysctl_unprivileged_userfaultfd; 2162 } 2163 2164 SYSCALL_DEFINE1(userfaultfd, int, flags) 2165 { 2166 if (!userfaultfd_syscall_allowed(flags)) 2167 return -EPERM; 2168 2169 return new_userfaultfd(flags); 2170 } 2171 2172 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags) 2173 { 2174 if (cmd != USERFAULTFD_IOC_NEW) 2175 return -EINVAL; 2176 2177 return new_userfaultfd(flags); 2178 } 2179 2180 static const struct file_operations userfaultfd_dev_fops = { 2181 .unlocked_ioctl = userfaultfd_dev_ioctl, 2182 .compat_ioctl = userfaultfd_dev_ioctl, 2183 .owner = THIS_MODULE, 2184 .llseek = noop_llseek, 2185 }; 2186 2187 static struct miscdevice userfaultfd_misc = { 2188 .minor = MISC_DYNAMIC_MINOR, 2189 .name = "userfaultfd", 2190 .fops = &userfaultfd_dev_fops 2191 }; 2192 2193 static int __init userfaultfd_init(void) 2194 { 2195 int ret; 2196 2197 ret = misc_register(&userfaultfd_misc); 2198 if (ret) 2199 return ret; 2200 2201 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 2202 sizeof(struct userfaultfd_ctx), 2203 0, 2204 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2205 init_once_userfaultfd_ctx); 2206 return 0; 2207 } 2208 __initcall(userfaultfd_init); 2209