xref: /openbmc/linux/fs/userfaultfd.c (revision cb3908c133f1285069673f11ad651d14ae0406cf)
1 /*
2  *  fs/userfaultfd.c
3  *
4  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
5  *  Copyright (C) 2008-2009 Red Hat, Inc.
6  *  Copyright (C) 2015  Red Hat, Inc.
7  *
8  *  This work is licensed under the terms of the GNU GPL, version 2. See
9  *  the COPYING file in the top-level directory.
10  *
11  *  Some part derived from fs/eventfd.c (anon inode setup) and
12  *  mm/ksm.c (mm hashing).
13  */
14 
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 
33 int sysctl_unprivileged_userfaultfd __read_mostly = 1;
34 
35 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
36 
37 enum userfaultfd_state {
38 	UFFD_STATE_WAIT_API,
39 	UFFD_STATE_RUNNING,
40 };
41 
42 /*
43  * Start with fault_pending_wqh and fault_wqh so they're more likely
44  * to be in the same cacheline.
45  */
46 struct userfaultfd_ctx {
47 	/* waitqueue head for the pending (i.e. not read) userfaults */
48 	wait_queue_head_t fault_pending_wqh;
49 	/* waitqueue head for the userfaults */
50 	wait_queue_head_t fault_wqh;
51 	/* waitqueue head for the pseudo fd to wakeup poll/read */
52 	wait_queue_head_t fd_wqh;
53 	/* waitqueue head for events */
54 	wait_queue_head_t event_wqh;
55 	/* a refile sequence protected by fault_pending_wqh lock */
56 	struct seqcount refile_seq;
57 	/* pseudo fd refcounting */
58 	refcount_t refcount;
59 	/* userfaultfd syscall flags */
60 	unsigned int flags;
61 	/* features requested from the userspace */
62 	unsigned int features;
63 	/* state machine */
64 	enum userfaultfd_state state;
65 	/* released */
66 	bool released;
67 	/* memory mappings are changing because of non-cooperative event */
68 	bool mmap_changing;
69 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
70 	struct mm_struct *mm;
71 };
72 
73 struct userfaultfd_fork_ctx {
74 	struct userfaultfd_ctx *orig;
75 	struct userfaultfd_ctx *new;
76 	struct list_head list;
77 };
78 
79 struct userfaultfd_unmap_ctx {
80 	struct userfaultfd_ctx *ctx;
81 	unsigned long start;
82 	unsigned long end;
83 	struct list_head list;
84 };
85 
86 struct userfaultfd_wait_queue {
87 	struct uffd_msg msg;
88 	wait_queue_entry_t wq;
89 	struct userfaultfd_ctx *ctx;
90 	bool waken;
91 };
92 
93 struct userfaultfd_wake_range {
94 	unsigned long start;
95 	unsigned long len;
96 };
97 
98 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
99 				     int wake_flags, void *key)
100 {
101 	struct userfaultfd_wake_range *range = key;
102 	int ret;
103 	struct userfaultfd_wait_queue *uwq;
104 	unsigned long start, len;
105 
106 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
107 	ret = 0;
108 	/* len == 0 means wake all */
109 	start = range->start;
110 	len = range->len;
111 	if (len && (start > uwq->msg.arg.pagefault.address ||
112 		    start + len <= uwq->msg.arg.pagefault.address))
113 		goto out;
114 	WRITE_ONCE(uwq->waken, true);
115 	/*
116 	 * The Program-Order guarantees provided by the scheduler
117 	 * ensure uwq->waken is visible before the task is woken.
118 	 */
119 	ret = wake_up_state(wq->private, mode);
120 	if (ret) {
121 		/*
122 		 * Wake only once, autoremove behavior.
123 		 *
124 		 * After the effect of list_del_init is visible to the other
125 		 * CPUs, the waitqueue may disappear from under us, see the
126 		 * !list_empty_careful() in handle_userfault().
127 		 *
128 		 * try_to_wake_up() has an implicit smp_mb(), and the
129 		 * wq->private is read before calling the extern function
130 		 * "wake_up_state" (which in turns calls try_to_wake_up).
131 		 */
132 		list_del_init(&wq->entry);
133 	}
134 out:
135 	return ret;
136 }
137 
138 /**
139  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
140  * context.
141  * @ctx: [in] Pointer to the userfaultfd context.
142  */
143 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
144 {
145 	refcount_inc(&ctx->refcount);
146 }
147 
148 /**
149  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
150  * context.
151  * @ctx: [in] Pointer to userfaultfd context.
152  *
153  * The userfaultfd context reference must have been previously acquired either
154  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
155  */
156 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
157 {
158 	if (refcount_dec_and_test(&ctx->refcount)) {
159 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
160 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
161 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
162 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
163 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
164 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
165 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
166 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
167 		mmdrop(ctx->mm);
168 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
169 	}
170 }
171 
172 static inline void msg_init(struct uffd_msg *msg)
173 {
174 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
175 	/*
176 	 * Must use memset to zero out the paddings or kernel data is
177 	 * leaked to userland.
178 	 */
179 	memset(msg, 0, sizeof(struct uffd_msg));
180 }
181 
182 static inline struct uffd_msg userfault_msg(unsigned long address,
183 					    unsigned int flags,
184 					    unsigned long reason,
185 					    unsigned int features)
186 {
187 	struct uffd_msg msg;
188 	msg_init(&msg);
189 	msg.event = UFFD_EVENT_PAGEFAULT;
190 	msg.arg.pagefault.address = address;
191 	if (flags & FAULT_FLAG_WRITE)
192 		/*
193 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
194 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
195 		 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
196 		 * was a read fault, otherwise if set it means it's
197 		 * a write fault.
198 		 */
199 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
200 	if (reason & VM_UFFD_WP)
201 		/*
202 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
203 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
204 		 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
205 		 * a missing fault, otherwise if set it means it's a
206 		 * write protect fault.
207 		 */
208 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
209 	if (features & UFFD_FEATURE_THREAD_ID)
210 		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
211 	return msg;
212 }
213 
214 #ifdef CONFIG_HUGETLB_PAGE
215 /*
216  * Same functionality as userfaultfd_must_wait below with modifications for
217  * hugepmd ranges.
218  */
219 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
220 					 struct vm_area_struct *vma,
221 					 unsigned long address,
222 					 unsigned long flags,
223 					 unsigned long reason)
224 {
225 	struct mm_struct *mm = ctx->mm;
226 	pte_t *ptep, pte;
227 	bool ret = true;
228 
229 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
230 
231 	ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
232 
233 	if (!ptep)
234 		goto out;
235 
236 	ret = false;
237 	pte = huge_ptep_get(ptep);
238 
239 	/*
240 	 * Lockless access: we're in a wait_event so it's ok if it
241 	 * changes under us.
242 	 */
243 	if (huge_pte_none(pte))
244 		ret = true;
245 	if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
246 		ret = true;
247 out:
248 	return ret;
249 }
250 #else
251 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
252 					 struct vm_area_struct *vma,
253 					 unsigned long address,
254 					 unsigned long flags,
255 					 unsigned long reason)
256 {
257 	return false;	/* should never get here */
258 }
259 #endif /* CONFIG_HUGETLB_PAGE */
260 
261 /*
262  * Verify the pagetables are still not ok after having reigstered into
263  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
264  * userfault that has already been resolved, if userfaultfd_read and
265  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
266  * threads.
267  */
268 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
269 					 unsigned long address,
270 					 unsigned long flags,
271 					 unsigned long reason)
272 {
273 	struct mm_struct *mm = ctx->mm;
274 	pgd_t *pgd;
275 	p4d_t *p4d;
276 	pud_t *pud;
277 	pmd_t *pmd, _pmd;
278 	pte_t *pte;
279 	bool ret = true;
280 
281 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
282 
283 	pgd = pgd_offset(mm, address);
284 	if (!pgd_present(*pgd))
285 		goto out;
286 	p4d = p4d_offset(pgd, address);
287 	if (!p4d_present(*p4d))
288 		goto out;
289 	pud = pud_offset(p4d, address);
290 	if (!pud_present(*pud))
291 		goto out;
292 	pmd = pmd_offset(pud, address);
293 	/*
294 	 * READ_ONCE must function as a barrier with narrower scope
295 	 * and it must be equivalent to:
296 	 *	_pmd = *pmd; barrier();
297 	 *
298 	 * This is to deal with the instability (as in
299 	 * pmd_trans_unstable) of the pmd.
300 	 */
301 	_pmd = READ_ONCE(*pmd);
302 	if (pmd_none(_pmd))
303 		goto out;
304 
305 	ret = false;
306 	if (!pmd_present(_pmd))
307 		goto out;
308 
309 	if (pmd_trans_huge(_pmd))
310 		goto out;
311 
312 	/*
313 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
314 	 * and use the standard pte_offset_map() instead of parsing _pmd.
315 	 */
316 	pte = pte_offset_map(pmd, address);
317 	/*
318 	 * Lockless access: we're in a wait_event so it's ok if it
319 	 * changes under us.
320 	 */
321 	if (pte_none(*pte))
322 		ret = true;
323 	pte_unmap(pte);
324 
325 out:
326 	return ret;
327 }
328 
329 /*
330  * The locking rules involved in returning VM_FAULT_RETRY depending on
331  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
332  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
333  * recommendation in __lock_page_or_retry is not an understatement.
334  *
335  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
336  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
337  * not set.
338  *
339  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
340  * set, VM_FAULT_RETRY can still be returned if and only if there are
341  * fatal_signal_pending()s, and the mmap_sem must be released before
342  * returning it.
343  */
344 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
345 {
346 	struct mm_struct *mm = vmf->vma->vm_mm;
347 	struct userfaultfd_ctx *ctx;
348 	struct userfaultfd_wait_queue uwq;
349 	vm_fault_t ret = VM_FAULT_SIGBUS;
350 	bool must_wait, return_to_userland;
351 	long blocking_state;
352 
353 	/*
354 	 * We don't do userfault handling for the final child pid update.
355 	 *
356 	 * We also don't do userfault handling during
357 	 * coredumping. hugetlbfs has the special
358 	 * follow_hugetlb_page() to skip missing pages in the
359 	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
360 	 * the no_page_table() helper in follow_page_mask(), but the
361 	 * shmem_vm_ops->fault method is invoked even during
362 	 * coredumping without mmap_sem and it ends up here.
363 	 */
364 	if (current->flags & (PF_EXITING|PF_DUMPCORE))
365 		goto out;
366 
367 	/*
368 	 * Coredumping runs without mmap_sem so we can only check that
369 	 * the mmap_sem is held, if PF_DUMPCORE was not set.
370 	 */
371 	WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
372 
373 	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
374 	if (!ctx)
375 		goto out;
376 
377 	BUG_ON(ctx->mm != mm);
378 
379 	VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
380 	VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
381 
382 	if (ctx->features & UFFD_FEATURE_SIGBUS)
383 		goto out;
384 
385 	/*
386 	 * If it's already released don't get it. This avoids to loop
387 	 * in __get_user_pages if userfaultfd_release waits on the
388 	 * caller of handle_userfault to release the mmap_sem.
389 	 */
390 	if (unlikely(READ_ONCE(ctx->released))) {
391 		/*
392 		 * Don't return VM_FAULT_SIGBUS in this case, so a non
393 		 * cooperative manager can close the uffd after the
394 		 * last UFFDIO_COPY, without risking to trigger an
395 		 * involuntary SIGBUS if the process was starting the
396 		 * userfaultfd while the userfaultfd was still armed
397 		 * (but after the last UFFDIO_COPY). If the uffd
398 		 * wasn't already closed when the userfault reached
399 		 * this point, that would normally be solved by
400 		 * userfaultfd_must_wait returning 'false'.
401 		 *
402 		 * If we were to return VM_FAULT_SIGBUS here, the non
403 		 * cooperative manager would be instead forced to
404 		 * always call UFFDIO_UNREGISTER before it can safely
405 		 * close the uffd.
406 		 */
407 		ret = VM_FAULT_NOPAGE;
408 		goto out;
409 	}
410 
411 	/*
412 	 * Check that we can return VM_FAULT_RETRY.
413 	 *
414 	 * NOTE: it should become possible to return VM_FAULT_RETRY
415 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
416 	 * -EBUSY failures, if the userfaultfd is to be extended for
417 	 * VM_UFFD_WP tracking and we intend to arm the userfault
418 	 * without first stopping userland access to the memory. For
419 	 * VM_UFFD_MISSING userfaults this is enough for now.
420 	 */
421 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
422 		/*
423 		 * Validate the invariant that nowait must allow retry
424 		 * to be sure not to return SIGBUS erroneously on
425 		 * nowait invocations.
426 		 */
427 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
428 #ifdef CONFIG_DEBUG_VM
429 		if (printk_ratelimit()) {
430 			printk(KERN_WARNING
431 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
432 			       vmf->flags);
433 			dump_stack();
434 		}
435 #endif
436 		goto out;
437 	}
438 
439 	/*
440 	 * Handle nowait, not much to do other than tell it to retry
441 	 * and wait.
442 	 */
443 	ret = VM_FAULT_RETRY;
444 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
445 		goto out;
446 
447 	/* take the reference before dropping the mmap_sem */
448 	userfaultfd_ctx_get(ctx);
449 
450 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
451 	uwq.wq.private = current;
452 	uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
453 			ctx->features);
454 	uwq.ctx = ctx;
455 	uwq.waken = false;
456 
457 	return_to_userland =
458 		(vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
459 		(FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
460 	blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
461 			 TASK_KILLABLE;
462 
463 	spin_lock(&ctx->fault_pending_wqh.lock);
464 	/*
465 	 * After the __add_wait_queue the uwq is visible to userland
466 	 * through poll/read().
467 	 */
468 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
469 	/*
470 	 * The smp_mb() after __set_current_state prevents the reads
471 	 * following the spin_unlock to happen before the list_add in
472 	 * __add_wait_queue.
473 	 */
474 	set_current_state(blocking_state);
475 	spin_unlock(&ctx->fault_pending_wqh.lock);
476 
477 	if (!is_vm_hugetlb_page(vmf->vma))
478 		must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
479 						  reason);
480 	else
481 		must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
482 						       vmf->address,
483 						       vmf->flags, reason);
484 	up_read(&mm->mmap_sem);
485 
486 	if (likely(must_wait && !READ_ONCE(ctx->released) &&
487 		   (return_to_userland ? !signal_pending(current) :
488 		    !fatal_signal_pending(current)))) {
489 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
490 		schedule();
491 		ret |= VM_FAULT_MAJOR;
492 
493 		/*
494 		 * False wakeups can orginate even from rwsem before
495 		 * up_read() however userfaults will wait either for a
496 		 * targeted wakeup on the specific uwq waitqueue from
497 		 * wake_userfault() or for signals or for uffd
498 		 * release.
499 		 */
500 		while (!READ_ONCE(uwq.waken)) {
501 			/*
502 			 * This needs the full smp_store_mb()
503 			 * guarantee as the state write must be
504 			 * visible to other CPUs before reading
505 			 * uwq.waken from other CPUs.
506 			 */
507 			set_current_state(blocking_state);
508 			if (READ_ONCE(uwq.waken) ||
509 			    READ_ONCE(ctx->released) ||
510 			    (return_to_userland ? signal_pending(current) :
511 			     fatal_signal_pending(current)))
512 				break;
513 			schedule();
514 		}
515 	}
516 
517 	__set_current_state(TASK_RUNNING);
518 
519 	if (return_to_userland) {
520 		if (signal_pending(current) &&
521 		    !fatal_signal_pending(current)) {
522 			/*
523 			 * If we got a SIGSTOP or SIGCONT and this is
524 			 * a normal userland page fault, just let
525 			 * userland return so the signal will be
526 			 * handled and gdb debugging works.  The page
527 			 * fault code immediately after we return from
528 			 * this function is going to release the
529 			 * mmap_sem and it's not depending on it
530 			 * (unlike gup would if we were not to return
531 			 * VM_FAULT_RETRY).
532 			 *
533 			 * If a fatal signal is pending we still take
534 			 * the streamlined VM_FAULT_RETRY failure path
535 			 * and there's no need to retake the mmap_sem
536 			 * in such case.
537 			 */
538 			down_read(&mm->mmap_sem);
539 			ret = VM_FAULT_NOPAGE;
540 		}
541 	}
542 
543 	/*
544 	 * Here we race with the list_del; list_add in
545 	 * userfaultfd_ctx_read(), however because we don't ever run
546 	 * list_del_init() to refile across the two lists, the prev
547 	 * and next pointers will never point to self. list_add also
548 	 * would never let any of the two pointers to point to
549 	 * self. So list_empty_careful won't risk to see both pointers
550 	 * pointing to self at any time during the list refile. The
551 	 * only case where list_del_init() is called is the full
552 	 * removal in the wake function and there we don't re-list_add
553 	 * and it's fine not to block on the spinlock. The uwq on this
554 	 * kernel stack can be released after the list_del_init.
555 	 */
556 	if (!list_empty_careful(&uwq.wq.entry)) {
557 		spin_lock(&ctx->fault_pending_wqh.lock);
558 		/*
559 		 * No need of list_del_init(), the uwq on the stack
560 		 * will be freed shortly anyway.
561 		 */
562 		list_del(&uwq.wq.entry);
563 		spin_unlock(&ctx->fault_pending_wqh.lock);
564 	}
565 
566 	/*
567 	 * ctx may go away after this if the userfault pseudo fd is
568 	 * already released.
569 	 */
570 	userfaultfd_ctx_put(ctx);
571 
572 out:
573 	return ret;
574 }
575 
576 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
577 					      struct userfaultfd_wait_queue *ewq)
578 {
579 	struct userfaultfd_ctx *release_new_ctx;
580 
581 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
582 		goto out;
583 
584 	ewq->ctx = ctx;
585 	init_waitqueue_entry(&ewq->wq, current);
586 	release_new_ctx = NULL;
587 
588 	spin_lock(&ctx->event_wqh.lock);
589 	/*
590 	 * After the __add_wait_queue the uwq is visible to userland
591 	 * through poll/read().
592 	 */
593 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
594 	for (;;) {
595 		set_current_state(TASK_KILLABLE);
596 		if (ewq->msg.event == 0)
597 			break;
598 		if (READ_ONCE(ctx->released) ||
599 		    fatal_signal_pending(current)) {
600 			/*
601 			 * &ewq->wq may be queued in fork_event, but
602 			 * __remove_wait_queue ignores the head
603 			 * parameter. It would be a problem if it
604 			 * didn't.
605 			 */
606 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
607 			if (ewq->msg.event == UFFD_EVENT_FORK) {
608 				struct userfaultfd_ctx *new;
609 
610 				new = (struct userfaultfd_ctx *)
611 					(unsigned long)
612 					ewq->msg.arg.reserved.reserved1;
613 				release_new_ctx = new;
614 			}
615 			break;
616 		}
617 
618 		spin_unlock(&ctx->event_wqh.lock);
619 
620 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
621 		schedule();
622 
623 		spin_lock(&ctx->event_wqh.lock);
624 	}
625 	__set_current_state(TASK_RUNNING);
626 	spin_unlock(&ctx->event_wqh.lock);
627 
628 	if (release_new_ctx) {
629 		struct vm_area_struct *vma;
630 		struct mm_struct *mm = release_new_ctx->mm;
631 
632 		/* the various vma->vm_userfaultfd_ctx still points to it */
633 		down_write(&mm->mmap_sem);
634 		/* no task can run (and in turn coredump) yet */
635 		VM_WARN_ON(!mmget_still_valid(mm));
636 		for (vma = mm->mmap; vma; vma = vma->vm_next)
637 			if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
638 				vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
639 				vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
640 			}
641 		up_write(&mm->mmap_sem);
642 
643 		userfaultfd_ctx_put(release_new_ctx);
644 	}
645 
646 	/*
647 	 * ctx may go away after this if the userfault pseudo fd is
648 	 * already released.
649 	 */
650 out:
651 	WRITE_ONCE(ctx->mmap_changing, false);
652 	userfaultfd_ctx_put(ctx);
653 }
654 
655 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
656 				       struct userfaultfd_wait_queue *ewq)
657 {
658 	ewq->msg.event = 0;
659 	wake_up_locked(&ctx->event_wqh);
660 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
661 }
662 
663 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
664 {
665 	struct userfaultfd_ctx *ctx = NULL, *octx;
666 	struct userfaultfd_fork_ctx *fctx;
667 
668 	octx = vma->vm_userfaultfd_ctx.ctx;
669 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
670 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
671 		vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
672 		return 0;
673 	}
674 
675 	list_for_each_entry(fctx, fcs, list)
676 		if (fctx->orig == octx) {
677 			ctx = fctx->new;
678 			break;
679 		}
680 
681 	if (!ctx) {
682 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
683 		if (!fctx)
684 			return -ENOMEM;
685 
686 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
687 		if (!ctx) {
688 			kfree(fctx);
689 			return -ENOMEM;
690 		}
691 
692 		refcount_set(&ctx->refcount, 1);
693 		ctx->flags = octx->flags;
694 		ctx->state = UFFD_STATE_RUNNING;
695 		ctx->features = octx->features;
696 		ctx->released = false;
697 		ctx->mmap_changing = false;
698 		ctx->mm = vma->vm_mm;
699 		mmgrab(ctx->mm);
700 
701 		userfaultfd_ctx_get(octx);
702 		WRITE_ONCE(octx->mmap_changing, true);
703 		fctx->orig = octx;
704 		fctx->new = ctx;
705 		list_add_tail(&fctx->list, fcs);
706 	}
707 
708 	vma->vm_userfaultfd_ctx.ctx = ctx;
709 	return 0;
710 }
711 
712 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
713 {
714 	struct userfaultfd_ctx *ctx = fctx->orig;
715 	struct userfaultfd_wait_queue ewq;
716 
717 	msg_init(&ewq.msg);
718 
719 	ewq.msg.event = UFFD_EVENT_FORK;
720 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
721 
722 	userfaultfd_event_wait_completion(ctx, &ewq);
723 }
724 
725 void dup_userfaultfd_complete(struct list_head *fcs)
726 {
727 	struct userfaultfd_fork_ctx *fctx, *n;
728 
729 	list_for_each_entry_safe(fctx, n, fcs, list) {
730 		dup_fctx(fctx);
731 		list_del(&fctx->list);
732 		kfree(fctx);
733 	}
734 }
735 
736 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
737 			     struct vm_userfaultfd_ctx *vm_ctx)
738 {
739 	struct userfaultfd_ctx *ctx;
740 
741 	ctx = vma->vm_userfaultfd_ctx.ctx;
742 
743 	if (!ctx)
744 		return;
745 
746 	if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
747 		vm_ctx->ctx = ctx;
748 		userfaultfd_ctx_get(ctx);
749 		WRITE_ONCE(ctx->mmap_changing, true);
750 	} else {
751 		/* Drop uffd context if remap feature not enabled */
752 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
753 		vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
754 	}
755 }
756 
757 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
758 				 unsigned long from, unsigned long to,
759 				 unsigned long len)
760 {
761 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
762 	struct userfaultfd_wait_queue ewq;
763 
764 	if (!ctx)
765 		return;
766 
767 	if (to & ~PAGE_MASK) {
768 		userfaultfd_ctx_put(ctx);
769 		return;
770 	}
771 
772 	msg_init(&ewq.msg);
773 
774 	ewq.msg.event = UFFD_EVENT_REMAP;
775 	ewq.msg.arg.remap.from = from;
776 	ewq.msg.arg.remap.to = to;
777 	ewq.msg.arg.remap.len = len;
778 
779 	userfaultfd_event_wait_completion(ctx, &ewq);
780 }
781 
782 bool userfaultfd_remove(struct vm_area_struct *vma,
783 			unsigned long start, unsigned long end)
784 {
785 	struct mm_struct *mm = vma->vm_mm;
786 	struct userfaultfd_ctx *ctx;
787 	struct userfaultfd_wait_queue ewq;
788 
789 	ctx = vma->vm_userfaultfd_ctx.ctx;
790 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
791 		return true;
792 
793 	userfaultfd_ctx_get(ctx);
794 	WRITE_ONCE(ctx->mmap_changing, true);
795 	up_read(&mm->mmap_sem);
796 
797 	msg_init(&ewq.msg);
798 
799 	ewq.msg.event = UFFD_EVENT_REMOVE;
800 	ewq.msg.arg.remove.start = start;
801 	ewq.msg.arg.remove.end = end;
802 
803 	userfaultfd_event_wait_completion(ctx, &ewq);
804 
805 	return false;
806 }
807 
808 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
809 			  unsigned long start, unsigned long end)
810 {
811 	struct userfaultfd_unmap_ctx *unmap_ctx;
812 
813 	list_for_each_entry(unmap_ctx, unmaps, list)
814 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
815 		    unmap_ctx->end == end)
816 			return true;
817 
818 	return false;
819 }
820 
821 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
822 			   unsigned long start, unsigned long end,
823 			   struct list_head *unmaps)
824 {
825 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
826 		struct userfaultfd_unmap_ctx *unmap_ctx;
827 		struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
828 
829 		if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
830 		    has_unmap_ctx(ctx, unmaps, start, end))
831 			continue;
832 
833 		unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
834 		if (!unmap_ctx)
835 			return -ENOMEM;
836 
837 		userfaultfd_ctx_get(ctx);
838 		WRITE_ONCE(ctx->mmap_changing, true);
839 		unmap_ctx->ctx = ctx;
840 		unmap_ctx->start = start;
841 		unmap_ctx->end = end;
842 		list_add_tail(&unmap_ctx->list, unmaps);
843 	}
844 
845 	return 0;
846 }
847 
848 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
849 {
850 	struct userfaultfd_unmap_ctx *ctx, *n;
851 	struct userfaultfd_wait_queue ewq;
852 
853 	list_for_each_entry_safe(ctx, n, uf, list) {
854 		msg_init(&ewq.msg);
855 
856 		ewq.msg.event = UFFD_EVENT_UNMAP;
857 		ewq.msg.arg.remove.start = ctx->start;
858 		ewq.msg.arg.remove.end = ctx->end;
859 
860 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
861 
862 		list_del(&ctx->list);
863 		kfree(ctx);
864 	}
865 }
866 
867 static int userfaultfd_release(struct inode *inode, struct file *file)
868 {
869 	struct userfaultfd_ctx *ctx = file->private_data;
870 	struct mm_struct *mm = ctx->mm;
871 	struct vm_area_struct *vma, *prev;
872 	/* len == 0 means wake all */
873 	struct userfaultfd_wake_range range = { .len = 0, };
874 	unsigned long new_flags;
875 
876 	WRITE_ONCE(ctx->released, true);
877 
878 	if (!mmget_not_zero(mm))
879 		goto wakeup;
880 
881 	/*
882 	 * Flush page faults out of all CPUs. NOTE: all page faults
883 	 * must be retried without returning VM_FAULT_SIGBUS if
884 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
885 	 * changes while handle_userfault released the mmap_sem. So
886 	 * it's critical that released is set to true (above), before
887 	 * taking the mmap_sem for writing.
888 	 */
889 	down_write(&mm->mmap_sem);
890 	if (!mmget_still_valid(mm))
891 		goto skip_mm;
892 	prev = NULL;
893 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
894 		cond_resched();
895 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
896 		       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
897 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
898 			prev = vma;
899 			continue;
900 		}
901 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
902 		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
903 				 new_flags, vma->anon_vma,
904 				 vma->vm_file, vma->vm_pgoff,
905 				 vma_policy(vma),
906 				 NULL_VM_UFFD_CTX);
907 		if (prev)
908 			vma = prev;
909 		else
910 			prev = vma;
911 		vma->vm_flags = new_flags;
912 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
913 	}
914 skip_mm:
915 	up_write(&mm->mmap_sem);
916 	mmput(mm);
917 wakeup:
918 	/*
919 	 * After no new page faults can wait on this fault_*wqh, flush
920 	 * the last page faults that may have been already waiting on
921 	 * the fault_*wqh.
922 	 */
923 	spin_lock(&ctx->fault_pending_wqh.lock);
924 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
925 	__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
926 	spin_unlock(&ctx->fault_pending_wqh.lock);
927 
928 	/* Flush pending events that may still wait on event_wqh */
929 	wake_up_all(&ctx->event_wqh);
930 
931 	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
932 	userfaultfd_ctx_put(ctx);
933 	return 0;
934 }
935 
936 /* fault_pending_wqh.lock must be hold by the caller */
937 static inline struct userfaultfd_wait_queue *find_userfault_in(
938 		wait_queue_head_t *wqh)
939 {
940 	wait_queue_entry_t *wq;
941 	struct userfaultfd_wait_queue *uwq;
942 
943 	lockdep_assert_held(&wqh->lock);
944 
945 	uwq = NULL;
946 	if (!waitqueue_active(wqh))
947 		goto out;
948 	/* walk in reverse to provide FIFO behavior to read userfaults */
949 	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
950 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
951 out:
952 	return uwq;
953 }
954 
955 static inline struct userfaultfd_wait_queue *find_userfault(
956 		struct userfaultfd_ctx *ctx)
957 {
958 	return find_userfault_in(&ctx->fault_pending_wqh);
959 }
960 
961 static inline struct userfaultfd_wait_queue *find_userfault_evt(
962 		struct userfaultfd_ctx *ctx)
963 {
964 	return find_userfault_in(&ctx->event_wqh);
965 }
966 
967 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
968 {
969 	struct userfaultfd_ctx *ctx = file->private_data;
970 	__poll_t ret;
971 
972 	poll_wait(file, &ctx->fd_wqh, wait);
973 
974 	switch (ctx->state) {
975 	case UFFD_STATE_WAIT_API:
976 		return EPOLLERR;
977 	case UFFD_STATE_RUNNING:
978 		/*
979 		 * poll() never guarantees that read won't block.
980 		 * userfaults can be waken before they're read().
981 		 */
982 		if (unlikely(!(file->f_flags & O_NONBLOCK)))
983 			return EPOLLERR;
984 		/*
985 		 * lockless access to see if there are pending faults
986 		 * __pollwait last action is the add_wait_queue but
987 		 * the spin_unlock would allow the waitqueue_active to
988 		 * pass above the actual list_add inside
989 		 * add_wait_queue critical section. So use a full
990 		 * memory barrier to serialize the list_add write of
991 		 * add_wait_queue() with the waitqueue_active read
992 		 * below.
993 		 */
994 		ret = 0;
995 		smp_mb();
996 		if (waitqueue_active(&ctx->fault_pending_wqh))
997 			ret = EPOLLIN;
998 		else if (waitqueue_active(&ctx->event_wqh))
999 			ret = EPOLLIN;
1000 
1001 		return ret;
1002 	default:
1003 		WARN_ON_ONCE(1);
1004 		return EPOLLERR;
1005 	}
1006 }
1007 
1008 static const struct file_operations userfaultfd_fops;
1009 
1010 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
1011 				  struct userfaultfd_ctx *new,
1012 				  struct uffd_msg *msg)
1013 {
1014 	int fd;
1015 
1016 	fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1017 			      O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
1018 	if (fd < 0)
1019 		return fd;
1020 
1021 	msg->arg.reserved.reserved1 = 0;
1022 	msg->arg.fork.ufd = fd;
1023 	return 0;
1024 }
1025 
1026 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1027 				    struct uffd_msg *msg)
1028 {
1029 	ssize_t ret;
1030 	DECLARE_WAITQUEUE(wait, current);
1031 	struct userfaultfd_wait_queue *uwq;
1032 	/*
1033 	 * Handling fork event requires sleeping operations, so
1034 	 * we drop the event_wqh lock, then do these ops, then
1035 	 * lock it back and wake up the waiter. While the lock is
1036 	 * dropped the ewq may go away so we keep track of it
1037 	 * carefully.
1038 	 */
1039 	LIST_HEAD(fork_event);
1040 	struct userfaultfd_ctx *fork_nctx = NULL;
1041 
1042 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1043 	spin_lock_irq(&ctx->fd_wqh.lock);
1044 	__add_wait_queue(&ctx->fd_wqh, &wait);
1045 	for (;;) {
1046 		set_current_state(TASK_INTERRUPTIBLE);
1047 		spin_lock(&ctx->fault_pending_wqh.lock);
1048 		uwq = find_userfault(ctx);
1049 		if (uwq) {
1050 			/*
1051 			 * Use a seqcount to repeat the lockless check
1052 			 * in wake_userfault() to avoid missing
1053 			 * wakeups because during the refile both
1054 			 * waitqueue could become empty if this is the
1055 			 * only userfault.
1056 			 */
1057 			write_seqcount_begin(&ctx->refile_seq);
1058 
1059 			/*
1060 			 * The fault_pending_wqh.lock prevents the uwq
1061 			 * to disappear from under us.
1062 			 *
1063 			 * Refile this userfault from
1064 			 * fault_pending_wqh to fault_wqh, it's not
1065 			 * pending anymore after we read it.
1066 			 *
1067 			 * Use list_del() by hand (as
1068 			 * userfaultfd_wake_function also uses
1069 			 * list_del_init() by hand) to be sure nobody
1070 			 * changes __remove_wait_queue() to use
1071 			 * list_del_init() in turn breaking the
1072 			 * !list_empty_careful() check in
1073 			 * handle_userfault(). The uwq->wq.head list
1074 			 * must never be empty at any time during the
1075 			 * refile, or the waitqueue could disappear
1076 			 * from under us. The "wait_queue_head_t"
1077 			 * parameter of __remove_wait_queue() is unused
1078 			 * anyway.
1079 			 */
1080 			list_del(&uwq->wq.entry);
1081 			add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1082 
1083 			write_seqcount_end(&ctx->refile_seq);
1084 
1085 			/* careful to always initialize msg if ret == 0 */
1086 			*msg = uwq->msg;
1087 			spin_unlock(&ctx->fault_pending_wqh.lock);
1088 			ret = 0;
1089 			break;
1090 		}
1091 		spin_unlock(&ctx->fault_pending_wqh.lock);
1092 
1093 		spin_lock(&ctx->event_wqh.lock);
1094 		uwq = find_userfault_evt(ctx);
1095 		if (uwq) {
1096 			*msg = uwq->msg;
1097 
1098 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1099 				fork_nctx = (struct userfaultfd_ctx *)
1100 					(unsigned long)
1101 					uwq->msg.arg.reserved.reserved1;
1102 				list_move(&uwq->wq.entry, &fork_event);
1103 				/*
1104 				 * fork_nctx can be freed as soon as
1105 				 * we drop the lock, unless we take a
1106 				 * reference on it.
1107 				 */
1108 				userfaultfd_ctx_get(fork_nctx);
1109 				spin_unlock(&ctx->event_wqh.lock);
1110 				ret = 0;
1111 				break;
1112 			}
1113 
1114 			userfaultfd_event_complete(ctx, uwq);
1115 			spin_unlock(&ctx->event_wqh.lock);
1116 			ret = 0;
1117 			break;
1118 		}
1119 		spin_unlock(&ctx->event_wqh.lock);
1120 
1121 		if (signal_pending(current)) {
1122 			ret = -ERESTARTSYS;
1123 			break;
1124 		}
1125 		if (no_wait) {
1126 			ret = -EAGAIN;
1127 			break;
1128 		}
1129 		spin_unlock_irq(&ctx->fd_wqh.lock);
1130 		schedule();
1131 		spin_lock_irq(&ctx->fd_wqh.lock);
1132 	}
1133 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1134 	__set_current_state(TASK_RUNNING);
1135 	spin_unlock_irq(&ctx->fd_wqh.lock);
1136 
1137 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1138 		ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1139 		spin_lock(&ctx->event_wqh.lock);
1140 		if (!list_empty(&fork_event)) {
1141 			/*
1142 			 * The fork thread didn't abort, so we can
1143 			 * drop the temporary refcount.
1144 			 */
1145 			userfaultfd_ctx_put(fork_nctx);
1146 
1147 			uwq = list_first_entry(&fork_event,
1148 					       typeof(*uwq),
1149 					       wq.entry);
1150 			/*
1151 			 * If fork_event list wasn't empty and in turn
1152 			 * the event wasn't already released by fork
1153 			 * (the event is allocated on fork kernel
1154 			 * stack), put the event back to its place in
1155 			 * the event_wq. fork_event head will be freed
1156 			 * as soon as we return so the event cannot
1157 			 * stay queued there no matter the current
1158 			 * "ret" value.
1159 			 */
1160 			list_del(&uwq->wq.entry);
1161 			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1162 
1163 			/*
1164 			 * Leave the event in the waitqueue and report
1165 			 * error to userland if we failed to resolve
1166 			 * the userfault fork.
1167 			 */
1168 			if (likely(!ret))
1169 				userfaultfd_event_complete(ctx, uwq);
1170 		} else {
1171 			/*
1172 			 * Here the fork thread aborted and the
1173 			 * refcount from the fork thread on fork_nctx
1174 			 * has already been released. We still hold
1175 			 * the reference we took before releasing the
1176 			 * lock above. If resolve_userfault_fork
1177 			 * failed we've to drop it because the
1178 			 * fork_nctx has to be freed in such case. If
1179 			 * it succeeded we'll hold it because the new
1180 			 * uffd references it.
1181 			 */
1182 			if (ret)
1183 				userfaultfd_ctx_put(fork_nctx);
1184 		}
1185 		spin_unlock(&ctx->event_wqh.lock);
1186 	}
1187 
1188 	return ret;
1189 }
1190 
1191 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1192 				size_t count, loff_t *ppos)
1193 {
1194 	struct userfaultfd_ctx *ctx = file->private_data;
1195 	ssize_t _ret, ret = 0;
1196 	struct uffd_msg msg;
1197 	int no_wait = file->f_flags & O_NONBLOCK;
1198 
1199 	if (ctx->state == UFFD_STATE_WAIT_API)
1200 		return -EINVAL;
1201 
1202 	for (;;) {
1203 		if (count < sizeof(msg))
1204 			return ret ? ret : -EINVAL;
1205 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1206 		if (_ret < 0)
1207 			return ret ? ret : _ret;
1208 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1209 			return ret ? ret : -EFAULT;
1210 		ret += sizeof(msg);
1211 		buf += sizeof(msg);
1212 		count -= sizeof(msg);
1213 		/*
1214 		 * Allow to read more than one fault at time but only
1215 		 * block if waiting for the very first one.
1216 		 */
1217 		no_wait = O_NONBLOCK;
1218 	}
1219 }
1220 
1221 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1222 			     struct userfaultfd_wake_range *range)
1223 {
1224 	spin_lock(&ctx->fault_pending_wqh.lock);
1225 	/* wake all in the range and autoremove */
1226 	if (waitqueue_active(&ctx->fault_pending_wqh))
1227 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1228 				     range);
1229 	if (waitqueue_active(&ctx->fault_wqh))
1230 		__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1231 	spin_unlock(&ctx->fault_pending_wqh.lock);
1232 }
1233 
1234 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1235 					   struct userfaultfd_wake_range *range)
1236 {
1237 	unsigned seq;
1238 	bool need_wakeup;
1239 
1240 	/*
1241 	 * To be sure waitqueue_active() is not reordered by the CPU
1242 	 * before the pagetable update, use an explicit SMP memory
1243 	 * barrier here. PT lock release or up_read(mmap_sem) still
1244 	 * have release semantics that can allow the
1245 	 * waitqueue_active() to be reordered before the pte update.
1246 	 */
1247 	smp_mb();
1248 
1249 	/*
1250 	 * Use waitqueue_active because it's very frequent to
1251 	 * change the address space atomically even if there are no
1252 	 * userfaults yet. So we take the spinlock only when we're
1253 	 * sure we've userfaults to wake.
1254 	 */
1255 	do {
1256 		seq = read_seqcount_begin(&ctx->refile_seq);
1257 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1258 			waitqueue_active(&ctx->fault_wqh);
1259 		cond_resched();
1260 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1261 	if (need_wakeup)
1262 		__wake_userfault(ctx, range);
1263 }
1264 
1265 static __always_inline int validate_range(struct mm_struct *mm,
1266 					  __u64 start, __u64 len)
1267 {
1268 	__u64 task_size = mm->task_size;
1269 
1270 	if (start & ~PAGE_MASK)
1271 		return -EINVAL;
1272 	if (len & ~PAGE_MASK)
1273 		return -EINVAL;
1274 	if (!len)
1275 		return -EINVAL;
1276 	if (start < mmap_min_addr)
1277 		return -EINVAL;
1278 	if (start >= task_size)
1279 		return -EINVAL;
1280 	if (len > task_size - start)
1281 		return -EINVAL;
1282 	return 0;
1283 }
1284 
1285 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1286 {
1287 	return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1288 		vma_is_shmem(vma);
1289 }
1290 
1291 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1292 				unsigned long arg)
1293 {
1294 	struct mm_struct *mm = ctx->mm;
1295 	struct vm_area_struct *vma, *prev, *cur;
1296 	int ret;
1297 	struct uffdio_register uffdio_register;
1298 	struct uffdio_register __user *user_uffdio_register;
1299 	unsigned long vm_flags, new_flags;
1300 	bool found;
1301 	bool basic_ioctls;
1302 	unsigned long start, end, vma_end;
1303 
1304 	user_uffdio_register = (struct uffdio_register __user *) arg;
1305 
1306 	ret = -EFAULT;
1307 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1308 			   sizeof(uffdio_register)-sizeof(__u64)))
1309 		goto out;
1310 
1311 	ret = -EINVAL;
1312 	if (!uffdio_register.mode)
1313 		goto out;
1314 	if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1315 				     UFFDIO_REGISTER_MODE_WP))
1316 		goto out;
1317 	vm_flags = 0;
1318 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1319 		vm_flags |= VM_UFFD_MISSING;
1320 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1321 		vm_flags |= VM_UFFD_WP;
1322 		/*
1323 		 * FIXME: remove the below error constraint by
1324 		 * implementing the wprotect tracking mode.
1325 		 */
1326 		ret = -EINVAL;
1327 		goto out;
1328 	}
1329 
1330 	ret = validate_range(mm, uffdio_register.range.start,
1331 			     uffdio_register.range.len);
1332 	if (ret)
1333 		goto out;
1334 
1335 	start = uffdio_register.range.start;
1336 	end = start + uffdio_register.range.len;
1337 
1338 	ret = -ENOMEM;
1339 	if (!mmget_not_zero(mm))
1340 		goto out;
1341 
1342 	down_write(&mm->mmap_sem);
1343 	if (!mmget_still_valid(mm))
1344 		goto out_unlock;
1345 	vma = find_vma_prev(mm, start, &prev);
1346 	if (!vma)
1347 		goto out_unlock;
1348 
1349 	/* check that there's at least one vma in the range */
1350 	ret = -EINVAL;
1351 	if (vma->vm_start >= end)
1352 		goto out_unlock;
1353 
1354 	/*
1355 	 * If the first vma contains huge pages, make sure start address
1356 	 * is aligned to huge page size.
1357 	 */
1358 	if (is_vm_hugetlb_page(vma)) {
1359 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1360 
1361 		if (start & (vma_hpagesize - 1))
1362 			goto out_unlock;
1363 	}
1364 
1365 	/*
1366 	 * Search for not compatible vmas.
1367 	 */
1368 	found = false;
1369 	basic_ioctls = false;
1370 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1371 		cond_resched();
1372 
1373 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1374 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1375 
1376 		/* check not compatible vmas */
1377 		ret = -EINVAL;
1378 		if (!vma_can_userfault(cur))
1379 			goto out_unlock;
1380 
1381 		/*
1382 		 * UFFDIO_COPY will fill file holes even without
1383 		 * PROT_WRITE. This check enforces that if this is a
1384 		 * MAP_SHARED, the process has write permission to the backing
1385 		 * file. If VM_MAYWRITE is set it also enforces that on a
1386 		 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1387 		 * F_WRITE_SEAL can be taken until the vma is destroyed.
1388 		 */
1389 		ret = -EPERM;
1390 		if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1391 			goto out_unlock;
1392 
1393 		/*
1394 		 * If this vma contains ending address, and huge pages
1395 		 * check alignment.
1396 		 */
1397 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1398 		    end > cur->vm_start) {
1399 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1400 
1401 			ret = -EINVAL;
1402 
1403 			if (end & (vma_hpagesize - 1))
1404 				goto out_unlock;
1405 		}
1406 
1407 		/*
1408 		 * Check that this vma isn't already owned by a
1409 		 * different userfaultfd. We can't allow more than one
1410 		 * userfaultfd to own a single vma simultaneously or we
1411 		 * wouldn't know which one to deliver the userfaults to.
1412 		 */
1413 		ret = -EBUSY;
1414 		if (cur->vm_userfaultfd_ctx.ctx &&
1415 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1416 			goto out_unlock;
1417 
1418 		/*
1419 		 * Note vmas containing huge pages
1420 		 */
1421 		if (is_vm_hugetlb_page(cur))
1422 			basic_ioctls = true;
1423 
1424 		found = true;
1425 	}
1426 	BUG_ON(!found);
1427 
1428 	if (vma->vm_start < start)
1429 		prev = vma;
1430 
1431 	ret = 0;
1432 	do {
1433 		cond_resched();
1434 
1435 		BUG_ON(!vma_can_userfault(vma));
1436 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1437 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1438 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1439 
1440 		/*
1441 		 * Nothing to do: this vma is already registered into this
1442 		 * userfaultfd and with the right tracking mode too.
1443 		 */
1444 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1445 		    (vma->vm_flags & vm_flags) == vm_flags)
1446 			goto skip;
1447 
1448 		if (vma->vm_start > start)
1449 			start = vma->vm_start;
1450 		vma_end = min(end, vma->vm_end);
1451 
1452 		new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1453 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1454 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1455 				 vma_policy(vma),
1456 				 ((struct vm_userfaultfd_ctx){ ctx }));
1457 		if (prev) {
1458 			vma = prev;
1459 			goto next;
1460 		}
1461 		if (vma->vm_start < start) {
1462 			ret = split_vma(mm, vma, start, 1);
1463 			if (ret)
1464 				break;
1465 		}
1466 		if (vma->vm_end > end) {
1467 			ret = split_vma(mm, vma, end, 0);
1468 			if (ret)
1469 				break;
1470 		}
1471 	next:
1472 		/*
1473 		 * In the vma_merge() successful mprotect-like case 8:
1474 		 * the next vma was merged into the current one and
1475 		 * the current one has not been updated yet.
1476 		 */
1477 		vma->vm_flags = new_flags;
1478 		vma->vm_userfaultfd_ctx.ctx = ctx;
1479 
1480 	skip:
1481 		prev = vma;
1482 		start = vma->vm_end;
1483 		vma = vma->vm_next;
1484 	} while (vma && vma->vm_start < end);
1485 out_unlock:
1486 	up_write(&mm->mmap_sem);
1487 	mmput(mm);
1488 	if (!ret) {
1489 		/*
1490 		 * Now that we scanned all vmas we can already tell
1491 		 * userland which ioctls methods are guaranteed to
1492 		 * succeed on this range.
1493 		 */
1494 		if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1495 			     UFFD_API_RANGE_IOCTLS,
1496 			     &user_uffdio_register->ioctls))
1497 			ret = -EFAULT;
1498 	}
1499 out:
1500 	return ret;
1501 }
1502 
1503 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1504 				  unsigned long arg)
1505 {
1506 	struct mm_struct *mm = ctx->mm;
1507 	struct vm_area_struct *vma, *prev, *cur;
1508 	int ret;
1509 	struct uffdio_range uffdio_unregister;
1510 	unsigned long new_flags;
1511 	bool found;
1512 	unsigned long start, end, vma_end;
1513 	const void __user *buf = (void __user *)arg;
1514 
1515 	ret = -EFAULT;
1516 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1517 		goto out;
1518 
1519 	ret = validate_range(mm, uffdio_unregister.start,
1520 			     uffdio_unregister.len);
1521 	if (ret)
1522 		goto out;
1523 
1524 	start = uffdio_unregister.start;
1525 	end = start + uffdio_unregister.len;
1526 
1527 	ret = -ENOMEM;
1528 	if (!mmget_not_zero(mm))
1529 		goto out;
1530 
1531 	down_write(&mm->mmap_sem);
1532 	if (!mmget_still_valid(mm))
1533 		goto out_unlock;
1534 	vma = find_vma_prev(mm, start, &prev);
1535 	if (!vma)
1536 		goto out_unlock;
1537 
1538 	/* check that there's at least one vma in the range */
1539 	ret = -EINVAL;
1540 	if (vma->vm_start >= end)
1541 		goto out_unlock;
1542 
1543 	/*
1544 	 * If the first vma contains huge pages, make sure start address
1545 	 * is aligned to huge page size.
1546 	 */
1547 	if (is_vm_hugetlb_page(vma)) {
1548 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1549 
1550 		if (start & (vma_hpagesize - 1))
1551 			goto out_unlock;
1552 	}
1553 
1554 	/*
1555 	 * Search for not compatible vmas.
1556 	 */
1557 	found = false;
1558 	ret = -EINVAL;
1559 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1560 		cond_resched();
1561 
1562 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1563 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1564 
1565 		/*
1566 		 * Check not compatible vmas, not strictly required
1567 		 * here as not compatible vmas cannot have an
1568 		 * userfaultfd_ctx registered on them, but this
1569 		 * provides for more strict behavior to notice
1570 		 * unregistration errors.
1571 		 */
1572 		if (!vma_can_userfault(cur))
1573 			goto out_unlock;
1574 
1575 		found = true;
1576 	}
1577 	BUG_ON(!found);
1578 
1579 	if (vma->vm_start < start)
1580 		prev = vma;
1581 
1582 	ret = 0;
1583 	do {
1584 		cond_resched();
1585 
1586 		BUG_ON(!vma_can_userfault(vma));
1587 
1588 		/*
1589 		 * Nothing to do: this vma is already registered into this
1590 		 * userfaultfd and with the right tracking mode too.
1591 		 */
1592 		if (!vma->vm_userfaultfd_ctx.ctx)
1593 			goto skip;
1594 
1595 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1596 
1597 		if (vma->vm_start > start)
1598 			start = vma->vm_start;
1599 		vma_end = min(end, vma->vm_end);
1600 
1601 		if (userfaultfd_missing(vma)) {
1602 			/*
1603 			 * Wake any concurrent pending userfault while
1604 			 * we unregister, so they will not hang
1605 			 * permanently and it avoids userland to call
1606 			 * UFFDIO_WAKE explicitly.
1607 			 */
1608 			struct userfaultfd_wake_range range;
1609 			range.start = start;
1610 			range.len = vma_end - start;
1611 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1612 		}
1613 
1614 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1615 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1616 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1617 				 vma_policy(vma),
1618 				 NULL_VM_UFFD_CTX);
1619 		if (prev) {
1620 			vma = prev;
1621 			goto next;
1622 		}
1623 		if (vma->vm_start < start) {
1624 			ret = split_vma(mm, vma, start, 1);
1625 			if (ret)
1626 				break;
1627 		}
1628 		if (vma->vm_end > end) {
1629 			ret = split_vma(mm, vma, end, 0);
1630 			if (ret)
1631 				break;
1632 		}
1633 	next:
1634 		/*
1635 		 * In the vma_merge() successful mprotect-like case 8:
1636 		 * the next vma was merged into the current one and
1637 		 * the current one has not been updated yet.
1638 		 */
1639 		vma->vm_flags = new_flags;
1640 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1641 
1642 	skip:
1643 		prev = vma;
1644 		start = vma->vm_end;
1645 		vma = vma->vm_next;
1646 	} while (vma && vma->vm_start < end);
1647 out_unlock:
1648 	up_write(&mm->mmap_sem);
1649 	mmput(mm);
1650 out:
1651 	return ret;
1652 }
1653 
1654 /*
1655  * userfaultfd_wake may be used in combination with the
1656  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1657  */
1658 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1659 			    unsigned long arg)
1660 {
1661 	int ret;
1662 	struct uffdio_range uffdio_wake;
1663 	struct userfaultfd_wake_range range;
1664 	const void __user *buf = (void __user *)arg;
1665 
1666 	ret = -EFAULT;
1667 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1668 		goto out;
1669 
1670 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1671 	if (ret)
1672 		goto out;
1673 
1674 	range.start = uffdio_wake.start;
1675 	range.len = uffdio_wake.len;
1676 
1677 	/*
1678 	 * len == 0 means wake all and we don't want to wake all here,
1679 	 * so check it again to be sure.
1680 	 */
1681 	VM_BUG_ON(!range.len);
1682 
1683 	wake_userfault(ctx, &range);
1684 	ret = 0;
1685 
1686 out:
1687 	return ret;
1688 }
1689 
1690 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1691 			    unsigned long arg)
1692 {
1693 	__s64 ret;
1694 	struct uffdio_copy uffdio_copy;
1695 	struct uffdio_copy __user *user_uffdio_copy;
1696 	struct userfaultfd_wake_range range;
1697 
1698 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1699 
1700 	ret = -EAGAIN;
1701 	if (READ_ONCE(ctx->mmap_changing))
1702 		goto out;
1703 
1704 	ret = -EFAULT;
1705 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1706 			   /* don't copy "copy" last field */
1707 			   sizeof(uffdio_copy)-sizeof(__s64)))
1708 		goto out;
1709 
1710 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1711 	if (ret)
1712 		goto out;
1713 	/*
1714 	 * double check for wraparound just in case. copy_from_user()
1715 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1716 	 * in the userland range.
1717 	 */
1718 	ret = -EINVAL;
1719 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1720 		goto out;
1721 	if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1722 		goto out;
1723 	if (mmget_not_zero(ctx->mm)) {
1724 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1725 				   uffdio_copy.len, &ctx->mmap_changing);
1726 		mmput(ctx->mm);
1727 	} else {
1728 		return -ESRCH;
1729 	}
1730 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1731 		return -EFAULT;
1732 	if (ret < 0)
1733 		goto out;
1734 	BUG_ON(!ret);
1735 	/* len == 0 would wake all */
1736 	range.len = ret;
1737 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1738 		range.start = uffdio_copy.dst;
1739 		wake_userfault(ctx, &range);
1740 	}
1741 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1742 out:
1743 	return ret;
1744 }
1745 
1746 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1747 				unsigned long arg)
1748 {
1749 	__s64 ret;
1750 	struct uffdio_zeropage uffdio_zeropage;
1751 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1752 	struct userfaultfd_wake_range range;
1753 
1754 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1755 
1756 	ret = -EAGAIN;
1757 	if (READ_ONCE(ctx->mmap_changing))
1758 		goto out;
1759 
1760 	ret = -EFAULT;
1761 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1762 			   /* don't copy "zeropage" last field */
1763 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1764 		goto out;
1765 
1766 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1767 			     uffdio_zeropage.range.len);
1768 	if (ret)
1769 		goto out;
1770 	ret = -EINVAL;
1771 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1772 		goto out;
1773 
1774 	if (mmget_not_zero(ctx->mm)) {
1775 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1776 				     uffdio_zeropage.range.len,
1777 				     &ctx->mmap_changing);
1778 		mmput(ctx->mm);
1779 	} else {
1780 		return -ESRCH;
1781 	}
1782 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1783 		return -EFAULT;
1784 	if (ret < 0)
1785 		goto out;
1786 	/* len == 0 would wake all */
1787 	BUG_ON(!ret);
1788 	range.len = ret;
1789 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1790 		range.start = uffdio_zeropage.range.start;
1791 		wake_userfault(ctx, &range);
1792 	}
1793 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1794 out:
1795 	return ret;
1796 }
1797 
1798 static inline unsigned int uffd_ctx_features(__u64 user_features)
1799 {
1800 	/*
1801 	 * For the current set of features the bits just coincide
1802 	 */
1803 	return (unsigned int)user_features;
1804 }
1805 
1806 /*
1807  * userland asks for a certain API version and we return which bits
1808  * and ioctl commands are implemented in this kernel for such API
1809  * version or -EINVAL if unknown.
1810  */
1811 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1812 			   unsigned long arg)
1813 {
1814 	struct uffdio_api uffdio_api;
1815 	void __user *buf = (void __user *)arg;
1816 	int ret;
1817 	__u64 features;
1818 
1819 	ret = -EINVAL;
1820 	if (ctx->state != UFFD_STATE_WAIT_API)
1821 		goto out;
1822 	ret = -EFAULT;
1823 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1824 		goto out;
1825 	features = uffdio_api.features;
1826 	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1827 		memset(&uffdio_api, 0, sizeof(uffdio_api));
1828 		if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1829 			goto out;
1830 		ret = -EINVAL;
1831 		goto out;
1832 	}
1833 	/* report all available features and ioctls to userland */
1834 	uffdio_api.features = UFFD_API_FEATURES;
1835 	uffdio_api.ioctls = UFFD_API_IOCTLS;
1836 	ret = -EFAULT;
1837 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1838 		goto out;
1839 	ctx->state = UFFD_STATE_RUNNING;
1840 	/* only enable the requested features for this uffd context */
1841 	ctx->features = uffd_ctx_features(features);
1842 	ret = 0;
1843 out:
1844 	return ret;
1845 }
1846 
1847 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1848 			      unsigned long arg)
1849 {
1850 	int ret = -EINVAL;
1851 	struct userfaultfd_ctx *ctx = file->private_data;
1852 
1853 	if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1854 		return -EINVAL;
1855 
1856 	switch(cmd) {
1857 	case UFFDIO_API:
1858 		ret = userfaultfd_api(ctx, arg);
1859 		break;
1860 	case UFFDIO_REGISTER:
1861 		ret = userfaultfd_register(ctx, arg);
1862 		break;
1863 	case UFFDIO_UNREGISTER:
1864 		ret = userfaultfd_unregister(ctx, arg);
1865 		break;
1866 	case UFFDIO_WAKE:
1867 		ret = userfaultfd_wake(ctx, arg);
1868 		break;
1869 	case UFFDIO_COPY:
1870 		ret = userfaultfd_copy(ctx, arg);
1871 		break;
1872 	case UFFDIO_ZEROPAGE:
1873 		ret = userfaultfd_zeropage(ctx, arg);
1874 		break;
1875 	}
1876 	return ret;
1877 }
1878 
1879 #ifdef CONFIG_PROC_FS
1880 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1881 {
1882 	struct userfaultfd_ctx *ctx = f->private_data;
1883 	wait_queue_entry_t *wq;
1884 	unsigned long pending = 0, total = 0;
1885 
1886 	spin_lock(&ctx->fault_pending_wqh.lock);
1887 	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1888 		pending++;
1889 		total++;
1890 	}
1891 	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1892 		total++;
1893 	}
1894 	spin_unlock(&ctx->fault_pending_wqh.lock);
1895 
1896 	/*
1897 	 * If more protocols will be added, there will be all shown
1898 	 * separated by a space. Like this:
1899 	 *	protocols: aa:... bb:...
1900 	 */
1901 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1902 		   pending, total, UFFD_API, ctx->features,
1903 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1904 }
1905 #endif
1906 
1907 static const struct file_operations userfaultfd_fops = {
1908 #ifdef CONFIG_PROC_FS
1909 	.show_fdinfo	= userfaultfd_show_fdinfo,
1910 #endif
1911 	.release	= userfaultfd_release,
1912 	.poll		= userfaultfd_poll,
1913 	.read		= userfaultfd_read,
1914 	.unlocked_ioctl = userfaultfd_ioctl,
1915 	.compat_ioctl	= userfaultfd_ioctl,
1916 	.llseek		= noop_llseek,
1917 };
1918 
1919 static void init_once_userfaultfd_ctx(void *mem)
1920 {
1921 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1922 
1923 	init_waitqueue_head(&ctx->fault_pending_wqh);
1924 	init_waitqueue_head(&ctx->fault_wqh);
1925 	init_waitqueue_head(&ctx->event_wqh);
1926 	init_waitqueue_head(&ctx->fd_wqh);
1927 	seqcount_init(&ctx->refile_seq);
1928 }
1929 
1930 SYSCALL_DEFINE1(userfaultfd, int, flags)
1931 {
1932 	struct userfaultfd_ctx *ctx;
1933 	int fd;
1934 
1935 	if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE))
1936 		return -EPERM;
1937 
1938 	BUG_ON(!current->mm);
1939 
1940 	/* Check the UFFD_* constants for consistency.  */
1941 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1942 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1943 
1944 	if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1945 		return -EINVAL;
1946 
1947 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1948 	if (!ctx)
1949 		return -ENOMEM;
1950 
1951 	refcount_set(&ctx->refcount, 1);
1952 	ctx->flags = flags;
1953 	ctx->features = 0;
1954 	ctx->state = UFFD_STATE_WAIT_API;
1955 	ctx->released = false;
1956 	ctx->mmap_changing = false;
1957 	ctx->mm = current->mm;
1958 	/* prevent the mm struct to be freed */
1959 	mmgrab(ctx->mm);
1960 
1961 	fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1962 			      O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1963 	if (fd < 0) {
1964 		mmdrop(ctx->mm);
1965 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1966 	}
1967 	return fd;
1968 }
1969 
1970 static int __init userfaultfd_init(void)
1971 {
1972 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1973 						sizeof(struct userfaultfd_ctx),
1974 						0,
1975 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1976 						init_once_userfaultfd_ctx);
1977 	return 0;
1978 }
1979 __initcall(userfaultfd_init);
1980