1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/userfaultfd.c 4 * 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 8 * 9 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 11 */ 12 13 #include <linux/list.h> 14 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/mmu_notifier.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 33 int sysctl_unprivileged_userfaultfd __read_mostly; 34 35 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 36 37 /* 38 * Start with fault_pending_wqh and fault_wqh so they're more likely 39 * to be in the same cacheline. 40 * 41 * Locking order: 42 * fd_wqh.lock 43 * fault_pending_wqh.lock 44 * fault_wqh.lock 45 * event_wqh.lock 46 * 47 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, 48 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's 49 * also taken in IRQ context. 50 */ 51 struct userfaultfd_ctx { 52 /* waitqueue head for the pending (i.e. not read) userfaults */ 53 wait_queue_head_t fault_pending_wqh; 54 /* waitqueue head for the userfaults */ 55 wait_queue_head_t fault_wqh; 56 /* waitqueue head for the pseudo fd to wakeup poll/read */ 57 wait_queue_head_t fd_wqh; 58 /* waitqueue head for events */ 59 wait_queue_head_t event_wqh; 60 /* a refile sequence protected by fault_pending_wqh lock */ 61 seqcount_spinlock_t refile_seq; 62 /* pseudo fd refcounting */ 63 refcount_t refcount; 64 /* userfaultfd syscall flags */ 65 unsigned int flags; 66 /* features requested from the userspace */ 67 unsigned int features; 68 /* released */ 69 bool released; 70 /* memory mappings are changing because of non-cooperative event */ 71 atomic_t mmap_changing; 72 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 73 struct mm_struct *mm; 74 }; 75 76 struct userfaultfd_fork_ctx { 77 struct userfaultfd_ctx *orig; 78 struct userfaultfd_ctx *new; 79 struct list_head list; 80 }; 81 82 struct userfaultfd_unmap_ctx { 83 struct userfaultfd_ctx *ctx; 84 unsigned long start; 85 unsigned long end; 86 struct list_head list; 87 }; 88 89 struct userfaultfd_wait_queue { 90 struct uffd_msg msg; 91 wait_queue_entry_t wq; 92 struct userfaultfd_ctx *ctx; 93 bool waken; 94 }; 95 96 struct userfaultfd_wake_range { 97 unsigned long start; 98 unsigned long len; 99 }; 100 101 /* internal indication that UFFD_API ioctl was successfully executed */ 102 #define UFFD_FEATURE_INITIALIZED (1u << 31) 103 104 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx) 105 { 106 return ctx->features & UFFD_FEATURE_INITIALIZED; 107 } 108 109 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 110 int wake_flags, void *key) 111 { 112 struct userfaultfd_wake_range *range = key; 113 int ret; 114 struct userfaultfd_wait_queue *uwq; 115 unsigned long start, len; 116 117 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 118 ret = 0; 119 /* len == 0 means wake all */ 120 start = range->start; 121 len = range->len; 122 if (len && (start > uwq->msg.arg.pagefault.address || 123 start + len <= uwq->msg.arg.pagefault.address)) 124 goto out; 125 WRITE_ONCE(uwq->waken, true); 126 /* 127 * The Program-Order guarantees provided by the scheduler 128 * ensure uwq->waken is visible before the task is woken. 129 */ 130 ret = wake_up_state(wq->private, mode); 131 if (ret) { 132 /* 133 * Wake only once, autoremove behavior. 134 * 135 * After the effect of list_del_init is visible to the other 136 * CPUs, the waitqueue may disappear from under us, see the 137 * !list_empty_careful() in handle_userfault(). 138 * 139 * try_to_wake_up() has an implicit smp_mb(), and the 140 * wq->private is read before calling the extern function 141 * "wake_up_state" (which in turns calls try_to_wake_up). 142 */ 143 list_del_init(&wq->entry); 144 } 145 out: 146 return ret; 147 } 148 149 /** 150 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 151 * context. 152 * @ctx: [in] Pointer to the userfaultfd context. 153 */ 154 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 155 { 156 refcount_inc(&ctx->refcount); 157 } 158 159 /** 160 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 161 * context. 162 * @ctx: [in] Pointer to userfaultfd context. 163 * 164 * The userfaultfd context reference must have been previously acquired either 165 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 166 */ 167 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 168 { 169 if (refcount_dec_and_test(&ctx->refcount)) { 170 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 171 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 172 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 173 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 174 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 175 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 176 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 177 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 178 mmdrop(ctx->mm); 179 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 180 } 181 } 182 183 static inline void msg_init(struct uffd_msg *msg) 184 { 185 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 186 /* 187 * Must use memset to zero out the paddings or kernel data is 188 * leaked to userland. 189 */ 190 memset(msg, 0, sizeof(struct uffd_msg)); 191 } 192 193 static inline struct uffd_msg userfault_msg(unsigned long address, 194 unsigned int flags, 195 unsigned long reason, 196 unsigned int features) 197 { 198 struct uffd_msg msg; 199 msg_init(&msg); 200 msg.event = UFFD_EVENT_PAGEFAULT; 201 202 if (!(features & UFFD_FEATURE_EXACT_ADDRESS)) 203 address &= PAGE_MASK; 204 msg.arg.pagefault.address = address; 205 /* 206 * These flags indicate why the userfault occurred: 207 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault. 208 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault. 209 * - Neither of these flags being set indicates a MISSING fault. 210 * 211 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write 212 * fault. Otherwise, it was a read fault. 213 */ 214 if (flags & FAULT_FLAG_WRITE) 215 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 216 if (reason & VM_UFFD_WP) 217 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 218 if (reason & VM_UFFD_MINOR) 219 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR; 220 if (features & UFFD_FEATURE_THREAD_ID) 221 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 222 return msg; 223 } 224 225 #ifdef CONFIG_HUGETLB_PAGE 226 /* 227 * Same functionality as userfaultfd_must_wait below with modifications for 228 * hugepmd ranges. 229 */ 230 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 231 struct vm_area_struct *vma, 232 unsigned long address, 233 unsigned long flags, 234 unsigned long reason) 235 { 236 struct mm_struct *mm = ctx->mm; 237 pte_t *ptep, pte; 238 bool ret = true; 239 240 mmap_assert_locked(mm); 241 242 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); 243 244 if (!ptep) 245 goto out; 246 247 ret = false; 248 pte = huge_ptep_get(ptep); 249 250 /* 251 * Lockless access: we're in a wait_event so it's ok if it 252 * changes under us. 253 */ 254 if (huge_pte_none(pte)) 255 ret = true; 256 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 257 ret = true; 258 out: 259 return ret; 260 } 261 #else 262 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 263 struct vm_area_struct *vma, 264 unsigned long address, 265 unsigned long flags, 266 unsigned long reason) 267 { 268 return false; /* should never get here */ 269 } 270 #endif /* CONFIG_HUGETLB_PAGE */ 271 272 /* 273 * Verify the pagetables are still not ok after having reigstered into 274 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 275 * userfault that has already been resolved, if userfaultfd_read and 276 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 277 * threads. 278 */ 279 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 280 unsigned long address, 281 unsigned long flags, 282 unsigned long reason) 283 { 284 struct mm_struct *mm = ctx->mm; 285 pgd_t *pgd; 286 p4d_t *p4d; 287 pud_t *pud; 288 pmd_t *pmd, _pmd; 289 pte_t *pte; 290 bool ret = true; 291 292 mmap_assert_locked(mm); 293 294 pgd = pgd_offset(mm, address); 295 if (!pgd_present(*pgd)) 296 goto out; 297 p4d = p4d_offset(pgd, address); 298 if (!p4d_present(*p4d)) 299 goto out; 300 pud = pud_offset(p4d, address); 301 if (!pud_present(*pud)) 302 goto out; 303 pmd = pmd_offset(pud, address); 304 /* 305 * READ_ONCE must function as a barrier with narrower scope 306 * and it must be equivalent to: 307 * _pmd = *pmd; barrier(); 308 * 309 * This is to deal with the instability (as in 310 * pmd_trans_unstable) of the pmd. 311 */ 312 _pmd = READ_ONCE(*pmd); 313 if (pmd_none(_pmd)) 314 goto out; 315 316 ret = false; 317 if (!pmd_present(_pmd)) 318 goto out; 319 320 if (pmd_trans_huge(_pmd)) { 321 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) 322 ret = true; 323 goto out; 324 } 325 326 /* 327 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 328 * and use the standard pte_offset_map() instead of parsing _pmd. 329 */ 330 pte = pte_offset_map(pmd, address); 331 /* 332 * Lockless access: we're in a wait_event so it's ok if it 333 * changes under us. 334 */ 335 if (pte_none(*pte)) 336 ret = true; 337 if (!pte_write(*pte) && (reason & VM_UFFD_WP)) 338 ret = true; 339 pte_unmap(pte); 340 341 out: 342 return ret; 343 } 344 345 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags) 346 { 347 if (flags & FAULT_FLAG_INTERRUPTIBLE) 348 return TASK_INTERRUPTIBLE; 349 350 if (flags & FAULT_FLAG_KILLABLE) 351 return TASK_KILLABLE; 352 353 return TASK_UNINTERRUPTIBLE; 354 } 355 356 /* 357 * The locking rules involved in returning VM_FAULT_RETRY depending on 358 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 359 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 360 * recommendation in __lock_page_or_retry is not an understatement. 361 * 362 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released 363 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 364 * not set. 365 * 366 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 367 * set, VM_FAULT_RETRY can still be returned if and only if there are 368 * fatal_signal_pending()s, and the mmap_lock must be released before 369 * returning it. 370 */ 371 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 372 { 373 struct mm_struct *mm = vmf->vma->vm_mm; 374 struct userfaultfd_ctx *ctx; 375 struct userfaultfd_wait_queue uwq; 376 vm_fault_t ret = VM_FAULT_SIGBUS; 377 bool must_wait; 378 unsigned int blocking_state; 379 380 /* 381 * We don't do userfault handling for the final child pid update. 382 * 383 * We also don't do userfault handling during 384 * coredumping. hugetlbfs has the special 385 * follow_hugetlb_page() to skip missing pages in the 386 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 387 * the no_page_table() helper in follow_page_mask(), but the 388 * shmem_vm_ops->fault method is invoked even during 389 * coredumping without mmap_lock and it ends up here. 390 */ 391 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 392 goto out; 393 394 /* 395 * Coredumping runs without mmap_lock so we can only check that 396 * the mmap_lock is held, if PF_DUMPCORE was not set. 397 */ 398 mmap_assert_locked(mm); 399 400 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 401 if (!ctx) 402 goto out; 403 404 BUG_ON(ctx->mm != mm); 405 406 /* Any unrecognized flag is a bug. */ 407 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS); 408 /* 0 or > 1 flags set is a bug; we expect exactly 1. */ 409 VM_BUG_ON(!reason || (reason & (reason - 1))); 410 411 if (ctx->features & UFFD_FEATURE_SIGBUS) 412 goto out; 413 if ((vmf->flags & FAULT_FLAG_USER) == 0 && 414 ctx->flags & UFFD_USER_MODE_ONLY) { 415 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd " 416 "sysctl knob to 1 if kernel faults must be handled " 417 "without obtaining CAP_SYS_PTRACE capability\n"); 418 goto out; 419 } 420 421 /* 422 * If it's already released don't get it. This avoids to loop 423 * in __get_user_pages if userfaultfd_release waits on the 424 * caller of handle_userfault to release the mmap_lock. 425 */ 426 if (unlikely(READ_ONCE(ctx->released))) { 427 /* 428 * Don't return VM_FAULT_SIGBUS in this case, so a non 429 * cooperative manager can close the uffd after the 430 * last UFFDIO_COPY, without risking to trigger an 431 * involuntary SIGBUS if the process was starting the 432 * userfaultfd while the userfaultfd was still armed 433 * (but after the last UFFDIO_COPY). If the uffd 434 * wasn't already closed when the userfault reached 435 * this point, that would normally be solved by 436 * userfaultfd_must_wait returning 'false'. 437 * 438 * If we were to return VM_FAULT_SIGBUS here, the non 439 * cooperative manager would be instead forced to 440 * always call UFFDIO_UNREGISTER before it can safely 441 * close the uffd. 442 */ 443 ret = VM_FAULT_NOPAGE; 444 goto out; 445 } 446 447 /* 448 * Check that we can return VM_FAULT_RETRY. 449 * 450 * NOTE: it should become possible to return VM_FAULT_RETRY 451 * even if FAULT_FLAG_TRIED is set without leading to gup() 452 * -EBUSY failures, if the userfaultfd is to be extended for 453 * VM_UFFD_WP tracking and we intend to arm the userfault 454 * without first stopping userland access to the memory. For 455 * VM_UFFD_MISSING userfaults this is enough for now. 456 */ 457 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 458 /* 459 * Validate the invariant that nowait must allow retry 460 * to be sure not to return SIGBUS erroneously on 461 * nowait invocations. 462 */ 463 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 464 #ifdef CONFIG_DEBUG_VM 465 if (printk_ratelimit()) { 466 printk(KERN_WARNING 467 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 468 vmf->flags); 469 dump_stack(); 470 } 471 #endif 472 goto out; 473 } 474 475 /* 476 * Handle nowait, not much to do other than tell it to retry 477 * and wait. 478 */ 479 ret = VM_FAULT_RETRY; 480 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 481 goto out; 482 483 /* take the reference before dropping the mmap_lock */ 484 userfaultfd_ctx_get(ctx); 485 486 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 487 uwq.wq.private = current; 488 uwq.msg = userfault_msg(vmf->real_address, vmf->flags, reason, 489 ctx->features); 490 uwq.ctx = ctx; 491 uwq.waken = false; 492 493 blocking_state = userfaultfd_get_blocking_state(vmf->flags); 494 495 spin_lock_irq(&ctx->fault_pending_wqh.lock); 496 /* 497 * After the __add_wait_queue the uwq is visible to userland 498 * through poll/read(). 499 */ 500 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 501 /* 502 * The smp_mb() after __set_current_state prevents the reads 503 * following the spin_unlock to happen before the list_add in 504 * __add_wait_queue. 505 */ 506 set_current_state(blocking_state); 507 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 508 509 if (!is_vm_hugetlb_page(vmf->vma)) 510 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 511 reason); 512 else 513 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, 514 vmf->address, 515 vmf->flags, reason); 516 mmap_read_unlock(mm); 517 518 if (likely(must_wait && !READ_ONCE(ctx->released))) { 519 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 520 schedule(); 521 } 522 523 __set_current_state(TASK_RUNNING); 524 525 /* 526 * Here we race with the list_del; list_add in 527 * userfaultfd_ctx_read(), however because we don't ever run 528 * list_del_init() to refile across the two lists, the prev 529 * and next pointers will never point to self. list_add also 530 * would never let any of the two pointers to point to 531 * self. So list_empty_careful won't risk to see both pointers 532 * pointing to self at any time during the list refile. The 533 * only case where list_del_init() is called is the full 534 * removal in the wake function and there we don't re-list_add 535 * and it's fine not to block on the spinlock. The uwq on this 536 * kernel stack can be released after the list_del_init. 537 */ 538 if (!list_empty_careful(&uwq.wq.entry)) { 539 spin_lock_irq(&ctx->fault_pending_wqh.lock); 540 /* 541 * No need of list_del_init(), the uwq on the stack 542 * will be freed shortly anyway. 543 */ 544 list_del(&uwq.wq.entry); 545 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 546 } 547 548 /* 549 * ctx may go away after this if the userfault pseudo fd is 550 * already released. 551 */ 552 userfaultfd_ctx_put(ctx); 553 554 out: 555 return ret; 556 } 557 558 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 559 struct userfaultfd_wait_queue *ewq) 560 { 561 struct userfaultfd_ctx *release_new_ctx; 562 563 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 564 goto out; 565 566 ewq->ctx = ctx; 567 init_waitqueue_entry(&ewq->wq, current); 568 release_new_ctx = NULL; 569 570 spin_lock_irq(&ctx->event_wqh.lock); 571 /* 572 * After the __add_wait_queue the uwq is visible to userland 573 * through poll/read(). 574 */ 575 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 576 for (;;) { 577 set_current_state(TASK_KILLABLE); 578 if (ewq->msg.event == 0) 579 break; 580 if (READ_ONCE(ctx->released) || 581 fatal_signal_pending(current)) { 582 /* 583 * &ewq->wq may be queued in fork_event, but 584 * __remove_wait_queue ignores the head 585 * parameter. It would be a problem if it 586 * didn't. 587 */ 588 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 589 if (ewq->msg.event == UFFD_EVENT_FORK) { 590 struct userfaultfd_ctx *new; 591 592 new = (struct userfaultfd_ctx *) 593 (unsigned long) 594 ewq->msg.arg.reserved.reserved1; 595 release_new_ctx = new; 596 } 597 break; 598 } 599 600 spin_unlock_irq(&ctx->event_wqh.lock); 601 602 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 603 schedule(); 604 605 spin_lock_irq(&ctx->event_wqh.lock); 606 } 607 __set_current_state(TASK_RUNNING); 608 spin_unlock_irq(&ctx->event_wqh.lock); 609 610 if (release_new_ctx) { 611 struct vm_area_struct *vma; 612 struct mm_struct *mm = release_new_ctx->mm; 613 614 /* the various vma->vm_userfaultfd_ctx still points to it */ 615 mmap_write_lock(mm); 616 for (vma = mm->mmap; vma; vma = vma->vm_next) 617 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 618 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 619 vma->vm_flags &= ~__VM_UFFD_FLAGS; 620 } 621 mmap_write_unlock(mm); 622 623 userfaultfd_ctx_put(release_new_ctx); 624 } 625 626 /* 627 * ctx may go away after this if the userfault pseudo fd is 628 * already released. 629 */ 630 out: 631 atomic_dec(&ctx->mmap_changing); 632 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0); 633 userfaultfd_ctx_put(ctx); 634 } 635 636 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 637 struct userfaultfd_wait_queue *ewq) 638 { 639 ewq->msg.event = 0; 640 wake_up_locked(&ctx->event_wqh); 641 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 642 } 643 644 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 645 { 646 struct userfaultfd_ctx *ctx = NULL, *octx; 647 struct userfaultfd_fork_ctx *fctx; 648 649 octx = vma->vm_userfaultfd_ctx.ctx; 650 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 651 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 652 vma->vm_flags &= ~__VM_UFFD_FLAGS; 653 return 0; 654 } 655 656 list_for_each_entry(fctx, fcs, list) 657 if (fctx->orig == octx) { 658 ctx = fctx->new; 659 break; 660 } 661 662 if (!ctx) { 663 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 664 if (!fctx) 665 return -ENOMEM; 666 667 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 668 if (!ctx) { 669 kfree(fctx); 670 return -ENOMEM; 671 } 672 673 refcount_set(&ctx->refcount, 1); 674 ctx->flags = octx->flags; 675 ctx->features = octx->features; 676 ctx->released = false; 677 atomic_set(&ctx->mmap_changing, 0); 678 ctx->mm = vma->vm_mm; 679 mmgrab(ctx->mm); 680 681 userfaultfd_ctx_get(octx); 682 atomic_inc(&octx->mmap_changing); 683 fctx->orig = octx; 684 fctx->new = ctx; 685 list_add_tail(&fctx->list, fcs); 686 } 687 688 vma->vm_userfaultfd_ctx.ctx = ctx; 689 return 0; 690 } 691 692 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 693 { 694 struct userfaultfd_ctx *ctx = fctx->orig; 695 struct userfaultfd_wait_queue ewq; 696 697 msg_init(&ewq.msg); 698 699 ewq.msg.event = UFFD_EVENT_FORK; 700 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 701 702 userfaultfd_event_wait_completion(ctx, &ewq); 703 } 704 705 void dup_userfaultfd_complete(struct list_head *fcs) 706 { 707 struct userfaultfd_fork_ctx *fctx, *n; 708 709 list_for_each_entry_safe(fctx, n, fcs, list) { 710 dup_fctx(fctx); 711 list_del(&fctx->list); 712 kfree(fctx); 713 } 714 } 715 716 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 717 struct vm_userfaultfd_ctx *vm_ctx) 718 { 719 struct userfaultfd_ctx *ctx; 720 721 ctx = vma->vm_userfaultfd_ctx.ctx; 722 723 if (!ctx) 724 return; 725 726 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 727 vm_ctx->ctx = ctx; 728 userfaultfd_ctx_get(ctx); 729 atomic_inc(&ctx->mmap_changing); 730 } else { 731 /* Drop uffd context if remap feature not enabled */ 732 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 733 vma->vm_flags &= ~__VM_UFFD_FLAGS; 734 } 735 } 736 737 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 738 unsigned long from, unsigned long to, 739 unsigned long len) 740 { 741 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 742 struct userfaultfd_wait_queue ewq; 743 744 if (!ctx) 745 return; 746 747 if (to & ~PAGE_MASK) { 748 userfaultfd_ctx_put(ctx); 749 return; 750 } 751 752 msg_init(&ewq.msg); 753 754 ewq.msg.event = UFFD_EVENT_REMAP; 755 ewq.msg.arg.remap.from = from; 756 ewq.msg.arg.remap.to = to; 757 ewq.msg.arg.remap.len = len; 758 759 userfaultfd_event_wait_completion(ctx, &ewq); 760 } 761 762 bool userfaultfd_remove(struct vm_area_struct *vma, 763 unsigned long start, unsigned long end) 764 { 765 struct mm_struct *mm = vma->vm_mm; 766 struct userfaultfd_ctx *ctx; 767 struct userfaultfd_wait_queue ewq; 768 769 ctx = vma->vm_userfaultfd_ctx.ctx; 770 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 771 return true; 772 773 userfaultfd_ctx_get(ctx); 774 atomic_inc(&ctx->mmap_changing); 775 mmap_read_unlock(mm); 776 777 msg_init(&ewq.msg); 778 779 ewq.msg.event = UFFD_EVENT_REMOVE; 780 ewq.msg.arg.remove.start = start; 781 ewq.msg.arg.remove.end = end; 782 783 userfaultfd_event_wait_completion(ctx, &ewq); 784 785 return false; 786 } 787 788 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 789 unsigned long start, unsigned long end) 790 { 791 struct userfaultfd_unmap_ctx *unmap_ctx; 792 793 list_for_each_entry(unmap_ctx, unmaps, list) 794 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 795 unmap_ctx->end == end) 796 return true; 797 798 return false; 799 } 800 801 int userfaultfd_unmap_prep(struct vm_area_struct *vma, 802 unsigned long start, unsigned long end, 803 struct list_head *unmaps) 804 { 805 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 806 struct userfaultfd_unmap_ctx *unmap_ctx; 807 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 808 809 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 810 has_unmap_ctx(ctx, unmaps, start, end)) 811 continue; 812 813 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 814 if (!unmap_ctx) 815 return -ENOMEM; 816 817 userfaultfd_ctx_get(ctx); 818 atomic_inc(&ctx->mmap_changing); 819 unmap_ctx->ctx = ctx; 820 unmap_ctx->start = start; 821 unmap_ctx->end = end; 822 list_add_tail(&unmap_ctx->list, unmaps); 823 } 824 825 return 0; 826 } 827 828 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 829 { 830 struct userfaultfd_unmap_ctx *ctx, *n; 831 struct userfaultfd_wait_queue ewq; 832 833 list_for_each_entry_safe(ctx, n, uf, list) { 834 msg_init(&ewq.msg); 835 836 ewq.msg.event = UFFD_EVENT_UNMAP; 837 ewq.msg.arg.remove.start = ctx->start; 838 ewq.msg.arg.remove.end = ctx->end; 839 840 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 841 842 list_del(&ctx->list); 843 kfree(ctx); 844 } 845 } 846 847 static int userfaultfd_release(struct inode *inode, struct file *file) 848 { 849 struct userfaultfd_ctx *ctx = file->private_data; 850 struct mm_struct *mm = ctx->mm; 851 struct vm_area_struct *vma, *prev; 852 /* len == 0 means wake all */ 853 struct userfaultfd_wake_range range = { .len = 0, }; 854 unsigned long new_flags; 855 856 WRITE_ONCE(ctx->released, true); 857 858 if (!mmget_not_zero(mm)) 859 goto wakeup; 860 861 /* 862 * Flush page faults out of all CPUs. NOTE: all page faults 863 * must be retried without returning VM_FAULT_SIGBUS if 864 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 865 * changes while handle_userfault released the mmap_lock. So 866 * it's critical that released is set to true (above), before 867 * taking the mmap_lock for writing. 868 */ 869 mmap_write_lock(mm); 870 prev = NULL; 871 for (vma = mm->mmap; vma; vma = vma->vm_next) { 872 cond_resched(); 873 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 874 !!(vma->vm_flags & __VM_UFFD_FLAGS)); 875 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 876 prev = vma; 877 continue; 878 } 879 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 880 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 881 new_flags, vma->anon_vma, 882 vma->vm_file, vma->vm_pgoff, 883 vma_policy(vma), 884 NULL_VM_UFFD_CTX, anon_vma_name(vma)); 885 if (prev) 886 vma = prev; 887 else 888 prev = vma; 889 vma->vm_flags = new_flags; 890 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 891 } 892 mmap_write_unlock(mm); 893 mmput(mm); 894 wakeup: 895 /* 896 * After no new page faults can wait on this fault_*wqh, flush 897 * the last page faults that may have been already waiting on 898 * the fault_*wqh. 899 */ 900 spin_lock_irq(&ctx->fault_pending_wqh.lock); 901 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 902 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 903 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 904 905 /* Flush pending events that may still wait on event_wqh */ 906 wake_up_all(&ctx->event_wqh); 907 908 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 909 userfaultfd_ctx_put(ctx); 910 return 0; 911 } 912 913 /* fault_pending_wqh.lock must be hold by the caller */ 914 static inline struct userfaultfd_wait_queue *find_userfault_in( 915 wait_queue_head_t *wqh) 916 { 917 wait_queue_entry_t *wq; 918 struct userfaultfd_wait_queue *uwq; 919 920 lockdep_assert_held(&wqh->lock); 921 922 uwq = NULL; 923 if (!waitqueue_active(wqh)) 924 goto out; 925 /* walk in reverse to provide FIFO behavior to read userfaults */ 926 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 927 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 928 out: 929 return uwq; 930 } 931 932 static inline struct userfaultfd_wait_queue *find_userfault( 933 struct userfaultfd_ctx *ctx) 934 { 935 return find_userfault_in(&ctx->fault_pending_wqh); 936 } 937 938 static inline struct userfaultfd_wait_queue *find_userfault_evt( 939 struct userfaultfd_ctx *ctx) 940 { 941 return find_userfault_in(&ctx->event_wqh); 942 } 943 944 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 945 { 946 struct userfaultfd_ctx *ctx = file->private_data; 947 __poll_t ret; 948 949 poll_wait(file, &ctx->fd_wqh, wait); 950 951 if (!userfaultfd_is_initialized(ctx)) 952 return EPOLLERR; 953 954 /* 955 * poll() never guarantees that read won't block. 956 * userfaults can be waken before they're read(). 957 */ 958 if (unlikely(!(file->f_flags & O_NONBLOCK))) 959 return EPOLLERR; 960 /* 961 * lockless access to see if there are pending faults 962 * __pollwait last action is the add_wait_queue but 963 * the spin_unlock would allow the waitqueue_active to 964 * pass above the actual list_add inside 965 * add_wait_queue critical section. So use a full 966 * memory barrier to serialize the list_add write of 967 * add_wait_queue() with the waitqueue_active read 968 * below. 969 */ 970 ret = 0; 971 smp_mb(); 972 if (waitqueue_active(&ctx->fault_pending_wqh)) 973 ret = EPOLLIN; 974 else if (waitqueue_active(&ctx->event_wqh)) 975 ret = EPOLLIN; 976 977 return ret; 978 } 979 980 static const struct file_operations userfaultfd_fops; 981 982 static int resolve_userfault_fork(struct userfaultfd_ctx *new, 983 struct inode *inode, 984 struct uffd_msg *msg) 985 { 986 int fd; 987 988 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new, 989 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode); 990 if (fd < 0) 991 return fd; 992 993 msg->arg.reserved.reserved1 = 0; 994 msg->arg.fork.ufd = fd; 995 return 0; 996 } 997 998 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 999 struct uffd_msg *msg, struct inode *inode) 1000 { 1001 ssize_t ret; 1002 DECLARE_WAITQUEUE(wait, current); 1003 struct userfaultfd_wait_queue *uwq; 1004 /* 1005 * Handling fork event requires sleeping operations, so 1006 * we drop the event_wqh lock, then do these ops, then 1007 * lock it back and wake up the waiter. While the lock is 1008 * dropped the ewq may go away so we keep track of it 1009 * carefully. 1010 */ 1011 LIST_HEAD(fork_event); 1012 struct userfaultfd_ctx *fork_nctx = NULL; 1013 1014 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1015 spin_lock_irq(&ctx->fd_wqh.lock); 1016 __add_wait_queue(&ctx->fd_wqh, &wait); 1017 for (;;) { 1018 set_current_state(TASK_INTERRUPTIBLE); 1019 spin_lock(&ctx->fault_pending_wqh.lock); 1020 uwq = find_userfault(ctx); 1021 if (uwq) { 1022 /* 1023 * Use a seqcount to repeat the lockless check 1024 * in wake_userfault() to avoid missing 1025 * wakeups because during the refile both 1026 * waitqueue could become empty if this is the 1027 * only userfault. 1028 */ 1029 write_seqcount_begin(&ctx->refile_seq); 1030 1031 /* 1032 * The fault_pending_wqh.lock prevents the uwq 1033 * to disappear from under us. 1034 * 1035 * Refile this userfault from 1036 * fault_pending_wqh to fault_wqh, it's not 1037 * pending anymore after we read it. 1038 * 1039 * Use list_del() by hand (as 1040 * userfaultfd_wake_function also uses 1041 * list_del_init() by hand) to be sure nobody 1042 * changes __remove_wait_queue() to use 1043 * list_del_init() in turn breaking the 1044 * !list_empty_careful() check in 1045 * handle_userfault(). The uwq->wq.head list 1046 * must never be empty at any time during the 1047 * refile, or the waitqueue could disappear 1048 * from under us. The "wait_queue_head_t" 1049 * parameter of __remove_wait_queue() is unused 1050 * anyway. 1051 */ 1052 list_del(&uwq->wq.entry); 1053 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1054 1055 write_seqcount_end(&ctx->refile_seq); 1056 1057 /* careful to always initialize msg if ret == 0 */ 1058 *msg = uwq->msg; 1059 spin_unlock(&ctx->fault_pending_wqh.lock); 1060 ret = 0; 1061 break; 1062 } 1063 spin_unlock(&ctx->fault_pending_wqh.lock); 1064 1065 spin_lock(&ctx->event_wqh.lock); 1066 uwq = find_userfault_evt(ctx); 1067 if (uwq) { 1068 *msg = uwq->msg; 1069 1070 if (uwq->msg.event == UFFD_EVENT_FORK) { 1071 fork_nctx = (struct userfaultfd_ctx *) 1072 (unsigned long) 1073 uwq->msg.arg.reserved.reserved1; 1074 list_move(&uwq->wq.entry, &fork_event); 1075 /* 1076 * fork_nctx can be freed as soon as 1077 * we drop the lock, unless we take a 1078 * reference on it. 1079 */ 1080 userfaultfd_ctx_get(fork_nctx); 1081 spin_unlock(&ctx->event_wqh.lock); 1082 ret = 0; 1083 break; 1084 } 1085 1086 userfaultfd_event_complete(ctx, uwq); 1087 spin_unlock(&ctx->event_wqh.lock); 1088 ret = 0; 1089 break; 1090 } 1091 spin_unlock(&ctx->event_wqh.lock); 1092 1093 if (signal_pending(current)) { 1094 ret = -ERESTARTSYS; 1095 break; 1096 } 1097 if (no_wait) { 1098 ret = -EAGAIN; 1099 break; 1100 } 1101 spin_unlock_irq(&ctx->fd_wqh.lock); 1102 schedule(); 1103 spin_lock_irq(&ctx->fd_wqh.lock); 1104 } 1105 __remove_wait_queue(&ctx->fd_wqh, &wait); 1106 __set_current_state(TASK_RUNNING); 1107 spin_unlock_irq(&ctx->fd_wqh.lock); 1108 1109 if (!ret && msg->event == UFFD_EVENT_FORK) { 1110 ret = resolve_userfault_fork(fork_nctx, inode, msg); 1111 spin_lock_irq(&ctx->event_wqh.lock); 1112 if (!list_empty(&fork_event)) { 1113 /* 1114 * The fork thread didn't abort, so we can 1115 * drop the temporary refcount. 1116 */ 1117 userfaultfd_ctx_put(fork_nctx); 1118 1119 uwq = list_first_entry(&fork_event, 1120 typeof(*uwq), 1121 wq.entry); 1122 /* 1123 * If fork_event list wasn't empty and in turn 1124 * the event wasn't already released by fork 1125 * (the event is allocated on fork kernel 1126 * stack), put the event back to its place in 1127 * the event_wq. fork_event head will be freed 1128 * as soon as we return so the event cannot 1129 * stay queued there no matter the current 1130 * "ret" value. 1131 */ 1132 list_del(&uwq->wq.entry); 1133 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1134 1135 /* 1136 * Leave the event in the waitqueue and report 1137 * error to userland if we failed to resolve 1138 * the userfault fork. 1139 */ 1140 if (likely(!ret)) 1141 userfaultfd_event_complete(ctx, uwq); 1142 } else { 1143 /* 1144 * Here the fork thread aborted and the 1145 * refcount from the fork thread on fork_nctx 1146 * has already been released. We still hold 1147 * the reference we took before releasing the 1148 * lock above. If resolve_userfault_fork 1149 * failed we've to drop it because the 1150 * fork_nctx has to be freed in such case. If 1151 * it succeeded we'll hold it because the new 1152 * uffd references it. 1153 */ 1154 if (ret) 1155 userfaultfd_ctx_put(fork_nctx); 1156 } 1157 spin_unlock_irq(&ctx->event_wqh.lock); 1158 } 1159 1160 return ret; 1161 } 1162 1163 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1164 size_t count, loff_t *ppos) 1165 { 1166 struct userfaultfd_ctx *ctx = file->private_data; 1167 ssize_t _ret, ret = 0; 1168 struct uffd_msg msg; 1169 int no_wait = file->f_flags & O_NONBLOCK; 1170 struct inode *inode = file_inode(file); 1171 1172 if (!userfaultfd_is_initialized(ctx)) 1173 return -EINVAL; 1174 1175 for (;;) { 1176 if (count < sizeof(msg)) 1177 return ret ? ret : -EINVAL; 1178 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode); 1179 if (_ret < 0) 1180 return ret ? ret : _ret; 1181 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1182 return ret ? ret : -EFAULT; 1183 ret += sizeof(msg); 1184 buf += sizeof(msg); 1185 count -= sizeof(msg); 1186 /* 1187 * Allow to read more than one fault at time but only 1188 * block if waiting for the very first one. 1189 */ 1190 no_wait = O_NONBLOCK; 1191 } 1192 } 1193 1194 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1195 struct userfaultfd_wake_range *range) 1196 { 1197 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1198 /* wake all in the range and autoremove */ 1199 if (waitqueue_active(&ctx->fault_pending_wqh)) 1200 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1201 range); 1202 if (waitqueue_active(&ctx->fault_wqh)) 1203 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1204 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1205 } 1206 1207 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1208 struct userfaultfd_wake_range *range) 1209 { 1210 unsigned seq; 1211 bool need_wakeup; 1212 1213 /* 1214 * To be sure waitqueue_active() is not reordered by the CPU 1215 * before the pagetable update, use an explicit SMP memory 1216 * barrier here. PT lock release or mmap_read_unlock(mm) still 1217 * have release semantics that can allow the 1218 * waitqueue_active() to be reordered before the pte update. 1219 */ 1220 smp_mb(); 1221 1222 /* 1223 * Use waitqueue_active because it's very frequent to 1224 * change the address space atomically even if there are no 1225 * userfaults yet. So we take the spinlock only when we're 1226 * sure we've userfaults to wake. 1227 */ 1228 do { 1229 seq = read_seqcount_begin(&ctx->refile_seq); 1230 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1231 waitqueue_active(&ctx->fault_wqh); 1232 cond_resched(); 1233 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1234 if (need_wakeup) 1235 __wake_userfault(ctx, range); 1236 } 1237 1238 static __always_inline int validate_range(struct mm_struct *mm, 1239 __u64 start, __u64 len) 1240 { 1241 __u64 task_size = mm->task_size; 1242 1243 if (start & ~PAGE_MASK) 1244 return -EINVAL; 1245 if (len & ~PAGE_MASK) 1246 return -EINVAL; 1247 if (!len) 1248 return -EINVAL; 1249 if (start < mmap_min_addr) 1250 return -EINVAL; 1251 if (start >= task_size) 1252 return -EINVAL; 1253 if (len > task_size - start) 1254 return -EINVAL; 1255 return 0; 1256 } 1257 1258 static inline bool vma_can_userfault(struct vm_area_struct *vma, 1259 unsigned long vm_flags) 1260 { 1261 /* FIXME: add WP support to hugetlbfs and shmem */ 1262 if (vm_flags & VM_UFFD_WP) { 1263 if (is_vm_hugetlb_page(vma) || vma_is_shmem(vma)) 1264 return false; 1265 } 1266 1267 if (vm_flags & VM_UFFD_MINOR) { 1268 if (!(is_vm_hugetlb_page(vma) || vma_is_shmem(vma))) 1269 return false; 1270 } 1271 1272 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || 1273 vma_is_shmem(vma); 1274 } 1275 1276 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1277 unsigned long arg) 1278 { 1279 struct mm_struct *mm = ctx->mm; 1280 struct vm_area_struct *vma, *prev, *cur; 1281 int ret; 1282 struct uffdio_register uffdio_register; 1283 struct uffdio_register __user *user_uffdio_register; 1284 unsigned long vm_flags, new_flags; 1285 bool found; 1286 bool basic_ioctls; 1287 unsigned long start, end, vma_end; 1288 1289 user_uffdio_register = (struct uffdio_register __user *) arg; 1290 1291 ret = -EFAULT; 1292 if (copy_from_user(&uffdio_register, user_uffdio_register, 1293 sizeof(uffdio_register)-sizeof(__u64))) 1294 goto out; 1295 1296 ret = -EINVAL; 1297 if (!uffdio_register.mode) 1298 goto out; 1299 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES) 1300 goto out; 1301 vm_flags = 0; 1302 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1303 vm_flags |= VM_UFFD_MISSING; 1304 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1305 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1306 goto out; 1307 #endif 1308 vm_flags |= VM_UFFD_WP; 1309 } 1310 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) { 1311 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1312 goto out; 1313 #endif 1314 vm_flags |= VM_UFFD_MINOR; 1315 } 1316 1317 ret = validate_range(mm, uffdio_register.range.start, 1318 uffdio_register.range.len); 1319 if (ret) 1320 goto out; 1321 1322 start = uffdio_register.range.start; 1323 end = start + uffdio_register.range.len; 1324 1325 ret = -ENOMEM; 1326 if (!mmget_not_zero(mm)) 1327 goto out; 1328 1329 mmap_write_lock(mm); 1330 vma = find_vma_prev(mm, start, &prev); 1331 if (!vma) 1332 goto out_unlock; 1333 1334 /* check that there's at least one vma in the range */ 1335 ret = -EINVAL; 1336 if (vma->vm_start >= end) 1337 goto out_unlock; 1338 1339 /* 1340 * If the first vma contains huge pages, make sure start address 1341 * is aligned to huge page size. 1342 */ 1343 if (is_vm_hugetlb_page(vma)) { 1344 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1345 1346 if (start & (vma_hpagesize - 1)) 1347 goto out_unlock; 1348 } 1349 1350 /* 1351 * Search for not compatible vmas. 1352 */ 1353 found = false; 1354 basic_ioctls = false; 1355 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1356 cond_resched(); 1357 1358 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1359 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1360 1361 /* check not compatible vmas */ 1362 ret = -EINVAL; 1363 if (!vma_can_userfault(cur, vm_flags)) 1364 goto out_unlock; 1365 1366 /* 1367 * UFFDIO_COPY will fill file holes even without 1368 * PROT_WRITE. This check enforces that if this is a 1369 * MAP_SHARED, the process has write permission to the backing 1370 * file. If VM_MAYWRITE is set it also enforces that on a 1371 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1372 * F_WRITE_SEAL can be taken until the vma is destroyed. 1373 */ 1374 ret = -EPERM; 1375 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1376 goto out_unlock; 1377 1378 /* 1379 * If this vma contains ending address, and huge pages 1380 * check alignment. 1381 */ 1382 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1383 end > cur->vm_start) { 1384 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1385 1386 ret = -EINVAL; 1387 1388 if (end & (vma_hpagesize - 1)) 1389 goto out_unlock; 1390 } 1391 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) 1392 goto out_unlock; 1393 1394 /* 1395 * Check that this vma isn't already owned by a 1396 * different userfaultfd. We can't allow more than one 1397 * userfaultfd to own a single vma simultaneously or we 1398 * wouldn't know which one to deliver the userfaults to. 1399 */ 1400 ret = -EBUSY; 1401 if (cur->vm_userfaultfd_ctx.ctx && 1402 cur->vm_userfaultfd_ctx.ctx != ctx) 1403 goto out_unlock; 1404 1405 /* 1406 * Note vmas containing huge pages 1407 */ 1408 if (is_vm_hugetlb_page(cur)) 1409 basic_ioctls = true; 1410 1411 found = true; 1412 } 1413 BUG_ON(!found); 1414 1415 if (vma->vm_start < start) 1416 prev = vma; 1417 1418 ret = 0; 1419 do { 1420 cond_resched(); 1421 1422 BUG_ON(!vma_can_userfault(vma, vm_flags)); 1423 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1424 vma->vm_userfaultfd_ctx.ctx != ctx); 1425 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1426 1427 /* 1428 * Nothing to do: this vma is already registered into this 1429 * userfaultfd and with the right tracking mode too. 1430 */ 1431 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1432 (vma->vm_flags & vm_flags) == vm_flags) 1433 goto skip; 1434 1435 if (vma->vm_start > start) 1436 start = vma->vm_start; 1437 vma_end = min(end, vma->vm_end); 1438 1439 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags; 1440 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1441 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1442 vma_policy(vma), 1443 ((struct vm_userfaultfd_ctx){ ctx }), 1444 anon_vma_name(vma)); 1445 if (prev) { 1446 vma = prev; 1447 goto next; 1448 } 1449 if (vma->vm_start < start) { 1450 ret = split_vma(mm, vma, start, 1); 1451 if (ret) 1452 break; 1453 } 1454 if (vma->vm_end > end) { 1455 ret = split_vma(mm, vma, end, 0); 1456 if (ret) 1457 break; 1458 } 1459 next: 1460 /* 1461 * In the vma_merge() successful mprotect-like case 8: 1462 * the next vma was merged into the current one and 1463 * the current one has not been updated yet. 1464 */ 1465 vma->vm_flags = new_flags; 1466 vma->vm_userfaultfd_ctx.ctx = ctx; 1467 1468 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma)) 1469 hugetlb_unshare_all_pmds(vma); 1470 1471 skip: 1472 prev = vma; 1473 start = vma->vm_end; 1474 vma = vma->vm_next; 1475 } while (vma && vma->vm_start < end); 1476 out_unlock: 1477 mmap_write_unlock(mm); 1478 mmput(mm); 1479 if (!ret) { 1480 __u64 ioctls_out; 1481 1482 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1483 UFFD_API_RANGE_IOCTLS; 1484 1485 /* 1486 * Declare the WP ioctl only if the WP mode is 1487 * specified and all checks passed with the range 1488 */ 1489 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) 1490 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); 1491 1492 /* CONTINUE ioctl is only supported for MINOR ranges. */ 1493 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR)) 1494 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE); 1495 1496 /* 1497 * Now that we scanned all vmas we can already tell 1498 * userland which ioctls methods are guaranteed to 1499 * succeed on this range. 1500 */ 1501 if (put_user(ioctls_out, &user_uffdio_register->ioctls)) 1502 ret = -EFAULT; 1503 } 1504 out: 1505 return ret; 1506 } 1507 1508 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1509 unsigned long arg) 1510 { 1511 struct mm_struct *mm = ctx->mm; 1512 struct vm_area_struct *vma, *prev, *cur; 1513 int ret; 1514 struct uffdio_range uffdio_unregister; 1515 unsigned long new_flags; 1516 bool found; 1517 unsigned long start, end, vma_end; 1518 const void __user *buf = (void __user *)arg; 1519 1520 ret = -EFAULT; 1521 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1522 goto out; 1523 1524 ret = validate_range(mm, uffdio_unregister.start, 1525 uffdio_unregister.len); 1526 if (ret) 1527 goto out; 1528 1529 start = uffdio_unregister.start; 1530 end = start + uffdio_unregister.len; 1531 1532 ret = -ENOMEM; 1533 if (!mmget_not_zero(mm)) 1534 goto out; 1535 1536 mmap_write_lock(mm); 1537 vma = find_vma_prev(mm, start, &prev); 1538 if (!vma) 1539 goto out_unlock; 1540 1541 /* check that there's at least one vma in the range */ 1542 ret = -EINVAL; 1543 if (vma->vm_start >= end) 1544 goto out_unlock; 1545 1546 /* 1547 * If the first vma contains huge pages, make sure start address 1548 * is aligned to huge page size. 1549 */ 1550 if (is_vm_hugetlb_page(vma)) { 1551 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1552 1553 if (start & (vma_hpagesize - 1)) 1554 goto out_unlock; 1555 } 1556 1557 /* 1558 * Search for not compatible vmas. 1559 */ 1560 found = false; 1561 ret = -EINVAL; 1562 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1563 cond_resched(); 1564 1565 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1566 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1567 1568 /* 1569 * Check not compatible vmas, not strictly required 1570 * here as not compatible vmas cannot have an 1571 * userfaultfd_ctx registered on them, but this 1572 * provides for more strict behavior to notice 1573 * unregistration errors. 1574 */ 1575 if (!vma_can_userfault(cur, cur->vm_flags)) 1576 goto out_unlock; 1577 1578 found = true; 1579 } 1580 BUG_ON(!found); 1581 1582 if (vma->vm_start < start) 1583 prev = vma; 1584 1585 ret = 0; 1586 do { 1587 cond_resched(); 1588 1589 BUG_ON(!vma_can_userfault(vma, vma->vm_flags)); 1590 1591 /* 1592 * Nothing to do: this vma is already registered into this 1593 * userfaultfd and with the right tracking mode too. 1594 */ 1595 if (!vma->vm_userfaultfd_ctx.ctx) 1596 goto skip; 1597 1598 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1599 1600 if (vma->vm_start > start) 1601 start = vma->vm_start; 1602 vma_end = min(end, vma->vm_end); 1603 1604 if (userfaultfd_missing(vma)) { 1605 /* 1606 * Wake any concurrent pending userfault while 1607 * we unregister, so they will not hang 1608 * permanently and it avoids userland to call 1609 * UFFDIO_WAKE explicitly. 1610 */ 1611 struct userfaultfd_wake_range range; 1612 range.start = start; 1613 range.len = vma_end - start; 1614 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1615 } 1616 1617 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 1618 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1619 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1620 vma_policy(vma), 1621 NULL_VM_UFFD_CTX, anon_vma_name(vma)); 1622 if (prev) { 1623 vma = prev; 1624 goto next; 1625 } 1626 if (vma->vm_start < start) { 1627 ret = split_vma(mm, vma, start, 1); 1628 if (ret) 1629 break; 1630 } 1631 if (vma->vm_end > end) { 1632 ret = split_vma(mm, vma, end, 0); 1633 if (ret) 1634 break; 1635 } 1636 next: 1637 /* 1638 * In the vma_merge() successful mprotect-like case 8: 1639 * the next vma was merged into the current one and 1640 * the current one has not been updated yet. 1641 */ 1642 vma->vm_flags = new_flags; 1643 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1644 1645 skip: 1646 prev = vma; 1647 start = vma->vm_end; 1648 vma = vma->vm_next; 1649 } while (vma && vma->vm_start < end); 1650 out_unlock: 1651 mmap_write_unlock(mm); 1652 mmput(mm); 1653 out: 1654 return ret; 1655 } 1656 1657 /* 1658 * userfaultfd_wake may be used in combination with the 1659 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1660 */ 1661 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1662 unsigned long arg) 1663 { 1664 int ret; 1665 struct uffdio_range uffdio_wake; 1666 struct userfaultfd_wake_range range; 1667 const void __user *buf = (void __user *)arg; 1668 1669 ret = -EFAULT; 1670 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1671 goto out; 1672 1673 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1674 if (ret) 1675 goto out; 1676 1677 range.start = uffdio_wake.start; 1678 range.len = uffdio_wake.len; 1679 1680 /* 1681 * len == 0 means wake all and we don't want to wake all here, 1682 * so check it again to be sure. 1683 */ 1684 VM_BUG_ON(!range.len); 1685 1686 wake_userfault(ctx, &range); 1687 ret = 0; 1688 1689 out: 1690 return ret; 1691 } 1692 1693 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1694 unsigned long arg) 1695 { 1696 __s64 ret; 1697 struct uffdio_copy uffdio_copy; 1698 struct uffdio_copy __user *user_uffdio_copy; 1699 struct userfaultfd_wake_range range; 1700 1701 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1702 1703 ret = -EAGAIN; 1704 if (atomic_read(&ctx->mmap_changing)) 1705 goto out; 1706 1707 ret = -EFAULT; 1708 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1709 /* don't copy "copy" last field */ 1710 sizeof(uffdio_copy)-sizeof(__s64))) 1711 goto out; 1712 1713 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1714 if (ret) 1715 goto out; 1716 /* 1717 * double check for wraparound just in case. copy_from_user() 1718 * will later check uffdio_copy.src + uffdio_copy.len to fit 1719 * in the userland range. 1720 */ 1721 ret = -EINVAL; 1722 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1723 goto out; 1724 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) 1725 goto out; 1726 if (mmget_not_zero(ctx->mm)) { 1727 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1728 uffdio_copy.len, &ctx->mmap_changing, 1729 uffdio_copy.mode); 1730 mmput(ctx->mm); 1731 } else { 1732 return -ESRCH; 1733 } 1734 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1735 return -EFAULT; 1736 if (ret < 0) 1737 goto out; 1738 BUG_ON(!ret); 1739 /* len == 0 would wake all */ 1740 range.len = ret; 1741 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1742 range.start = uffdio_copy.dst; 1743 wake_userfault(ctx, &range); 1744 } 1745 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1746 out: 1747 return ret; 1748 } 1749 1750 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1751 unsigned long arg) 1752 { 1753 __s64 ret; 1754 struct uffdio_zeropage uffdio_zeropage; 1755 struct uffdio_zeropage __user *user_uffdio_zeropage; 1756 struct userfaultfd_wake_range range; 1757 1758 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1759 1760 ret = -EAGAIN; 1761 if (atomic_read(&ctx->mmap_changing)) 1762 goto out; 1763 1764 ret = -EFAULT; 1765 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1766 /* don't copy "zeropage" last field */ 1767 sizeof(uffdio_zeropage)-sizeof(__s64))) 1768 goto out; 1769 1770 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1771 uffdio_zeropage.range.len); 1772 if (ret) 1773 goto out; 1774 ret = -EINVAL; 1775 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1776 goto out; 1777 1778 if (mmget_not_zero(ctx->mm)) { 1779 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1780 uffdio_zeropage.range.len, 1781 &ctx->mmap_changing); 1782 mmput(ctx->mm); 1783 } else { 1784 return -ESRCH; 1785 } 1786 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1787 return -EFAULT; 1788 if (ret < 0) 1789 goto out; 1790 /* len == 0 would wake all */ 1791 BUG_ON(!ret); 1792 range.len = ret; 1793 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1794 range.start = uffdio_zeropage.range.start; 1795 wake_userfault(ctx, &range); 1796 } 1797 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1798 out: 1799 return ret; 1800 } 1801 1802 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, 1803 unsigned long arg) 1804 { 1805 int ret; 1806 struct uffdio_writeprotect uffdio_wp; 1807 struct uffdio_writeprotect __user *user_uffdio_wp; 1808 struct userfaultfd_wake_range range; 1809 bool mode_wp, mode_dontwake; 1810 1811 if (atomic_read(&ctx->mmap_changing)) 1812 return -EAGAIN; 1813 1814 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; 1815 1816 if (copy_from_user(&uffdio_wp, user_uffdio_wp, 1817 sizeof(struct uffdio_writeprotect))) 1818 return -EFAULT; 1819 1820 ret = validate_range(ctx->mm, uffdio_wp.range.start, 1821 uffdio_wp.range.len); 1822 if (ret) 1823 return ret; 1824 1825 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | 1826 UFFDIO_WRITEPROTECT_MODE_WP)) 1827 return -EINVAL; 1828 1829 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; 1830 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; 1831 1832 if (mode_wp && mode_dontwake) 1833 return -EINVAL; 1834 1835 if (mmget_not_zero(ctx->mm)) { 1836 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start, 1837 uffdio_wp.range.len, mode_wp, 1838 &ctx->mmap_changing); 1839 mmput(ctx->mm); 1840 } else { 1841 return -ESRCH; 1842 } 1843 1844 if (ret) 1845 return ret; 1846 1847 if (!mode_wp && !mode_dontwake) { 1848 range.start = uffdio_wp.range.start; 1849 range.len = uffdio_wp.range.len; 1850 wake_userfault(ctx, &range); 1851 } 1852 return ret; 1853 } 1854 1855 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg) 1856 { 1857 __s64 ret; 1858 struct uffdio_continue uffdio_continue; 1859 struct uffdio_continue __user *user_uffdio_continue; 1860 struct userfaultfd_wake_range range; 1861 1862 user_uffdio_continue = (struct uffdio_continue __user *)arg; 1863 1864 ret = -EAGAIN; 1865 if (atomic_read(&ctx->mmap_changing)) 1866 goto out; 1867 1868 ret = -EFAULT; 1869 if (copy_from_user(&uffdio_continue, user_uffdio_continue, 1870 /* don't copy the output fields */ 1871 sizeof(uffdio_continue) - (sizeof(__s64)))) 1872 goto out; 1873 1874 ret = validate_range(ctx->mm, uffdio_continue.range.start, 1875 uffdio_continue.range.len); 1876 if (ret) 1877 goto out; 1878 1879 ret = -EINVAL; 1880 /* double check for wraparound just in case. */ 1881 if (uffdio_continue.range.start + uffdio_continue.range.len <= 1882 uffdio_continue.range.start) { 1883 goto out; 1884 } 1885 if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE) 1886 goto out; 1887 1888 if (mmget_not_zero(ctx->mm)) { 1889 ret = mcopy_continue(ctx->mm, uffdio_continue.range.start, 1890 uffdio_continue.range.len, 1891 &ctx->mmap_changing); 1892 mmput(ctx->mm); 1893 } else { 1894 return -ESRCH; 1895 } 1896 1897 if (unlikely(put_user(ret, &user_uffdio_continue->mapped))) 1898 return -EFAULT; 1899 if (ret < 0) 1900 goto out; 1901 1902 /* len == 0 would wake all */ 1903 BUG_ON(!ret); 1904 range.len = ret; 1905 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) { 1906 range.start = uffdio_continue.range.start; 1907 wake_userfault(ctx, &range); 1908 } 1909 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN; 1910 1911 out: 1912 return ret; 1913 } 1914 1915 static inline unsigned int uffd_ctx_features(__u64 user_features) 1916 { 1917 /* 1918 * For the current set of features the bits just coincide. Set 1919 * UFFD_FEATURE_INITIALIZED to mark the features as enabled. 1920 */ 1921 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED; 1922 } 1923 1924 /* 1925 * userland asks for a certain API version and we return which bits 1926 * and ioctl commands are implemented in this kernel for such API 1927 * version or -EINVAL if unknown. 1928 */ 1929 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1930 unsigned long arg) 1931 { 1932 struct uffdio_api uffdio_api; 1933 void __user *buf = (void __user *)arg; 1934 unsigned int ctx_features; 1935 int ret; 1936 __u64 features; 1937 1938 ret = -EFAULT; 1939 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1940 goto out; 1941 features = uffdio_api.features; 1942 ret = -EINVAL; 1943 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) 1944 goto err_out; 1945 ret = -EPERM; 1946 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) 1947 goto err_out; 1948 /* report all available features and ioctls to userland */ 1949 uffdio_api.features = UFFD_API_FEATURES; 1950 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1951 uffdio_api.features &= 1952 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM); 1953 #endif 1954 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1955 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP; 1956 #endif 1957 uffdio_api.ioctls = UFFD_API_IOCTLS; 1958 ret = -EFAULT; 1959 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1960 goto out; 1961 1962 /* only enable the requested features for this uffd context */ 1963 ctx_features = uffd_ctx_features(features); 1964 ret = -EINVAL; 1965 if (cmpxchg(&ctx->features, 0, ctx_features) != 0) 1966 goto err_out; 1967 1968 ret = 0; 1969 out: 1970 return ret; 1971 err_out: 1972 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1973 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1974 ret = -EFAULT; 1975 goto out; 1976 } 1977 1978 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1979 unsigned long arg) 1980 { 1981 int ret = -EINVAL; 1982 struct userfaultfd_ctx *ctx = file->private_data; 1983 1984 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx)) 1985 return -EINVAL; 1986 1987 switch(cmd) { 1988 case UFFDIO_API: 1989 ret = userfaultfd_api(ctx, arg); 1990 break; 1991 case UFFDIO_REGISTER: 1992 ret = userfaultfd_register(ctx, arg); 1993 break; 1994 case UFFDIO_UNREGISTER: 1995 ret = userfaultfd_unregister(ctx, arg); 1996 break; 1997 case UFFDIO_WAKE: 1998 ret = userfaultfd_wake(ctx, arg); 1999 break; 2000 case UFFDIO_COPY: 2001 ret = userfaultfd_copy(ctx, arg); 2002 break; 2003 case UFFDIO_ZEROPAGE: 2004 ret = userfaultfd_zeropage(ctx, arg); 2005 break; 2006 case UFFDIO_WRITEPROTECT: 2007 ret = userfaultfd_writeprotect(ctx, arg); 2008 break; 2009 case UFFDIO_CONTINUE: 2010 ret = userfaultfd_continue(ctx, arg); 2011 break; 2012 } 2013 return ret; 2014 } 2015 2016 #ifdef CONFIG_PROC_FS 2017 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 2018 { 2019 struct userfaultfd_ctx *ctx = f->private_data; 2020 wait_queue_entry_t *wq; 2021 unsigned long pending = 0, total = 0; 2022 2023 spin_lock_irq(&ctx->fault_pending_wqh.lock); 2024 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 2025 pending++; 2026 total++; 2027 } 2028 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 2029 total++; 2030 } 2031 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 2032 2033 /* 2034 * If more protocols will be added, there will be all shown 2035 * separated by a space. Like this: 2036 * protocols: aa:... bb:... 2037 */ 2038 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 2039 pending, total, UFFD_API, ctx->features, 2040 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 2041 } 2042 #endif 2043 2044 static const struct file_operations userfaultfd_fops = { 2045 #ifdef CONFIG_PROC_FS 2046 .show_fdinfo = userfaultfd_show_fdinfo, 2047 #endif 2048 .release = userfaultfd_release, 2049 .poll = userfaultfd_poll, 2050 .read = userfaultfd_read, 2051 .unlocked_ioctl = userfaultfd_ioctl, 2052 .compat_ioctl = compat_ptr_ioctl, 2053 .llseek = noop_llseek, 2054 }; 2055 2056 static void init_once_userfaultfd_ctx(void *mem) 2057 { 2058 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 2059 2060 init_waitqueue_head(&ctx->fault_pending_wqh); 2061 init_waitqueue_head(&ctx->fault_wqh); 2062 init_waitqueue_head(&ctx->event_wqh); 2063 init_waitqueue_head(&ctx->fd_wqh); 2064 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); 2065 } 2066 2067 SYSCALL_DEFINE1(userfaultfd, int, flags) 2068 { 2069 struct userfaultfd_ctx *ctx; 2070 int fd; 2071 2072 if (!sysctl_unprivileged_userfaultfd && 2073 (flags & UFFD_USER_MODE_ONLY) == 0 && 2074 !capable(CAP_SYS_PTRACE)) { 2075 printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd " 2076 "sysctl knob to 1 if kernel faults must be handled " 2077 "without obtaining CAP_SYS_PTRACE capability\n"); 2078 return -EPERM; 2079 } 2080 2081 BUG_ON(!current->mm); 2082 2083 /* Check the UFFD_* constants for consistency. */ 2084 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS); 2085 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 2086 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 2087 2088 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY)) 2089 return -EINVAL; 2090 2091 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 2092 if (!ctx) 2093 return -ENOMEM; 2094 2095 refcount_set(&ctx->refcount, 1); 2096 ctx->flags = flags; 2097 ctx->features = 0; 2098 ctx->released = false; 2099 atomic_set(&ctx->mmap_changing, 0); 2100 ctx->mm = current->mm; 2101 /* prevent the mm struct to be freed */ 2102 mmgrab(ctx->mm); 2103 2104 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx, 2105 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL); 2106 if (fd < 0) { 2107 mmdrop(ctx->mm); 2108 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 2109 } 2110 return fd; 2111 } 2112 2113 static int __init userfaultfd_init(void) 2114 { 2115 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 2116 sizeof(struct userfaultfd_ctx), 2117 0, 2118 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2119 init_once_userfaultfd_ctx); 2120 return 0; 2121 } 2122 __initcall(userfaultfd_init); 2123