xref: /openbmc/linux/fs/userfaultfd.c (revision b24413180f5600bcb3bb70fbed5cf186b60864bd)
1 /*
2  *  fs/userfaultfd.c
3  *
4  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
5  *  Copyright (C) 2008-2009 Red Hat, Inc.
6  *  Copyright (C) 2015  Red Hat, Inc.
7  *
8  *  This work is licensed under the terms of the GNU GPL, version 2. See
9  *  the COPYING file in the top-level directory.
10  *
11  *  Some part derived from fs/eventfd.c (anon inode setup) and
12  *  mm/ksm.c (mm hashing).
13  */
14 
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34 
35 enum userfaultfd_state {
36 	UFFD_STATE_WAIT_API,
37 	UFFD_STATE_RUNNING,
38 };
39 
40 /*
41  * Start with fault_pending_wqh and fault_wqh so they're more likely
42  * to be in the same cacheline.
43  */
44 struct userfaultfd_ctx {
45 	/* waitqueue head for the pending (i.e. not read) userfaults */
46 	wait_queue_head_t fault_pending_wqh;
47 	/* waitqueue head for the userfaults */
48 	wait_queue_head_t fault_wqh;
49 	/* waitqueue head for the pseudo fd to wakeup poll/read */
50 	wait_queue_head_t fd_wqh;
51 	/* waitqueue head for events */
52 	wait_queue_head_t event_wqh;
53 	/* a refile sequence protected by fault_pending_wqh lock */
54 	struct seqcount refile_seq;
55 	/* pseudo fd refcounting */
56 	atomic_t refcount;
57 	/* userfaultfd syscall flags */
58 	unsigned int flags;
59 	/* features requested from the userspace */
60 	unsigned int features;
61 	/* state machine */
62 	enum userfaultfd_state state;
63 	/* released */
64 	bool released;
65 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
66 	struct mm_struct *mm;
67 };
68 
69 struct userfaultfd_fork_ctx {
70 	struct userfaultfd_ctx *orig;
71 	struct userfaultfd_ctx *new;
72 	struct list_head list;
73 };
74 
75 struct userfaultfd_unmap_ctx {
76 	struct userfaultfd_ctx *ctx;
77 	unsigned long start;
78 	unsigned long end;
79 	struct list_head list;
80 };
81 
82 struct userfaultfd_wait_queue {
83 	struct uffd_msg msg;
84 	wait_queue_entry_t wq;
85 	struct userfaultfd_ctx *ctx;
86 	bool waken;
87 };
88 
89 struct userfaultfd_wake_range {
90 	unsigned long start;
91 	unsigned long len;
92 };
93 
94 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
95 				     int wake_flags, void *key)
96 {
97 	struct userfaultfd_wake_range *range = key;
98 	int ret;
99 	struct userfaultfd_wait_queue *uwq;
100 	unsigned long start, len;
101 
102 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
103 	ret = 0;
104 	/* len == 0 means wake all */
105 	start = range->start;
106 	len = range->len;
107 	if (len && (start > uwq->msg.arg.pagefault.address ||
108 		    start + len <= uwq->msg.arg.pagefault.address))
109 		goto out;
110 	WRITE_ONCE(uwq->waken, true);
111 	/*
112 	 * The Program-Order guarantees provided by the scheduler
113 	 * ensure uwq->waken is visible before the task is woken.
114 	 */
115 	ret = wake_up_state(wq->private, mode);
116 	if (ret) {
117 		/*
118 		 * Wake only once, autoremove behavior.
119 		 *
120 		 * After the effect of list_del_init is visible to the other
121 		 * CPUs, the waitqueue may disappear from under us, see the
122 		 * !list_empty_careful() in handle_userfault().
123 		 *
124 		 * try_to_wake_up() has an implicit smp_mb(), and the
125 		 * wq->private is read before calling the extern function
126 		 * "wake_up_state" (which in turns calls try_to_wake_up).
127 		 */
128 		list_del_init(&wq->entry);
129 	}
130 out:
131 	return ret;
132 }
133 
134 /**
135  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
136  * context.
137  * @ctx: [in] Pointer to the userfaultfd context.
138  */
139 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
140 {
141 	if (!atomic_inc_not_zero(&ctx->refcount))
142 		BUG();
143 }
144 
145 /**
146  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
147  * context.
148  * @ctx: [in] Pointer to userfaultfd context.
149  *
150  * The userfaultfd context reference must have been previously acquired either
151  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
152  */
153 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
154 {
155 	if (atomic_dec_and_test(&ctx->refcount)) {
156 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
157 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
158 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
159 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
160 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
161 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
162 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
163 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
164 		mmdrop(ctx->mm);
165 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
166 	}
167 }
168 
169 static inline void msg_init(struct uffd_msg *msg)
170 {
171 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
172 	/*
173 	 * Must use memset to zero out the paddings or kernel data is
174 	 * leaked to userland.
175 	 */
176 	memset(msg, 0, sizeof(struct uffd_msg));
177 }
178 
179 static inline struct uffd_msg userfault_msg(unsigned long address,
180 					    unsigned int flags,
181 					    unsigned long reason,
182 					    unsigned int features)
183 {
184 	struct uffd_msg msg;
185 	msg_init(&msg);
186 	msg.event = UFFD_EVENT_PAGEFAULT;
187 	msg.arg.pagefault.address = address;
188 	if (flags & FAULT_FLAG_WRITE)
189 		/*
190 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
191 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
192 		 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
193 		 * was a read fault, otherwise if set it means it's
194 		 * a write fault.
195 		 */
196 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
197 	if (reason & VM_UFFD_WP)
198 		/*
199 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
200 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
201 		 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
202 		 * a missing fault, otherwise if set it means it's a
203 		 * write protect fault.
204 		 */
205 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
206 	if (features & UFFD_FEATURE_THREAD_ID)
207 		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
208 	return msg;
209 }
210 
211 #ifdef CONFIG_HUGETLB_PAGE
212 /*
213  * Same functionality as userfaultfd_must_wait below with modifications for
214  * hugepmd ranges.
215  */
216 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
217 					 struct vm_area_struct *vma,
218 					 unsigned long address,
219 					 unsigned long flags,
220 					 unsigned long reason)
221 {
222 	struct mm_struct *mm = ctx->mm;
223 	pte_t *pte;
224 	bool ret = true;
225 
226 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
227 
228 	pte = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
229 	if (!pte)
230 		goto out;
231 
232 	ret = false;
233 
234 	/*
235 	 * Lockless access: we're in a wait_event so it's ok if it
236 	 * changes under us.
237 	 */
238 	if (huge_pte_none(*pte))
239 		ret = true;
240 	if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP))
241 		ret = true;
242 out:
243 	return ret;
244 }
245 #else
246 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
247 					 struct vm_area_struct *vma,
248 					 unsigned long address,
249 					 unsigned long flags,
250 					 unsigned long reason)
251 {
252 	return false;	/* should never get here */
253 }
254 #endif /* CONFIG_HUGETLB_PAGE */
255 
256 /*
257  * Verify the pagetables are still not ok after having reigstered into
258  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
259  * userfault that has already been resolved, if userfaultfd_read and
260  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
261  * threads.
262  */
263 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
264 					 unsigned long address,
265 					 unsigned long flags,
266 					 unsigned long reason)
267 {
268 	struct mm_struct *mm = ctx->mm;
269 	pgd_t *pgd;
270 	p4d_t *p4d;
271 	pud_t *pud;
272 	pmd_t *pmd, _pmd;
273 	pte_t *pte;
274 	bool ret = true;
275 
276 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
277 
278 	pgd = pgd_offset(mm, address);
279 	if (!pgd_present(*pgd))
280 		goto out;
281 	p4d = p4d_offset(pgd, address);
282 	if (!p4d_present(*p4d))
283 		goto out;
284 	pud = pud_offset(p4d, address);
285 	if (!pud_present(*pud))
286 		goto out;
287 	pmd = pmd_offset(pud, address);
288 	/*
289 	 * READ_ONCE must function as a barrier with narrower scope
290 	 * and it must be equivalent to:
291 	 *	_pmd = *pmd; barrier();
292 	 *
293 	 * This is to deal with the instability (as in
294 	 * pmd_trans_unstable) of the pmd.
295 	 */
296 	_pmd = READ_ONCE(*pmd);
297 	if (!pmd_present(_pmd))
298 		goto out;
299 
300 	ret = false;
301 	if (pmd_trans_huge(_pmd))
302 		goto out;
303 
304 	/*
305 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
306 	 * and use the standard pte_offset_map() instead of parsing _pmd.
307 	 */
308 	pte = pte_offset_map(pmd, address);
309 	/*
310 	 * Lockless access: we're in a wait_event so it's ok if it
311 	 * changes under us.
312 	 */
313 	if (pte_none(*pte))
314 		ret = true;
315 	pte_unmap(pte);
316 
317 out:
318 	return ret;
319 }
320 
321 /*
322  * The locking rules involved in returning VM_FAULT_RETRY depending on
323  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
324  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
325  * recommendation in __lock_page_or_retry is not an understatement.
326  *
327  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
328  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
329  * not set.
330  *
331  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
332  * set, VM_FAULT_RETRY can still be returned if and only if there are
333  * fatal_signal_pending()s, and the mmap_sem must be released before
334  * returning it.
335  */
336 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
337 {
338 	struct mm_struct *mm = vmf->vma->vm_mm;
339 	struct userfaultfd_ctx *ctx;
340 	struct userfaultfd_wait_queue uwq;
341 	int ret;
342 	bool must_wait, return_to_userland;
343 	long blocking_state;
344 
345 	ret = VM_FAULT_SIGBUS;
346 
347 	/*
348 	 * We don't do userfault handling for the final child pid update.
349 	 *
350 	 * We also don't do userfault handling during
351 	 * coredumping. hugetlbfs has the special
352 	 * follow_hugetlb_page() to skip missing pages in the
353 	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
354 	 * the no_page_table() helper in follow_page_mask(), but the
355 	 * shmem_vm_ops->fault method is invoked even during
356 	 * coredumping without mmap_sem and it ends up here.
357 	 */
358 	if (current->flags & (PF_EXITING|PF_DUMPCORE))
359 		goto out;
360 
361 	/*
362 	 * Coredumping runs without mmap_sem so we can only check that
363 	 * the mmap_sem is held, if PF_DUMPCORE was not set.
364 	 */
365 	WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
366 
367 	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
368 	if (!ctx)
369 		goto out;
370 
371 	BUG_ON(ctx->mm != mm);
372 
373 	VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
374 	VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
375 
376 	if (ctx->features & UFFD_FEATURE_SIGBUS)
377 		goto out;
378 
379 	/*
380 	 * If it's already released don't get it. This avoids to loop
381 	 * in __get_user_pages if userfaultfd_release waits on the
382 	 * caller of handle_userfault to release the mmap_sem.
383 	 */
384 	if (unlikely(ACCESS_ONCE(ctx->released))) {
385 		/*
386 		 * Don't return VM_FAULT_SIGBUS in this case, so a non
387 		 * cooperative manager can close the uffd after the
388 		 * last UFFDIO_COPY, without risking to trigger an
389 		 * involuntary SIGBUS if the process was starting the
390 		 * userfaultfd while the userfaultfd was still armed
391 		 * (but after the last UFFDIO_COPY). If the uffd
392 		 * wasn't already closed when the userfault reached
393 		 * this point, that would normally be solved by
394 		 * userfaultfd_must_wait returning 'false'.
395 		 *
396 		 * If we were to return VM_FAULT_SIGBUS here, the non
397 		 * cooperative manager would be instead forced to
398 		 * always call UFFDIO_UNREGISTER before it can safely
399 		 * close the uffd.
400 		 */
401 		ret = VM_FAULT_NOPAGE;
402 		goto out;
403 	}
404 
405 	/*
406 	 * Check that we can return VM_FAULT_RETRY.
407 	 *
408 	 * NOTE: it should become possible to return VM_FAULT_RETRY
409 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
410 	 * -EBUSY failures, if the userfaultfd is to be extended for
411 	 * VM_UFFD_WP tracking and we intend to arm the userfault
412 	 * without first stopping userland access to the memory. For
413 	 * VM_UFFD_MISSING userfaults this is enough for now.
414 	 */
415 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
416 		/*
417 		 * Validate the invariant that nowait must allow retry
418 		 * to be sure not to return SIGBUS erroneously on
419 		 * nowait invocations.
420 		 */
421 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
422 #ifdef CONFIG_DEBUG_VM
423 		if (printk_ratelimit()) {
424 			printk(KERN_WARNING
425 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
426 			       vmf->flags);
427 			dump_stack();
428 		}
429 #endif
430 		goto out;
431 	}
432 
433 	/*
434 	 * Handle nowait, not much to do other than tell it to retry
435 	 * and wait.
436 	 */
437 	ret = VM_FAULT_RETRY;
438 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
439 		goto out;
440 
441 	/* take the reference before dropping the mmap_sem */
442 	userfaultfd_ctx_get(ctx);
443 
444 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
445 	uwq.wq.private = current;
446 	uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
447 			ctx->features);
448 	uwq.ctx = ctx;
449 	uwq.waken = false;
450 
451 	return_to_userland =
452 		(vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
453 		(FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
454 	blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
455 			 TASK_KILLABLE;
456 
457 	spin_lock(&ctx->fault_pending_wqh.lock);
458 	/*
459 	 * After the __add_wait_queue the uwq is visible to userland
460 	 * through poll/read().
461 	 */
462 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
463 	/*
464 	 * The smp_mb() after __set_current_state prevents the reads
465 	 * following the spin_unlock to happen before the list_add in
466 	 * __add_wait_queue.
467 	 */
468 	set_current_state(blocking_state);
469 	spin_unlock(&ctx->fault_pending_wqh.lock);
470 
471 	if (!is_vm_hugetlb_page(vmf->vma))
472 		must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
473 						  reason);
474 	else
475 		must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
476 						       vmf->address,
477 						       vmf->flags, reason);
478 	up_read(&mm->mmap_sem);
479 
480 	if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
481 		   (return_to_userland ? !signal_pending(current) :
482 		    !fatal_signal_pending(current)))) {
483 		wake_up_poll(&ctx->fd_wqh, POLLIN);
484 		schedule();
485 		ret |= VM_FAULT_MAJOR;
486 
487 		/*
488 		 * False wakeups can orginate even from rwsem before
489 		 * up_read() however userfaults will wait either for a
490 		 * targeted wakeup on the specific uwq waitqueue from
491 		 * wake_userfault() or for signals or for uffd
492 		 * release.
493 		 */
494 		while (!READ_ONCE(uwq.waken)) {
495 			/*
496 			 * This needs the full smp_store_mb()
497 			 * guarantee as the state write must be
498 			 * visible to other CPUs before reading
499 			 * uwq.waken from other CPUs.
500 			 */
501 			set_current_state(blocking_state);
502 			if (READ_ONCE(uwq.waken) ||
503 			    READ_ONCE(ctx->released) ||
504 			    (return_to_userland ? signal_pending(current) :
505 			     fatal_signal_pending(current)))
506 				break;
507 			schedule();
508 		}
509 	}
510 
511 	__set_current_state(TASK_RUNNING);
512 
513 	if (return_to_userland) {
514 		if (signal_pending(current) &&
515 		    !fatal_signal_pending(current)) {
516 			/*
517 			 * If we got a SIGSTOP or SIGCONT and this is
518 			 * a normal userland page fault, just let
519 			 * userland return so the signal will be
520 			 * handled and gdb debugging works.  The page
521 			 * fault code immediately after we return from
522 			 * this function is going to release the
523 			 * mmap_sem and it's not depending on it
524 			 * (unlike gup would if we were not to return
525 			 * VM_FAULT_RETRY).
526 			 *
527 			 * If a fatal signal is pending we still take
528 			 * the streamlined VM_FAULT_RETRY failure path
529 			 * and there's no need to retake the mmap_sem
530 			 * in such case.
531 			 */
532 			down_read(&mm->mmap_sem);
533 			ret = VM_FAULT_NOPAGE;
534 		}
535 	}
536 
537 	/*
538 	 * Here we race with the list_del; list_add in
539 	 * userfaultfd_ctx_read(), however because we don't ever run
540 	 * list_del_init() to refile across the two lists, the prev
541 	 * and next pointers will never point to self. list_add also
542 	 * would never let any of the two pointers to point to
543 	 * self. So list_empty_careful won't risk to see both pointers
544 	 * pointing to self at any time during the list refile. The
545 	 * only case where list_del_init() is called is the full
546 	 * removal in the wake function and there we don't re-list_add
547 	 * and it's fine not to block on the spinlock. The uwq on this
548 	 * kernel stack can be released after the list_del_init.
549 	 */
550 	if (!list_empty_careful(&uwq.wq.entry)) {
551 		spin_lock(&ctx->fault_pending_wqh.lock);
552 		/*
553 		 * No need of list_del_init(), the uwq on the stack
554 		 * will be freed shortly anyway.
555 		 */
556 		list_del(&uwq.wq.entry);
557 		spin_unlock(&ctx->fault_pending_wqh.lock);
558 	}
559 
560 	/*
561 	 * ctx may go away after this if the userfault pseudo fd is
562 	 * already released.
563 	 */
564 	userfaultfd_ctx_put(ctx);
565 
566 out:
567 	return ret;
568 }
569 
570 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
571 					      struct userfaultfd_wait_queue *ewq)
572 {
573 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
574 		goto out;
575 
576 	ewq->ctx = ctx;
577 	init_waitqueue_entry(&ewq->wq, current);
578 
579 	spin_lock(&ctx->event_wqh.lock);
580 	/*
581 	 * After the __add_wait_queue the uwq is visible to userland
582 	 * through poll/read().
583 	 */
584 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
585 	for (;;) {
586 		set_current_state(TASK_KILLABLE);
587 		if (ewq->msg.event == 0)
588 			break;
589 		if (ACCESS_ONCE(ctx->released) ||
590 		    fatal_signal_pending(current)) {
591 			/*
592 			 * &ewq->wq may be queued in fork_event, but
593 			 * __remove_wait_queue ignores the head
594 			 * parameter. It would be a problem if it
595 			 * didn't.
596 			 */
597 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
598 			if (ewq->msg.event == UFFD_EVENT_FORK) {
599 				struct userfaultfd_ctx *new;
600 
601 				new = (struct userfaultfd_ctx *)
602 					(unsigned long)
603 					ewq->msg.arg.reserved.reserved1;
604 
605 				userfaultfd_ctx_put(new);
606 			}
607 			break;
608 		}
609 
610 		spin_unlock(&ctx->event_wqh.lock);
611 
612 		wake_up_poll(&ctx->fd_wqh, POLLIN);
613 		schedule();
614 
615 		spin_lock(&ctx->event_wqh.lock);
616 	}
617 	__set_current_state(TASK_RUNNING);
618 	spin_unlock(&ctx->event_wqh.lock);
619 
620 	/*
621 	 * ctx may go away after this if the userfault pseudo fd is
622 	 * already released.
623 	 */
624 out:
625 	userfaultfd_ctx_put(ctx);
626 }
627 
628 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
629 				       struct userfaultfd_wait_queue *ewq)
630 {
631 	ewq->msg.event = 0;
632 	wake_up_locked(&ctx->event_wqh);
633 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
634 }
635 
636 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
637 {
638 	struct userfaultfd_ctx *ctx = NULL, *octx;
639 	struct userfaultfd_fork_ctx *fctx;
640 
641 	octx = vma->vm_userfaultfd_ctx.ctx;
642 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
643 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
644 		vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
645 		return 0;
646 	}
647 
648 	list_for_each_entry(fctx, fcs, list)
649 		if (fctx->orig == octx) {
650 			ctx = fctx->new;
651 			break;
652 		}
653 
654 	if (!ctx) {
655 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
656 		if (!fctx)
657 			return -ENOMEM;
658 
659 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
660 		if (!ctx) {
661 			kfree(fctx);
662 			return -ENOMEM;
663 		}
664 
665 		atomic_set(&ctx->refcount, 1);
666 		ctx->flags = octx->flags;
667 		ctx->state = UFFD_STATE_RUNNING;
668 		ctx->features = octx->features;
669 		ctx->released = false;
670 		ctx->mm = vma->vm_mm;
671 		atomic_inc(&ctx->mm->mm_count);
672 
673 		userfaultfd_ctx_get(octx);
674 		fctx->orig = octx;
675 		fctx->new = ctx;
676 		list_add_tail(&fctx->list, fcs);
677 	}
678 
679 	vma->vm_userfaultfd_ctx.ctx = ctx;
680 	return 0;
681 }
682 
683 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
684 {
685 	struct userfaultfd_ctx *ctx = fctx->orig;
686 	struct userfaultfd_wait_queue ewq;
687 
688 	msg_init(&ewq.msg);
689 
690 	ewq.msg.event = UFFD_EVENT_FORK;
691 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
692 
693 	userfaultfd_event_wait_completion(ctx, &ewq);
694 }
695 
696 void dup_userfaultfd_complete(struct list_head *fcs)
697 {
698 	struct userfaultfd_fork_ctx *fctx, *n;
699 
700 	list_for_each_entry_safe(fctx, n, fcs, list) {
701 		dup_fctx(fctx);
702 		list_del(&fctx->list);
703 		kfree(fctx);
704 	}
705 }
706 
707 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
708 			     struct vm_userfaultfd_ctx *vm_ctx)
709 {
710 	struct userfaultfd_ctx *ctx;
711 
712 	ctx = vma->vm_userfaultfd_ctx.ctx;
713 	if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
714 		vm_ctx->ctx = ctx;
715 		userfaultfd_ctx_get(ctx);
716 	}
717 }
718 
719 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
720 				 unsigned long from, unsigned long to,
721 				 unsigned long len)
722 {
723 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
724 	struct userfaultfd_wait_queue ewq;
725 
726 	if (!ctx)
727 		return;
728 
729 	if (to & ~PAGE_MASK) {
730 		userfaultfd_ctx_put(ctx);
731 		return;
732 	}
733 
734 	msg_init(&ewq.msg);
735 
736 	ewq.msg.event = UFFD_EVENT_REMAP;
737 	ewq.msg.arg.remap.from = from;
738 	ewq.msg.arg.remap.to = to;
739 	ewq.msg.arg.remap.len = len;
740 
741 	userfaultfd_event_wait_completion(ctx, &ewq);
742 }
743 
744 bool userfaultfd_remove(struct vm_area_struct *vma,
745 			unsigned long start, unsigned long end)
746 {
747 	struct mm_struct *mm = vma->vm_mm;
748 	struct userfaultfd_ctx *ctx;
749 	struct userfaultfd_wait_queue ewq;
750 
751 	ctx = vma->vm_userfaultfd_ctx.ctx;
752 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
753 		return true;
754 
755 	userfaultfd_ctx_get(ctx);
756 	up_read(&mm->mmap_sem);
757 
758 	msg_init(&ewq.msg);
759 
760 	ewq.msg.event = UFFD_EVENT_REMOVE;
761 	ewq.msg.arg.remove.start = start;
762 	ewq.msg.arg.remove.end = end;
763 
764 	userfaultfd_event_wait_completion(ctx, &ewq);
765 
766 	return false;
767 }
768 
769 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
770 			  unsigned long start, unsigned long end)
771 {
772 	struct userfaultfd_unmap_ctx *unmap_ctx;
773 
774 	list_for_each_entry(unmap_ctx, unmaps, list)
775 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
776 		    unmap_ctx->end == end)
777 			return true;
778 
779 	return false;
780 }
781 
782 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
783 			   unsigned long start, unsigned long end,
784 			   struct list_head *unmaps)
785 {
786 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
787 		struct userfaultfd_unmap_ctx *unmap_ctx;
788 		struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
789 
790 		if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
791 		    has_unmap_ctx(ctx, unmaps, start, end))
792 			continue;
793 
794 		unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
795 		if (!unmap_ctx)
796 			return -ENOMEM;
797 
798 		userfaultfd_ctx_get(ctx);
799 		unmap_ctx->ctx = ctx;
800 		unmap_ctx->start = start;
801 		unmap_ctx->end = end;
802 		list_add_tail(&unmap_ctx->list, unmaps);
803 	}
804 
805 	return 0;
806 }
807 
808 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
809 {
810 	struct userfaultfd_unmap_ctx *ctx, *n;
811 	struct userfaultfd_wait_queue ewq;
812 
813 	list_for_each_entry_safe(ctx, n, uf, list) {
814 		msg_init(&ewq.msg);
815 
816 		ewq.msg.event = UFFD_EVENT_UNMAP;
817 		ewq.msg.arg.remove.start = ctx->start;
818 		ewq.msg.arg.remove.end = ctx->end;
819 
820 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
821 
822 		list_del(&ctx->list);
823 		kfree(ctx);
824 	}
825 }
826 
827 static int userfaultfd_release(struct inode *inode, struct file *file)
828 {
829 	struct userfaultfd_ctx *ctx = file->private_data;
830 	struct mm_struct *mm = ctx->mm;
831 	struct vm_area_struct *vma, *prev;
832 	/* len == 0 means wake all */
833 	struct userfaultfd_wake_range range = { .len = 0, };
834 	unsigned long new_flags;
835 
836 	ACCESS_ONCE(ctx->released) = true;
837 
838 	if (!mmget_not_zero(mm))
839 		goto wakeup;
840 
841 	/*
842 	 * Flush page faults out of all CPUs. NOTE: all page faults
843 	 * must be retried without returning VM_FAULT_SIGBUS if
844 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
845 	 * changes while handle_userfault released the mmap_sem. So
846 	 * it's critical that released is set to true (above), before
847 	 * taking the mmap_sem for writing.
848 	 */
849 	down_write(&mm->mmap_sem);
850 	prev = NULL;
851 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
852 		cond_resched();
853 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
854 		       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
855 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
856 			prev = vma;
857 			continue;
858 		}
859 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
860 		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
861 				 new_flags, vma->anon_vma,
862 				 vma->vm_file, vma->vm_pgoff,
863 				 vma_policy(vma),
864 				 NULL_VM_UFFD_CTX);
865 		if (prev)
866 			vma = prev;
867 		else
868 			prev = vma;
869 		vma->vm_flags = new_flags;
870 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
871 	}
872 	up_write(&mm->mmap_sem);
873 	mmput(mm);
874 wakeup:
875 	/*
876 	 * After no new page faults can wait on this fault_*wqh, flush
877 	 * the last page faults that may have been already waiting on
878 	 * the fault_*wqh.
879 	 */
880 	spin_lock(&ctx->fault_pending_wqh.lock);
881 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
882 	__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
883 	spin_unlock(&ctx->fault_pending_wqh.lock);
884 
885 	/* Flush pending events that may still wait on event_wqh */
886 	wake_up_all(&ctx->event_wqh);
887 
888 	wake_up_poll(&ctx->fd_wqh, POLLHUP);
889 	userfaultfd_ctx_put(ctx);
890 	return 0;
891 }
892 
893 /* fault_pending_wqh.lock must be hold by the caller */
894 static inline struct userfaultfd_wait_queue *find_userfault_in(
895 		wait_queue_head_t *wqh)
896 {
897 	wait_queue_entry_t *wq;
898 	struct userfaultfd_wait_queue *uwq;
899 
900 	VM_BUG_ON(!spin_is_locked(&wqh->lock));
901 
902 	uwq = NULL;
903 	if (!waitqueue_active(wqh))
904 		goto out;
905 	/* walk in reverse to provide FIFO behavior to read userfaults */
906 	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
907 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
908 out:
909 	return uwq;
910 }
911 
912 static inline struct userfaultfd_wait_queue *find_userfault(
913 		struct userfaultfd_ctx *ctx)
914 {
915 	return find_userfault_in(&ctx->fault_pending_wqh);
916 }
917 
918 static inline struct userfaultfd_wait_queue *find_userfault_evt(
919 		struct userfaultfd_ctx *ctx)
920 {
921 	return find_userfault_in(&ctx->event_wqh);
922 }
923 
924 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
925 {
926 	struct userfaultfd_ctx *ctx = file->private_data;
927 	unsigned int ret;
928 
929 	poll_wait(file, &ctx->fd_wqh, wait);
930 
931 	switch (ctx->state) {
932 	case UFFD_STATE_WAIT_API:
933 		return POLLERR;
934 	case UFFD_STATE_RUNNING:
935 		/*
936 		 * poll() never guarantees that read won't block.
937 		 * userfaults can be waken before they're read().
938 		 */
939 		if (unlikely(!(file->f_flags & O_NONBLOCK)))
940 			return POLLERR;
941 		/*
942 		 * lockless access to see if there are pending faults
943 		 * __pollwait last action is the add_wait_queue but
944 		 * the spin_unlock would allow the waitqueue_active to
945 		 * pass above the actual list_add inside
946 		 * add_wait_queue critical section. So use a full
947 		 * memory barrier to serialize the list_add write of
948 		 * add_wait_queue() with the waitqueue_active read
949 		 * below.
950 		 */
951 		ret = 0;
952 		smp_mb();
953 		if (waitqueue_active(&ctx->fault_pending_wqh))
954 			ret = POLLIN;
955 		else if (waitqueue_active(&ctx->event_wqh))
956 			ret = POLLIN;
957 
958 		return ret;
959 	default:
960 		WARN_ON_ONCE(1);
961 		return POLLERR;
962 	}
963 }
964 
965 static const struct file_operations userfaultfd_fops;
966 
967 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
968 				  struct userfaultfd_ctx *new,
969 				  struct uffd_msg *msg)
970 {
971 	int fd;
972 	struct file *file;
973 	unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
974 
975 	fd = get_unused_fd_flags(flags);
976 	if (fd < 0)
977 		return fd;
978 
979 	file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
980 				  O_RDWR | flags);
981 	if (IS_ERR(file)) {
982 		put_unused_fd(fd);
983 		return PTR_ERR(file);
984 	}
985 
986 	fd_install(fd, file);
987 	msg->arg.reserved.reserved1 = 0;
988 	msg->arg.fork.ufd = fd;
989 
990 	return 0;
991 }
992 
993 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
994 				    struct uffd_msg *msg)
995 {
996 	ssize_t ret;
997 	DECLARE_WAITQUEUE(wait, current);
998 	struct userfaultfd_wait_queue *uwq;
999 	/*
1000 	 * Handling fork event requires sleeping operations, so
1001 	 * we drop the event_wqh lock, then do these ops, then
1002 	 * lock it back and wake up the waiter. While the lock is
1003 	 * dropped the ewq may go away so we keep track of it
1004 	 * carefully.
1005 	 */
1006 	LIST_HEAD(fork_event);
1007 	struct userfaultfd_ctx *fork_nctx = NULL;
1008 
1009 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1010 	spin_lock(&ctx->fd_wqh.lock);
1011 	__add_wait_queue(&ctx->fd_wqh, &wait);
1012 	for (;;) {
1013 		set_current_state(TASK_INTERRUPTIBLE);
1014 		spin_lock(&ctx->fault_pending_wqh.lock);
1015 		uwq = find_userfault(ctx);
1016 		if (uwq) {
1017 			/*
1018 			 * Use a seqcount to repeat the lockless check
1019 			 * in wake_userfault() to avoid missing
1020 			 * wakeups because during the refile both
1021 			 * waitqueue could become empty if this is the
1022 			 * only userfault.
1023 			 */
1024 			write_seqcount_begin(&ctx->refile_seq);
1025 
1026 			/*
1027 			 * The fault_pending_wqh.lock prevents the uwq
1028 			 * to disappear from under us.
1029 			 *
1030 			 * Refile this userfault from
1031 			 * fault_pending_wqh to fault_wqh, it's not
1032 			 * pending anymore after we read it.
1033 			 *
1034 			 * Use list_del() by hand (as
1035 			 * userfaultfd_wake_function also uses
1036 			 * list_del_init() by hand) to be sure nobody
1037 			 * changes __remove_wait_queue() to use
1038 			 * list_del_init() in turn breaking the
1039 			 * !list_empty_careful() check in
1040 			 * handle_userfault(). The uwq->wq.head list
1041 			 * must never be empty at any time during the
1042 			 * refile, or the waitqueue could disappear
1043 			 * from under us. The "wait_queue_head_t"
1044 			 * parameter of __remove_wait_queue() is unused
1045 			 * anyway.
1046 			 */
1047 			list_del(&uwq->wq.entry);
1048 			__add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1049 
1050 			write_seqcount_end(&ctx->refile_seq);
1051 
1052 			/* careful to always initialize msg if ret == 0 */
1053 			*msg = uwq->msg;
1054 			spin_unlock(&ctx->fault_pending_wqh.lock);
1055 			ret = 0;
1056 			break;
1057 		}
1058 		spin_unlock(&ctx->fault_pending_wqh.lock);
1059 
1060 		spin_lock(&ctx->event_wqh.lock);
1061 		uwq = find_userfault_evt(ctx);
1062 		if (uwq) {
1063 			*msg = uwq->msg;
1064 
1065 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1066 				fork_nctx = (struct userfaultfd_ctx *)
1067 					(unsigned long)
1068 					uwq->msg.arg.reserved.reserved1;
1069 				list_move(&uwq->wq.entry, &fork_event);
1070 				/*
1071 				 * fork_nctx can be freed as soon as
1072 				 * we drop the lock, unless we take a
1073 				 * reference on it.
1074 				 */
1075 				userfaultfd_ctx_get(fork_nctx);
1076 				spin_unlock(&ctx->event_wqh.lock);
1077 				ret = 0;
1078 				break;
1079 			}
1080 
1081 			userfaultfd_event_complete(ctx, uwq);
1082 			spin_unlock(&ctx->event_wqh.lock);
1083 			ret = 0;
1084 			break;
1085 		}
1086 		spin_unlock(&ctx->event_wqh.lock);
1087 
1088 		if (signal_pending(current)) {
1089 			ret = -ERESTARTSYS;
1090 			break;
1091 		}
1092 		if (no_wait) {
1093 			ret = -EAGAIN;
1094 			break;
1095 		}
1096 		spin_unlock(&ctx->fd_wqh.lock);
1097 		schedule();
1098 		spin_lock(&ctx->fd_wqh.lock);
1099 	}
1100 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1101 	__set_current_state(TASK_RUNNING);
1102 	spin_unlock(&ctx->fd_wqh.lock);
1103 
1104 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1105 		ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1106 		spin_lock(&ctx->event_wqh.lock);
1107 		if (!list_empty(&fork_event)) {
1108 			/*
1109 			 * The fork thread didn't abort, so we can
1110 			 * drop the temporary refcount.
1111 			 */
1112 			userfaultfd_ctx_put(fork_nctx);
1113 
1114 			uwq = list_first_entry(&fork_event,
1115 					       typeof(*uwq),
1116 					       wq.entry);
1117 			/*
1118 			 * If fork_event list wasn't empty and in turn
1119 			 * the event wasn't already released by fork
1120 			 * (the event is allocated on fork kernel
1121 			 * stack), put the event back to its place in
1122 			 * the event_wq. fork_event head will be freed
1123 			 * as soon as we return so the event cannot
1124 			 * stay queued there no matter the current
1125 			 * "ret" value.
1126 			 */
1127 			list_del(&uwq->wq.entry);
1128 			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1129 
1130 			/*
1131 			 * Leave the event in the waitqueue and report
1132 			 * error to userland if we failed to resolve
1133 			 * the userfault fork.
1134 			 */
1135 			if (likely(!ret))
1136 				userfaultfd_event_complete(ctx, uwq);
1137 		} else {
1138 			/*
1139 			 * Here the fork thread aborted and the
1140 			 * refcount from the fork thread on fork_nctx
1141 			 * has already been released. We still hold
1142 			 * the reference we took before releasing the
1143 			 * lock above. If resolve_userfault_fork
1144 			 * failed we've to drop it because the
1145 			 * fork_nctx has to be freed in such case. If
1146 			 * it succeeded we'll hold it because the new
1147 			 * uffd references it.
1148 			 */
1149 			if (ret)
1150 				userfaultfd_ctx_put(fork_nctx);
1151 		}
1152 		spin_unlock(&ctx->event_wqh.lock);
1153 	}
1154 
1155 	return ret;
1156 }
1157 
1158 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1159 				size_t count, loff_t *ppos)
1160 {
1161 	struct userfaultfd_ctx *ctx = file->private_data;
1162 	ssize_t _ret, ret = 0;
1163 	struct uffd_msg msg;
1164 	int no_wait = file->f_flags & O_NONBLOCK;
1165 
1166 	if (ctx->state == UFFD_STATE_WAIT_API)
1167 		return -EINVAL;
1168 
1169 	for (;;) {
1170 		if (count < sizeof(msg))
1171 			return ret ? ret : -EINVAL;
1172 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1173 		if (_ret < 0)
1174 			return ret ? ret : _ret;
1175 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1176 			return ret ? ret : -EFAULT;
1177 		ret += sizeof(msg);
1178 		buf += sizeof(msg);
1179 		count -= sizeof(msg);
1180 		/*
1181 		 * Allow to read more than one fault at time but only
1182 		 * block if waiting for the very first one.
1183 		 */
1184 		no_wait = O_NONBLOCK;
1185 	}
1186 }
1187 
1188 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1189 			     struct userfaultfd_wake_range *range)
1190 {
1191 	spin_lock(&ctx->fault_pending_wqh.lock);
1192 	/* wake all in the range and autoremove */
1193 	if (waitqueue_active(&ctx->fault_pending_wqh))
1194 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1195 				     range);
1196 	if (waitqueue_active(&ctx->fault_wqh))
1197 		__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1198 	spin_unlock(&ctx->fault_pending_wqh.lock);
1199 }
1200 
1201 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1202 					   struct userfaultfd_wake_range *range)
1203 {
1204 	unsigned seq;
1205 	bool need_wakeup;
1206 
1207 	/*
1208 	 * To be sure waitqueue_active() is not reordered by the CPU
1209 	 * before the pagetable update, use an explicit SMP memory
1210 	 * barrier here. PT lock release or up_read(mmap_sem) still
1211 	 * have release semantics that can allow the
1212 	 * waitqueue_active() to be reordered before the pte update.
1213 	 */
1214 	smp_mb();
1215 
1216 	/*
1217 	 * Use waitqueue_active because it's very frequent to
1218 	 * change the address space atomically even if there are no
1219 	 * userfaults yet. So we take the spinlock only when we're
1220 	 * sure we've userfaults to wake.
1221 	 */
1222 	do {
1223 		seq = read_seqcount_begin(&ctx->refile_seq);
1224 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1225 			waitqueue_active(&ctx->fault_wqh);
1226 		cond_resched();
1227 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1228 	if (need_wakeup)
1229 		__wake_userfault(ctx, range);
1230 }
1231 
1232 static __always_inline int validate_range(struct mm_struct *mm,
1233 					  __u64 start, __u64 len)
1234 {
1235 	__u64 task_size = mm->task_size;
1236 
1237 	if (start & ~PAGE_MASK)
1238 		return -EINVAL;
1239 	if (len & ~PAGE_MASK)
1240 		return -EINVAL;
1241 	if (!len)
1242 		return -EINVAL;
1243 	if (start < mmap_min_addr)
1244 		return -EINVAL;
1245 	if (start >= task_size)
1246 		return -EINVAL;
1247 	if (len > task_size - start)
1248 		return -EINVAL;
1249 	return 0;
1250 }
1251 
1252 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1253 {
1254 	return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1255 		vma_is_shmem(vma);
1256 }
1257 
1258 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1259 				unsigned long arg)
1260 {
1261 	struct mm_struct *mm = ctx->mm;
1262 	struct vm_area_struct *vma, *prev, *cur;
1263 	int ret;
1264 	struct uffdio_register uffdio_register;
1265 	struct uffdio_register __user *user_uffdio_register;
1266 	unsigned long vm_flags, new_flags;
1267 	bool found;
1268 	bool basic_ioctls;
1269 	unsigned long start, end, vma_end;
1270 
1271 	user_uffdio_register = (struct uffdio_register __user *) arg;
1272 
1273 	ret = -EFAULT;
1274 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1275 			   sizeof(uffdio_register)-sizeof(__u64)))
1276 		goto out;
1277 
1278 	ret = -EINVAL;
1279 	if (!uffdio_register.mode)
1280 		goto out;
1281 	if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1282 				     UFFDIO_REGISTER_MODE_WP))
1283 		goto out;
1284 	vm_flags = 0;
1285 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1286 		vm_flags |= VM_UFFD_MISSING;
1287 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1288 		vm_flags |= VM_UFFD_WP;
1289 		/*
1290 		 * FIXME: remove the below error constraint by
1291 		 * implementing the wprotect tracking mode.
1292 		 */
1293 		ret = -EINVAL;
1294 		goto out;
1295 	}
1296 
1297 	ret = validate_range(mm, uffdio_register.range.start,
1298 			     uffdio_register.range.len);
1299 	if (ret)
1300 		goto out;
1301 
1302 	start = uffdio_register.range.start;
1303 	end = start + uffdio_register.range.len;
1304 
1305 	ret = -ENOMEM;
1306 	if (!mmget_not_zero(mm))
1307 		goto out;
1308 
1309 	down_write(&mm->mmap_sem);
1310 	vma = find_vma_prev(mm, start, &prev);
1311 	if (!vma)
1312 		goto out_unlock;
1313 
1314 	/* check that there's at least one vma in the range */
1315 	ret = -EINVAL;
1316 	if (vma->vm_start >= end)
1317 		goto out_unlock;
1318 
1319 	/*
1320 	 * If the first vma contains huge pages, make sure start address
1321 	 * is aligned to huge page size.
1322 	 */
1323 	if (is_vm_hugetlb_page(vma)) {
1324 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1325 
1326 		if (start & (vma_hpagesize - 1))
1327 			goto out_unlock;
1328 	}
1329 
1330 	/*
1331 	 * Search for not compatible vmas.
1332 	 */
1333 	found = false;
1334 	basic_ioctls = false;
1335 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1336 		cond_resched();
1337 
1338 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1339 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1340 
1341 		/* check not compatible vmas */
1342 		ret = -EINVAL;
1343 		if (!vma_can_userfault(cur))
1344 			goto out_unlock;
1345 		/*
1346 		 * If this vma contains ending address, and huge pages
1347 		 * check alignment.
1348 		 */
1349 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1350 		    end > cur->vm_start) {
1351 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1352 
1353 			ret = -EINVAL;
1354 
1355 			if (end & (vma_hpagesize - 1))
1356 				goto out_unlock;
1357 		}
1358 
1359 		/*
1360 		 * Check that this vma isn't already owned by a
1361 		 * different userfaultfd. We can't allow more than one
1362 		 * userfaultfd to own a single vma simultaneously or we
1363 		 * wouldn't know which one to deliver the userfaults to.
1364 		 */
1365 		ret = -EBUSY;
1366 		if (cur->vm_userfaultfd_ctx.ctx &&
1367 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1368 			goto out_unlock;
1369 
1370 		/*
1371 		 * Note vmas containing huge pages
1372 		 */
1373 		if (is_vm_hugetlb_page(cur))
1374 			basic_ioctls = true;
1375 
1376 		found = true;
1377 	}
1378 	BUG_ON(!found);
1379 
1380 	if (vma->vm_start < start)
1381 		prev = vma;
1382 
1383 	ret = 0;
1384 	do {
1385 		cond_resched();
1386 
1387 		BUG_ON(!vma_can_userfault(vma));
1388 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1389 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1390 
1391 		/*
1392 		 * Nothing to do: this vma is already registered into this
1393 		 * userfaultfd and with the right tracking mode too.
1394 		 */
1395 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1396 		    (vma->vm_flags & vm_flags) == vm_flags)
1397 			goto skip;
1398 
1399 		if (vma->vm_start > start)
1400 			start = vma->vm_start;
1401 		vma_end = min(end, vma->vm_end);
1402 
1403 		new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1404 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1405 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1406 				 vma_policy(vma),
1407 				 ((struct vm_userfaultfd_ctx){ ctx }));
1408 		if (prev) {
1409 			vma = prev;
1410 			goto next;
1411 		}
1412 		if (vma->vm_start < start) {
1413 			ret = split_vma(mm, vma, start, 1);
1414 			if (ret)
1415 				break;
1416 		}
1417 		if (vma->vm_end > end) {
1418 			ret = split_vma(mm, vma, end, 0);
1419 			if (ret)
1420 				break;
1421 		}
1422 	next:
1423 		/*
1424 		 * In the vma_merge() successful mprotect-like case 8:
1425 		 * the next vma was merged into the current one and
1426 		 * the current one has not been updated yet.
1427 		 */
1428 		vma->vm_flags = new_flags;
1429 		vma->vm_userfaultfd_ctx.ctx = ctx;
1430 
1431 	skip:
1432 		prev = vma;
1433 		start = vma->vm_end;
1434 		vma = vma->vm_next;
1435 	} while (vma && vma->vm_start < end);
1436 out_unlock:
1437 	up_write(&mm->mmap_sem);
1438 	mmput(mm);
1439 	if (!ret) {
1440 		/*
1441 		 * Now that we scanned all vmas we can already tell
1442 		 * userland which ioctls methods are guaranteed to
1443 		 * succeed on this range.
1444 		 */
1445 		if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1446 			     UFFD_API_RANGE_IOCTLS,
1447 			     &user_uffdio_register->ioctls))
1448 			ret = -EFAULT;
1449 	}
1450 out:
1451 	return ret;
1452 }
1453 
1454 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1455 				  unsigned long arg)
1456 {
1457 	struct mm_struct *mm = ctx->mm;
1458 	struct vm_area_struct *vma, *prev, *cur;
1459 	int ret;
1460 	struct uffdio_range uffdio_unregister;
1461 	unsigned long new_flags;
1462 	bool found;
1463 	unsigned long start, end, vma_end;
1464 	const void __user *buf = (void __user *)arg;
1465 
1466 	ret = -EFAULT;
1467 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1468 		goto out;
1469 
1470 	ret = validate_range(mm, uffdio_unregister.start,
1471 			     uffdio_unregister.len);
1472 	if (ret)
1473 		goto out;
1474 
1475 	start = uffdio_unregister.start;
1476 	end = start + uffdio_unregister.len;
1477 
1478 	ret = -ENOMEM;
1479 	if (!mmget_not_zero(mm))
1480 		goto out;
1481 
1482 	down_write(&mm->mmap_sem);
1483 	vma = find_vma_prev(mm, start, &prev);
1484 	if (!vma)
1485 		goto out_unlock;
1486 
1487 	/* check that there's at least one vma in the range */
1488 	ret = -EINVAL;
1489 	if (vma->vm_start >= end)
1490 		goto out_unlock;
1491 
1492 	/*
1493 	 * If the first vma contains huge pages, make sure start address
1494 	 * is aligned to huge page size.
1495 	 */
1496 	if (is_vm_hugetlb_page(vma)) {
1497 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1498 
1499 		if (start & (vma_hpagesize - 1))
1500 			goto out_unlock;
1501 	}
1502 
1503 	/*
1504 	 * Search for not compatible vmas.
1505 	 */
1506 	found = false;
1507 	ret = -EINVAL;
1508 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1509 		cond_resched();
1510 
1511 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1512 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1513 
1514 		/*
1515 		 * Check not compatible vmas, not strictly required
1516 		 * here as not compatible vmas cannot have an
1517 		 * userfaultfd_ctx registered on them, but this
1518 		 * provides for more strict behavior to notice
1519 		 * unregistration errors.
1520 		 */
1521 		if (!vma_can_userfault(cur))
1522 			goto out_unlock;
1523 
1524 		found = true;
1525 	}
1526 	BUG_ON(!found);
1527 
1528 	if (vma->vm_start < start)
1529 		prev = vma;
1530 
1531 	ret = 0;
1532 	do {
1533 		cond_resched();
1534 
1535 		BUG_ON(!vma_can_userfault(vma));
1536 
1537 		/*
1538 		 * Nothing to do: this vma is already registered into this
1539 		 * userfaultfd and with the right tracking mode too.
1540 		 */
1541 		if (!vma->vm_userfaultfd_ctx.ctx)
1542 			goto skip;
1543 
1544 		if (vma->vm_start > start)
1545 			start = vma->vm_start;
1546 		vma_end = min(end, vma->vm_end);
1547 
1548 		if (userfaultfd_missing(vma)) {
1549 			/*
1550 			 * Wake any concurrent pending userfault while
1551 			 * we unregister, so they will not hang
1552 			 * permanently and it avoids userland to call
1553 			 * UFFDIO_WAKE explicitly.
1554 			 */
1555 			struct userfaultfd_wake_range range;
1556 			range.start = start;
1557 			range.len = vma_end - start;
1558 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1559 		}
1560 
1561 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1562 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1563 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1564 				 vma_policy(vma),
1565 				 NULL_VM_UFFD_CTX);
1566 		if (prev) {
1567 			vma = prev;
1568 			goto next;
1569 		}
1570 		if (vma->vm_start < start) {
1571 			ret = split_vma(mm, vma, start, 1);
1572 			if (ret)
1573 				break;
1574 		}
1575 		if (vma->vm_end > end) {
1576 			ret = split_vma(mm, vma, end, 0);
1577 			if (ret)
1578 				break;
1579 		}
1580 	next:
1581 		/*
1582 		 * In the vma_merge() successful mprotect-like case 8:
1583 		 * the next vma was merged into the current one and
1584 		 * the current one has not been updated yet.
1585 		 */
1586 		vma->vm_flags = new_flags;
1587 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1588 
1589 	skip:
1590 		prev = vma;
1591 		start = vma->vm_end;
1592 		vma = vma->vm_next;
1593 	} while (vma && vma->vm_start < end);
1594 out_unlock:
1595 	up_write(&mm->mmap_sem);
1596 	mmput(mm);
1597 out:
1598 	return ret;
1599 }
1600 
1601 /*
1602  * userfaultfd_wake may be used in combination with the
1603  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1604  */
1605 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1606 			    unsigned long arg)
1607 {
1608 	int ret;
1609 	struct uffdio_range uffdio_wake;
1610 	struct userfaultfd_wake_range range;
1611 	const void __user *buf = (void __user *)arg;
1612 
1613 	ret = -EFAULT;
1614 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1615 		goto out;
1616 
1617 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1618 	if (ret)
1619 		goto out;
1620 
1621 	range.start = uffdio_wake.start;
1622 	range.len = uffdio_wake.len;
1623 
1624 	/*
1625 	 * len == 0 means wake all and we don't want to wake all here,
1626 	 * so check it again to be sure.
1627 	 */
1628 	VM_BUG_ON(!range.len);
1629 
1630 	wake_userfault(ctx, &range);
1631 	ret = 0;
1632 
1633 out:
1634 	return ret;
1635 }
1636 
1637 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1638 			    unsigned long arg)
1639 {
1640 	__s64 ret;
1641 	struct uffdio_copy uffdio_copy;
1642 	struct uffdio_copy __user *user_uffdio_copy;
1643 	struct userfaultfd_wake_range range;
1644 
1645 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1646 
1647 	ret = -EFAULT;
1648 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1649 			   /* don't copy "copy" last field */
1650 			   sizeof(uffdio_copy)-sizeof(__s64)))
1651 		goto out;
1652 
1653 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1654 	if (ret)
1655 		goto out;
1656 	/*
1657 	 * double check for wraparound just in case. copy_from_user()
1658 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1659 	 * in the userland range.
1660 	 */
1661 	ret = -EINVAL;
1662 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1663 		goto out;
1664 	if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1665 		goto out;
1666 	if (mmget_not_zero(ctx->mm)) {
1667 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1668 				   uffdio_copy.len);
1669 		mmput(ctx->mm);
1670 	} else {
1671 		return -ESRCH;
1672 	}
1673 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1674 		return -EFAULT;
1675 	if (ret < 0)
1676 		goto out;
1677 	BUG_ON(!ret);
1678 	/* len == 0 would wake all */
1679 	range.len = ret;
1680 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1681 		range.start = uffdio_copy.dst;
1682 		wake_userfault(ctx, &range);
1683 	}
1684 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1685 out:
1686 	return ret;
1687 }
1688 
1689 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1690 				unsigned long arg)
1691 {
1692 	__s64 ret;
1693 	struct uffdio_zeropage uffdio_zeropage;
1694 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1695 	struct userfaultfd_wake_range range;
1696 
1697 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1698 
1699 	ret = -EFAULT;
1700 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1701 			   /* don't copy "zeropage" last field */
1702 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1703 		goto out;
1704 
1705 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1706 			     uffdio_zeropage.range.len);
1707 	if (ret)
1708 		goto out;
1709 	ret = -EINVAL;
1710 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1711 		goto out;
1712 
1713 	if (mmget_not_zero(ctx->mm)) {
1714 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1715 				     uffdio_zeropage.range.len);
1716 		mmput(ctx->mm);
1717 	} else {
1718 		return -ESRCH;
1719 	}
1720 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1721 		return -EFAULT;
1722 	if (ret < 0)
1723 		goto out;
1724 	/* len == 0 would wake all */
1725 	BUG_ON(!ret);
1726 	range.len = ret;
1727 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1728 		range.start = uffdio_zeropage.range.start;
1729 		wake_userfault(ctx, &range);
1730 	}
1731 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1732 out:
1733 	return ret;
1734 }
1735 
1736 static inline unsigned int uffd_ctx_features(__u64 user_features)
1737 {
1738 	/*
1739 	 * For the current set of features the bits just coincide
1740 	 */
1741 	return (unsigned int)user_features;
1742 }
1743 
1744 /*
1745  * userland asks for a certain API version and we return which bits
1746  * and ioctl commands are implemented in this kernel for such API
1747  * version or -EINVAL if unknown.
1748  */
1749 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1750 			   unsigned long arg)
1751 {
1752 	struct uffdio_api uffdio_api;
1753 	void __user *buf = (void __user *)arg;
1754 	int ret;
1755 	__u64 features;
1756 
1757 	ret = -EINVAL;
1758 	if (ctx->state != UFFD_STATE_WAIT_API)
1759 		goto out;
1760 	ret = -EFAULT;
1761 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1762 		goto out;
1763 	features = uffdio_api.features;
1764 	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1765 		memset(&uffdio_api, 0, sizeof(uffdio_api));
1766 		if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1767 			goto out;
1768 		ret = -EINVAL;
1769 		goto out;
1770 	}
1771 	/* report all available features and ioctls to userland */
1772 	uffdio_api.features = UFFD_API_FEATURES;
1773 	uffdio_api.ioctls = UFFD_API_IOCTLS;
1774 	ret = -EFAULT;
1775 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1776 		goto out;
1777 	ctx->state = UFFD_STATE_RUNNING;
1778 	/* only enable the requested features for this uffd context */
1779 	ctx->features = uffd_ctx_features(features);
1780 	ret = 0;
1781 out:
1782 	return ret;
1783 }
1784 
1785 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1786 			      unsigned long arg)
1787 {
1788 	int ret = -EINVAL;
1789 	struct userfaultfd_ctx *ctx = file->private_data;
1790 
1791 	if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1792 		return -EINVAL;
1793 
1794 	switch(cmd) {
1795 	case UFFDIO_API:
1796 		ret = userfaultfd_api(ctx, arg);
1797 		break;
1798 	case UFFDIO_REGISTER:
1799 		ret = userfaultfd_register(ctx, arg);
1800 		break;
1801 	case UFFDIO_UNREGISTER:
1802 		ret = userfaultfd_unregister(ctx, arg);
1803 		break;
1804 	case UFFDIO_WAKE:
1805 		ret = userfaultfd_wake(ctx, arg);
1806 		break;
1807 	case UFFDIO_COPY:
1808 		ret = userfaultfd_copy(ctx, arg);
1809 		break;
1810 	case UFFDIO_ZEROPAGE:
1811 		ret = userfaultfd_zeropage(ctx, arg);
1812 		break;
1813 	}
1814 	return ret;
1815 }
1816 
1817 #ifdef CONFIG_PROC_FS
1818 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1819 {
1820 	struct userfaultfd_ctx *ctx = f->private_data;
1821 	wait_queue_entry_t *wq;
1822 	struct userfaultfd_wait_queue *uwq;
1823 	unsigned long pending = 0, total = 0;
1824 
1825 	spin_lock(&ctx->fault_pending_wqh.lock);
1826 	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1827 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1828 		pending++;
1829 		total++;
1830 	}
1831 	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1832 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1833 		total++;
1834 	}
1835 	spin_unlock(&ctx->fault_pending_wqh.lock);
1836 
1837 	/*
1838 	 * If more protocols will be added, there will be all shown
1839 	 * separated by a space. Like this:
1840 	 *	protocols: aa:... bb:...
1841 	 */
1842 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1843 		   pending, total, UFFD_API, ctx->features,
1844 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1845 }
1846 #endif
1847 
1848 static const struct file_operations userfaultfd_fops = {
1849 #ifdef CONFIG_PROC_FS
1850 	.show_fdinfo	= userfaultfd_show_fdinfo,
1851 #endif
1852 	.release	= userfaultfd_release,
1853 	.poll		= userfaultfd_poll,
1854 	.read		= userfaultfd_read,
1855 	.unlocked_ioctl = userfaultfd_ioctl,
1856 	.compat_ioctl	= userfaultfd_ioctl,
1857 	.llseek		= noop_llseek,
1858 };
1859 
1860 static void init_once_userfaultfd_ctx(void *mem)
1861 {
1862 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1863 
1864 	init_waitqueue_head(&ctx->fault_pending_wqh);
1865 	init_waitqueue_head(&ctx->fault_wqh);
1866 	init_waitqueue_head(&ctx->event_wqh);
1867 	init_waitqueue_head(&ctx->fd_wqh);
1868 	seqcount_init(&ctx->refile_seq);
1869 }
1870 
1871 /**
1872  * userfaultfd_file_create - Creates a userfaultfd file pointer.
1873  * @flags: Flags for the userfaultfd file.
1874  *
1875  * This function creates a userfaultfd file pointer, w/out installing
1876  * it into the fd table. This is useful when the userfaultfd file is
1877  * used during the initialization of data structures that require
1878  * extra setup after the userfaultfd creation. So the userfaultfd
1879  * creation is split into the file pointer creation phase, and the
1880  * file descriptor installation phase.  In this way races with
1881  * userspace closing the newly installed file descriptor can be
1882  * avoided.  Returns a userfaultfd file pointer, or a proper error
1883  * pointer.
1884  */
1885 static struct file *userfaultfd_file_create(int flags)
1886 {
1887 	struct file *file;
1888 	struct userfaultfd_ctx *ctx;
1889 
1890 	BUG_ON(!current->mm);
1891 
1892 	/* Check the UFFD_* constants for consistency.  */
1893 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1894 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1895 
1896 	file = ERR_PTR(-EINVAL);
1897 	if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1898 		goto out;
1899 
1900 	file = ERR_PTR(-ENOMEM);
1901 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1902 	if (!ctx)
1903 		goto out;
1904 
1905 	atomic_set(&ctx->refcount, 1);
1906 	ctx->flags = flags;
1907 	ctx->features = 0;
1908 	ctx->state = UFFD_STATE_WAIT_API;
1909 	ctx->released = false;
1910 	ctx->mm = current->mm;
1911 	/* prevent the mm struct to be freed */
1912 	mmgrab(ctx->mm);
1913 
1914 	file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1915 				  O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1916 	if (IS_ERR(file)) {
1917 		mmdrop(ctx->mm);
1918 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1919 	}
1920 out:
1921 	return file;
1922 }
1923 
1924 SYSCALL_DEFINE1(userfaultfd, int, flags)
1925 {
1926 	int fd, error;
1927 	struct file *file;
1928 
1929 	error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1930 	if (error < 0)
1931 		return error;
1932 	fd = error;
1933 
1934 	file = userfaultfd_file_create(flags);
1935 	if (IS_ERR(file)) {
1936 		error = PTR_ERR(file);
1937 		goto err_put_unused_fd;
1938 	}
1939 	fd_install(fd, file);
1940 
1941 	return fd;
1942 
1943 err_put_unused_fd:
1944 	put_unused_fd(fd);
1945 
1946 	return error;
1947 }
1948 
1949 static int __init userfaultfd_init(void)
1950 {
1951 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1952 						sizeof(struct userfaultfd_ctx),
1953 						0,
1954 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1955 						init_once_userfaultfd_ctx);
1956 	return 0;
1957 }
1958 __initcall(userfaultfd_init);
1959