1 /* 2 * fs/userfaultfd.c 3 * 4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 5 * Copyright (C) 2008-2009 Red Hat, Inc. 6 * Copyright (C) 2015 Red Hat, Inc. 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2. See 9 * the COPYING file in the top-level directory. 10 * 11 * Some part derived from fs/eventfd.c (anon inode setup) and 12 * mm/ksm.c (mm hashing). 13 */ 14 15 #include <linux/list.h> 16 #include <linux/hashtable.h> 17 #include <linux/sched/signal.h> 18 #include <linux/sched/mm.h> 19 #include <linux/mm.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 34 35 enum userfaultfd_state { 36 UFFD_STATE_WAIT_API, 37 UFFD_STATE_RUNNING, 38 }; 39 40 /* 41 * Start with fault_pending_wqh and fault_wqh so they're more likely 42 * to be in the same cacheline. 43 */ 44 struct userfaultfd_ctx { 45 /* waitqueue head for the pending (i.e. not read) userfaults */ 46 wait_queue_head_t fault_pending_wqh; 47 /* waitqueue head for the userfaults */ 48 wait_queue_head_t fault_wqh; 49 /* waitqueue head for the pseudo fd to wakeup poll/read */ 50 wait_queue_head_t fd_wqh; 51 /* waitqueue head for events */ 52 wait_queue_head_t event_wqh; 53 /* a refile sequence protected by fault_pending_wqh lock */ 54 struct seqcount refile_seq; 55 /* pseudo fd refcounting */ 56 atomic_t refcount; 57 /* userfaultfd syscall flags */ 58 unsigned int flags; 59 /* features requested from the userspace */ 60 unsigned int features; 61 /* state machine */ 62 enum userfaultfd_state state; 63 /* released */ 64 bool released; 65 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 66 struct mm_struct *mm; 67 }; 68 69 struct userfaultfd_fork_ctx { 70 struct userfaultfd_ctx *orig; 71 struct userfaultfd_ctx *new; 72 struct list_head list; 73 }; 74 75 struct userfaultfd_unmap_ctx { 76 struct userfaultfd_ctx *ctx; 77 unsigned long start; 78 unsigned long end; 79 struct list_head list; 80 }; 81 82 struct userfaultfd_wait_queue { 83 struct uffd_msg msg; 84 wait_queue_entry_t wq; 85 struct userfaultfd_ctx *ctx; 86 bool waken; 87 }; 88 89 struct userfaultfd_wake_range { 90 unsigned long start; 91 unsigned long len; 92 }; 93 94 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 95 int wake_flags, void *key) 96 { 97 struct userfaultfd_wake_range *range = key; 98 int ret; 99 struct userfaultfd_wait_queue *uwq; 100 unsigned long start, len; 101 102 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 103 ret = 0; 104 /* len == 0 means wake all */ 105 start = range->start; 106 len = range->len; 107 if (len && (start > uwq->msg.arg.pagefault.address || 108 start + len <= uwq->msg.arg.pagefault.address)) 109 goto out; 110 WRITE_ONCE(uwq->waken, true); 111 /* 112 * The implicit smp_mb__before_spinlock in try_to_wake_up() 113 * renders uwq->waken visible to other CPUs before the task is 114 * waken. 115 */ 116 ret = wake_up_state(wq->private, mode); 117 if (ret) 118 /* 119 * Wake only once, autoremove behavior. 120 * 121 * After the effect of list_del_init is visible to the 122 * other CPUs, the waitqueue may disappear from under 123 * us, see the !list_empty_careful() in 124 * handle_userfault(). try_to_wake_up() has an 125 * implicit smp_mb__before_spinlock, and the 126 * wq->private is read before calling the extern 127 * function "wake_up_state" (which in turns calls 128 * try_to_wake_up). While the spin_lock;spin_unlock; 129 * wouldn't be enough, the smp_mb__before_spinlock is 130 * enough to avoid an explicit smp_mb() here. 131 */ 132 list_del_init(&wq->entry); 133 out: 134 return ret; 135 } 136 137 /** 138 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 139 * context. 140 * @ctx: [in] Pointer to the userfaultfd context. 141 */ 142 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 143 { 144 if (!atomic_inc_not_zero(&ctx->refcount)) 145 BUG(); 146 } 147 148 /** 149 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 150 * context. 151 * @ctx: [in] Pointer to userfaultfd context. 152 * 153 * The userfaultfd context reference must have been previously acquired either 154 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 155 */ 156 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 157 { 158 if (atomic_dec_and_test(&ctx->refcount)) { 159 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 160 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 161 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 162 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 163 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 164 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 165 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 166 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 167 mmdrop(ctx->mm); 168 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 169 } 170 } 171 172 static inline void msg_init(struct uffd_msg *msg) 173 { 174 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 175 /* 176 * Must use memset to zero out the paddings or kernel data is 177 * leaked to userland. 178 */ 179 memset(msg, 0, sizeof(struct uffd_msg)); 180 } 181 182 static inline struct uffd_msg userfault_msg(unsigned long address, 183 unsigned int flags, 184 unsigned long reason) 185 { 186 struct uffd_msg msg; 187 msg_init(&msg); 188 msg.event = UFFD_EVENT_PAGEFAULT; 189 msg.arg.pagefault.address = address; 190 if (flags & FAULT_FLAG_WRITE) 191 /* 192 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 193 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE 194 * was not set in a UFFD_EVENT_PAGEFAULT, it means it 195 * was a read fault, otherwise if set it means it's 196 * a write fault. 197 */ 198 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 199 if (reason & VM_UFFD_WP) 200 /* 201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was 203 * not set in a UFFD_EVENT_PAGEFAULT, it means it was 204 * a missing fault, otherwise if set it means it's a 205 * write protect fault. 206 */ 207 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 208 return msg; 209 } 210 211 #ifdef CONFIG_HUGETLB_PAGE 212 /* 213 * Same functionality as userfaultfd_must_wait below with modifications for 214 * hugepmd ranges. 215 */ 216 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 217 struct vm_area_struct *vma, 218 unsigned long address, 219 unsigned long flags, 220 unsigned long reason) 221 { 222 struct mm_struct *mm = ctx->mm; 223 pte_t *pte; 224 bool ret = true; 225 226 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 227 228 pte = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); 229 if (!pte) 230 goto out; 231 232 ret = false; 233 234 /* 235 * Lockless access: we're in a wait_event so it's ok if it 236 * changes under us. 237 */ 238 if (huge_pte_none(*pte)) 239 ret = true; 240 if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP)) 241 ret = true; 242 out: 243 return ret; 244 } 245 #else 246 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 247 struct vm_area_struct *vma, 248 unsigned long address, 249 unsigned long flags, 250 unsigned long reason) 251 { 252 return false; /* should never get here */ 253 } 254 #endif /* CONFIG_HUGETLB_PAGE */ 255 256 /* 257 * Verify the pagetables are still not ok after having reigstered into 258 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 259 * userfault that has already been resolved, if userfaultfd_read and 260 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 261 * threads. 262 */ 263 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 264 unsigned long address, 265 unsigned long flags, 266 unsigned long reason) 267 { 268 struct mm_struct *mm = ctx->mm; 269 pgd_t *pgd; 270 p4d_t *p4d; 271 pud_t *pud; 272 pmd_t *pmd, _pmd; 273 pte_t *pte; 274 bool ret = true; 275 276 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 277 278 pgd = pgd_offset(mm, address); 279 if (!pgd_present(*pgd)) 280 goto out; 281 p4d = p4d_offset(pgd, address); 282 if (!p4d_present(*p4d)) 283 goto out; 284 pud = pud_offset(p4d, address); 285 if (!pud_present(*pud)) 286 goto out; 287 pmd = pmd_offset(pud, address); 288 /* 289 * READ_ONCE must function as a barrier with narrower scope 290 * and it must be equivalent to: 291 * _pmd = *pmd; barrier(); 292 * 293 * This is to deal with the instability (as in 294 * pmd_trans_unstable) of the pmd. 295 */ 296 _pmd = READ_ONCE(*pmd); 297 if (!pmd_present(_pmd)) 298 goto out; 299 300 ret = false; 301 if (pmd_trans_huge(_pmd)) 302 goto out; 303 304 /* 305 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 306 * and use the standard pte_offset_map() instead of parsing _pmd. 307 */ 308 pte = pte_offset_map(pmd, address); 309 /* 310 * Lockless access: we're in a wait_event so it's ok if it 311 * changes under us. 312 */ 313 if (pte_none(*pte)) 314 ret = true; 315 pte_unmap(pte); 316 317 out: 318 return ret; 319 } 320 321 /* 322 * The locking rules involved in returning VM_FAULT_RETRY depending on 323 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 324 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 325 * recommendation in __lock_page_or_retry is not an understatement. 326 * 327 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released 328 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 329 * not set. 330 * 331 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 332 * set, VM_FAULT_RETRY can still be returned if and only if there are 333 * fatal_signal_pending()s, and the mmap_sem must be released before 334 * returning it. 335 */ 336 int handle_userfault(struct vm_fault *vmf, unsigned long reason) 337 { 338 struct mm_struct *mm = vmf->vma->vm_mm; 339 struct userfaultfd_ctx *ctx; 340 struct userfaultfd_wait_queue uwq; 341 int ret; 342 bool must_wait, return_to_userland; 343 long blocking_state; 344 345 ret = VM_FAULT_SIGBUS; 346 347 /* 348 * We don't do userfault handling for the final child pid update. 349 * 350 * We also don't do userfault handling during 351 * coredumping. hugetlbfs has the special 352 * follow_hugetlb_page() to skip missing pages in the 353 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 354 * the no_page_table() helper in follow_page_mask(), but the 355 * shmem_vm_ops->fault method is invoked even during 356 * coredumping without mmap_sem and it ends up here. 357 */ 358 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 359 goto out; 360 361 /* 362 * Coredumping runs without mmap_sem so we can only check that 363 * the mmap_sem is held, if PF_DUMPCORE was not set. 364 */ 365 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem)); 366 367 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 368 if (!ctx) 369 goto out; 370 371 BUG_ON(ctx->mm != mm); 372 373 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); 374 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); 375 376 /* 377 * If it's already released don't get it. This avoids to loop 378 * in __get_user_pages if userfaultfd_release waits on the 379 * caller of handle_userfault to release the mmap_sem. 380 */ 381 if (unlikely(ACCESS_ONCE(ctx->released))) 382 goto out; 383 384 /* 385 * Check that we can return VM_FAULT_RETRY. 386 * 387 * NOTE: it should become possible to return VM_FAULT_RETRY 388 * even if FAULT_FLAG_TRIED is set without leading to gup() 389 * -EBUSY failures, if the userfaultfd is to be extended for 390 * VM_UFFD_WP tracking and we intend to arm the userfault 391 * without first stopping userland access to the memory. For 392 * VM_UFFD_MISSING userfaults this is enough for now. 393 */ 394 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 395 /* 396 * Validate the invariant that nowait must allow retry 397 * to be sure not to return SIGBUS erroneously on 398 * nowait invocations. 399 */ 400 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 401 #ifdef CONFIG_DEBUG_VM 402 if (printk_ratelimit()) { 403 printk(KERN_WARNING 404 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 405 vmf->flags); 406 dump_stack(); 407 } 408 #endif 409 goto out; 410 } 411 412 /* 413 * Handle nowait, not much to do other than tell it to retry 414 * and wait. 415 */ 416 ret = VM_FAULT_RETRY; 417 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 418 goto out; 419 420 /* take the reference before dropping the mmap_sem */ 421 userfaultfd_ctx_get(ctx); 422 423 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 424 uwq.wq.private = current; 425 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason); 426 uwq.ctx = ctx; 427 uwq.waken = false; 428 429 return_to_userland = 430 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) == 431 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE); 432 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE : 433 TASK_KILLABLE; 434 435 spin_lock(&ctx->fault_pending_wqh.lock); 436 /* 437 * After the __add_wait_queue the uwq is visible to userland 438 * through poll/read(). 439 */ 440 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 441 /* 442 * The smp_mb() after __set_current_state prevents the reads 443 * following the spin_unlock to happen before the list_add in 444 * __add_wait_queue. 445 */ 446 set_current_state(blocking_state); 447 spin_unlock(&ctx->fault_pending_wqh.lock); 448 449 if (!is_vm_hugetlb_page(vmf->vma)) 450 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 451 reason); 452 else 453 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, 454 vmf->address, 455 vmf->flags, reason); 456 up_read(&mm->mmap_sem); 457 458 if (likely(must_wait && !ACCESS_ONCE(ctx->released) && 459 (return_to_userland ? !signal_pending(current) : 460 !fatal_signal_pending(current)))) { 461 wake_up_poll(&ctx->fd_wqh, POLLIN); 462 schedule(); 463 ret |= VM_FAULT_MAJOR; 464 465 /* 466 * False wakeups can orginate even from rwsem before 467 * up_read() however userfaults will wait either for a 468 * targeted wakeup on the specific uwq waitqueue from 469 * wake_userfault() or for signals or for uffd 470 * release. 471 */ 472 while (!READ_ONCE(uwq.waken)) { 473 /* 474 * This needs the full smp_store_mb() 475 * guarantee as the state write must be 476 * visible to other CPUs before reading 477 * uwq.waken from other CPUs. 478 */ 479 set_current_state(blocking_state); 480 if (READ_ONCE(uwq.waken) || 481 READ_ONCE(ctx->released) || 482 (return_to_userland ? signal_pending(current) : 483 fatal_signal_pending(current))) 484 break; 485 schedule(); 486 } 487 } 488 489 __set_current_state(TASK_RUNNING); 490 491 if (return_to_userland) { 492 if (signal_pending(current) && 493 !fatal_signal_pending(current)) { 494 /* 495 * If we got a SIGSTOP or SIGCONT and this is 496 * a normal userland page fault, just let 497 * userland return so the signal will be 498 * handled and gdb debugging works. The page 499 * fault code immediately after we return from 500 * this function is going to release the 501 * mmap_sem and it's not depending on it 502 * (unlike gup would if we were not to return 503 * VM_FAULT_RETRY). 504 * 505 * If a fatal signal is pending we still take 506 * the streamlined VM_FAULT_RETRY failure path 507 * and there's no need to retake the mmap_sem 508 * in such case. 509 */ 510 down_read(&mm->mmap_sem); 511 ret = VM_FAULT_NOPAGE; 512 } 513 } 514 515 /* 516 * Here we race with the list_del; list_add in 517 * userfaultfd_ctx_read(), however because we don't ever run 518 * list_del_init() to refile across the two lists, the prev 519 * and next pointers will never point to self. list_add also 520 * would never let any of the two pointers to point to 521 * self. So list_empty_careful won't risk to see both pointers 522 * pointing to self at any time during the list refile. The 523 * only case where list_del_init() is called is the full 524 * removal in the wake function and there we don't re-list_add 525 * and it's fine not to block on the spinlock. The uwq on this 526 * kernel stack can be released after the list_del_init. 527 */ 528 if (!list_empty_careful(&uwq.wq.entry)) { 529 spin_lock(&ctx->fault_pending_wqh.lock); 530 /* 531 * No need of list_del_init(), the uwq on the stack 532 * will be freed shortly anyway. 533 */ 534 list_del(&uwq.wq.entry); 535 spin_unlock(&ctx->fault_pending_wqh.lock); 536 } 537 538 /* 539 * ctx may go away after this if the userfault pseudo fd is 540 * already released. 541 */ 542 userfaultfd_ctx_put(ctx); 543 544 out: 545 return ret; 546 } 547 548 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 549 struct userfaultfd_wait_queue *ewq) 550 { 551 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 552 goto out; 553 554 ewq->ctx = ctx; 555 init_waitqueue_entry(&ewq->wq, current); 556 557 spin_lock(&ctx->event_wqh.lock); 558 /* 559 * After the __add_wait_queue the uwq is visible to userland 560 * through poll/read(). 561 */ 562 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 563 for (;;) { 564 set_current_state(TASK_KILLABLE); 565 if (ewq->msg.event == 0) 566 break; 567 if (ACCESS_ONCE(ctx->released) || 568 fatal_signal_pending(current)) { 569 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 570 if (ewq->msg.event == UFFD_EVENT_FORK) { 571 struct userfaultfd_ctx *new; 572 573 new = (struct userfaultfd_ctx *) 574 (unsigned long) 575 ewq->msg.arg.reserved.reserved1; 576 577 userfaultfd_ctx_put(new); 578 } 579 break; 580 } 581 582 spin_unlock(&ctx->event_wqh.lock); 583 584 wake_up_poll(&ctx->fd_wqh, POLLIN); 585 schedule(); 586 587 spin_lock(&ctx->event_wqh.lock); 588 } 589 __set_current_state(TASK_RUNNING); 590 spin_unlock(&ctx->event_wqh.lock); 591 592 /* 593 * ctx may go away after this if the userfault pseudo fd is 594 * already released. 595 */ 596 out: 597 userfaultfd_ctx_put(ctx); 598 } 599 600 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 601 struct userfaultfd_wait_queue *ewq) 602 { 603 ewq->msg.event = 0; 604 wake_up_locked(&ctx->event_wqh); 605 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 606 } 607 608 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 609 { 610 struct userfaultfd_ctx *ctx = NULL, *octx; 611 struct userfaultfd_fork_ctx *fctx; 612 613 octx = vma->vm_userfaultfd_ctx.ctx; 614 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 615 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 616 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 617 return 0; 618 } 619 620 list_for_each_entry(fctx, fcs, list) 621 if (fctx->orig == octx) { 622 ctx = fctx->new; 623 break; 624 } 625 626 if (!ctx) { 627 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 628 if (!fctx) 629 return -ENOMEM; 630 631 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 632 if (!ctx) { 633 kfree(fctx); 634 return -ENOMEM; 635 } 636 637 atomic_set(&ctx->refcount, 1); 638 ctx->flags = octx->flags; 639 ctx->state = UFFD_STATE_RUNNING; 640 ctx->features = octx->features; 641 ctx->released = false; 642 ctx->mm = vma->vm_mm; 643 atomic_inc(&ctx->mm->mm_count); 644 645 userfaultfd_ctx_get(octx); 646 fctx->orig = octx; 647 fctx->new = ctx; 648 list_add_tail(&fctx->list, fcs); 649 } 650 651 vma->vm_userfaultfd_ctx.ctx = ctx; 652 return 0; 653 } 654 655 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 656 { 657 struct userfaultfd_ctx *ctx = fctx->orig; 658 struct userfaultfd_wait_queue ewq; 659 660 msg_init(&ewq.msg); 661 662 ewq.msg.event = UFFD_EVENT_FORK; 663 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 664 665 userfaultfd_event_wait_completion(ctx, &ewq); 666 } 667 668 void dup_userfaultfd_complete(struct list_head *fcs) 669 { 670 struct userfaultfd_fork_ctx *fctx, *n; 671 672 list_for_each_entry_safe(fctx, n, fcs, list) { 673 dup_fctx(fctx); 674 list_del(&fctx->list); 675 kfree(fctx); 676 } 677 } 678 679 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 680 struct vm_userfaultfd_ctx *vm_ctx) 681 { 682 struct userfaultfd_ctx *ctx; 683 684 ctx = vma->vm_userfaultfd_ctx.ctx; 685 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) { 686 vm_ctx->ctx = ctx; 687 userfaultfd_ctx_get(ctx); 688 } 689 } 690 691 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 692 unsigned long from, unsigned long to, 693 unsigned long len) 694 { 695 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 696 struct userfaultfd_wait_queue ewq; 697 698 if (!ctx) 699 return; 700 701 if (to & ~PAGE_MASK) { 702 userfaultfd_ctx_put(ctx); 703 return; 704 } 705 706 msg_init(&ewq.msg); 707 708 ewq.msg.event = UFFD_EVENT_REMAP; 709 ewq.msg.arg.remap.from = from; 710 ewq.msg.arg.remap.to = to; 711 ewq.msg.arg.remap.len = len; 712 713 userfaultfd_event_wait_completion(ctx, &ewq); 714 } 715 716 bool userfaultfd_remove(struct vm_area_struct *vma, 717 unsigned long start, unsigned long end) 718 { 719 struct mm_struct *mm = vma->vm_mm; 720 struct userfaultfd_ctx *ctx; 721 struct userfaultfd_wait_queue ewq; 722 723 ctx = vma->vm_userfaultfd_ctx.ctx; 724 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 725 return true; 726 727 userfaultfd_ctx_get(ctx); 728 up_read(&mm->mmap_sem); 729 730 msg_init(&ewq.msg); 731 732 ewq.msg.event = UFFD_EVENT_REMOVE; 733 ewq.msg.arg.remove.start = start; 734 ewq.msg.arg.remove.end = end; 735 736 userfaultfd_event_wait_completion(ctx, &ewq); 737 738 return false; 739 } 740 741 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 742 unsigned long start, unsigned long end) 743 { 744 struct userfaultfd_unmap_ctx *unmap_ctx; 745 746 list_for_each_entry(unmap_ctx, unmaps, list) 747 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 748 unmap_ctx->end == end) 749 return true; 750 751 return false; 752 } 753 754 int userfaultfd_unmap_prep(struct vm_area_struct *vma, 755 unsigned long start, unsigned long end, 756 struct list_head *unmaps) 757 { 758 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 759 struct userfaultfd_unmap_ctx *unmap_ctx; 760 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 761 762 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 763 has_unmap_ctx(ctx, unmaps, start, end)) 764 continue; 765 766 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 767 if (!unmap_ctx) 768 return -ENOMEM; 769 770 userfaultfd_ctx_get(ctx); 771 unmap_ctx->ctx = ctx; 772 unmap_ctx->start = start; 773 unmap_ctx->end = end; 774 list_add_tail(&unmap_ctx->list, unmaps); 775 } 776 777 return 0; 778 } 779 780 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 781 { 782 struct userfaultfd_unmap_ctx *ctx, *n; 783 struct userfaultfd_wait_queue ewq; 784 785 list_for_each_entry_safe(ctx, n, uf, list) { 786 msg_init(&ewq.msg); 787 788 ewq.msg.event = UFFD_EVENT_UNMAP; 789 ewq.msg.arg.remove.start = ctx->start; 790 ewq.msg.arg.remove.end = ctx->end; 791 792 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 793 794 list_del(&ctx->list); 795 kfree(ctx); 796 } 797 } 798 799 static int userfaultfd_release(struct inode *inode, struct file *file) 800 { 801 struct userfaultfd_ctx *ctx = file->private_data; 802 struct mm_struct *mm = ctx->mm; 803 struct vm_area_struct *vma, *prev; 804 /* len == 0 means wake all */ 805 struct userfaultfd_wake_range range = { .len = 0, }; 806 unsigned long new_flags; 807 808 ACCESS_ONCE(ctx->released) = true; 809 810 if (!mmget_not_zero(mm)) 811 goto wakeup; 812 813 /* 814 * Flush page faults out of all CPUs. NOTE: all page faults 815 * must be retried without returning VM_FAULT_SIGBUS if 816 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 817 * changes while handle_userfault released the mmap_sem. So 818 * it's critical that released is set to true (above), before 819 * taking the mmap_sem for writing. 820 */ 821 down_write(&mm->mmap_sem); 822 prev = NULL; 823 for (vma = mm->mmap; vma; vma = vma->vm_next) { 824 cond_resched(); 825 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 826 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 827 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 828 prev = vma; 829 continue; 830 } 831 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 832 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 833 new_flags, vma->anon_vma, 834 vma->vm_file, vma->vm_pgoff, 835 vma_policy(vma), 836 NULL_VM_UFFD_CTX); 837 if (prev) 838 vma = prev; 839 else 840 prev = vma; 841 vma->vm_flags = new_flags; 842 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 843 } 844 up_write(&mm->mmap_sem); 845 mmput(mm); 846 wakeup: 847 /* 848 * After no new page faults can wait on this fault_*wqh, flush 849 * the last page faults that may have been already waiting on 850 * the fault_*wqh. 851 */ 852 spin_lock(&ctx->fault_pending_wqh.lock); 853 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 854 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range); 855 spin_unlock(&ctx->fault_pending_wqh.lock); 856 857 /* Flush pending events that may still wait on event_wqh */ 858 wake_up_all(&ctx->event_wqh); 859 860 wake_up_poll(&ctx->fd_wqh, POLLHUP); 861 userfaultfd_ctx_put(ctx); 862 return 0; 863 } 864 865 /* fault_pending_wqh.lock must be hold by the caller */ 866 static inline struct userfaultfd_wait_queue *find_userfault_in( 867 wait_queue_head_t *wqh) 868 { 869 wait_queue_entry_t *wq; 870 struct userfaultfd_wait_queue *uwq; 871 872 VM_BUG_ON(!spin_is_locked(&wqh->lock)); 873 874 uwq = NULL; 875 if (!waitqueue_active(wqh)) 876 goto out; 877 /* walk in reverse to provide FIFO behavior to read userfaults */ 878 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 879 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 880 out: 881 return uwq; 882 } 883 884 static inline struct userfaultfd_wait_queue *find_userfault( 885 struct userfaultfd_ctx *ctx) 886 { 887 return find_userfault_in(&ctx->fault_pending_wqh); 888 } 889 890 static inline struct userfaultfd_wait_queue *find_userfault_evt( 891 struct userfaultfd_ctx *ctx) 892 { 893 return find_userfault_in(&ctx->event_wqh); 894 } 895 896 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait) 897 { 898 struct userfaultfd_ctx *ctx = file->private_data; 899 unsigned int ret; 900 901 poll_wait(file, &ctx->fd_wqh, wait); 902 903 switch (ctx->state) { 904 case UFFD_STATE_WAIT_API: 905 return POLLERR; 906 case UFFD_STATE_RUNNING: 907 /* 908 * poll() never guarantees that read won't block. 909 * userfaults can be waken before they're read(). 910 */ 911 if (unlikely(!(file->f_flags & O_NONBLOCK))) 912 return POLLERR; 913 /* 914 * lockless access to see if there are pending faults 915 * __pollwait last action is the add_wait_queue but 916 * the spin_unlock would allow the waitqueue_active to 917 * pass above the actual list_add inside 918 * add_wait_queue critical section. So use a full 919 * memory barrier to serialize the list_add write of 920 * add_wait_queue() with the waitqueue_active read 921 * below. 922 */ 923 ret = 0; 924 smp_mb(); 925 if (waitqueue_active(&ctx->fault_pending_wqh)) 926 ret = POLLIN; 927 else if (waitqueue_active(&ctx->event_wqh)) 928 ret = POLLIN; 929 930 return ret; 931 default: 932 WARN_ON_ONCE(1); 933 return POLLERR; 934 } 935 } 936 937 static const struct file_operations userfaultfd_fops; 938 939 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, 940 struct userfaultfd_ctx *new, 941 struct uffd_msg *msg) 942 { 943 int fd; 944 struct file *file; 945 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS; 946 947 fd = get_unused_fd_flags(flags); 948 if (fd < 0) 949 return fd; 950 951 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new, 952 O_RDWR | flags); 953 if (IS_ERR(file)) { 954 put_unused_fd(fd); 955 return PTR_ERR(file); 956 } 957 958 fd_install(fd, file); 959 msg->arg.reserved.reserved1 = 0; 960 msg->arg.fork.ufd = fd; 961 962 return 0; 963 } 964 965 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 966 struct uffd_msg *msg) 967 { 968 ssize_t ret; 969 DECLARE_WAITQUEUE(wait, current); 970 struct userfaultfd_wait_queue *uwq; 971 /* 972 * Handling fork event requires sleeping operations, so 973 * we drop the event_wqh lock, then do these ops, then 974 * lock it back and wake up the waiter. While the lock is 975 * dropped the ewq may go away so we keep track of it 976 * carefully. 977 */ 978 LIST_HEAD(fork_event); 979 struct userfaultfd_ctx *fork_nctx = NULL; 980 981 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 982 spin_lock(&ctx->fd_wqh.lock); 983 __add_wait_queue(&ctx->fd_wqh, &wait); 984 for (;;) { 985 set_current_state(TASK_INTERRUPTIBLE); 986 spin_lock(&ctx->fault_pending_wqh.lock); 987 uwq = find_userfault(ctx); 988 if (uwq) { 989 /* 990 * Use a seqcount to repeat the lockless check 991 * in wake_userfault() to avoid missing 992 * wakeups because during the refile both 993 * waitqueue could become empty if this is the 994 * only userfault. 995 */ 996 write_seqcount_begin(&ctx->refile_seq); 997 998 /* 999 * The fault_pending_wqh.lock prevents the uwq 1000 * to disappear from under us. 1001 * 1002 * Refile this userfault from 1003 * fault_pending_wqh to fault_wqh, it's not 1004 * pending anymore after we read it. 1005 * 1006 * Use list_del() by hand (as 1007 * userfaultfd_wake_function also uses 1008 * list_del_init() by hand) to be sure nobody 1009 * changes __remove_wait_queue() to use 1010 * list_del_init() in turn breaking the 1011 * !list_empty_careful() check in 1012 * handle_userfault(). The uwq->wq.head list 1013 * must never be empty at any time during the 1014 * refile, or the waitqueue could disappear 1015 * from under us. The "wait_queue_head_t" 1016 * parameter of __remove_wait_queue() is unused 1017 * anyway. 1018 */ 1019 list_del(&uwq->wq.entry); 1020 __add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1021 1022 write_seqcount_end(&ctx->refile_seq); 1023 1024 /* careful to always initialize msg if ret == 0 */ 1025 *msg = uwq->msg; 1026 spin_unlock(&ctx->fault_pending_wqh.lock); 1027 ret = 0; 1028 break; 1029 } 1030 spin_unlock(&ctx->fault_pending_wqh.lock); 1031 1032 spin_lock(&ctx->event_wqh.lock); 1033 uwq = find_userfault_evt(ctx); 1034 if (uwq) { 1035 *msg = uwq->msg; 1036 1037 if (uwq->msg.event == UFFD_EVENT_FORK) { 1038 fork_nctx = (struct userfaultfd_ctx *) 1039 (unsigned long) 1040 uwq->msg.arg.reserved.reserved1; 1041 list_move(&uwq->wq.entry, &fork_event); 1042 spin_unlock(&ctx->event_wqh.lock); 1043 ret = 0; 1044 break; 1045 } 1046 1047 userfaultfd_event_complete(ctx, uwq); 1048 spin_unlock(&ctx->event_wqh.lock); 1049 ret = 0; 1050 break; 1051 } 1052 spin_unlock(&ctx->event_wqh.lock); 1053 1054 if (signal_pending(current)) { 1055 ret = -ERESTARTSYS; 1056 break; 1057 } 1058 if (no_wait) { 1059 ret = -EAGAIN; 1060 break; 1061 } 1062 spin_unlock(&ctx->fd_wqh.lock); 1063 schedule(); 1064 spin_lock(&ctx->fd_wqh.lock); 1065 } 1066 __remove_wait_queue(&ctx->fd_wqh, &wait); 1067 __set_current_state(TASK_RUNNING); 1068 spin_unlock(&ctx->fd_wqh.lock); 1069 1070 if (!ret && msg->event == UFFD_EVENT_FORK) { 1071 ret = resolve_userfault_fork(ctx, fork_nctx, msg); 1072 1073 if (!ret) { 1074 spin_lock(&ctx->event_wqh.lock); 1075 if (!list_empty(&fork_event)) { 1076 uwq = list_first_entry(&fork_event, 1077 typeof(*uwq), 1078 wq.entry); 1079 list_del(&uwq->wq.entry); 1080 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1081 userfaultfd_event_complete(ctx, uwq); 1082 } 1083 spin_unlock(&ctx->event_wqh.lock); 1084 } 1085 } 1086 1087 return ret; 1088 } 1089 1090 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1091 size_t count, loff_t *ppos) 1092 { 1093 struct userfaultfd_ctx *ctx = file->private_data; 1094 ssize_t _ret, ret = 0; 1095 struct uffd_msg msg; 1096 int no_wait = file->f_flags & O_NONBLOCK; 1097 1098 if (ctx->state == UFFD_STATE_WAIT_API) 1099 return -EINVAL; 1100 1101 for (;;) { 1102 if (count < sizeof(msg)) 1103 return ret ? ret : -EINVAL; 1104 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); 1105 if (_ret < 0) 1106 return ret ? ret : _ret; 1107 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1108 return ret ? ret : -EFAULT; 1109 ret += sizeof(msg); 1110 buf += sizeof(msg); 1111 count -= sizeof(msg); 1112 /* 1113 * Allow to read more than one fault at time but only 1114 * block if waiting for the very first one. 1115 */ 1116 no_wait = O_NONBLOCK; 1117 } 1118 } 1119 1120 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1121 struct userfaultfd_wake_range *range) 1122 { 1123 spin_lock(&ctx->fault_pending_wqh.lock); 1124 /* wake all in the range and autoremove */ 1125 if (waitqueue_active(&ctx->fault_pending_wqh)) 1126 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1127 range); 1128 if (waitqueue_active(&ctx->fault_wqh)) 1129 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range); 1130 spin_unlock(&ctx->fault_pending_wqh.lock); 1131 } 1132 1133 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1134 struct userfaultfd_wake_range *range) 1135 { 1136 unsigned seq; 1137 bool need_wakeup; 1138 1139 /* 1140 * To be sure waitqueue_active() is not reordered by the CPU 1141 * before the pagetable update, use an explicit SMP memory 1142 * barrier here. PT lock release or up_read(mmap_sem) still 1143 * have release semantics that can allow the 1144 * waitqueue_active() to be reordered before the pte update. 1145 */ 1146 smp_mb(); 1147 1148 /* 1149 * Use waitqueue_active because it's very frequent to 1150 * change the address space atomically even if there are no 1151 * userfaults yet. So we take the spinlock only when we're 1152 * sure we've userfaults to wake. 1153 */ 1154 do { 1155 seq = read_seqcount_begin(&ctx->refile_seq); 1156 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1157 waitqueue_active(&ctx->fault_wqh); 1158 cond_resched(); 1159 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1160 if (need_wakeup) 1161 __wake_userfault(ctx, range); 1162 } 1163 1164 static __always_inline int validate_range(struct mm_struct *mm, 1165 __u64 start, __u64 len) 1166 { 1167 __u64 task_size = mm->task_size; 1168 1169 if (start & ~PAGE_MASK) 1170 return -EINVAL; 1171 if (len & ~PAGE_MASK) 1172 return -EINVAL; 1173 if (!len) 1174 return -EINVAL; 1175 if (start < mmap_min_addr) 1176 return -EINVAL; 1177 if (start >= task_size) 1178 return -EINVAL; 1179 if (len > task_size - start) 1180 return -EINVAL; 1181 return 0; 1182 } 1183 1184 static inline bool vma_can_userfault(struct vm_area_struct *vma) 1185 { 1186 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || 1187 vma_is_shmem(vma); 1188 } 1189 1190 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1191 unsigned long arg) 1192 { 1193 struct mm_struct *mm = ctx->mm; 1194 struct vm_area_struct *vma, *prev, *cur; 1195 int ret; 1196 struct uffdio_register uffdio_register; 1197 struct uffdio_register __user *user_uffdio_register; 1198 unsigned long vm_flags, new_flags; 1199 bool found; 1200 bool non_anon_pages; 1201 unsigned long start, end, vma_end; 1202 1203 user_uffdio_register = (struct uffdio_register __user *) arg; 1204 1205 ret = -EFAULT; 1206 if (copy_from_user(&uffdio_register, user_uffdio_register, 1207 sizeof(uffdio_register)-sizeof(__u64))) 1208 goto out; 1209 1210 ret = -EINVAL; 1211 if (!uffdio_register.mode) 1212 goto out; 1213 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| 1214 UFFDIO_REGISTER_MODE_WP)) 1215 goto out; 1216 vm_flags = 0; 1217 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1218 vm_flags |= VM_UFFD_MISSING; 1219 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1220 vm_flags |= VM_UFFD_WP; 1221 /* 1222 * FIXME: remove the below error constraint by 1223 * implementing the wprotect tracking mode. 1224 */ 1225 ret = -EINVAL; 1226 goto out; 1227 } 1228 1229 ret = validate_range(mm, uffdio_register.range.start, 1230 uffdio_register.range.len); 1231 if (ret) 1232 goto out; 1233 1234 start = uffdio_register.range.start; 1235 end = start + uffdio_register.range.len; 1236 1237 ret = -ENOMEM; 1238 if (!mmget_not_zero(mm)) 1239 goto out; 1240 1241 down_write(&mm->mmap_sem); 1242 vma = find_vma_prev(mm, start, &prev); 1243 if (!vma) 1244 goto out_unlock; 1245 1246 /* check that there's at least one vma in the range */ 1247 ret = -EINVAL; 1248 if (vma->vm_start >= end) 1249 goto out_unlock; 1250 1251 /* 1252 * If the first vma contains huge pages, make sure start address 1253 * is aligned to huge page size. 1254 */ 1255 if (is_vm_hugetlb_page(vma)) { 1256 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1257 1258 if (start & (vma_hpagesize - 1)) 1259 goto out_unlock; 1260 } 1261 1262 /* 1263 * Search for not compatible vmas. 1264 */ 1265 found = false; 1266 non_anon_pages = false; 1267 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1268 cond_resched(); 1269 1270 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1271 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1272 1273 /* check not compatible vmas */ 1274 ret = -EINVAL; 1275 if (!vma_can_userfault(cur)) 1276 goto out_unlock; 1277 /* 1278 * If this vma contains ending address, and huge pages 1279 * check alignment. 1280 */ 1281 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1282 end > cur->vm_start) { 1283 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1284 1285 ret = -EINVAL; 1286 1287 if (end & (vma_hpagesize - 1)) 1288 goto out_unlock; 1289 } 1290 1291 /* 1292 * Check that this vma isn't already owned by a 1293 * different userfaultfd. We can't allow more than one 1294 * userfaultfd to own a single vma simultaneously or we 1295 * wouldn't know which one to deliver the userfaults to. 1296 */ 1297 ret = -EBUSY; 1298 if (cur->vm_userfaultfd_ctx.ctx && 1299 cur->vm_userfaultfd_ctx.ctx != ctx) 1300 goto out_unlock; 1301 1302 /* 1303 * Note vmas containing huge pages 1304 */ 1305 if (is_vm_hugetlb_page(cur) || vma_is_shmem(cur)) 1306 non_anon_pages = true; 1307 1308 found = true; 1309 } 1310 BUG_ON(!found); 1311 1312 if (vma->vm_start < start) 1313 prev = vma; 1314 1315 ret = 0; 1316 do { 1317 cond_resched(); 1318 1319 BUG_ON(!vma_can_userfault(vma)); 1320 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1321 vma->vm_userfaultfd_ctx.ctx != ctx); 1322 1323 /* 1324 * Nothing to do: this vma is already registered into this 1325 * userfaultfd and with the right tracking mode too. 1326 */ 1327 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1328 (vma->vm_flags & vm_flags) == vm_flags) 1329 goto skip; 1330 1331 if (vma->vm_start > start) 1332 start = vma->vm_start; 1333 vma_end = min(end, vma->vm_end); 1334 1335 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags; 1336 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1337 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1338 vma_policy(vma), 1339 ((struct vm_userfaultfd_ctx){ ctx })); 1340 if (prev) { 1341 vma = prev; 1342 goto next; 1343 } 1344 if (vma->vm_start < start) { 1345 ret = split_vma(mm, vma, start, 1); 1346 if (ret) 1347 break; 1348 } 1349 if (vma->vm_end > end) { 1350 ret = split_vma(mm, vma, end, 0); 1351 if (ret) 1352 break; 1353 } 1354 next: 1355 /* 1356 * In the vma_merge() successful mprotect-like case 8: 1357 * the next vma was merged into the current one and 1358 * the current one has not been updated yet. 1359 */ 1360 vma->vm_flags = new_flags; 1361 vma->vm_userfaultfd_ctx.ctx = ctx; 1362 1363 skip: 1364 prev = vma; 1365 start = vma->vm_end; 1366 vma = vma->vm_next; 1367 } while (vma && vma->vm_start < end); 1368 out_unlock: 1369 up_write(&mm->mmap_sem); 1370 mmput(mm); 1371 if (!ret) { 1372 /* 1373 * Now that we scanned all vmas we can already tell 1374 * userland which ioctls methods are guaranteed to 1375 * succeed on this range. 1376 */ 1377 if (put_user(non_anon_pages ? UFFD_API_RANGE_IOCTLS_BASIC : 1378 UFFD_API_RANGE_IOCTLS, 1379 &user_uffdio_register->ioctls)) 1380 ret = -EFAULT; 1381 } 1382 out: 1383 return ret; 1384 } 1385 1386 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1387 unsigned long arg) 1388 { 1389 struct mm_struct *mm = ctx->mm; 1390 struct vm_area_struct *vma, *prev, *cur; 1391 int ret; 1392 struct uffdio_range uffdio_unregister; 1393 unsigned long new_flags; 1394 bool found; 1395 unsigned long start, end, vma_end; 1396 const void __user *buf = (void __user *)arg; 1397 1398 ret = -EFAULT; 1399 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1400 goto out; 1401 1402 ret = validate_range(mm, uffdio_unregister.start, 1403 uffdio_unregister.len); 1404 if (ret) 1405 goto out; 1406 1407 start = uffdio_unregister.start; 1408 end = start + uffdio_unregister.len; 1409 1410 ret = -ENOMEM; 1411 if (!mmget_not_zero(mm)) 1412 goto out; 1413 1414 down_write(&mm->mmap_sem); 1415 vma = find_vma_prev(mm, start, &prev); 1416 if (!vma) 1417 goto out_unlock; 1418 1419 /* check that there's at least one vma in the range */ 1420 ret = -EINVAL; 1421 if (vma->vm_start >= end) 1422 goto out_unlock; 1423 1424 /* 1425 * If the first vma contains huge pages, make sure start address 1426 * is aligned to huge page size. 1427 */ 1428 if (is_vm_hugetlb_page(vma)) { 1429 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1430 1431 if (start & (vma_hpagesize - 1)) 1432 goto out_unlock; 1433 } 1434 1435 /* 1436 * Search for not compatible vmas. 1437 */ 1438 found = false; 1439 ret = -EINVAL; 1440 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1441 cond_resched(); 1442 1443 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1444 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1445 1446 /* 1447 * Check not compatible vmas, not strictly required 1448 * here as not compatible vmas cannot have an 1449 * userfaultfd_ctx registered on them, but this 1450 * provides for more strict behavior to notice 1451 * unregistration errors. 1452 */ 1453 if (!vma_can_userfault(cur)) 1454 goto out_unlock; 1455 1456 found = true; 1457 } 1458 BUG_ON(!found); 1459 1460 if (vma->vm_start < start) 1461 prev = vma; 1462 1463 ret = 0; 1464 do { 1465 cond_resched(); 1466 1467 BUG_ON(!vma_can_userfault(vma)); 1468 1469 /* 1470 * Nothing to do: this vma is already registered into this 1471 * userfaultfd and with the right tracking mode too. 1472 */ 1473 if (!vma->vm_userfaultfd_ctx.ctx) 1474 goto skip; 1475 1476 if (vma->vm_start > start) 1477 start = vma->vm_start; 1478 vma_end = min(end, vma->vm_end); 1479 1480 if (userfaultfd_missing(vma)) { 1481 /* 1482 * Wake any concurrent pending userfault while 1483 * we unregister, so they will not hang 1484 * permanently and it avoids userland to call 1485 * UFFDIO_WAKE explicitly. 1486 */ 1487 struct userfaultfd_wake_range range; 1488 range.start = start; 1489 range.len = vma_end - start; 1490 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1491 } 1492 1493 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 1494 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1495 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1496 vma_policy(vma), 1497 NULL_VM_UFFD_CTX); 1498 if (prev) { 1499 vma = prev; 1500 goto next; 1501 } 1502 if (vma->vm_start < start) { 1503 ret = split_vma(mm, vma, start, 1); 1504 if (ret) 1505 break; 1506 } 1507 if (vma->vm_end > end) { 1508 ret = split_vma(mm, vma, end, 0); 1509 if (ret) 1510 break; 1511 } 1512 next: 1513 /* 1514 * In the vma_merge() successful mprotect-like case 8: 1515 * the next vma was merged into the current one and 1516 * the current one has not been updated yet. 1517 */ 1518 vma->vm_flags = new_flags; 1519 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1520 1521 skip: 1522 prev = vma; 1523 start = vma->vm_end; 1524 vma = vma->vm_next; 1525 } while (vma && vma->vm_start < end); 1526 out_unlock: 1527 up_write(&mm->mmap_sem); 1528 mmput(mm); 1529 out: 1530 return ret; 1531 } 1532 1533 /* 1534 * userfaultfd_wake may be used in combination with the 1535 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1536 */ 1537 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1538 unsigned long arg) 1539 { 1540 int ret; 1541 struct uffdio_range uffdio_wake; 1542 struct userfaultfd_wake_range range; 1543 const void __user *buf = (void __user *)arg; 1544 1545 ret = -EFAULT; 1546 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1547 goto out; 1548 1549 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1550 if (ret) 1551 goto out; 1552 1553 range.start = uffdio_wake.start; 1554 range.len = uffdio_wake.len; 1555 1556 /* 1557 * len == 0 means wake all and we don't want to wake all here, 1558 * so check it again to be sure. 1559 */ 1560 VM_BUG_ON(!range.len); 1561 1562 wake_userfault(ctx, &range); 1563 ret = 0; 1564 1565 out: 1566 return ret; 1567 } 1568 1569 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1570 unsigned long arg) 1571 { 1572 __s64 ret; 1573 struct uffdio_copy uffdio_copy; 1574 struct uffdio_copy __user *user_uffdio_copy; 1575 struct userfaultfd_wake_range range; 1576 1577 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1578 1579 ret = -EFAULT; 1580 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1581 /* don't copy "copy" last field */ 1582 sizeof(uffdio_copy)-sizeof(__s64))) 1583 goto out; 1584 1585 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1586 if (ret) 1587 goto out; 1588 /* 1589 * double check for wraparound just in case. copy_from_user() 1590 * will later check uffdio_copy.src + uffdio_copy.len to fit 1591 * in the userland range. 1592 */ 1593 ret = -EINVAL; 1594 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1595 goto out; 1596 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) 1597 goto out; 1598 if (mmget_not_zero(ctx->mm)) { 1599 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1600 uffdio_copy.len); 1601 mmput(ctx->mm); 1602 } else { 1603 return -ESRCH; 1604 } 1605 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1606 return -EFAULT; 1607 if (ret < 0) 1608 goto out; 1609 BUG_ON(!ret); 1610 /* len == 0 would wake all */ 1611 range.len = ret; 1612 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1613 range.start = uffdio_copy.dst; 1614 wake_userfault(ctx, &range); 1615 } 1616 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1617 out: 1618 return ret; 1619 } 1620 1621 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1622 unsigned long arg) 1623 { 1624 __s64 ret; 1625 struct uffdio_zeropage uffdio_zeropage; 1626 struct uffdio_zeropage __user *user_uffdio_zeropage; 1627 struct userfaultfd_wake_range range; 1628 1629 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1630 1631 ret = -EFAULT; 1632 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1633 /* don't copy "zeropage" last field */ 1634 sizeof(uffdio_zeropage)-sizeof(__s64))) 1635 goto out; 1636 1637 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1638 uffdio_zeropage.range.len); 1639 if (ret) 1640 goto out; 1641 ret = -EINVAL; 1642 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1643 goto out; 1644 1645 if (mmget_not_zero(ctx->mm)) { 1646 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1647 uffdio_zeropage.range.len); 1648 mmput(ctx->mm); 1649 } else { 1650 return -ESRCH; 1651 } 1652 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1653 return -EFAULT; 1654 if (ret < 0) 1655 goto out; 1656 /* len == 0 would wake all */ 1657 BUG_ON(!ret); 1658 range.len = ret; 1659 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1660 range.start = uffdio_zeropage.range.start; 1661 wake_userfault(ctx, &range); 1662 } 1663 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1664 out: 1665 return ret; 1666 } 1667 1668 static inline unsigned int uffd_ctx_features(__u64 user_features) 1669 { 1670 /* 1671 * For the current set of features the bits just coincide 1672 */ 1673 return (unsigned int)user_features; 1674 } 1675 1676 /* 1677 * userland asks for a certain API version and we return which bits 1678 * and ioctl commands are implemented in this kernel for such API 1679 * version or -EINVAL if unknown. 1680 */ 1681 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1682 unsigned long arg) 1683 { 1684 struct uffdio_api uffdio_api; 1685 void __user *buf = (void __user *)arg; 1686 int ret; 1687 __u64 features; 1688 1689 ret = -EINVAL; 1690 if (ctx->state != UFFD_STATE_WAIT_API) 1691 goto out; 1692 ret = -EFAULT; 1693 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1694 goto out; 1695 features = uffdio_api.features; 1696 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) { 1697 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1698 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1699 goto out; 1700 ret = -EINVAL; 1701 goto out; 1702 } 1703 /* report all available features and ioctls to userland */ 1704 uffdio_api.features = UFFD_API_FEATURES; 1705 uffdio_api.ioctls = UFFD_API_IOCTLS; 1706 ret = -EFAULT; 1707 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1708 goto out; 1709 ctx->state = UFFD_STATE_RUNNING; 1710 /* only enable the requested features for this uffd context */ 1711 ctx->features = uffd_ctx_features(features); 1712 ret = 0; 1713 out: 1714 return ret; 1715 } 1716 1717 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1718 unsigned long arg) 1719 { 1720 int ret = -EINVAL; 1721 struct userfaultfd_ctx *ctx = file->private_data; 1722 1723 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) 1724 return -EINVAL; 1725 1726 switch(cmd) { 1727 case UFFDIO_API: 1728 ret = userfaultfd_api(ctx, arg); 1729 break; 1730 case UFFDIO_REGISTER: 1731 ret = userfaultfd_register(ctx, arg); 1732 break; 1733 case UFFDIO_UNREGISTER: 1734 ret = userfaultfd_unregister(ctx, arg); 1735 break; 1736 case UFFDIO_WAKE: 1737 ret = userfaultfd_wake(ctx, arg); 1738 break; 1739 case UFFDIO_COPY: 1740 ret = userfaultfd_copy(ctx, arg); 1741 break; 1742 case UFFDIO_ZEROPAGE: 1743 ret = userfaultfd_zeropage(ctx, arg); 1744 break; 1745 } 1746 return ret; 1747 } 1748 1749 #ifdef CONFIG_PROC_FS 1750 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 1751 { 1752 struct userfaultfd_ctx *ctx = f->private_data; 1753 wait_queue_entry_t *wq; 1754 struct userfaultfd_wait_queue *uwq; 1755 unsigned long pending = 0, total = 0; 1756 1757 spin_lock(&ctx->fault_pending_wqh.lock); 1758 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 1759 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 1760 pending++; 1761 total++; 1762 } 1763 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 1764 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 1765 total++; 1766 } 1767 spin_unlock(&ctx->fault_pending_wqh.lock); 1768 1769 /* 1770 * If more protocols will be added, there will be all shown 1771 * separated by a space. Like this: 1772 * protocols: aa:... bb:... 1773 */ 1774 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 1775 pending, total, UFFD_API, ctx->features, 1776 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 1777 } 1778 #endif 1779 1780 static const struct file_operations userfaultfd_fops = { 1781 #ifdef CONFIG_PROC_FS 1782 .show_fdinfo = userfaultfd_show_fdinfo, 1783 #endif 1784 .release = userfaultfd_release, 1785 .poll = userfaultfd_poll, 1786 .read = userfaultfd_read, 1787 .unlocked_ioctl = userfaultfd_ioctl, 1788 .compat_ioctl = userfaultfd_ioctl, 1789 .llseek = noop_llseek, 1790 }; 1791 1792 static void init_once_userfaultfd_ctx(void *mem) 1793 { 1794 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 1795 1796 init_waitqueue_head(&ctx->fault_pending_wqh); 1797 init_waitqueue_head(&ctx->fault_wqh); 1798 init_waitqueue_head(&ctx->event_wqh); 1799 init_waitqueue_head(&ctx->fd_wqh); 1800 seqcount_init(&ctx->refile_seq); 1801 } 1802 1803 /** 1804 * userfaultfd_file_create - Creates a userfaultfd file pointer. 1805 * @flags: Flags for the userfaultfd file. 1806 * 1807 * This function creates a userfaultfd file pointer, w/out installing 1808 * it into the fd table. This is useful when the userfaultfd file is 1809 * used during the initialization of data structures that require 1810 * extra setup after the userfaultfd creation. So the userfaultfd 1811 * creation is split into the file pointer creation phase, and the 1812 * file descriptor installation phase. In this way races with 1813 * userspace closing the newly installed file descriptor can be 1814 * avoided. Returns a userfaultfd file pointer, or a proper error 1815 * pointer. 1816 */ 1817 static struct file *userfaultfd_file_create(int flags) 1818 { 1819 struct file *file; 1820 struct userfaultfd_ctx *ctx; 1821 1822 BUG_ON(!current->mm); 1823 1824 /* Check the UFFD_* constants for consistency. */ 1825 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 1826 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 1827 1828 file = ERR_PTR(-EINVAL); 1829 if (flags & ~UFFD_SHARED_FCNTL_FLAGS) 1830 goto out; 1831 1832 file = ERR_PTR(-ENOMEM); 1833 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 1834 if (!ctx) 1835 goto out; 1836 1837 atomic_set(&ctx->refcount, 1); 1838 ctx->flags = flags; 1839 ctx->features = 0; 1840 ctx->state = UFFD_STATE_WAIT_API; 1841 ctx->released = false; 1842 ctx->mm = current->mm; 1843 /* prevent the mm struct to be freed */ 1844 mmgrab(ctx->mm); 1845 1846 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx, 1847 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); 1848 if (IS_ERR(file)) { 1849 mmdrop(ctx->mm); 1850 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 1851 } 1852 out: 1853 return file; 1854 } 1855 1856 SYSCALL_DEFINE1(userfaultfd, int, flags) 1857 { 1858 int fd, error; 1859 struct file *file; 1860 1861 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS); 1862 if (error < 0) 1863 return error; 1864 fd = error; 1865 1866 file = userfaultfd_file_create(flags); 1867 if (IS_ERR(file)) { 1868 error = PTR_ERR(file); 1869 goto err_put_unused_fd; 1870 } 1871 fd_install(fd, file); 1872 1873 return fd; 1874 1875 err_put_unused_fd: 1876 put_unused_fd(fd); 1877 1878 return error; 1879 } 1880 1881 static int __init userfaultfd_init(void) 1882 { 1883 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 1884 sizeof(struct userfaultfd_ctx), 1885 0, 1886 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 1887 init_once_userfaultfd_ctx); 1888 return 0; 1889 } 1890 __initcall(userfaultfd_init); 1891