xref: /openbmc/linux/fs/userfaultfd.c (revision c8dbaa22)
1 /*
2  *  fs/userfaultfd.c
3  *
4  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
5  *  Copyright (C) 2008-2009 Red Hat, Inc.
6  *  Copyright (C) 2015  Red Hat, Inc.
7  *
8  *  This work is licensed under the terms of the GNU GPL, version 2. See
9  *  the COPYING file in the top-level directory.
10  *
11  *  Some part derived from fs/eventfd.c (anon inode setup) and
12  *  mm/ksm.c (mm hashing).
13  */
14 
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34 
35 enum userfaultfd_state {
36 	UFFD_STATE_WAIT_API,
37 	UFFD_STATE_RUNNING,
38 };
39 
40 /*
41  * Start with fault_pending_wqh and fault_wqh so they're more likely
42  * to be in the same cacheline.
43  */
44 struct userfaultfd_ctx {
45 	/* waitqueue head for the pending (i.e. not read) userfaults */
46 	wait_queue_head_t fault_pending_wqh;
47 	/* waitqueue head for the userfaults */
48 	wait_queue_head_t fault_wqh;
49 	/* waitqueue head for the pseudo fd to wakeup poll/read */
50 	wait_queue_head_t fd_wqh;
51 	/* waitqueue head for events */
52 	wait_queue_head_t event_wqh;
53 	/* a refile sequence protected by fault_pending_wqh lock */
54 	struct seqcount refile_seq;
55 	/* pseudo fd refcounting */
56 	atomic_t refcount;
57 	/* userfaultfd syscall flags */
58 	unsigned int flags;
59 	/* features requested from the userspace */
60 	unsigned int features;
61 	/* state machine */
62 	enum userfaultfd_state state;
63 	/* released */
64 	bool released;
65 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
66 	struct mm_struct *mm;
67 };
68 
69 struct userfaultfd_fork_ctx {
70 	struct userfaultfd_ctx *orig;
71 	struct userfaultfd_ctx *new;
72 	struct list_head list;
73 };
74 
75 struct userfaultfd_unmap_ctx {
76 	struct userfaultfd_ctx *ctx;
77 	unsigned long start;
78 	unsigned long end;
79 	struct list_head list;
80 };
81 
82 struct userfaultfd_wait_queue {
83 	struct uffd_msg msg;
84 	wait_queue_entry_t wq;
85 	struct userfaultfd_ctx *ctx;
86 	bool waken;
87 };
88 
89 struct userfaultfd_wake_range {
90 	unsigned long start;
91 	unsigned long len;
92 };
93 
94 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
95 				     int wake_flags, void *key)
96 {
97 	struct userfaultfd_wake_range *range = key;
98 	int ret;
99 	struct userfaultfd_wait_queue *uwq;
100 	unsigned long start, len;
101 
102 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
103 	ret = 0;
104 	/* len == 0 means wake all */
105 	start = range->start;
106 	len = range->len;
107 	if (len && (start > uwq->msg.arg.pagefault.address ||
108 		    start + len <= uwq->msg.arg.pagefault.address))
109 		goto out;
110 	WRITE_ONCE(uwq->waken, true);
111 	/*
112 	 * The implicit smp_mb__before_spinlock in try_to_wake_up()
113 	 * renders uwq->waken visible to other CPUs before the task is
114 	 * waken.
115 	 */
116 	ret = wake_up_state(wq->private, mode);
117 	if (ret)
118 		/*
119 		 * Wake only once, autoremove behavior.
120 		 *
121 		 * After the effect of list_del_init is visible to the
122 		 * other CPUs, the waitqueue may disappear from under
123 		 * us, see the !list_empty_careful() in
124 		 * handle_userfault(). try_to_wake_up() has an
125 		 * implicit smp_mb__before_spinlock, and the
126 		 * wq->private is read before calling the extern
127 		 * function "wake_up_state" (which in turns calls
128 		 * try_to_wake_up). While the spin_lock;spin_unlock;
129 		 * wouldn't be enough, the smp_mb__before_spinlock is
130 		 * enough to avoid an explicit smp_mb() here.
131 		 */
132 		list_del_init(&wq->entry);
133 out:
134 	return ret;
135 }
136 
137 /**
138  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
139  * context.
140  * @ctx: [in] Pointer to the userfaultfd context.
141  */
142 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
143 {
144 	if (!atomic_inc_not_zero(&ctx->refcount))
145 		BUG();
146 }
147 
148 /**
149  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
150  * context.
151  * @ctx: [in] Pointer to userfaultfd context.
152  *
153  * The userfaultfd context reference must have been previously acquired either
154  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
155  */
156 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
157 {
158 	if (atomic_dec_and_test(&ctx->refcount)) {
159 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
160 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
161 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
162 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
163 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
164 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
165 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
166 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
167 		mmdrop(ctx->mm);
168 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
169 	}
170 }
171 
172 static inline void msg_init(struct uffd_msg *msg)
173 {
174 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
175 	/*
176 	 * Must use memset to zero out the paddings or kernel data is
177 	 * leaked to userland.
178 	 */
179 	memset(msg, 0, sizeof(struct uffd_msg));
180 }
181 
182 static inline struct uffd_msg userfault_msg(unsigned long address,
183 					    unsigned int flags,
184 					    unsigned long reason)
185 {
186 	struct uffd_msg msg;
187 	msg_init(&msg);
188 	msg.event = UFFD_EVENT_PAGEFAULT;
189 	msg.arg.pagefault.address = address;
190 	if (flags & FAULT_FLAG_WRITE)
191 		/*
192 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
193 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
194 		 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
195 		 * was a read fault, otherwise if set it means it's
196 		 * a write fault.
197 		 */
198 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
199 	if (reason & VM_UFFD_WP)
200 		/*
201 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
203 		 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
204 		 * a missing fault, otherwise if set it means it's a
205 		 * write protect fault.
206 		 */
207 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
208 	return msg;
209 }
210 
211 #ifdef CONFIG_HUGETLB_PAGE
212 /*
213  * Same functionality as userfaultfd_must_wait below with modifications for
214  * hugepmd ranges.
215  */
216 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
217 					 struct vm_area_struct *vma,
218 					 unsigned long address,
219 					 unsigned long flags,
220 					 unsigned long reason)
221 {
222 	struct mm_struct *mm = ctx->mm;
223 	pte_t *pte;
224 	bool ret = true;
225 
226 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
227 
228 	pte = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
229 	if (!pte)
230 		goto out;
231 
232 	ret = false;
233 
234 	/*
235 	 * Lockless access: we're in a wait_event so it's ok if it
236 	 * changes under us.
237 	 */
238 	if (huge_pte_none(*pte))
239 		ret = true;
240 	if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP))
241 		ret = true;
242 out:
243 	return ret;
244 }
245 #else
246 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
247 					 struct vm_area_struct *vma,
248 					 unsigned long address,
249 					 unsigned long flags,
250 					 unsigned long reason)
251 {
252 	return false;	/* should never get here */
253 }
254 #endif /* CONFIG_HUGETLB_PAGE */
255 
256 /*
257  * Verify the pagetables are still not ok after having reigstered into
258  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
259  * userfault that has already been resolved, if userfaultfd_read and
260  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
261  * threads.
262  */
263 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
264 					 unsigned long address,
265 					 unsigned long flags,
266 					 unsigned long reason)
267 {
268 	struct mm_struct *mm = ctx->mm;
269 	pgd_t *pgd;
270 	p4d_t *p4d;
271 	pud_t *pud;
272 	pmd_t *pmd, _pmd;
273 	pte_t *pte;
274 	bool ret = true;
275 
276 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
277 
278 	pgd = pgd_offset(mm, address);
279 	if (!pgd_present(*pgd))
280 		goto out;
281 	p4d = p4d_offset(pgd, address);
282 	if (!p4d_present(*p4d))
283 		goto out;
284 	pud = pud_offset(p4d, address);
285 	if (!pud_present(*pud))
286 		goto out;
287 	pmd = pmd_offset(pud, address);
288 	/*
289 	 * READ_ONCE must function as a barrier with narrower scope
290 	 * and it must be equivalent to:
291 	 *	_pmd = *pmd; barrier();
292 	 *
293 	 * This is to deal with the instability (as in
294 	 * pmd_trans_unstable) of the pmd.
295 	 */
296 	_pmd = READ_ONCE(*pmd);
297 	if (!pmd_present(_pmd))
298 		goto out;
299 
300 	ret = false;
301 	if (pmd_trans_huge(_pmd))
302 		goto out;
303 
304 	/*
305 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
306 	 * and use the standard pte_offset_map() instead of parsing _pmd.
307 	 */
308 	pte = pte_offset_map(pmd, address);
309 	/*
310 	 * Lockless access: we're in a wait_event so it's ok if it
311 	 * changes under us.
312 	 */
313 	if (pte_none(*pte))
314 		ret = true;
315 	pte_unmap(pte);
316 
317 out:
318 	return ret;
319 }
320 
321 /*
322  * The locking rules involved in returning VM_FAULT_RETRY depending on
323  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
324  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
325  * recommendation in __lock_page_or_retry is not an understatement.
326  *
327  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
328  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
329  * not set.
330  *
331  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
332  * set, VM_FAULT_RETRY can still be returned if and only if there are
333  * fatal_signal_pending()s, and the mmap_sem must be released before
334  * returning it.
335  */
336 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
337 {
338 	struct mm_struct *mm = vmf->vma->vm_mm;
339 	struct userfaultfd_ctx *ctx;
340 	struct userfaultfd_wait_queue uwq;
341 	int ret;
342 	bool must_wait, return_to_userland;
343 	long blocking_state;
344 
345 	ret = VM_FAULT_SIGBUS;
346 
347 	/*
348 	 * We don't do userfault handling for the final child pid update.
349 	 *
350 	 * We also don't do userfault handling during
351 	 * coredumping. hugetlbfs has the special
352 	 * follow_hugetlb_page() to skip missing pages in the
353 	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
354 	 * the no_page_table() helper in follow_page_mask(), but the
355 	 * shmem_vm_ops->fault method is invoked even during
356 	 * coredumping without mmap_sem and it ends up here.
357 	 */
358 	if (current->flags & (PF_EXITING|PF_DUMPCORE))
359 		goto out;
360 
361 	/*
362 	 * Coredumping runs without mmap_sem so we can only check that
363 	 * the mmap_sem is held, if PF_DUMPCORE was not set.
364 	 */
365 	WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
366 
367 	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
368 	if (!ctx)
369 		goto out;
370 
371 	BUG_ON(ctx->mm != mm);
372 
373 	VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
374 	VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
375 
376 	/*
377 	 * If it's already released don't get it. This avoids to loop
378 	 * in __get_user_pages if userfaultfd_release waits on the
379 	 * caller of handle_userfault to release the mmap_sem.
380 	 */
381 	if (unlikely(ACCESS_ONCE(ctx->released)))
382 		goto out;
383 
384 	/*
385 	 * Check that we can return VM_FAULT_RETRY.
386 	 *
387 	 * NOTE: it should become possible to return VM_FAULT_RETRY
388 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
389 	 * -EBUSY failures, if the userfaultfd is to be extended for
390 	 * VM_UFFD_WP tracking and we intend to arm the userfault
391 	 * without first stopping userland access to the memory. For
392 	 * VM_UFFD_MISSING userfaults this is enough for now.
393 	 */
394 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
395 		/*
396 		 * Validate the invariant that nowait must allow retry
397 		 * to be sure not to return SIGBUS erroneously on
398 		 * nowait invocations.
399 		 */
400 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
401 #ifdef CONFIG_DEBUG_VM
402 		if (printk_ratelimit()) {
403 			printk(KERN_WARNING
404 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
405 			       vmf->flags);
406 			dump_stack();
407 		}
408 #endif
409 		goto out;
410 	}
411 
412 	/*
413 	 * Handle nowait, not much to do other than tell it to retry
414 	 * and wait.
415 	 */
416 	ret = VM_FAULT_RETRY;
417 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
418 		goto out;
419 
420 	/* take the reference before dropping the mmap_sem */
421 	userfaultfd_ctx_get(ctx);
422 
423 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
424 	uwq.wq.private = current;
425 	uwq.msg = userfault_msg(vmf->address, vmf->flags, reason);
426 	uwq.ctx = ctx;
427 	uwq.waken = false;
428 
429 	return_to_userland =
430 		(vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
431 		(FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
432 	blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
433 			 TASK_KILLABLE;
434 
435 	spin_lock(&ctx->fault_pending_wqh.lock);
436 	/*
437 	 * After the __add_wait_queue the uwq is visible to userland
438 	 * through poll/read().
439 	 */
440 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
441 	/*
442 	 * The smp_mb() after __set_current_state prevents the reads
443 	 * following the spin_unlock to happen before the list_add in
444 	 * __add_wait_queue.
445 	 */
446 	set_current_state(blocking_state);
447 	spin_unlock(&ctx->fault_pending_wqh.lock);
448 
449 	if (!is_vm_hugetlb_page(vmf->vma))
450 		must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
451 						  reason);
452 	else
453 		must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
454 						       vmf->address,
455 						       vmf->flags, reason);
456 	up_read(&mm->mmap_sem);
457 
458 	if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
459 		   (return_to_userland ? !signal_pending(current) :
460 		    !fatal_signal_pending(current)))) {
461 		wake_up_poll(&ctx->fd_wqh, POLLIN);
462 		schedule();
463 		ret |= VM_FAULT_MAJOR;
464 
465 		/*
466 		 * False wakeups can orginate even from rwsem before
467 		 * up_read() however userfaults will wait either for a
468 		 * targeted wakeup on the specific uwq waitqueue from
469 		 * wake_userfault() or for signals or for uffd
470 		 * release.
471 		 */
472 		while (!READ_ONCE(uwq.waken)) {
473 			/*
474 			 * This needs the full smp_store_mb()
475 			 * guarantee as the state write must be
476 			 * visible to other CPUs before reading
477 			 * uwq.waken from other CPUs.
478 			 */
479 			set_current_state(blocking_state);
480 			if (READ_ONCE(uwq.waken) ||
481 			    READ_ONCE(ctx->released) ||
482 			    (return_to_userland ? signal_pending(current) :
483 			     fatal_signal_pending(current)))
484 				break;
485 			schedule();
486 		}
487 	}
488 
489 	__set_current_state(TASK_RUNNING);
490 
491 	if (return_to_userland) {
492 		if (signal_pending(current) &&
493 		    !fatal_signal_pending(current)) {
494 			/*
495 			 * If we got a SIGSTOP or SIGCONT and this is
496 			 * a normal userland page fault, just let
497 			 * userland return so the signal will be
498 			 * handled and gdb debugging works.  The page
499 			 * fault code immediately after we return from
500 			 * this function is going to release the
501 			 * mmap_sem and it's not depending on it
502 			 * (unlike gup would if we were not to return
503 			 * VM_FAULT_RETRY).
504 			 *
505 			 * If a fatal signal is pending we still take
506 			 * the streamlined VM_FAULT_RETRY failure path
507 			 * and there's no need to retake the mmap_sem
508 			 * in such case.
509 			 */
510 			down_read(&mm->mmap_sem);
511 			ret = VM_FAULT_NOPAGE;
512 		}
513 	}
514 
515 	/*
516 	 * Here we race with the list_del; list_add in
517 	 * userfaultfd_ctx_read(), however because we don't ever run
518 	 * list_del_init() to refile across the two lists, the prev
519 	 * and next pointers will never point to self. list_add also
520 	 * would never let any of the two pointers to point to
521 	 * self. So list_empty_careful won't risk to see both pointers
522 	 * pointing to self at any time during the list refile. The
523 	 * only case where list_del_init() is called is the full
524 	 * removal in the wake function and there we don't re-list_add
525 	 * and it's fine not to block on the spinlock. The uwq on this
526 	 * kernel stack can be released after the list_del_init.
527 	 */
528 	if (!list_empty_careful(&uwq.wq.entry)) {
529 		spin_lock(&ctx->fault_pending_wqh.lock);
530 		/*
531 		 * No need of list_del_init(), the uwq on the stack
532 		 * will be freed shortly anyway.
533 		 */
534 		list_del(&uwq.wq.entry);
535 		spin_unlock(&ctx->fault_pending_wqh.lock);
536 	}
537 
538 	/*
539 	 * ctx may go away after this if the userfault pseudo fd is
540 	 * already released.
541 	 */
542 	userfaultfd_ctx_put(ctx);
543 
544 out:
545 	return ret;
546 }
547 
548 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
549 					      struct userfaultfd_wait_queue *ewq)
550 {
551 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
552 		goto out;
553 
554 	ewq->ctx = ctx;
555 	init_waitqueue_entry(&ewq->wq, current);
556 
557 	spin_lock(&ctx->event_wqh.lock);
558 	/*
559 	 * After the __add_wait_queue the uwq is visible to userland
560 	 * through poll/read().
561 	 */
562 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
563 	for (;;) {
564 		set_current_state(TASK_KILLABLE);
565 		if (ewq->msg.event == 0)
566 			break;
567 		if (ACCESS_ONCE(ctx->released) ||
568 		    fatal_signal_pending(current)) {
569 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
570 			if (ewq->msg.event == UFFD_EVENT_FORK) {
571 				struct userfaultfd_ctx *new;
572 
573 				new = (struct userfaultfd_ctx *)
574 					(unsigned long)
575 					ewq->msg.arg.reserved.reserved1;
576 
577 				userfaultfd_ctx_put(new);
578 			}
579 			break;
580 		}
581 
582 		spin_unlock(&ctx->event_wqh.lock);
583 
584 		wake_up_poll(&ctx->fd_wqh, POLLIN);
585 		schedule();
586 
587 		spin_lock(&ctx->event_wqh.lock);
588 	}
589 	__set_current_state(TASK_RUNNING);
590 	spin_unlock(&ctx->event_wqh.lock);
591 
592 	/*
593 	 * ctx may go away after this if the userfault pseudo fd is
594 	 * already released.
595 	 */
596 out:
597 	userfaultfd_ctx_put(ctx);
598 }
599 
600 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
601 				       struct userfaultfd_wait_queue *ewq)
602 {
603 	ewq->msg.event = 0;
604 	wake_up_locked(&ctx->event_wqh);
605 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
606 }
607 
608 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
609 {
610 	struct userfaultfd_ctx *ctx = NULL, *octx;
611 	struct userfaultfd_fork_ctx *fctx;
612 
613 	octx = vma->vm_userfaultfd_ctx.ctx;
614 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
615 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
616 		vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
617 		return 0;
618 	}
619 
620 	list_for_each_entry(fctx, fcs, list)
621 		if (fctx->orig == octx) {
622 			ctx = fctx->new;
623 			break;
624 		}
625 
626 	if (!ctx) {
627 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
628 		if (!fctx)
629 			return -ENOMEM;
630 
631 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
632 		if (!ctx) {
633 			kfree(fctx);
634 			return -ENOMEM;
635 		}
636 
637 		atomic_set(&ctx->refcount, 1);
638 		ctx->flags = octx->flags;
639 		ctx->state = UFFD_STATE_RUNNING;
640 		ctx->features = octx->features;
641 		ctx->released = false;
642 		ctx->mm = vma->vm_mm;
643 		atomic_inc(&ctx->mm->mm_count);
644 
645 		userfaultfd_ctx_get(octx);
646 		fctx->orig = octx;
647 		fctx->new = ctx;
648 		list_add_tail(&fctx->list, fcs);
649 	}
650 
651 	vma->vm_userfaultfd_ctx.ctx = ctx;
652 	return 0;
653 }
654 
655 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
656 {
657 	struct userfaultfd_ctx *ctx = fctx->orig;
658 	struct userfaultfd_wait_queue ewq;
659 
660 	msg_init(&ewq.msg);
661 
662 	ewq.msg.event = UFFD_EVENT_FORK;
663 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
664 
665 	userfaultfd_event_wait_completion(ctx, &ewq);
666 }
667 
668 void dup_userfaultfd_complete(struct list_head *fcs)
669 {
670 	struct userfaultfd_fork_ctx *fctx, *n;
671 
672 	list_for_each_entry_safe(fctx, n, fcs, list) {
673 		dup_fctx(fctx);
674 		list_del(&fctx->list);
675 		kfree(fctx);
676 	}
677 }
678 
679 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
680 			     struct vm_userfaultfd_ctx *vm_ctx)
681 {
682 	struct userfaultfd_ctx *ctx;
683 
684 	ctx = vma->vm_userfaultfd_ctx.ctx;
685 	if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
686 		vm_ctx->ctx = ctx;
687 		userfaultfd_ctx_get(ctx);
688 	}
689 }
690 
691 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
692 				 unsigned long from, unsigned long to,
693 				 unsigned long len)
694 {
695 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
696 	struct userfaultfd_wait_queue ewq;
697 
698 	if (!ctx)
699 		return;
700 
701 	if (to & ~PAGE_MASK) {
702 		userfaultfd_ctx_put(ctx);
703 		return;
704 	}
705 
706 	msg_init(&ewq.msg);
707 
708 	ewq.msg.event = UFFD_EVENT_REMAP;
709 	ewq.msg.arg.remap.from = from;
710 	ewq.msg.arg.remap.to = to;
711 	ewq.msg.arg.remap.len = len;
712 
713 	userfaultfd_event_wait_completion(ctx, &ewq);
714 }
715 
716 bool userfaultfd_remove(struct vm_area_struct *vma,
717 			unsigned long start, unsigned long end)
718 {
719 	struct mm_struct *mm = vma->vm_mm;
720 	struct userfaultfd_ctx *ctx;
721 	struct userfaultfd_wait_queue ewq;
722 
723 	ctx = vma->vm_userfaultfd_ctx.ctx;
724 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
725 		return true;
726 
727 	userfaultfd_ctx_get(ctx);
728 	up_read(&mm->mmap_sem);
729 
730 	msg_init(&ewq.msg);
731 
732 	ewq.msg.event = UFFD_EVENT_REMOVE;
733 	ewq.msg.arg.remove.start = start;
734 	ewq.msg.arg.remove.end = end;
735 
736 	userfaultfd_event_wait_completion(ctx, &ewq);
737 
738 	return false;
739 }
740 
741 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
742 			  unsigned long start, unsigned long end)
743 {
744 	struct userfaultfd_unmap_ctx *unmap_ctx;
745 
746 	list_for_each_entry(unmap_ctx, unmaps, list)
747 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
748 		    unmap_ctx->end == end)
749 			return true;
750 
751 	return false;
752 }
753 
754 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
755 			   unsigned long start, unsigned long end,
756 			   struct list_head *unmaps)
757 {
758 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
759 		struct userfaultfd_unmap_ctx *unmap_ctx;
760 		struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
761 
762 		if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
763 		    has_unmap_ctx(ctx, unmaps, start, end))
764 			continue;
765 
766 		unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
767 		if (!unmap_ctx)
768 			return -ENOMEM;
769 
770 		userfaultfd_ctx_get(ctx);
771 		unmap_ctx->ctx = ctx;
772 		unmap_ctx->start = start;
773 		unmap_ctx->end = end;
774 		list_add_tail(&unmap_ctx->list, unmaps);
775 	}
776 
777 	return 0;
778 }
779 
780 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
781 {
782 	struct userfaultfd_unmap_ctx *ctx, *n;
783 	struct userfaultfd_wait_queue ewq;
784 
785 	list_for_each_entry_safe(ctx, n, uf, list) {
786 		msg_init(&ewq.msg);
787 
788 		ewq.msg.event = UFFD_EVENT_UNMAP;
789 		ewq.msg.arg.remove.start = ctx->start;
790 		ewq.msg.arg.remove.end = ctx->end;
791 
792 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
793 
794 		list_del(&ctx->list);
795 		kfree(ctx);
796 	}
797 }
798 
799 static int userfaultfd_release(struct inode *inode, struct file *file)
800 {
801 	struct userfaultfd_ctx *ctx = file->private_data;
802 	struct mm_struct *mm = ctx->mm;
803 	struct vm_area_struct *vma, *prev;
804 	/* len == 0 means wake all */
805 	struct userfaultfd_wake_range range = { .len = 0, };
806 	unsigned long new_flags;
807 
808 	ACCESS_ONCE(ctx->released) = true;
809 
810 	if (!mmget_not_zero(mm))
811 		goto wakeup;
812 
813 	/*
814 	 * Flush page faults out of all CPUs. NOTE: all page faults
815 	 * must be retried without returning VM_FAULT_SIGBUS if
816 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
817 	 * changes while handle_userfault released the mmap_sem. So
818 	 * it's critical that released is set to true (above), before
819 	 * taking the mmap_sem for writing.
820 	 */
821 	down_write(&mm->mmap_sem);
822 	prev = NULL;
823 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
824 		cond_resched();
825 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
826 		       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
827 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
828 			prev = vma;
829 			continue;
830 		}
831 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
832 		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
833 				 new_flags, vma->anon_vma,
834 				 vma->vm_file, vma->vm_pgoff,
835 				 vma_policy(vma),
836 				 NULL_VM_UFFD_CTX);
837 		if (prev)
838 			vma = prev;
839 		else
840 			prev = vma;
841 		vma->vm_flags = new_flags;
842 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
843 	}
844 	up_write(&mm->mmap_sem);
845 	mmput(mm);
846 wakeup:
847 	/*
848 	 * After no new page faults can wait on this fault_*wqh, flush
849 	 * the last page faults that may have been already waiting on
850 	 * the fault_*wqh.
851 	 */
852 	spin_lock(&ctx->fault_pending_wqh.lock);
853 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
854 	__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
855 	spin_unlock(&ctx->fault_pending_wqh.lock);
856 
857 	/* Flush pending events that may still wait on event_wqh */
858 	wake_up_all(&ctx->event_wqh);
859 
860 	wake_up_poll(&ctx->fd_wqh, POLLHUP);
861 	userfaultfd_ctx_put(ctx);
862 	return 0;
863 }
864 
865 /* fault_pending_wqh.lock must be hold by the caller */
866 static inline struct userfaultfd_wait_queue *find_userfault_in(
867 		wait_queue_head_t *wqh)
868 {
869 	wait_queue_entry_t *wq;
870 	struct userfaultfd_wait_queue *uwq;
871 
872 	VM_BUG_ON(!spin_is_locked(&wqh->lock));
873 
874 	uwq = NULL;
875 	if (!waitqueue_active(wqh))
876 		goto out;
877 	/* walk in reverse to provide FIFO behavior to read userfaults */
878 	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
879 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
880 out:
881 	return uwq;
882 }
883 
884 static inline struct userfaultfd_wait_queue *find_userfault(
885 		struct userfaultfd_ctx *ctx)
886 {
887 	return find_userfault_in(&ctx->fault_pending_wqh);
888 }
889 
890 static inline struct userfaultfd_wait_queue *find_userfault_evt(
891 		struct userfaultfd_ctx *ctx)
892 {
893 	return find_userfault_in(&ctx->event_wqh);
894 }
895 
896 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
897 {
898 	struct userfaultfd_ctx *ctx = file->private_data;
899 	unsigned int ret;
900 
901 	poll_wait(file, &ctx->fd_wqh, wait);
902 
903 	switch (ctx->state) {
904 	case UFFD_STATE_WAIT_API:
905 		return POLLERR;
906 	case UFFD_STATE_RUNNING:
907 		/*
908 		 * poll() never guarantees that read won't block.
909 		 * userfaults can be waken before they're read().
910 		 */
911 		if (unlikely(!(file->f_flags & O_NONBLOCK)))
912 			return POLLERR;
913 		/*
914 		 * lockless access to see if there are pending faults
915 		 * __pollwait last action is the add_wait_queue but
916 		 * the spin_unlock would allow the waitqueue_active to
917 		 * pass above the actual list_add inside
918 		 * add_wait_queue critical section. So use a full
919 		 * memory barrier to serialize the list_add write of
920 		 * add_wait_queue() with the waitqueue_active read
921 		 * below.
922 		 */
923 		ret = 0;
924 		smp_mb();
925 		if (waitqueue_active(&ctx->fault_pending_wqh))
926 			ret = POLLIN;
927 		else if (waitqueue_active(&ctx->event_wqh))
928 			ret = POLLIN;
929 
930 		return ret;
931 	default:
932 		WARN_ON_ONCE(1);
933 		return POLLERR;
934 	}
935 }
936 
937 static const struct file_operations userfaultfd_fops;
938 
939 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
940 				  struct userfaultfd_ctx *new,
941 				  struct uffd_msg *msg)
942 {
943 	int fd;
944 	struct file *file;
945 	unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
946 
947 	fd = get_unused_fd_flags(flags);
948 	if (fd < 0)
949 		return fd;
950 
951 	file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
952 				  O_RDWR | flags);
953 	if (IS_ERR(file)) {
954 		put_unused_fd(fd);
955 		return PTR_ERR(file);
956 	}
957 
958 	fd_install(fd, file);
959 	msg->arg.reserved.reserved1 = 0;
960 	msg->arg.fork.ufd = fd;
961 
962 	return 0;
963 }
964 
965 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
966 				    struct uffd_msg *msg)
967 {
968 	ssize_t ret;
969 	DECLARE_WAITQUEUE(wait, current);
970 	struct userfaultfd_wait_queue *uwq;
971 	/*
972 	 * Handling fork event requires sleeping operations, so
973 	 * we drop the event_wqh lock, then do these ops, then
974 	 * lock it back and wake up the waiter. While the lock is
975 	 * dropped the ewq may go away so we keep track of it
976 	 * carefully.
977 	 */
978 	LIST_HEAD(fork_event);
979 	struct userfaultfd_ctx *fork_nctx = NULL;
980 
981 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
982 	spin_lock(&ctx->fd_wqh.lock);
983 	__add_wait_queue(&ctx->fd_wqh, &wait);
984 	for (;;) {
985 		set_current_state(TASK_INTERRUPTIBLE);
986 		spin_lock(&ctx->fault_pending_wqh.lock);
987 		uwq = find_userfault(ctx);
988 		if (uwq) {
989 			/*
990 			 * Use a seqcount to repeat the lockless check
991 			 * in wake_userfault() to avoid missing
992 			 * wakeups because during the refile both
993 			 * waitqueue could become empty if this is the
994 			 * only userfault.
995 			 */
996 			write_seqcount_begin(&ctx->refile_seq);
997 
998 			/*
999 			 * The fault_pending_wqh.lock prevents the uwq
1000 			 * to disappear from under us.
1001 			 *
1002 			 * Refile this userfault from
1003 			 * fault_pending_wqh to fault_wqh, it's not
1004 			 * pending anymore after we read it.
1005 			 *
1006 			 * Use list_del() by hand (as
1007 			 * userfaultfd_wake_function also uses
1008 			 * list_del_init() by hand) to be sure nobody
1009 			 * changes __remove_wait_queue() to use
1010 			 * list_del_init() in turn breaking the
1011 			 * !list_empty_careful() check in
1012 			 * handle_userfault(). The uwq->wq.head list
1013 			 * must never be empty at any time during the
1014 			 * refile, or the waitqueue could disappear
1015 			 * from under us. The "wait_queue_head_t"
1016 			 * parameter of __remove_wait_queue() is unused
1017 			 * anyway.
1018 			 */
1019 			list_del(&uwq->wq.entry);
1020 			__add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1021 
1022 			write_seqcount_end(&ctx->refile_seq);
1023 
1024 			/* careful to always initialize msg if ret == 0 */
1025 			*msg = uwq->msg;
1026 			spin_unlock(&ctx->fault_pending_wqh.lock);
1027 			ret = 0;
1028 			break;
1029 		}
1030 		spin_unlock(&ctx->fault_pending_wqh.lock);
1031 
1032 		spin_lock(&ctx->event_wqh.lock);
1033 		uwq = find_userfault_evt(ctx);
1034 		if (uwq) {
1035 			*msg = uwq->msg;
1036 
1037 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1038 				fork_nctx = (struct userfaultfd_ctx *)
1039 					(unsigned long)
1040 					uwq->msg.arg.reserved.reserved1;
1041 				list_move(&uwq->wq.entry, &fork_event);
1042 				spin_unlock(&ctx->event_wqh.lock);
1043 				ret = 0;
1044 				break;
1045 			}
1046 
1047 			userfaultfd_event_complete(ctx, uwq);
1048 			spin_unlock(&ctx->event_wqh.lock);
1049 			ret = 0;
1050 			break;
1051 		}
1052 		spin_unlock(&ctx->event_wqh.lock);
1053 
1054 		if (signal_pending(current)) {
1055 			ret = -ERESTARTSYS;
1056 			break;
1057 		}
1058 		if (no_wait) {
1059 			ret = -EAGAIN;
1060 			break;
1061 		}
1062 		spin_unlock(&ctx->fd_wqh.lock);
1063 		schedule();
1064 		spin_lock(&ctx->fd_wqh.lock);
1065 	}
1066 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1067 	__set_current_state(TASK_RUNNING);
1068 	spin_unlock(&ctx->fd_wqh.lock);
1069 
1070 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1071 		ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1072 
1073 		if (!ret) {
1074 			spin_lock(&ctx->event_wqh.lock);
1075 			if (!list_empty(&fork_event)) {
1076 				uwq = list_first_entry(&fork_event,
1077 						       typeof(*uwq),
1078 						       wq.entry);
1079 				list_del(&uwq->wq.entry);
1080 				__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1081 				userfaultfd_event_complete(ctx, uwq);
1082 			}
1083 			spin_unlock(&ctx->event_wqh.lock);
1084 		}
1085 	}
1086 
1087 	return ret;
1088 }
1089 
1090 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1091 				size_t count, loff_t *ppos)
1092 {
1093 	struct userfaultfd_ctx *ctx = file->private_data;
1094 	ssize_t _ret, ret = 0;
1095 	struct uffd_msg msg;
1096 	int no_wait = file->f_flags & O_NONBLOCK;
1097 
1098 	if (ctx->state == UFFD_STATE_WAIT_API)
1099 		return -EINVAL;
1100 
1101 	for (;;) {
1102 		if (count < sizeof(msg))
1103 			return ret ? ret : -EINVAL;
1104 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1105 		if (_ret < 0)
1106 			return ret ? ret : _ret;
1107 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1108 			return ret ? ret : -EFAULT;
1109 		ret += sizeof(msg);
1110 		buf += sizeof(msg);
1111 		count -= sizeof(msg);
1112 		/*
1113 		 * Allow to read more than one fault at time but only
1114 		 * block if waiting for the very first one.
1115 		 */
1116 		no_wait = O_NONBLOCK;
1117 	}
1118 }
1119 
1120 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1121 			     struct userfaultfd_wake_range *range)
1122 {
1123 	spin_lock(&ctx->fault_pending_wqh.lock);
1124 	/* wake all in the range and autoremove */
1125 	if (waitqueue_active(&ctx->fault_pending_wqh))
1126 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1127 				     range);
1128 	if (waitqueue_active(&ctx->fault_wqh))
1129 		__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1130 	spin_unlock(&ctx->fault_pending_wqh.lock);
1131 }
1132 
1133 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1134 					   struct userfaultfd_wake_range *range)
1135 {
1136 	unsigned seq;
1137 	bool need_wakeup;
1138 
1139 	/*
1140 	 * To be sure waitqueue_active() is not reordered by the CPU
1141 	 * before the pagetable update, use an explicit SMP memory
1142 	 * barrier here. PT lock release or up_read(mmap_sem) still
1143 	 * have release semantics that can allow the
1144 	 * waitqueue_active() to be reordered before the pte update.
1145 	 */
1146 	smp_mb();
1147 
1148 	/*
1149 	 * Use waitqueue_active because it's very frequent to
1150 	 * change the address space atomically even if there are no
1151 	 * userfaults yet. So we take the spinlock only when we're
1152 	 * sure we've userfaults to wake.
1153 	 */
1154 	do {
1155 		seq = read_seqcount_begin(&ctx->refile_seq);
1156 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1157 			waitqueue_active(&ctx->fault_wqh);
1158 		cond_resched();
1159 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1160 	if (need_wakeup)
1161 		__wake_userfault(ctx, range);
1162 }
1163 
1164 static __always_inline int validate_range(struct mm_struct *mm,
1165 					  __u64 start, __u64 len)
1166 {
1167 	__u64 task_size = mm->task_size;
1168 
1169 	if (start & ~PAGE_MASK)
1170 		return -EINVAL;
1171 	if (len & ~PAGE_MASK)
1172 		return -EINVAL;
1173 	if (!len)
1174 		return -EINVAL;
1175 	if (start < mmap_min_addr)
1176 		return -EINVAL;
1177 	if (start >= task_size)
1178 		return -EINVAL;
1179 	if (len > task_size - start)
1180 		return -EINVAL;
1181 	return 0;
1182 }
1183 
1184 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1185 {
1186 	return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1187 		vma_is_shmem(vma);
1188 }
1189 
1190 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1191 				unsigned long arg)
1192 {
1193 	struct mm_struct *mm = ctx->mm;
1194 	struct vm_area_struct *vma, *prev, *cur;
1195 	int ret;
1196 	struct uffdio_register uffdio_register;
1197 	struct uffdio_register __user *user_uffdio_register;
1198 	unsigned long vm_flags, new_flags;
1199 	bool found;
1200 	bool non_anon_pages;
1201 	unsigned long start, end, vma_end;
1202 
1203 	user_uffdio_register = (struct uffdio_register __user *) arg;
1204 
1205 	ret = -EFAULT;
1206 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1207 			   sizeof(uffdio_register)-sizeof(__u64)))
1208 		goto out;
1209 
1210 	ret = -EINVAL;
1211 	if (!uffdio_register.mode)
1212 		goto out;
1213 	if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1214 				     UFFDIO_REGISTER_MODE_WP))
1215 		goto out;
1216 	vm_flags = 0;
1217 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1218 		vm_flags |= VM_UFFD_MISSING;
1219 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1220 		vm_flags |= VM_UFFD_WP;
1221 		/*
1222 		 * FIXME: remove the below error constraint by
1223 		 * implementing the wprotect tracking mode.
1224 		 */
1225 		ret = -EINVAL;
1226 		goto out;
1227 	}
1228 
1229 	ret = validate_range(mm, uffdio_register.range.start,
1230 			     uffdio_register.range.len);
1231 	if (ret)
1232 		goto out;
1233 
1234 	start = uffdio_register.range.start;
1235 	end = start + uffdio_register.range.len;
1236 
1237 	ret = -ENOMEM;
1238 	if (!mmget_not_zero(mm))
1239 		goto out;
1240 
1241 	down_write(&mm->mmap_sem);
1242 	vma = find_vma_prev(mm, start, &prev);
1243 	if (!vma)
1244 		goto out_unlock;
1245 
1246 	/* check that there's at least one vma in the range */
1247 	ret = -EINVAL;
1248 	if (vma->vm_start >= end)
1249 		goto out_unlock;
1250 
1251 	/*
1252 	 * If the first vma contains huge pages, make sure start address
1253 	 * is aligned to huge page size.
1254 	 */
1255 	if (is_vm_hugetlb_page(vma)) {
1256 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1257 
1258 		if (start & (vma_hpagesize - 1))
1259 			goto out_unlock;
1260 	}
1261 
1262 	/*
1263 	 * Search for not compatible vmas.
1264 	 */
1265 	found = false;
1266 	non_anon_pages = false;
1267 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1268 		cond_resched();
1269 
1270 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1271 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1272 
1273 		/* check not compatible vmas */
1274 		ret = -EINVAL;
1275 		if (!vma_can_userfault(cur))
1276 			goto out_unlock;
1277 		/*
1278 		 * If this vma contains ending address, and huge pages
1279 		 * check alignment.
1280 		 */
1281 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1282 		    end > cur->vm_start) {
1283 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1284 
1285 			ret = -EINVAL;
1286 
1287 			if (end & (vma_hpagesize - 1))
1288 				goto out_unlock;
1289 		}
1290 
1291 		/*
1292 		 * Check that this vma isn't already owned by a
1293 		 * different userfaultfd. We can't allow more than one
1294 		 * userfaultfd to own a single vma simultaneously or we
1295 		 * wouldn't know which one to deliver the userfaults to.
1296 		 */
1297 		ret = -EBUSY;
1298 		if (cur->vm_userfaultfd_ctx.ctx &&
1299 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1300 			goto out_unlock;
1301 
1302 		/*
1303 		 * Note vmas containing huge pages
1304 		 */
1305 		if (is_vm_hugetlb_page(cur) || vma_is_shmem(cur))
1306 			non_anon_pages = true;
1307 
1308 		found = true;
1309 	}
1310 	BUG_ON(!found);
1311 
1312 	if (vma->vm_start < start)
1313 		prev = vma;
1314 
1315 	ret = 0;
1316 	do {
1317 		cond_resched();
1318 
1319 		BUG_ON(!vma_can_userfault(vma));
1320 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1321 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1322 
1323 		/*
1324 		 * Nothing to do: this vma is already registered into this
1325 		 * userfaultfd and with the right tracking mode too.
1326 		 */
1327 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1328 		    (vma->vm_flags & vm_flags) == vm_flags)
1329 			goto skip;
1330 
1331 		if (vma->vm_start > start)
1332 			start = vma->vm_start;
1333 		vma_end = min(end, vma->vm_end);
1334 
1335 		new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1336 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1337 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1338 				 vma_policy(vma),
1339 				 ((struct vm_userfaultfd_ctx){ ctx }));
1340 		if (prev) {
1341 			vma = prev;
1342 			goto next;
1343 		}
1344 		if (vma->vm_start < start) {
1345 			ret = split_vma(mm, vma, start, 1);
1346 			if (ret)
1347 				break;
1348 		}
1349 		if (vma->vm_end > end) {
1350 			ret = split_vma(mm, vma, end, 0);
1351 			if (ret)
1352 				break;
1353 		}
1354 	next:
1355 		/*
1356 		 * In the vma_merge() successful mprotect-like case 8:
1357 		 * the next vma was merged into the current one and
1358 		 * the current one has not been updated yet.
1359 		 */
1360 		vma->vm_flags = new_flags;
1361 		vma->vm_userfaultfd_ctx.ctx = ctx;
1362 
1363 	skip:
1364 		prev = vma;
1365 		start = vma->vm_end;
1366 		vma = vma->vm_next;
1367 	} while (vma && vma->vm_start < end);
1368 out_unlock:
1369 	up_write(&mm->mmap_sem);
1370 	mmput(mm);
1371 	if (!ret) {
1372 		/*
1373 		 * Now that we scanned all vmas we can already tell
1374 		 * userland which ioctls methods are guaranteed to
1375 		 * succeed on this range.
1376 		 */
1377 		if (put_user(non_anon_pages ? UFFD_API_RANGE_IOCTLS_BASIC :
1378 			     UFFD_API_RANGE_IOCTLS,
1379 			     &user_uffdio_register->ioctls))
1380 			ret = -EFAULT;
1381 	}
1382 out:
1383 	return ret;
1384 }
1385 
1386 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1387 				  unsigned long arg)
1388 {
1389 	struct mm_struct *mm = ctx->mm;
1390 	struct vm_area_struct *vma, *prev, *cur;
1391 	int ret;
1392 	struct uffdio_range uffdio_unregister;
1393 	unsigned long new_flags;
1394 	bool found;
1395 	unsigned long start, end, vma_end;
1396 	const void __user *buf = (void __user *)arg;
1397 
1398 	ret = -EFAULT;
1399 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1400 		goto out;
1401 
1402 	ret = validate_range(mm, uffdio_unregister.start,
1403 			     uffdio_unregister.len);
1404 	if (ret)
1405 		goto out;
1406 
1407 	start = uffdio_unregister.start;
1408 	end = start + uffdio_unregister.len;
1409 
1410 	ret = -ENOMEM;
1411 	if (!mmget_not_zero(mm))
1412 		goto out;
1413 
1414 	down_write(&mm->mmap_sem);
1415 	vma = find_vma_prev(mm, start, &prev);
1416 	if (!vma)
1417 		goto out_unlock;
1418 
1419 	/* check that there's at least one vma in the range */
1420 	ret = -EINVAL;
1421 	if (vma->vm_start >= end)
1422 		goto out_unlock;
1423 
1424 	/*
1425 	 * If the first vma contains huge pages, make sure start address
1426 	 * is aligned to huge page size.
1427 	 */
1428 	if (is_vm_hugetlb_page(vma)) {
1429 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1430 
1431 		if (start & (vma_hpagesize - 1))
1432 			goto out_unlock;
1433 	}
1434 
1435 	/*
1436 	 * Search for not compatible vmas.
1437 	 */
1438 	found = false;
1439 	ret = -EINVAL;
1440 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1441 		cond_resched();
1442 
1443 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1444 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1445 
1446 		/*
1447 		 * Check not compatible vmas, not strictly required
1448 		 * here as not compatible vmas cannot have an
1449 		 * userfaultfd_ctx registered on them, but this
1450 		 * provides for more strict behavior to notice
1451 		 * unregistration errors.
1452 		 */
1453 		if (!vma_can_userfault(cur))
1454 			goto out_unlock;
1455 
1456 		found = true;
1457 	}
1458 	BUG_ON(!found);
1459 
1460 	if (vma->vm_start < start)
1461 		prev = vma;
1462 
1463 	ret = 0;
1464 	do {
1465 		cond_resched();
1466 
1467 		BUG_ON(!vma_can_userfault(vma));
1468 
1469 		/*
1470 		 * Nothing to do: this vma is already registered into this
1471 		 * userfaultfd and with the right tracking mode too.
1472 		 */
1473 		if (!vma->vm_userfaultfd_ctx.ctx)
1474 			goto skip;
1475 
1476 		if (vma->vm_start > start)
1477 			start = vma->vm_start;
1478 		vma_end = min(end, vma->vm_end);
1479 
1480 		if (userfaultfd_missing(vma)) {
1481 			/*
1482 			 * Wake any concurrent pending userfault while
1483 			 * we unregister, so they will not hang
1484 			 * permanently and it avoids userland to call
1485 			 * UFFDIO_WAKE explicitly.
1486 			 */
1487 			struct userfaultfd_wake_range range;
1488 			range.start = start;
1489 			range.len = vma_end - start;
1490 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1491 		}
1492 
1493 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1494 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1495 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1496 				 vma_policy(vma),
1497 				 NULL_VM_UFFD_CTX);
1498 		if (prev) {
1499 			vma = prev;
1500 			goto next;
1501 		}
1502 		if (vma->vm_start < start) {
1503 			ret = split_vma(mm, vma, start, 1);
1504 			if (ret)
1505 				break;
1506 		}
1507 		if (vma->vm_end > end) {
1508 			ret = split_vma(mm, vma, end, 0);
1509 			if (ret)
1510 				break;
1511 		}
1512 	next:
1513 		/*
1514 		 * In the vma_merge() successful mprotect-like case 8:
1515 		 * the next vma was merged into the current one and
1516 		 * the current one has not been updated yet.
1517 		 */
1518 		vma->vm_flags = new_flags;
1519 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1520 
1521 	skip:
1522 		prev = vma;
1523 		start = vma->vm_end;
1524 		vma = vma->vm_next;
1525 	} while (vma && vma->vm_start < end);
1526 out_unlock:
1527 	up_write(&mm->mmap_sem);
1528 	mmput(mm);
1529 out:
1530 	return ret;
1531 }
1532 
1533 /*
1534  * userfaultfd_wake may be used in combination with the
1535  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1536  */
1537 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1538 			    unsigned long arg)
1539 {
1540 	int ret;
1541 	struct uffdio_range uffdio_wake;
1542 	struct userfaultfd_wake_range range;
1543 	const void __user *buf = (void __user *)arg;
1544 
1545 	ret = -EFAULT;
1546 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1547 		goto out;
1548 
1549 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1550 	if (ret)
1551 		goto out;
1552 
1553 	range.start = uffdio_wake.start;
1554 	range.len = uffdio_wake.len;
1555 
1556 	/*
1557 	 * len == 0 means wake all and we don't want to wake all here,
1558 	 * so check it again to be sure.
1559 	 */
1560 	VM_BUG_ON(!range.len);
1561 
1562 	wake_userfault(ctx, &range);
1563 	ret = 0;
1564 
1565 out:
1566 	return ret;
1567 }
1568 
1569 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1570 			    unsigned long arg)
1571 {
1572 	__s64 ret;
1573 	struct uffdio_copy uffdio_copy;
1574 	struct uffdio_copy __user *user_uffdio_copy;
1575 	struct userfaultfd_wake_range range;
1576 
1577 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1578 
1579 	ret = -EFAULT;
1580 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1581 			   /* don't copy "copy" last field */
1582 			   sizeof(uffdio_copy)-sizeof(__s64)))
1583 		goto out;
1584 
1585 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1586 	if (ret)
1587 		goto out;
1588 	/*
1589 	 * double check for wraparound just in case. copy_from_user()
1590 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1591 	 * in the userland range.
1592 	 */
1593 	ret = -EINVAL;
1594 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1595 		goto out;
1596 	if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1597 		goto out;
1598 	if (mmget_not_zero(ctx->mm)) {
1599 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1600 				   uffdio_copy.len);
1601 		mmput(ctx->mm);
1602 	} else {
1603 		return -ESRCH;
1604 	}
1605 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1606 		return -EFAULT;
1607 	if (ret < 0)
1608 		goto out;
1609 	BUG_ON(!ret);
1610 	/* len == 0 would wake all */
1611 	range.len = ret;
1612 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1613 		range.start = uffdio_copy.dst;
1614 		wake_userfault(ctx, &range);
1615 	}
1616 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1617 out:
1618 	return ret;
1619 }
1620 
1621 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1622 				unsigned long arg)
1623 {
1624 	__s64 ret;
1625 	struct uffdio_zeropage uffdio_zeropage;
1626 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1627 	struct userfaultfd_wake_range range;
1628 
1629 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1630 
1631 	ret = -EFAULT;
1632 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1633 			   /* don't copy "zeropage" last field */
1634 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1635 		goto out;
1636 
1637 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1638 			     uffdio_zeropage.range.len);
1639 	if (ret)
1640 		goto out;
1641 	ret = -EINVAL;
1642 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1643 		goto out;
1644 
1645 	if (mmget_not_zero(ctx->mm)) {
1646 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1647 				     uffdio_zeropage.range.len);
1648 		mmput(ctx->mm);
1649 	} else {
1650 		return -ESRCH;
1651 	}
1652 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1653 		return -EFAULT;
1654 	if (ret < 0)
1655 		goto out;
1656 	/* len == 0 would wake all */
1657 	BUG_ON(!ret);
1658 	range.len = ret;
1659 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1660 		range.start = uffdio_zeropage.range.start;
1661 		wake_userfault(ctx, &range);
1662 	}
1663 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1664 out:
1665 	return ret;
1666 }
1667 
1668 static inline unsigned int uffd_ctx_features(__u64 user_features)
1669 {
1670 	/*
1671 	 * For the current set of features the bits just coincide
1672 	 */
1673 	return (unsigned int)user_features;
1674 }
1675 
1676 /*
1677  * userland asks for a certain API version and we return which bits
1678  * and ioctl commands are implemented in this kernel for such API
1679  * version or -EINVAL if unknown.
1680  */
1681 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1682 			   unsigned long arg)
1683 {
1684 	struct uffdio_api uffdio_api;
1685 	void __user *buf = (void __user *)arg;
1686 	int ret;
1687 	__u64 features;
1688 
1689 	ret = -EINVAL;
1690 	if (ctx->state != UFFD_STATE_WAIT_API)
1691 		goto out;
1692 	ret = -EFAULT;
1693 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1694 		goto out;
1695 	features = uffdio_api.features;
1696 	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1697 		memset(&uffdio_api, 0, sizeof(uffdio_api));
1698 		if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1699 			goto out;
1700 		ret = -EINVAL;
1701 		goto out;
1702 	}
1703 	/* report all available features and ioctls to userland */
1704 	uffdio_api.features = UFFD_API_FEATURES;
1705 	uffdio_api.ioctls = UFFD_API_IOCTLS;
1706 	ret = -EFAULT;
1707 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1708 		goto out;
1709 	ctx->state = UFFD_STATE_RUNNING;
1710 	/* only enable the requested features for this uffd context */
1711 	ctx->features = uffd_ctx_features(features);
1712 	ret = 0;
1713 out:
1714 	return ret;
1715 }
1716 
1717 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1718 			      unsigned long arg)
1719 {
1720 	int ret = -EINVAL;
1721 	struct userfaultfd_ctx *ctx = file->private_data;
1722 
1723 	if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1724 		return -EINVAL;
1725 
1726 	switch(cmd) {
1727 	case UFFDIO_API:
1728 		ret = userfaultfd_api(ctx, arg);
1729 		break;
1730 	case UFFDIO_REGISTER:
1731 		ret = userfaultfd_register(ctx, arg);
1732 		break;
1733 	case UFFDIO_UNREGISTER:
1734 		ret = userfaultfd_unregister(ctx, arg);
1735 		break;
1736 	case UFFDIO_WAKE:
1737 		ret = userfaultfd_wake(ctx, arg);
1738 		break;
1739 	case UFFDIO_COPY:
1740 		ret = userfaultfd_copy(ctx, arg);
1741 		break;
1742 	case UFFDIO_ZEROPAGE:
1743 		ret = userfaultfd_zeropage(ctx, arg);
1744 		break;
1745 	}
1746 	return ret;
1747 }
1748 
1749 #ifdef CONFIG_PROC_FS
1750 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1751 {
1752 	struct userfaultfd_ctx *ctx = f->private_data;
1753 	wait_queue_entry_t *wq;
1754 	struct userfaultfd_wait_queue *uwq;
1755 	unsigned long pending = 0, total = 0;
1756 
1757 	spin_lock(&ctx->fault_pending_wqh.lock);
1758 	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1759 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1760 		pending++;
1761 		total++;
1762 	}
1763 	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1764 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1765 		total++;
1766 	}
1767 	spin_unlock(&ctx->fault_pending_wqh.lock);
1768 
1769 	/*
1770 	 * If more protocols will be added, there will be all shown
1771 	 * separated by a space. Like this:
1772 	 *	protocols: aa:... bb:...
1773 	 */
1774 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1775 		   pending, total, UFFD_API, ctx->features,
1776 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1777 }
1778 #endif
1779 
1780 static const struct file_operations userfaultfd_fops = {
1781 #ifdef CONFIG_PROC_FS
1782 	.show_fdinfo	= userfaultfd_show_fdinfo,
1783 #endif
1784 	.release	= userfaultfd_release,
1785 	.poll		= userfaultfd_poll,
1786 	.read		= userfaultfd_read,
1787 	.unlocked_ioctl = userfaultfd_ioctl,
1788 	.compat_ioctl	= userfaultfd_ioctl,
1789 	.llseek		= noop_llseek,
1790 };
1791 
1792 static void init_once_userfaultfd_ctx(void *mem)
1793 {
1794 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1795 
1796 	init_waitqueue_head(&ctx->fault_pending_wqh);
1797 	init_waitqueue_head(&ctx->fault_wqh);
1798 	init_waitqueue_head(&ctx->event_wqh);
1799 	init_waitqueue_head(&ctx->fd_wqh);
1800 	seqcount_init(&ctx->refile_seq);
1801 }
1802 
1803 /**
1804  * userfaultfd_file_create - Creates a userfaultfd file pointer.
1805  * @flags: Flags for the userfaultfd file.
1806  *
1807  * This function creates a userfaultfd file pointer, w/out installing
1808  * it into the fd table. This is useful when the userfaultfd file is
1809  * used during the initialization of data structures that require
1810  * extra setup after the userfaultfd creation. So the userfaultfd
1811  * creation is split into the file pointer creation phase, and the
1812  * file descriptor installation phase.  In this way races with
1813  * userspace closing the newly installed file descriptor can be
1814  * avoided.  Returns a userfaultfd file pointer, or a proper error
1815  * pointer.
1816  */
1817 static struct file *userfaultfd_file_create(int flags)
1818 {
1819 	struct file *file;
1820 	struct userfaultfd_ctx *ctx;
1821 
1822 	BUG_ON(!current->mm);
1823 
1824 	/* Check the UFFD_* constants for consistency.  */
1825 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1826 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1827 
1828 	file = ERR_PTR(-EINVAL);
1829 	if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1830 		goto out;
1831 
1832 	file = ERR_PTR(-ENOMEM);
1833 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1834 	if (!ctx)
1835 		goto out;
1836 
1837 	atomic_set(&ctx->refcount, 1);
1838 	ctx->flags = flags;
1839 	ctx->features = 0;
1840 	ctx->state = UFFD_STATE_WAIT_API;
1841 	ctx->released = false;
1842 	ctx->mm = current->mm;
1843 	/* prevent the mm struct to be freed */
1844 	mmgrab(ctx->mm);
1845 
1846 	file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1847 				  O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1848 	if (IS_ERR(file)) {
1849 		mmdrop(ctx->mm);
1850 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1851 	}
1852 out:
1853 	return file;
1854 }
1855 
1856 SYSCALL_DEFINE1(userfaultfd, int, flags)
1857 {
1858 	int fd, error;
1859 	struct file *file;
1860 
1861 	error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1862 	if (error < 0)
1863 		return error;
1864 	fd = error;
1865 
1866 	file = userfaultfd_file_create(flags);
1867 	if (IS_ERR(file)) {
1868 		error = PTR_ERR(file);
1869 		goto err_put_unused_fd;
1870 	}
1871 	fd_install(fd, file);
1872 
1873 	return fd;
1874 
1875 err_put_unused_fd:
1876 	put_unused_fd(fd);
1877 
1878 	return error;
1879 }
1880 
1881 static int __init userfaultfd_init(void)
1882 {
1883 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1884 						sizeof(struct userfaultfd_ctx),
1885 						0,
1886 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1887 						init_once_userfaultfd_ctx);
1888 	return 0;
1889 }
1890 __initcall(userfaultfd_init);
1891