xref: /openbmc/linux/fs/userfaultfd.c (revision cef69974)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12 
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 
33 int sysctl_unprivileged_userfaultfd __read_mostly;
34 
35 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
36 
37 /*
38  * Start with fault_pending_wqh and fault_wqh so they're more likely
39  * to be in the same cacheline.
40  *
41  * Locking order:
42  *	fd_wqh.lock
43  *		fault_pending_wqh.lock
44  *			fault_wqh.lock
45  *		event_wqh.lock
46  *
47  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
48  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
49  * also taken in IRQ context.
50  */
51 struct userfaultfd_ctx {
52 	/* waitqueue head for the pending (i.e. not read) userfaults */
53 	wait_queue_head_t fault_pending_wqh;
54 	/* waitqueue head for the userfaults */
55 	wait_queue_head_t fault_wqh;
56 	/* waitqueue head for the pseudo fd to wakeup poll/read */
57 	wait_queue_head_t fd_wqh;
58 	/* waitqueue head for events */
59 	wait_queue_head_t event_wqh;
60 	/* a refile sequence protected by fault_pending_wqh lock */
61 	seqcount_spinlock_t refile_seq;
62 	/* pseudo fd refcounting */
63 	refcount_t refcount;
64 	/* userfaultfd syscall flags */
65 	unsigned int flags;
66 	/* features requested from the userspace */
67 	unsigned int features;
68 	/* released */
69 	bool released;
70 	/* memory mappings are changing because of non-cooperative event */
71 	atomic_t mmap_changing;
72 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
73 	struct mm_struct *mm;
74 };
75 
76 struct userfaultfd_fork_ctx {
77 	struct userfaultfd_ctx *orig;
78 	struct userfaultfd_ctx *new;
79 	struct list_head list;
80 };
81 
82 struct userfaultfd_unmap_ctx {
83 	struct userfaultfd_ctx *ctx;
84 	unsigned long start;
85 	unsigned long end;
86 	struct list_head list;
87 };
88 
89 struct userfaultfd_wait_queue {
90 	struct uffd_msg msg;
91 	wait_queue_entry_t wq;
92 	struct userfaultfd_ctx *ctx;
93 	bool waken;
94 };
95 
96 struct userfaultfd_wake_range {
97 	unsigned long start;
98 	unsigned long len;
99 };
100 
101 /* internal indication that UFFD_API ioctl was successfully executed */
102 #define UFFD_FEATURE_INITIALIZED		(1u << 31)
103 
104 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
105 {
106 	return ctx->features & UFFD_FEATURE_INITIALIZED;
107 }
108 
109 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
110 				     int wake_flags, void *key)
111 {
112 	struct userfaultfd_wake_range *range = key;
113 	int ret;
114 	struct userfaultfd_wait_queue *uwq;
115 	unsigned long start, len;
116 
117 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
118 	ret = 0;
119 	/* len == 0 means wake all */
120 	start = range->start;
121 	len = range->len;
122 	if (len && (start > uwq->msg.arg.pagefault.address ||
123 		    start + len <= uwq->msg.arg.pagefault.address))
124 		goto out;
125 	WRITE_ONCE(uwq->waken, true);
126 	/*
127 	 * The Program-Order guarantees provided by the scheduler
128 	 * ensure uwq->waken is visible before the task is woken.
129 	 */
130 	ret = wake_up_state(wq->private, mode);
131 	if (ret) {
132 		/*
133 		 * Wake only once, autoremove behavior.
134 		 *
135 		 * After the effect of list_del_init is visible to the other
136 		 * CPUs, the waitqueue may disappear from under us, see the
137 		 * !list_empty_careful() in handle_userfault().
138 		 *
139 		 * try_to_wake_up() has an implicit smp_mb(), and the
140 		 * wq->private is read before calling the extern function
141 		 * "wake_up_state" (which in turns calls try_to_wake_up).
142 		 */
143 		list_del_init(&wq->entry);
144 	}
145 out:
146 	return ret;
147 }
148 
149 /**
150  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
151  * context.
152  * @ctx: [in] Pointer to the userfaultfd context.
153  */
154 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
155 {
156 	refcount_inc(&ctx->refcount);
157 }
158 
159 /**
160  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
161  * context.
162  * @ctx: [in] Pointer to userfaultfd context.
163  *
164  * The userfaultfd context reference must have been previously acquired either
165  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
166  */
167 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
168 {
169 	if (refcount_dec_and_test(&ctx->refcount)) {
170 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
171 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
172 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
173 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
174 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
175 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
176 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
177 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
178 		mmdrop(ctx->mm);
179 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
180 	}
181 }
182 
183 static inline void msg_init(struct uffd_msg *msg)
184 {
185 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
186 	/*
187 	 * Must use memset to zero out the paddings or kernel data is
188 	 * leaked to userland.
189 	 */
190 	memset(msg, 0, sizeof(struct uffd_msg));
191 }
192 
193 static inline struct uffd_msg userfault_msg(unsigned long address,
194 					    unsigned int flags,
195 					    unsigned long reason,
196 					    unsigned int features)
197 {
198 	struct uffd_msg msg;
199 	msg_init(&msg);
200 	msg.event = UFFD_EVENT_PAGEFAULT;
201 
202 	if (!(features & UFFD_FEATURE_EXACT_ADDRESS))
203 		address &= PAGE_MASK;
204 	msg.arg.pagefault.address = address;
205 	/*
206 	 * These flags indicate why the userfault occurred:
207 	 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
208 	 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
209 	 * - Neither of these flags being set indicates a MISSING fault.
210 	 *
211 	 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
212 	 * fault. Otherwise, it was a read fault.
213 	 */
214 	if (flags & FAULT_FLAG_WRITE)
215 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
216 	if (reason & VM_UFFD_WP)
217 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
218 	if (reason & VM_UFFD_MINOR)
219 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
220 	if (features & UFFD_FEATURE_THREAD_ID)
221 		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
222 	return msg;
223 }
224 
225 #ifdef CONFIG_HUGETLB_PAGE
226 /*
227  * Same functionality as userfaultfd_must_wait below with modifications for
228  * hugepmd ranges.
229  */
230 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
231 					 struct vm_area_struct *vma,
232 					 unsigned long address,
233 					 unsigned long flags,
234 					 unsigned long reason)
235 {
236 	struct mm_struct *mm = ctx->mm;
237 	pte_t *ptep, pte;
238 	bool ret = true;
239 
240 	mmap_assert_locked(mm);
241 
242 	ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
243 
244 	if (!ptep)
245 		goto out;
246 
247 	ret = false;
248 	pte = huge_ptep_get(ptep);
249 
250 	/*
251 	 * Lockless access: we're in a wait_event so it's ok if it
252 	 * changes under us.
253 	 */
254 	if (huge_pte_none(pte))
255 		ret = true;
256 	if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
257 		ret = true;
258 out:
259 	return ret;
260 }
261 #else
262 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
263 					 struct vm_area_struct *vma,
264 					 unsigned long address,
265 					 unsigned long flags,
266 					 unsigned long reason)
267 {
268 	return false;	/* should never get here */
269 }
270 #endif /* CONFIG_HUGETLB_PAGE */
271 
272 /*
273  * Verify the pagetables are still not ok after having reigstered into
274  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
275  * userfault that has already been resolved, if userfaultfd_read and
276  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
277  * threads.
278  */
279 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
280 					 unsigned long address,
281 					 unsigned long flags,
282 					 unsigned long reason)
283 {
284 	struct mm_struct *mm = ctx->mm;
285 	pgd_t *pgd;
286 	p4d_t *p4d;
287 	pud_t *pud;
288 	pmd_t *pmd, _pmd;
289 	pte_t *pte;
290 	bool ret = true;
291 
292 	mmap_assert_locked(mm);
293 
294 	pgd = pgd_offset(mm, address);
295 	if (!pgd_present(*pgd))
296 		goto out;
297 	p4d = p4d_offset(pgd, address);
298 	if (!p4d_present(*p4d))
299 		goto out;
300 	pud = pud_offset(p4d, address);
301 	if (!pud_present(*pud))
302 		goto out;
303 	pmd = pmd_offset(pud, address);
304 	/*
305 	 * READ_ONCE must function as a barrier with narrower scope
306 	 * and it must be equivalent to:
307 	 *	_pmd = *pmd; barrier();
308 	 *
309 	 * This is to deal with the instability (as in
310 	 * pmd_trans_unstable) of the pmd.
311 	 */
312 	_pmd = READ_ONCE(*pmd);
313 	if (pmd_none(_pmd))
314 		goto out;
315 
316 	ret = false;
317 	if (!pmd_present(_pmd))
318 		goto out;
319 
320 	if (pmd_trans_huge(_pmd)) {
321 		if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
322 			ret = true;
323 		goto out;
324 	}
325 
326 	/*
327 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
328 	 * and use the standard pte_offset_map() instead of parsing _pmd.
329 	 */
330 	pte = pte_offset_map(pmd, address);
331 	/*
332 	 * Lockless access: we're in a wait_event so it's ok if it
333 	 * changes under us.
334 	 */
335 	if (pte_none(*pte))
336 		ret = true;
337 	if (!pte_write(*pte) && (reason & VM_UFFD_WP))
338 		ret = true;
339 	pte_unmap(pte);
340 
341 out:
342 	return ret;
343 }
344 
345 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
346 {
347 	if (flags & FAULT_FLAG_INTERRUPTIBLE)
348 		return TASK_INTERRUPTIBLE;
349 
350 	if (flags & FAULT_FLAG_KILLABLE)
351 		return TASK_KILLABLE;
352 
353 	return TASK_UNINTERRUPTIBLE;
354 }
355 
356 /*
357  * The locking rules involved in returning VM_FAULT_RETRY depending on
358  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
359  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
360  * recommendation in __lock_page_or_retry is not an understatement.
361  *
362  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
363  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
364  * not set.
365  *
366  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
367  * set, VM_FAULT_RETRY can still be returned if and only if there are
368  * fatal_signal_pending()s, and the mmap_lock must be released before
369  * returning it.
370  */
371 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
372 {
373 	struct mm_struct *mm = vmf->vma->vm_mm;
374 	struct userfaultfd_ctx *ctx;
375 	struct userfaultfd_wait_queue uwq;
376 	vm_fault_t ret = VM_FAULT_SIGBUS;
377 	bool must_wait;
378 	unsigned int blocking_state;
379 
380 	/*
381 	 * We don't do userfault handling for the final child pid update.
382 	 *
383 	 * We also don't do userfault handling during
384 	 * coredumping. hugetlbfs has the special
385 	 * follow_hugetlb_page() to skip missing pages in the
386 	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
387 	 * the no_page_table() helper in follow_page_mask(), but the
388 	 * shmem_vm_ops->fault method is invoked even during
389 	 * coredumping without mmap_lock and it ends up here.
390 	 */
391 	if (current->flags & (PF_EXITING|PF_DUMPCORE))
392 		goto out;
393 
394 	/*
395 	 * Coredumping runs without mmap_lock so we can only check that
396 	 * the mmap_lock is held, if PF_DUMPCORE was not set.
397 	 */
398 	mmap_assert_locked(mm);
399 
400 	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
401 	if (!ctx)
402 		goto out;
403 
404 	BUG_ON(ctx->mm != mm);
405 
406 	/* Any unrecognized flag is a bug. */
407 	VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
408 	/* 0 or > 1 flags set is a bug; we expect exactly 1. */
409 	VM_BUG_ON(!reason || (reason & (reason - 1)));
410 
411 	if (ctx->features & UFFD_FEATURE_SIGBUS)
412 		goto out;
413 	if ((vmf->flags & FAULT_FLAG_USER) == 0 &&
414 	    ctx->flags & UFFD_USER_MODE_ONLY) {
415 		printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
416 			"sysctl knob to 1 if kernel faults must be handled "
417 			"without obtaining CAP_SYS_PTRACE capability\n");
418 		goto out;
419 	}
420 
421 	/*
422 	 * If it's already released don't get it. This avoids to loop
423 	 * in __get_user_pages if userfaultfd_release waits on the
424 	 * caller of handle_userfault to release the mmap_lock.
425 	 */
426 	if (unlikely(READ_ONCE(ctx->released))) {
427 		/*
428 		 * Don't return VM_FAULT_SIGBUS in this case, so a non
429 		 * cooperative manager can close the uffd after the
430 		 * last UFFDIO_COPY, without risking to trigger an
431 		 * involuntary SIGBUS if the process was starting the
432 		 * userfaultfd while the userfaultfd was still armed
433 		 * (but after the last UFFDIO_COPY). If the uffd
434 		 * wasn't already closed when the userfault reached
435 		 * this point, that would normally be solved by
436 		 * userfaultfd_must_wait returning 'false'.
437 		 *
438 		 * If we were to return VM_FAULT_SIGBUS here, the non
439 		 * cooperative manager would be instead forced to
440 		 * always call UFFDIO_UNREGISTER before it can safely
441 		 * close the uffd.
442 		 */
443 		ret = VM_FAULT_NOPAGE;
444 		goto out;
445 	}
446 
447 	/*
448 	 * Check that we can return VM_FAULT_RETRY.
449 	 *
450 	 * NOTE: it should become possible to return VM_FAULT_RETRY
451 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
452 	 * -EBUSY failures, if the userfaultfd is to be extended for
453 	 * VM_UFFD_WP tracking and we intend to arm the userfault
454 	 * without first stopping userland access to the memory. For
455 	 * VM_UFFD_MISSING userfaults this is enough for now.
456 	 */
457 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
458 		/*
459 		 * Validate the invariant that nowait must allow retry
460 		 * to be sure not to return SIGBUS erroneously on
461 		 * nowait invocations.
462 		 */
463 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
464 #ifdef CONFIG_DEBUG_VM
465 		if (printk_ratelimit()) {
466 			printk(KERN_WARNING
467 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
468 			       vmf->flags);
469 			dump_stack();
470 		}
471 #endif
472 		goto out;
473 	}
474 
475 	/*
476 	 * Handle nowait, not much to do other than tell it to retry
477 	 * and wait.
478 	 */
479 	ret = VM_FAULT_RETRY;
480 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
481 		goto out;
482 
483 	/* take the reference before dropping the mmap_lock */
484 	userfaultfd_ctx_get(ctx);
485 
486 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
487 	uwq.wq.private = current;
488 	uwq.msg = userfault_msg(vmf->real_address, vmf->flags, reason,
489 			ctx->features);
490 	uwq.ctx = ctx;
491 	uwq.waken = false;
492 
493 	blocking_state = userfaultfd_get_blocking_state(vmf->flags);
494 
495 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
496 	/*
497 	 * After the __add_wait_queue the uwq is visible to userland
498 	 * through poll/read().
499 	 */
500 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
501 	/*
502 	 * The smp_mb() after __set_current_state prevents the reads
503 	 * following the spin_unlock to happen before the list_add in
504 	 * __add_wait_queue.
505 	 */
506 	set_current_state(blocking_state);
507 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
508 
509 	if (!is_vm_hugetlb_page(vmf->vma))
510 		must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
511 						  reason);
512 	else
513 		must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
514 						       vmf->address,
515 						       vmf->flags, reason);
516 	mmap_read_unlock(mm);
517 
518 	if (likely(must_wait && !READ_ONCE(ctx->released))) {
519 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
520 		schedule();
521 	}
522 
523 	__set_current_state(TASK_RUNNING);
524 
525 	/*
526 	 * Here we race with the list_del; list_add in
527 	 * userfaultfd_ctx_read(), however because we don't ever run
528 	 * list_del_init() to refile across the two lists, the prev
529 	 * and next pointers will never point to self. list_add also
530 	 * would never let any of the two pointers to point to
531 	 * self. So list_empty_careful won't risk to see both pointers
532 	 * pointing to self at any time during the list refile. The
533 	 * only case where list_del_init() is called is the full
534 	 * removal in the wake function and there we don't re-list_add
535 	 * and it's fine not to block on the spinlock. The uwq on this
536 	 * kernel stack can be released after the list_del_init.
537 	 */
538 	if (!list_empty_careful(&uwq.wq.entry)) {
539 		spin_lock_irq(&ctx->fault_pending_wqh.lock);
540 		/*
541 		 * No need of list_del_init(), the uwq on the stack
542 		 * will be freed shortly anyway.
543 		 */
544 		list_del(&uwq.wq.entry);
545 		spin_unlock_irq(&ctx->fault_pending_wqh.lock);
546 	}
547 
548 	/*
549 	 * ctx may go away after this if the userfault pseudo fd is
550 	 * already released.
551 	 */
552 	userfaultfd_ctx_put(ctx);
553 
554 out:
555 	return ret;
556 }
557 
558 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
559 					      struct userfaultfd_wait_queue *ewq)
560 {
561 	struct userfaultfd_ctx *release_new_ctx;
562 
563 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
564 		goto out;
565 
566 	ewq->ctx = ctx;
567 	init_waitqueue_entry(&ewq->wq, current);
568 	release_new_ctx = NULL;
569 
570 	spin_lock_irq(&ctx->event_wqh.lock);
571 	/*
572 	 * After the __add_wait_queue the uwq is visible to userland
573 	 * through poll/read().
574 	 */
575 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
576 	for (;;) {
577 		set_current_state(TASK_KILLABLE);
578 		if (ewq->msg.event == 0)
579 			break;
580 		if (READ_ONCE(ctx->released) ||
581 		    fatal_signal_pending(current)) {
582 			/*
583 			 * &ewq->wq may be queued in fork_event, but
584 			 * __remove_wait_queue ignores the head
585 			 * parameter. It would be a problem if it
586 			 * didn't.
587 			 */
588 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
589 			if (ewq->msg.event == UFFD_EVENT_FORK) {
590 				struct userfaultfd_ctx *new;
591 
592 				new = (struct userfaultfd_ctx *)
593 					(unsigned long)
594 					ewq->msg.arg.reserved.reserved1;
595 				release_new_ctx = new;
596 			}
597 			break;
598 		}
599 
600 		spin_unlock_irq(&ctx->event_wqh.lock);
601 
602 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
603 		schedule();
604 
605 		spin_lock_irq(&ctx->event_wqh.lock);
606 	}
607 	__set_current_state(TASK_RUNNING);
608 	spin_unlock_irq(&ctx->event_wqh.lock);
609 
610 	if (release_new_ctx) {
611 		struct vm_area_struct *vma;
612 		struct mm_struct *mm = release_new_ctx->mm;
613 
614 		/* the various vma->vm_userfaultfd_ctx still points to it */
615 		mmap_write_lock(mm);
616 		for (vma = mm->mmap; vma; vma = vma->vm_next)
617 			if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
618 				vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
619 				vma->vm_flags &= ~__VM_UFFD_FLAGS;
620 			}
621 		mmap_write_unlock(mm);
622 
623 		userfaultfd_ctx_put(release_new_ctx);
624 	}
625 
626 	/*
627 	 * ctx may go away after this if the userfault pseudo fd is
628 	 * already released.
629 	 */
630 out:
631 	atomic_dec(&ctx->mmap_changing);
632 	VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
633 	userfaultfd_ctx_put(ctx);
634 }
635 
636 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
637 				       struct userfaultfd_wait_queue *ewq)
638 {
639 	ewq->msg.event = 0;
640 	wake_up_locked(&ctx->event_wqh);
641 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
642 }
643 
644 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
645 {
646 	struct userfaultfd_ctx *ctx = NULL, *octx;
647 	struct userfaultfd_fork_ctx *fctx;
648 
649 	octx = vma->vm_userfaultfd_ctx.ctx;
650 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
651 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
652 		vma->vm_flags &= ~__VM_UFFD_FLAGS;
653 		return 0;
654 	}
655 
656 	list_for_each_entry(fctx, fcs, list)
657 		if (fctx->orig == octx) {
658 			ctx = fctx->new;
659 			break;
660 		}
661 
662 	if (!ctx) {
663 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
664 		if (!fctx)
665 			return -ENOMEM;
666 
667 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
668 		if (!ctx) {
669 			kfree(fctx);
670 			return -ENOMEM;
671 		}
672 
673 		refcount_set(&ctx->refcount, 1);
674 		ctx->flags = octx->flags;
675 		ctx->features = octx->features;
676 		ctx->released = false;
677 		atomic_set(&ctx->mmap_changing, 0);
678 		ctx->mm = vma->vm_mm;
679 		mmgrab(ctx->mm);
680 
681 		userfaultfd_ctx_get(octx);
682 		atomic_inc(&octx->mmap_changing);
683 		fctx->orig = octx;
684 		fctx->new = ctx;
685 		list_add_tail(&fctx->list, fcs);
686 	}
687 
688 	vma->vm_userfaultfd_ctx.ctx = ctx;
689 	return 0;
690 }
691 
692 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
693 {
694 	struct userfaultfd_ctx *ctx = fctx->orig;
695 	struct userfaultfd_wait_queue ewq;
696 
697 	msg_init(&ewq.msg);
698 
699 	ewq.msg.event = UFFD_EVENT_FORK;
700 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
701 
702 	userfaultfd_event_wait_completion(ctx, &ewq);
703 }
704 
705 void dup_userfaultfd_complete(struct list_head *fcs)
706 {
707 	struct userfaultfd_fork_ctx *fctx, *n;
708 
709 	list_for_each_entry_safe(fctx, n, fcs, list) {
710 		dup_fctx(fctx);
711 		list_del(&fctx->list);
712 		kfree(fctx);
713 	}
714 }
715 
716 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
717 			     struct vm_userfaultfd_ctx *vm_ctx)
718 {
719 	struct userfaultfd_ctx *ctx;
720 
721 	ctx = vma->vm_userfaultfd_ctx.ctx;
722 
723 	if (!ctx)
724 		return;
725 
726 	if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
727 		vm_ctx->ctx = ctx;
728 		userfaultfd_ctx_get(ctx);
729 		atomic_inc(&ctx->mmap_changing);
730 	} else {
731 		/* Drop uffd context if remap feature not enabled */
732 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
733 		vma->vm_flags &= ~__VM_UFFD_FLAGS;
734 	}
735 }
736 
737 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
738 				 unsigned long from, unsigned long to,
739 				 unsigned long len)
740 {
741 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
742 	struct userfaultfd_wait_queue ewq;
743 
744 	if (!ctx)
745 		return;
746 
747 	if (to & ~PAGE_MASK) {
748 		userfaultfd_ctx_put(ctx);
749 		return;
750 	}
751 
752 	msg_init(&ewq.msg);
753 
754 	ewq.msg.event = UFFD_EVENT_REMAP;
755 	ewq.msg.arg.remap.from = from;
756 	ewq.msg.arg.remap.to = to;
757 	ewq.msg.arg.remap.len = len;
758 
759 	userfaultfd_event_wait_completion(ctx, &ewq);
760 }
761 
762 bool userfaultfd_remove(struct vm_area_struct *vma,
763 			unsigned long start, unsigned long end)
764 {
765 	struct mm_struct *mm = vma->vm_mm;
766 	struct userfaultfd_ctx *ctx;
767 	struct userfaultfd_wait_queue ewq;
768 
769 	ctx = vma->vm_userfaultfd_ctx.ctx;
770 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
771 		return true;
772 
773 	userfaultfd_ctx_get(ctx);
774 	atomic_inc(&ctx->mmap_changing);
775 	mmap_read_unlock(mm);
776 
777 	msg_init(&ewq.msg);
778 
779 	ewq.msg.event = UFFD_EVENT_REMOVE;
780 	ewq.msg.arg.remove.start = start;
781 	ewq.msg.arg.remove.end = end;
782 
783 	userfaultfd_event_wait_completion(ctx, &ewq);
784 
785 	return false;
786 }
787 
788 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
789 			  unsigned long start, unsigned long end)
790 {
791 	struct userfaultfd_unmap_ctx *unmap_ctx;
792 
793 	list_for_each_entry(unmap_ctx, unmaps, list)
794 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
795 		    unmap_ctx->end == end)
796 			return true;
797 
798 	return false;
799 }
800 
801 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
802 			   unsigned long start, unsigned long end,
803 			   struct list_head *unmaps)
804 {
805 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
806 		struct userfaultfd_unmap_ctx *unmap_ctx;
807 		struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
808 
809 		if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
810 		    has_unmap_ctx(ctx, unmaps, start, end))
811 			continue;
812 
813 		unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
814 		if (!unmap_ctx)
815 			return -ENOMEM;
816 
817 		userfaultfd_ctx_get(ctx);
818 		atomic_inc(&ctx->mmap_changing);
819 		unmap_ctx->ctx = ctx;
820 		unmap_ctx->start = start;
821 		unmap_ctx->end = end;
822 		list_add_tail(&unmap_ctx->list, unmaps);
823 	}
824 
825 	return 0;
826 }
827 
828 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
829 {
830 	struct userfaultfd_unmap_ctx *ctx, *n;
831 	struct userfaultfd_wait_queue ewq;
832 
833 	list_for_each_entry_safe(ctx, n, uf, list) {
834 		msg_init(&ewq.msg);
835 
836 		ewq.msg.event = UFFD_EVENT_UNMAP;
837 		ewq.msg.arg.remove.start = ctx->start;
838 		ewq.msg.arg.remove.end = ctx->end;
839 
840 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
841 
842 		list_del(&ctx->list);
843 		kfree(ctx);
844 	}
845 }
846 
847 static int userfaultfd_release(struct inode *inode, struct file *file)
848 {
849 	struct userfaultfd_ctx *ctx = file->private_data;
850 	struct mm_struct *mm = ctx->mm;
851 	struct vm_area_struct *vma, *prev;
852 	/* len == 0 means wake all */
853 	struct userfaultfd_wake_range range = { .len = 0, };
854 	unsigned long new_flags;
855 
856 	WRITE_ONCE(ctx->released, true);
857 
858 	if (!mmget_not_zero(mm))
859 		goto wakeup;
860 
861 	/*
862 	 * Flush page faults out of all CPUs. NOTE: all page faults
863 	 * must be retried without returning VM_FAULT_SIGBUS if
864 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
865 	 * changes while handle_userfault released the mmap_lock. So
866 	 * it's critical that released is set to true (above), before
867 	 * taking the mmap_lock for writing.
868 	 */
869 	mmap_write_lock(mm);
870 	prev = NULL;
871 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
872 		cond_resched();
873 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
874 		       !!(vma->vm_flags & __VM_UFFD_FLAGS));
875 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
876 			prev = vma;
877 			continue;
878 		}
879 		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
880 		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
881 				 new_flags, vma->anon_vma,
882 				 vma->vm_file, vma->vm_pgoff,
883 				 vma_policy(vma),
884 				 NULL_VM_UFFD_CTX, anon_vma_name(vma));
885 		if (prev)
886 			vma = prev;
887 		else
888 			prev = vma;
889 		vma->vm_flags = new_flags;
890 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
891 	}
892 	mmap_write_unlock(mm);
893 	mmput(mm);
894 wakeup:
895 	/*
896 	 * After no new page faults can wait on this fault_*wqh, flush
897 	 * the last page faults that may have been already waiting on
898 	 * the fault_*wqh.
899 	 */
900 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
901 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
902 	__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
903 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
904 
905 	/* Flush pending events that may still wait on event_wqh */
906 	wake_up_all(&ctx->event_wqh);
907 
908 	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
909 	userfaultfd_ctx_put(ctx);
910 	return 0;
911 }
912 
913 /* fault_pending_wqh.lock must be hold by the caller */
914 static inline struct userfaultfd_wait_queue *find_userfault_in(
915 		wait_queue_head_t *wqh)
916 {
917 	wait_queue_entry_t *wq;
918 	struct userfaultfd_wait_queue *uwq;
919 
920 	lockdep_assert_held(&wqh->lock);
921 
922 	uwq = NULL;
923 	if (!waitqueue_active(wqh))
924 		goto out;
925 	/* walk in reverse to provide FIFO behavior to read userfaults */
926 	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
927 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
928 out:
929 	return uwq;
930 }
931 
932 static inline struct userfaultfd_wait_queue *find_userfault(
933 		struct userfaultfd_ctx *ctx)
934 {
935 	return find_userfault_in(&ctx->fault_pending_wqh);
936 }
937 
938 static inline struct userfaultfd_wait_queue *find_userfault_evt(
939 		struct userfaultfd_ctx *ctx)
940 {
941 	return find_userfault_in(&ctx->event_wqh);
942 }
943 
944 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
945 {
946 	struct userfaultfd_ctx *ctx = file->private_data;
947 	__poll_t ret;
948 
949 	poll_wait(file, &ctx->fd_wqh, wait);
950 
951 	if (!userfaultfd_is_initialized(ctx))
952 		return EPOLLERR;
953 
954 	/*
955 	 * poll() never guarantees that read won't block.
956 	 * userfaults can be waken before they're read().
957 	 */
958 	if (unlikely(!(file->f_flags & O_NONBLOCK)))
959 		return EPOLLERR;
960 	/*
961 	 * lockless access to see if there are pending faults
962 	 * __pollwait last action is the add_wait_queue but
963 	 * the spin_unlock would allow the waitqueue_active to
964 	 * pass above the actual list_add inside
965 	 * add_wait_queue critical section. So use a full
966 	 * memory barrier to serialize the list_add write of
967 	 * add_wait_queue() with the waitqueue_active read
968 	 * below.
969 	 */
970 	ret = 0;
971 	smp_mb();
972 	if (waitqueue_active(&ctx->fault_pending_wqh))
973 		ret = EPOLLIN;
974 	else if (waitqueue_active(&ctx->event_wqh))
975 		ret = EPOLLIN;
976 
977 	return ret;
978 }
979 
980 static const struct file_operations userfaultfd_fops;
981 
982 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
983 				  struct inode *inode,
984 				  struct uffd_msg *msg)
985 {
986 	int fd;
987 
988 	fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
989 			O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
990 	if (fd < 0)
991 		return fd;
992 
993 	msg->arg.reserved.reserved1 = 0;
994 	msg->arg.fork.ufd = fd;
995 	return 0;
996 }
997 
998 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
999 				    struct uffd_msg *msg, struct inode *inode)
1000 {
1001 	ssize_t ret;
1002 	DECLARE_WAITQUEUE(wait, current);
1003 	struct userfaultfd_wait_queue *uwq;
1004 	/*
1005 	 * Handling fork event requires sleeping operations, so
1006 	 * we drop the event_wqh lock, then do these ops, then
1007 	 * lock it back and wake up the waiter. While the lock is
1008 	 * dropped the ewq may go away so we keep track of it
1009 	 * carefully.
1010 	 */
1011 	LIST_HEAD(fork_event);
1012 	struct userfaultfd_ctx *fork_nctx = NULL;
1013 
1014 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1015 	spin_lock_irq(&ctx->fd_wqh.lock);
1016 	__add_wait_queue(&ctx->fd_wqh, &wait);
1017 	for (;;) {
1018 		set_current_state(TASK_INTERRUPTIBLE);
1019 		spin_lock(&ctx->fault_pending_wqh.lock);
1020 		uwq = find_userfault(ctx);
1021 		if (uwq) {
1022 			/*
1023 			 * Use a seqcount to repeat the lockless check
1024 			 * in wake_userfault() to avoid missing
1025 			 * wakeups because during the refile both
1026 			 * waitqueue could become empty if this is the
1027 			 * only userfault.
1028 			 */
1029 			write_seqcount_begin(&ctx->refile_seq);
1030 
1031 			/*
1032 			 * The fault_pending_wqh.lock prevents the uwq
1033 			 * to disappear from under us.
1034 			 *
1035 			 * Refile this userfault from
1036 			 * fault_pending_wqh to fault_wqh, it's not
1037 			 * pending anymore after we read it.
1038 			 *
1039 			 * Use list_del() by hand (as
1040 			 * userfaultfd_wake_function also uses
1041 			 * list_del_init() by hand) to be sure nobody
1042 			 * changes __remove_wait_queue() to use
1043 			 * list_del_init() in turn breaking the
1044 			 * !list_empty_careful() check in
1045 			 * handle_userfault(). The uwq->wq.head list
1046 			 * must never be empty at any time during the
1047 			 * refile, or the waitqueue could disappear
1048 			 * from under us. The "wait_queue_head_t"
1049 			 * parameter of __remove_wait_queue() is unused
1050 			 * anyway.
1051 			 */
1052 			list_del(&uwq->wq.entry);
1053 			add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1054 
1055 			write_seqcount_end(&ctx->refile_seq);
1056 
1057 			/* careful to always initialize msg if ret == 0 */
1058 			*msg = uwq->msg;
1059 			spin_unlock(&ctx->fault_pending_wqh.lock);
1060 			ret = 0;
1061 			break;
1062 		}
1063 		spin_unlock(&ctx->fault_pending_wqh.lock);
1064 
1065 		spin_lock(&ctx->event_wqh.lock);
1066 		uwq = find_userfault_evt(ctx);
1067 		if (uwq) {
1068 			*msg = uwq->msg;
1069 
1070 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1071 				fork_nctx = (struct userfaultfd_ctx *)
1072 					(unsigned long)
1073 					uwq->msg.arg.reserved.reserved1;
1074 				list_move(&uwq->wq.entry, &fork_event);
1075 				/*
1076 				 * fork_nctx can be freed as soon as
1077 				 * we drop the lock, unless we take a
1078 				 * reference on it.
1079 				 */
1080 				userfaultfd_ctx_get(fork_nctx);
1081 				spin_unlock(&ctx->event_wqh.lock);
1082 				ret = 0;
1083 				break;
1084 			}
1085 
1086 			userfaultfd_event_complete(ctx, uwq);
1087 			spin_unlock(&ctx->event_wqh.lock);
1088 			ret = 0;
1089 			break;
1090 		}
1091 		spin_unlock(&ctx->event_wqh.lock);
1092 
1093 		if (signal_pending(current)) {
1094 			ret = -ERESTARTSYS;
1095 			break;
1096 		}
1097 		if (no_wait) {
1098 			ret = -EAGAIN;
1099 			break;
1100 		}
1101 		spin_unlock_irq(&ctx->fd_wqh.lock);
1102 		schedule();
1103 		spin_lock_irq(&ctx->fd_wqh.lock);
1104 	}
1105 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1106 	__set_current_state(TASK_RUNNING);
1107 	spin_unlock_irq(&ctx->fd_wqh.lock);
1108 
1109 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1110 		ret = resolve_userfault_fork(fork_nctx, inode, msg);
1111 		spin_lock_irq(&ctx->event_wqh.lock);
1112 		if (!list_empty(&fork_event)) {
1113 			/*
1114 			 * The fork thread didn't abort, so we can
1115 			 * drop the temporary refcount.
1116 			 */
1117 			userfaultfd_ctx_put(fork_nctx);
1118 
1119 			uwq = list_first_entry(&fork_event,
1120 					       typeof(*uwq),
1121 					       wq.entry);
1122 			/*
1123 			 * If fork_event list wasn't empty and in turn
1124 			 * the event wasn't already released by fork
1125 			 * (the event is allocated on fork kernel
1126 			 * stack), put the event back to its place in
1127 			 * the event_wq. fork_event head will be freed
1128 			 * as soon as we return so the event cannot
1129 			 * stay queued there no matter the current
1130 			 * "ret" value.
1131 			 */
1132 			list_del(&uwq->wq.entry);
1133 			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1134 
1135 			/*
1136 			 * Leave the event in the waitqueue and report
1137 			 * error to userland if we failed to resolve
1138 			 * the userfault fork.
1139 			 */
1140 			if (likely(!ret))
1141 				userfaultfd_event_complete(ctx, uwq);
1142 		} else {
1143 			/*
1144 			 * Here the fork thread aborted and the
1145 			 * refcount from the fork thread on fork_nctx
1146 			 * has already been released. We still hold
1147 			 * the reference we took before releasing the
1148 			 * lock above. If resolve_userfault_fork
1149 			 * failed we've to drop it because the
1150 			 * fork_nctx has to be freed in such case. If
1151 			 * it succeeded we'll hold it because the new
1152 			 * uffd references it.
1153 			 */
1154 			if (ret)
1155 				userfaultfd_ctx_put(fork_nctx);
1156 		}
1157 		spin_unlock_irq(&ctx->event_wqh.lock);
1158 	}
1159 
1160 	return ret;
1161 }
1162 
1163 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1164 				size_t count, loff_t *ppos)
1165 {
1166 	struct userfaultfd_ctx *ctx = file->private_data;
1167 	ssize_t _ret, ret = 0;
1168 	struct uffd_msg msg;
1169 	int no_wait = file->f_flags & O_NONBLOCK;
1170 	struct inode *inode = file_inode(file);
1171 
1172 	if (!userfaultfd_is_initialized(ctx))
1173 		return -EINVAL;
1174 
1175 	for (;;) {
1176 		if (count < sizeof(msg))
1177 			return ret ? ret : -EINVAL;
1178 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1179 		if (_ret < 0)
1180 			return ret ? ret : _ret;
1181 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1182 			return ret ? ret : -EFAULT;
1183 		ret += sizeof(msg);
1184 		buf += sizeof(msg);
1185 		count -= sizeof(msg);
1186 		/*
1187 		 * Allow to read more than one fault at time but only
1188 		 * block if waiting for the very first one.
1189 		 */
1190 		no_wait = O_NONBLOCK;
1191 	}
1192 }
1193 
1194 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1195 			     struct userfaultfd_wake_range *range)
1196 {
1197 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
1198 	/* wake all in the range and autoremove */
1199 	if (waitqueue_active(&ctx->fault_pending_wqh))
1200 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1201 				     range);
1202 	if (waitqueue_active(&ctx->fault_wqh))
1203 		__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1204 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1205 }
1206 
1207 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1208 					   struct userfaultfd_wake_range *range)
1209 {
1210 	unsigned seq;
1211 	bool need_wakeup;
1212 
1213 	/*
1214 	 * To be sure waitqueue_active() is not reordered by the CPU
1215 	 * before the pagetable update, use an explicit SMP memory
1216 	 * barrier here. PT lock release or mmap_read_unlock(mm) still
1217 	 * have release semantics that can allow the
1218 	 * waitqueue_active() to be reordered before the pte update.
1219 	 */
1220 	smp_mb();
1221 
1222 	/*
1223 	 * Use waitqueue_active because it's very frequent to
1224 	 * change the address space atomically even if there are no
1225 	 * userfaults yet. So we take the spinlock only when we're
1226 	 * sure we've userfaults to wake.
1227 	 */
1228 	do {
1229 		seq = read_seqcount_begin(&ctx->refile_seq);
1230 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1231 			waitqueue_active(&ctx->fault_wqh);
1232 		cond_resched();
1233 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1234 	if (need_wakeup)
1235 		__wake_userfault(ctx, range);
1236 }
1237 
1238 static __always_inline int validate_range(struct mm_struct *mm,
1239 					  __u64 start, __u64 len)
1240 {
1241 	__u64 task_size = mm->task_size;
1242 
1243 	if (start & ~PAGE_MASK)
1244 		return -EINVAL;
1245 	if (len & ~PAGE_MASK)
1246 		return -EINVAL;
1247 	if (!len)
1248 		return -EINVAL;
1249 	if (start < mmap_min_addr)
1250 		return -EINVAL;
1251 	if (start >= task_size)
1252 		return -EINVAL;
1253 	if (len > task_size - start)
1254 		return -EINVAL;
1255 	return 0;
1256 }
1257 
1258 static inline bool vma_can_userfault(struct vm_area_struct *vma,
1259 				     unsigned long vm_flags)
1260 {
1261 	/* FIXME: add WP support to hugetlbfs and shmem */
1262 	if (vm_flags & VM_UFFD_WP) {
1263 		if (is_vm_hugetlb_page(vma) || vma_is_shmem(vma))
1264 			return false;
1265 	}
1266 
1267 	if (vm_flags & VM_UFFD_MINOR) {
1268 		if (!(is_vm_hugetlb_page(vma) || vma_is_shmem(vma)))
1269 			return false;
1270 	}
1271 
1272 	return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1273 	       vma_is_shmem(vma);
1274 }
1275 
1276 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1277 				unsigned long arg)
1278 {
1279 	struct mm_struct *mm = ctx->mm;
1280 	struct vm_area_struct *vma, *prev, *cur;
1281 	int ret;
1282 	struct uffdio_register uffdio_register;
1283 	struct uffdio_register __user *user_uffdio_register;
1284 	unsigned long vm_flags, new_flags;
1285 	bool found;
1286 	bool basic_ioctls;
1287 	unsigned long start, end, vma_end;
1288 
1289 	user_uffdio_register = (struct uffdio_register __user *) arg;
1290 
1291 	ret = -EFAULT;
1292 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1293 			   sizeof(uffdio_register)-sizeof(__u64)))
1294 		goto out;
1295 
1296 	ret = -EINVAL;
1297 	if (!uffdio_register.mode)
1298 		goto out;
1299 	if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1300 		goto out;
1301 	vm_flags = 0;
1302 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1303 		vm_flags |= VM_UFFD_MISSING;
1304 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1305 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1306 		goto out;
1307 #endif
1308 		vm_flags |= VM_UFFD_WP;
1309 	}
1310 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1311 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1312 		goto out;
1313 #endif
1314 		vm_flags |= VM_UFFD_MINOR;
1315 	}
1316 
1317 	ret = validate_range(mm, uffdio_register.range.start,
1318 			     uffdio_register.range.len);
1319 	if (ret)
1320 		goto out;
1321 
1322 	start = uffdio_register.range.start;
1323 	end = start + uffdio_register.range.len;
1324 
1325 	ret = -ENOMEM;
1326 	if (!mmget_not_zero(mm))
1327 		goto out;
1328 
1329 	mmap_write_lock(mm);
1330 	vma = find_vma_prev(mm, start, &prev);
1331 	if (!vma)
1332 		goto out_unlock;
1333 
1334 	/* check that there's at least one vma in the range */
1335 	ret = -EINVAL;
1336 	if (vma->vm_start >= end)
1337 		goto out_unlock;
1338 
1339 	/*
1340 	 * If the first vma contains huge pages, make sure start address
1341 	 * is aligned to huge page size.
1342 	 */
1343 	if (is_vm_hugetlb_page(vma)) {
1344 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1345 
1346 		if (start & (vma_hpagesize - 1))
1347 			goto out_unlock;
1348 	}
1349 
1350 	/*
1351 	 * Search for not compatible vmas.
1352 	 */
1353 	found = false;
1354 	basic_ioctls = false;
1355 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1356 		cond_resched();
1357 
1358 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1359 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1360 
1361 		/* check not compatible vmas */
1362 		ret = -EINVAL;
1363 		if (!vma_can_userfault(cur, vm_flags))
1364 			goto out_unlock;
1365 
1366 		/*
1367 		 * UFFDIO_COPY will fill file holes even without
1368 		 * PROT_WRITE. This check enforces that if this is a
1369 		 * MAP_SHARED, the process has write permission to the backing
1370 		 * file. If VM_MAYWRITE is set it also enforces that on a
1371 		 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1372 		 * F_WRITE_SEAL can be taken until the vma is destroyed.
1373 		 */
1374 		ret = -EPERM;
1375 		if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1376 			goto out_unlock;
1377 
1378 		/*
1379 		 * If this vma contains ending address, and huge pages
1380 		 * check alignment.
1381 		 */
1382 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1383 		    end > cur->vm_start) {
1384 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1385 
1386 			ret = -EINVAL;
1387 
1388 			if (end & (vma_hpagesize - 1))
1389 				goto out_unlock;
1390 		}
1391 		if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1392 			goto out_unlock;
1393 
1394 		/*
1395 		 * Check that this vma isn't already owned by a
1396 		 * different userfaultfd. We can't allow more than one
1397 		 * userfaultfd to own a single vma simultaneously or we
1398 		 * wouldn't know which one to deliver the userfaults to.
1399 		 */
1400 		ret = -EBUSY;
1401 		if (cur->vm_userfaultfd_ctx.ctx &&
1402 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1403 			goto out_unlock;
1404 
1405 		/*
1406 		 * Note vmas containing huge pages
1407 		 */
1408 		if (is_vm_hugetlb_page(cur))
1409 			basic_ioctls = true;
1410 
1411 		found = true;
1412 	}
1413 	BUG_ON(!found);
1414 
1415 	if (vma->vm_start < start)
1416 		prev = vma;
1417 
1418 	ret = 0;
1419 	do {
1420 		cond_resched();
1421 
1422 		BUG_ON(!vma_can_userfault(vma, vm_flags));
1423 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1424 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1425 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1426 
1427 		/*
1428 		 * Nothing to do: this vma is already registered into this
1429 		 * userfaultfd and with the right tracking mode too.
1430 		 */
1431 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1432 		    (vma->vm_flags & vm_flags) == vm_flags)
1433 			goto skip;
1434 
1435 		if (vma->vm_start > start)
1436 			start = vma->vm_start;
1437 		vma_end = min(end, vma->vm_end);
1438 
1439 		new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1440 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1441 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1442 				 vma_policy(vma),
1443 				 ((struct vm_userfaultfd_ctx){ ctx }),
1444 				 anon_vma_name(vma));
1445 		if (prev) {
1446 			vma = prev;
1447 			goto next;
1448 		}
1449 		if (vma->vm_start < start) {
1450 			ret = split_vma(mm, vma, start, 1);
1451 			if (ret)
1452 				break;
1453 		}
1454 		if (vma->vm_end > end) {
1455 			ret = split_vma(mm, vma, end, 0);
1456 			if (ret)
1457 				break;
1458 		}
1459 	next:
1460 		/*
1461 		 * In the vma_merge() successful mprotect-like case 8:
1462 		 * the next vma was merged into the current one and
1463 		 * the current one has not been updated yet.
1464 		 */
1465 		vma->vm_flags = new_flags;
1466 		vma->vm_userfaultfd_ctx.ctx = ctx;
1467 
1468 		if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1469 			hugetlb_unshare_all_pmds(vma);
1470 
1471 	skip:
1472 		prev = vma;
1473 		start = vma->vm_end;
1474 		vma = vma->vm_next;
1475 	} while (vma && vma->vm_start < end);
1476 out_unlock:
1477 	mmap_write_unlock(mm);
1478 	mmput(mm);
1479 	if (!ret) {
1480 		__u64 ioctls_out;
1481 
1482 		ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1483 		    UFFD_API_RANGE_IOCTLS;
1484 
1485 		/*
1486 		 * Declare the WP ioctl only if the WP mode is
1487 		 * specified and all checks passed with the range
1488 		 */
1489 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1490 			ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1491 
1492 		/* CONTINUE ioctl is only supported for MINOR ranges. */
1493 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1494 			ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1495 
1496 		/*
1497 		 * Now that we scanned all vmas we can already tell
1498 		 * userland which ioctls methods are guaranteed to
1499 		 * succeed on this range.
1500 		 */
1501 		if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1502 			ret = -EFAULT;
1503 	}
1504 out:
1505 	return ret;
1506 }
1507 
1508 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1509 				  unsigned long arg)
1510 {
1511 	struct mm_struct *mm = ctx->mm;
1512 	struct vm_area_struct *vma, *prev, *cur;
1513 	int ret;
1514 	struct uffdio_range uffdio_unregister;
1515 	unsigned long new_flags;
1516 	bool found;
1517 	unsigned long start, end, vma_end;
1518 	const void __user *buf = (void __user *)arg;
1519 
1520 	ret = -EFAULT;
1521 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1522 		goto out;
1523 
1524 	ret = validate_range(mm, uffdio_unregister.start,
1525 			     uffdio_unregister.len);
1526 	if (ret)
1527 		goto out;
1528 
1529 	start = uffdio_unregister.start;
1530 	end = start + uffdio_unregister.len;
1531 
1532 	ret = -ENOMEM;
1533 	if (!mmget_not_zero(mm))
1534 		goto out;
1535 
1536 	mmap_write_lock(mm);
1537 	vma = find_vma_prev(mm, start, &prev);
1538 	if (!vma)
1539 		goto out_unlock;
1540 
1541 	/* check that there's at least one vma in the range */
1542 	ret = -EINVAL;
1543 	if (vma->vm_start >= end)
1544 		goto out_unlock;
1545 
1546 	/*
1547 	 * If the first vma contains huge pages, make sure start address
1548 	 * is aligned to huge page size.
1549 	 */
1550 	if (is_vm_hugetlb_page(vma)) {
1551 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1552 
1553 		if (start & (vma_hpagesize - 1))
1554 			goto out_unlock;
1555 	}
1556 
1557 	/*
1558 	 * Search for not compatible vmas.
1559 	 */
1560 	found = false;
1561 	ret = -EINVAL;
1562 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1563 		cond_resched();
1564 
1565 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1566 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1567 
1568 		/*
1569 		 * Check not compatible vmas, not strictly required
1570 		 * here as not compatible vmas cannot have an
1571 		 * userfaultfd_ctx registered on them, but this
1572 		 * provides for more strict behavior to notice
1573 		 * unregistration errors.
1574 		 */
1575 		if (!vma_can_userfault(cur, cur->vm_flags))
1576 			goto out_unlock;
1577 
1578 		found = true;
1579 	}
1580 	BUG_ON(!found);
1581 
1582 	if (vma->vm_start < start)
1583 		prev = vma;
1584 
1585 	ret = 0;
1586 	do {
1587 		cond_resched();
1588 
1589 		BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1590 
1591 		/*
1592 		 * Nothing to do: this vma is already registered into this
1593 		 * userfaultfd and with the right tracking mode too.
1594 		 */
1595 		if (!vma->vm_userfaultfd_ctx.ctx)
1596 			goto skip;
1597 
1598 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1599 
1600 		if (vma->vm_start > start)
1601 			start = vma->vm_start;
1602 		vma_end = min(end, vma->vm_end);
1603 
1604 		if (userfaultfd_missing(vma)) {
1605 			/*
1606 			 * Wake any concurrent pending userfault while
1607 			 * we unregister, so they will not hang
1608 			 * permanently and it avoids userland to call
1609 			 * UFFDIO_WAKE explicitly.
1610 			 */
1611 			struct userfaultfd_wake_range range;
1612 			range.start = start;
1613 			range.len = vma_end - start;
1614 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1615 		}
1616 
1617 		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1618 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1619 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1620 				 vma_policy(vma),
1621 				 NULL_VM_UFFD_CTX, anon_vma_name(vma));
1622 		if (prev) {
1623 			vma = prev;
1624 			goto next;
1625 		}
1626 		if (vma->vm_start < start) {
1627 			ret = split_vma(mm, vma, start, 1);
1628 			if (ret)
1629 				break;
1630 		}
1631 		if (vma->vm_end > end) {
1632 			ret = split_vma(mm, vma, end, 0);
1633 			if (ret)
1634 				break;
1635 		}
1636 	next:
1637 		/*
1638 		 * In the vma_merge() successful mprotect-like case 8:
1639 		 * the next vma was merged into the current one and
1640 		 * the current one has not been updated yet.
1641 		 */
1642 		vma->vm_flags = new_flags;
1643 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1644 
1645 	skip:
1646 		prev = vma;
1647 		start = vma->vm_end;
1648 		vma = vma->vm_next;
1649 	} while (vma && vma->vm_start < end);
1650 out_unlock:
1651 	mmap_write_unlock(mm);
1652 	mmput(mm);
1653 out:
1654 	return ret;
1655 }
1656 
1657 /*
1658  * userfaultfd_wake may be used in combination with the
1659  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1660  */
1661 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1662 			    unsigned long arg)
1663 {
1664 	int ret;
1665 	struct uffdio_range uffdio_wake;
1666 	struct userfaultfd_wake_range range;
1667 	const void __user *buf = (void __user *)arg;
1668 
1669 	ret = -EFAULT;
1670 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1671 		goto out;
1672 
1673 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1674 	if (ret)
1675 		goto out;
1676 
1677 	range.start = uffdio_wake.start;
1678 	range.len = uffdio_wake.len;
1679 
1680 	/*
1681 	 * len == 0 means wake all and we don't want to wake all here,
1682 	 * so check it again to be sure.
1683 	 */
1684 	VM_BUG_ON(!range.len);
1685 
1686 	wake_userfault(ctx, &range);
1687 	ret = 0;
1688 
1689 out:
1690 	return ret;
1691 }
1692 
1693 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1694 			    unsigned long arg)
1695 {
1696 	__s64 ret;
1697 	struct uffdio_copy uffdio_copy;
1698 	struct uffdio_copy __user *user_uffdio_copy;
1699 	struct userfaultfd_wake_range range;
1700 
1701 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1702 
1703 	ret = -EAGAIN;
1704 	if (atomic_read(&ctx->mmap_changing))
1705 		goto out;
1706 
1707 	ret = -EFAULT;
1708 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1709 			   /* don't copy "copy" last field */
1710 			   sizeof(uffdio_copy)-sizeof(__s64)))
1711 		goto out;
1712 
1713 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1714 	if (ret)
1715 		goto out;
1716 	/*
1717 	 * double check for wraparound just in case. copy_from_user()
1718 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1719 	 * in the userland range.
1720 	 */
1721 	ret = -EINVAL;
1722 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1723 		goto out;
1724 	if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1725 		goto out;
1726 	if (mmget_not_zero(ctx->mm)) {
1727 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1728 				   uffdio_copy.len, &ctx->mmap_changing,
1729 				   uffdio_copy.mode);
1730 		mmput(ctx->mm);
1731 	} else {
1732 		return -ESRCH;
1733 	}
1734 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1735 		return -EFAULT;
1736 	if (ret < 0)
1737 		goto out;
1738 	BUG_ON(!ret);
1739 	/* len == 0 would wake all */
1740 	range.len = ret;
1741 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1742 		range.start = uffdio_copy.dst;
1743 		wake_userfault(ctx, &range);
1744 	}
1745 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1746 out:
1747 	return ret;
1748 }
1749 
1750 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1751 				unsigned long arg)
1752 {
1753 	__s64 ret;
1754 	struct uffdio_zeropage uffdio_zeropage;
1755 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1756 	struct userfaultfd_wake_range range;
1757 
1758 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1759 
1760 	ret = -EAGAIN;
1761 	if (atomic_read(&ctx->mmap_changing))
1762 		goto out;
1763 
1764 	ret = -EFAULT;
1765 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1766 			   /* don't copy "zeropage" last field */
1767 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1768 		goto out;
1769 
1770 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1771 			     uffdio_zeropage.range.len);
1772 	if (ret)
1773 		goto out;
1774 	ret = -EINVAL;
1775 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1776 		goto out;
1777 
1778 	if (mmget_not_zero(ctx->mm)) {
1779 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1780 				     uffdio_zeropage.range.len,
1781 				     &ctx->mmap_changing);
1782 		mmput(ctx->mm);
1783 	} else {
1784 		return -ESRCH;
1785 	}
1786 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1787 		return -EFAULT;
1788 	if (ret < 0)
1789 		goto out;
1790 	/* len == 0 would wake all */
1791 	BUG_ON(!ret);
1792 	range.len = ret;
1793 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1794 		range.start = uffdio_zeropage.range.start;
1795 		wake_userfault(ctx, &range);
1796 	}
1797 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1798 out:
1799 	return ret;
1800 }
1801 
1802 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1803 				    unsigned long arg)
1804 {
1805 	int ret;
1806 	struct uffdio_writeprotect uffdio_wp;
1807 	struct uffdio_writeprotect __user *user_uffdio_wp;
1808 	struct userfaultfd_wake_range range;
1809 	bool mode_wp, mode_dontwake;
1810 
1811 	if (atomic_read(&ctx->mmap_changing))
1812 		return -EAGAIN;
1813 
1814 	user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1815 
1816 	if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1817 			   sizeof(struct uffdio_writeprotect)))
1818 		return -EFAULT;
1819 
1820 	ret = validate_range(ctx->mm, uffdio_wp.range.start,
1821 			     uffdio_wp.range.len);
1822 	if (ret)
1823 		return ret;
1824 
1825 	if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1826 			       UFFDIO_WRITEPROTECT_MODE_WP))
1827 		return -EINVAL;
1828 
1829 	mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1830 	mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1831 
1832 	if (mode_wp && mode_dontwake)
1833 		return -EINVAL;
1834 
1835 	if (mmget_not_zero(ctx->mm)) {
1836 		ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1837 					  uffdio_wp.range.len, mode_wp,
1838 					  &ctx->mmap_changing);
1839 		mmput(ctx->mm);
1840 	} else {
1841 		return -ESRCH;
1842 	}
1843 
1844 	if (ret)
1845 		return ret;
1846 
1847 	if (!mode_wp && !mode_dontwake) {
1848 		range.start = uffdio_wp.range.start;
1849 		range.len = uffdio_wp.range.len;
1850 		wake_userfault(ctx, &range);
1851 	}
1852 	return ret;
1853 }
1854 
1855 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1856 {
1857 	__s64 ret;
1858 	struct uffdio_continue uffdio_continue;
1859 	struct uffdio_continue __user *user_uffdio_continue;
1860 	struct userfaultfd_wake_range range;
1861 
1862 	user_uffdio_continue = (struct uffdio_continue __user *)arg;
1863 
1864 	ret = -EAGAIN;
1865 	if (atomic_read(&ctx->mmap_changing))
1866 		goto out;
1867 
1868 	ret = -EFAULT;
1869 	if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1870 			   /* don't copy the output fields */
1871 			   sizeof(uffdio_continue) - (sizeof(__s64))))
1872 		goto out;
1873 
1874 	ret = validate_range(ctx->mm, uffdio_continue.range.start,
1875 			     uffdio_continue.range.len);
1876 	if (ret)
1877 		goto out;
1878 
1879 	ret = -EINVAL;
1880 	/* double check for wraparound just in case. */
1881 	if (uffdio_continue.range.start + uffdio_continue.range.len <=
1882 	    uffdio_continue.range.start) {
1883 		goto out;
1884 	}
1885 	if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE)
1886 		goto out;
1887 
1888 	if (mmget_not_zero(ctx->mm)) {
1889 		ret = mcopy_continue(ctx->mm, uffdio_continue.range.start,
1890 				     uffdio_continue.range.len,
1891 				     &ctx->mmap_changing);
1892 		mmput(ctx->mm);
1893 	} else {
1894 		return -ESRCH;
1895 	}
1896 
1897 	if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1898 		return -EFAULT;
1899 	if (ret < 0)
1900 		goto out;
1901 
1902 	/* len == 0 would wake all */
1903 	BUG_ON(!ret);
1904 	range.len = ret;
1905 	if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1906 		range.start = uffdio_continue.range.start;
1907 		wake_userfault(ctx, &range);
1908 	}
1909 	ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1910 
1911 out:
1912 	return ret;
1913 }
1914 
1915 static inline unsigned int uffd_ctx_features(__u64 user_features)
1916 {
1917 	/*
1918 	 * For the current set of features the bits just coincide. Set
1919 	 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1920 	 */
1921 	return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1922 }
1923 
1924 /*
1925  * userland asks for a certain API version and we return which bits
1926  * and ioctl commands are implemented in this kernel for such API
1927  * version or -EINVAL if unknown.
1928  */
1929 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1930 			   unsigned long arg)
1931 {
1932 	struct uffdio_api uffdio_api;
1933 	void __user *buf = (void __user *)arg;
1934 	unsigned int ctx_features;
1935 	int ret;
1936 	__u64 features;
1937 
1938 	ret = -EFAULT;
1939 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1940 		goto out;
1941 	features = uffdio_api.features;
1942 	ret = -EINVAL;
1943 	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1944 		goto err_out;
1945 	ret = -EPERM;
1946 	if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1947 		goto err_out;
1948 	/* report all available features and ioctls to userland */
1949 	uffdio_api.features = UFFD_API_FEATURES;
1950 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1951 	uffdio_api.features &=
1952 		~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
1953 #endif
1954 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1955 	uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
1956 #endif
1957 	uffdio_api.ioctls = UFFD_API_IOCTLS;
1958 	ret = -EFAULT;
1959 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1960 		goto out;
1961 
1962 	/* only enable the requested features for this uffd context */
1963 	ctx_features = uffd_ctx_features(features);
1964 	ret = -EINVAL;
1965 	if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
1966 		goto err_out;
1967 
1968 	ret = 0;
1969 out:
1970 	return ret;
1971 err_out:
1972 	memset(&uffdio_api, 0, sizeof(uffdio_api));
1973 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1974 		ret = -EFAULT;
1975 	goto out;
1976 }
1977 
1978 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1979 			      unsigned long arg)
1980 {
1981 	int ret = -EINVAL;
1982 	struct userfaultfd_ctx *ctx = file->private_data;
1983 
1984 	if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
1985 		return -EINVAL;
1986 
1987 	switch(cmd) {
1988 	case UFFDIO_API:
1989 		ret = userfaultfd_api(ctx, arg);
1990 		break;
1991 	case UFFDIO_REGISTER:
1992 		ret = userfaultfd_register(ctx, arg);
1993 		break;
1994 	case UFFDIO_UNREGISTER:
1995 		ret = userfaultfd_unregister(ctx, arg);
1996 		break;
1997 	case UFFDIO_WAKE:
1998 		ret = userfaultfd_wake(ctx, arg);
1999 		break;
2000 	case UFFDIO_COPY:
2001 		ret = userfaultfd_copy(ctx, arg);
2002 		break;
2003 	case UFFDIO_ZEROPAGE:
2004 		ret = userfaultfd_zeropage(ctx, arg);
2005 		break;
2006 	case UFFDIO_WRITEPROTECT:
2007 		ret = userfaultfd_writeprotect(ctx, arg);
2008 		break;
2009 	case UFFDIO_CONTINUE:
2010 		ret = userfaultfd_continue(ctx, arg);
2011 		break;
2012 	}
2013 	return ret;
2014 }
2015 
2016 #ifdef CONFIG_PROC_FS
2017 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2018 {
2019 	struct userfaultfd_ctx *ctx = f->private_data;
2020 	wait_queue_entry_t *wq;
2021 	unsigned long pending = 0, total = 0;
2022 
2023 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
2024 	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2025 		pending++;
2026 		total++;
2027 	}
2028 	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2029 		total++;
2030 	}
2031 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2032 
2033 	/*
2034 	 * If more protocols will be added, there will be all shown
2035 	 * separated by a space. Like this:
2036 	 *	protocols: aa:... bb:...
2037 	 */
2038 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2039 		   pending, total, UFFD_API, ctx->features,
2040 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2041 }
2042 #endif
2043 
2044 static const struct file_operations userfaultfd_fops = {
2045 #ifdef CONFIG_PROC_FS
2046 	.show_fdinfo	= userfaultfd_show_fdinfo,
2047 #endif
2048 	.release	= userfaultfd_release,
2049 	.poll		= userfaultfd_poll,
2050 	.read		= userfaultfd_read,
2051 	.unlocked_ioctl = userfaultfd_ioctl,
2052 	.compat_ioctl	= compat_ptr_ioctl,
2053 	.llseek		= noop_llseek,
2054 };
2055 
2056 static void init_once_userfaultfd_ctx(void *mem)
2057 {
2058 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2059 
2060 	init_waitqueue_head(&ctx->fault_pending_wqh);
2061 	init_waitqueue_head(&ctx->fault_wqh);
2062 	init_waitqueue_head(&ctx->event_wqh);
2063 	init_waitqueue_head(&ctx->fd_wqh);
2064 	seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2065 }
2066 
2067 SYSCALL_DEFINE1(userfaultfd, int, flags)
2068 {
2069 	struct userfaultfd_ctx *ctx;
2070 	int fd;
2071 
2072 	if (!sysctl_unprivileged_userfaultfd &&
2073 	    (flags & UFFD_USER_MODE_ONLY) == 0 &&
2074 	    !capable(CAP_SYS_PTRACE)) {
2075 		printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
2076 			"sysctl knob to 1 if kernel faults must be handled "
2077 			"without obtaining CAP_SYS_PTRACE capability\n");
2078 		return -EPERM;
2079 	}
2080 
2081 	BUG_ON(!current->mm);
2082 
2083 	/* Check the UFFD_* constants for consistency.  */
2084 	BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2085 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2086 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2087 
2088 	if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2089 		return -EINVAL;
2090 
2091 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2092 	if (!ctx)
2093 		return -ENOMEM;
2094 
2095 	refcount_set(&ctx->refcount, 1);
2096 	ctx->flags = flags;
2097 	ctx->features = 0;
2098 	ctx->released = false;
2099 	atomic_set(&ctx->mmap_changing, 0);
2100 	ctx->mm = current->mm;
2101 	/* prevent the mm struct to be freed */
2102 	mmgrab(ctx->mm);
2103 
2104 	fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2105 			O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2106 	if (fd < 0) {
2107 		mmdrop(ctx->mm);
2108 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2109 	}
2110 	return fd;
2111 }
2112 
2113 static int __init userfaultfd_init(void)
2114 {
2115 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2116 						sizeof(struct userfaultfd_ctx),
2117 						0,
2118 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2119 						init_once_userfaultfd_ctx);
2120 	return 0;
2121 }
2122 __initcall(userfaultfd_init);
2123