1 /* 2 * fs/userfaultfd.c 3 * 4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 5 * Copyright (C) 2008-2009 Red Hat, Inc. 6 * Copyright (C) 2015 Red Hat, Inc. 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2. See 9 * the COPYING file in the top-level directory. 10 * 11 * Some part derived from fs/eventfd.c (anon inode setup) and 12 * mm/ksm.c (mm hashing). 13 */ 14 15 #include <linux/list.h> 16 #include <linux/hashtable.h> 17 #include <linux/sched/signal.h> 18 #include <linux/sched/mm.h> 19 #include <linux/mm.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 34 35 enum userfaultfd_state { 36 UFFD_STATE_WAIT_API, 37 UFFD_STATE_RUNNING, 38 }; 39 40 /* 41 * Start with fault_pending_wqh and fault_wqh so they're more likely 42 * to be in the same cacheline. 43 */ 44 struct userfaultfd_ctx { 45 /* waitqueue head for the pending (i.e. not read) userfaults */ 46 wait_queue_head_t fault_pending_wqh; 47 /* waitqueue head for the userfaults */ 48 wait_queue_head_t fault_wqh; 49 /* waitqueue head for the pseudo fd to wakeup poll/read */ 50 wait_queue_head_t fd_wqh; 51 /* waitqueue head for events */ 52 wait_queue_head_t event_wqh; 53 /* a refile sequence protected by fault_pending_wqh lock */ 54 struct seqcount refile_seq; 55 /* pseudo fd refcounting */ 56 atomic_t refcount; 57 /* userfaultfd syscall flags */ 58 unsigned int flags; 59 /* features requested from the userspace */ 60 unsigned int features; 61 /* state machine */ 62 enum userfaultfd_state state; 63 /* released */ 64 bool released; 65 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 66 struct mm_struct *mm; 67 }; 68 69 struct userfaultfd_fork_ctx { 70 struct userfaultfd_ctx *orig; 71 struct userfaultfd_ctx *new; 72 struct list_head list; 73 }; 74 75 struct userfaultfd_unmap_ctx { 76 struct userfaultfd_ctx *ctx; 77 unsigned long start; 78 unsigned long end; 79 struct list_head list; 80 }; 81 82 struct userfaultfd_wait_queue { 83 struct uffd_msg msg; 84 wait_queue_entry_t wq; 85 struct userfaultfd_ctx *ctx; 86 bool waken; 87 }; 88 89 struct userfaultfd_wake_range { 90 unsigned long start; 91 unsigned long len; 92 }; 93 94 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 95 int wake_flags, void *key) 96 { 97 struct userfaultfd_wake_range *range = key; 98 int ret; 99 struct userfaultfd_wait_queue *uwq; 100 unsigned long start, len; 101 102 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 103 ret = 0; 104 /* len == 0 means wake all */ 105 start = range->start; 106 len = range->len; 107 if (len && (start > uwq->msg.arg.pagefault.address || 108 start + len <= uwq->msg.arg.pagefault.address)) 109 goto out; 110 WRITE_ONCE(uwq->waken, true); 111 /* 112 * The Program-Order guarantees provided by the scheduler 113 * ensure uwq->waken is visible before the task is woken. 114 */ 115 ret = wake_up_state(wq->private, mode); 116 if (ret) { 117 /* 118 * Wake only once, autoremove behavior. 119 * 120 * After the effect of list_del_init is visible to the other 121 * CPUs, the waitqueue may disappear from under us, see the 122 * !list_empty_careful() in handle_userfault(). 123 * 124 * try_to_wake_up() has an implicit smp_mb(), and the 125 * wq->private is read before calling the extern function 126 * "wake_up_state" (which in turns calls try_to_wake_up). 127 */ 128 list_del_init(&wq->entry); 129 } 130 out: 131 return ret; 132 } 133 134 /** 135 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 136 * context. 137 * @ctx: [in] Pointer to the userfaultfd context. 138 */ 139 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 140 { 141 if (!atomic_inc_not_zero(&ctx->refcount)) 142 BUG(); 143 } 144 145 /** 146 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 147 * context. 148 * @ctx: [in] Pointer to userfaultfd context. 149 * 150 * The userfaultfd context reference must have been previously acquired either 151 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 152 */ 153 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 154 { 155 if (atomic_dec_and_test(&ctx->refcount)) { 156 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 157 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 158 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 159 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 160 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 161 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 162 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 163 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 164 mmdrop(ctx->mm); 165 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 166 } 167 } 168 169 static inline void msg_init(struct uffd_msg *msg) 170 { 171 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 172 /* 173 * Must use memset to zero out the paddings or kernel data is 174 * leaked to userland. 175 */ 176 memset(msg, 0, sizeof(struct uffd_msg)); 177 } 178 179 static inline struct uffd_msg userfault_msg(unsigned long address, 180 unsigned int flags, 181 unsigned long reason, 182 unsigned int features) 183 { 184 struct uffd_msg msg; 185 msg_init(&msg); 186 msg.event = UFFD_EVENT_PAGEFAULT; 187 msg.arg.pagefault.address = address; 188 if (flags & FAULT_FLAG_WRITE) 189 /* 190 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 191 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE 192 * was not set in a UFFD_EVENT_PAGEFAULT, it means it 193 * was a read fault, otherwise if set it means it's 194 * a write fault. 195 */ 196 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 197 if (reason & VM_UFFD_WP) 198 /* 199 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 200 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was 201 * not set in a UFFD_EVENT_PAGEFAULT, it means it was 202 * a missing fault, otherwise if set it means it's a 203 * write protect fault. 204 */ 205 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 206 if (features & UFFD_FEATURE_THREAD_ID) 207 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 208 return msg; 209 } 210 211 #ifdef CONFIG_HUGETLB_PAGE 212 /* 213 * Same functionality as userfaultfd_must_wait below with modifications for 214 * hugepmd ranges. 215 */ 216 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 217 struct vm_area_struct *vma, 218 unsigned long address, 219 unsigned long flags, 220 unsigned long reason) 221 { 222 struct mm_struct *mm = ctx->mm; 223 pte_t *pte; 224 bool ret = true; 225 226 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 227 228 pte = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); 229 if (!pte) 230 goto out; 231 232 ret = false; 233 234 /* 235 * Lockless access: we're in a wait_event so it's ok if it 236 * changes under us. 237 */ 238 if (huge_pte_none(*pte)) 239 ret = true; 240 if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP)) 241 ret = true; 242 out: 243 return ret; 244 } 245 #else 246 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 247 struct vm_area_struct *vma, 248 unsigned long address, 249 unsigned long flags, 250 unsigned long reason) 251 { 252 return false; /* should never get here */ 253 } 254 #endif /* CONFIG_HUGETLB_PAGE */ 255 256 /* 257 * Verify the pagetables are still not ok after having reigstered into 258 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 259 * userfault that has already been resolved, if userfaultfd_read and 260 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 261 * threads. 262 */ 263 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 264 unsigned long address, 265 unsigned long flags, 266 unsigned long reason) 267 { 268 struct mm_struct *mm = ctx->mm; 269 pgd_t *pgd; 270 p4d_t *p4d; 271 pud_t *pud; 272 pmd_t *pmd, _pmd; 273 pte_t *pte; 274 bool ret = true; 275 276 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 277 278 pgd = pgd_offset(mm, address); 279 if (!pgd_present(*pgd)) 280 goto out; 281 p4d = p4d_offset(pgd, address); 282 if (!p4d_present(*p4d)) 283 goto out; 284 pud = pud_offset(p4d, address); 285 if (!pud_present(*pud)) 286 goto out; 287 pmd = pmd_offset(pud, address); 288 /* 289 * READ_ONCE must function as a barrier with narrower scope 290 * and it must be equivalent to: 291 * _pmd = *pmd; barrier(); 292 * 293 * This is to deal with the instability (as in 294 * pmd_trans_unstable) of the pmd. 295 */ 296 _pmd = READ_ONCE(*pmd); 297 if (!pmd_present(_pmd)) 298 goto out; 299 300 ret = false; 301 if (pmd_trans_huge(_pmd)) 302 goto out; 303 304 /* 305 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 306 * and use the standard pte_offset_map() instead of parsing _pmd. 307 */ 308 pte = pte_offset_map(pmd, address); 309 /* 310 * Lockless access: we're in a wait_event so it's ok if it 311 * changes under us. 312 */ 313 if (pte_none(*pte)) 314 ret = true; 315 pte_unmap(pte); 316 317 out: 318 return ret; 319 } 320 321 /* 322 * The locking rules involved in returning VM_FAULT_RETRY depending on 323 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 324 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 325 * recommendation in __lock_page_or_retry is not an understatement. 326 * 327 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released 328 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 329 * not set. 330 * 331 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 332 * set, VM_FAULT_RETRY can still be returned if and only if there are 333 * fatal_signal_pending()s, and the mmap_sem must be released before 334 * returning it. 335 */ 336 int handle_userfault(struct vm_fault *vmf, unsigned long reason) 337 { 338 struct mm_struct *mm = vmf->vma->vm_mm; 339 struct userfaultfd_ctx *ctx; 340 struct userfaultfd_wait_queue uwq; 341 int ret; 342 bool must_wait, return_to_userland; 343 long blocking_state; 344 345 ret = VM_FAULT_SIGBUS; 346 347 /* 348 * We don't do userfault handling for the final child pid update. 349 * 350 * We also don't do userfault handling during 351 * coredumping. hugetlbfs has the special 352 * follow_hugetlb_page() to skip missing pages in the 353 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 354 * the no_page_table() helper in follow_page_mask(), but the 355 * shmem_vm_ops->fault method is invoked even during 356 * coredumping without mmap_sem and it ends up here. 357 */ 358 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 359 goto out; 360 361 /* 362 * Coredumping runs without mmap_sem so we can only check that 363 * the mmap_sem is held, if PF_DUMPCORE was not set. 364 */ 365 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem)); 366 367 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 368 if (!ctx) 369 goto out; 370 371 BUG_ON(ctx->mm != mm); 372 373 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); 374 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); 375 376 if (ctx->features & UFFD_FEATURE_SIGBUS) 377 goto out; 378 379 /* 380 * If it's already released don't get it. This avoids to loop 381 * in __get_user_pages if userfaultfd_release waits on the 382 * caller of handle_userfault to release the mmap_sem. 383 */ 384 if (unlikely(ACCESS_ONCE(ctx->released))) { 385 /* 386 * Don't return VM_FAULT_SIGBUS in this case, so a non 387 * cooperative manager can close the uffd after the 388 * last UFFDIO_COPY, without risking to trigger an 389 * involuntary SIGBUS if the process was starting the 390 * userfaultfd while the userfaultfd was still armed 391 * (but after the last UFFDIO_COPY). If the uffd 392 * wasn't already closed when the userfault reached 393 * this point, that would normally be solved by 394 * userfaultfd_must_wait returning 'false'. 395 * 396 * If we were to return VM_FAULT_SIGBUS here, the non 397 * cooperative manager would be instead forced to 398 * always call UFFDIO_UNREGISTER before it can safely 399 * close the uffd. 400 */ 401 ret = VM_FAULT_NOPAGE; 402 goto out; 403 } 404 405 /* 406 * Check that we can return VM_FAULT_RETRY. 407 * 408 * NOTE: it should become possible to return VM_FAULT_RETRY 409 * even if FAULT_FLAG_TRIED is set without leading to gup() 410 * -EBUSY failures, if the userfaultfd is to be extended for 411 * VM_UFFD_WP tracking and we intend to arm the userfault 412 * without first stopping userland access to the memory. For 413 * VM_UFFD_MISSING userfaults this is enough for now. 414 */ 415 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 416 /* 417 * Validate the invariant that nowait must allow retry 418 * to be sure not to return SIGBUS erroneously on 419 * nowait invocations. 420 */ 421 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 422 #ifdef CONFIG_DEBUG_VM 423 if (printk_ratelimit()) { 424 printk(KERN_WARNING 425 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 426 vmf->flags); 427 dump_stack(); 428 } 429 #endif 430 goto out; 431 } 432 433 /* 434 * Handle nowait, not much to do other than tell it to retry 435 * and wait. 436 */ 437 ret = VM_FAULT_RETRY; 438 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 439 goto out; 440 441 /* take the reference before dropping the mmap_sem */ 442 userfaultfd_ctx_get(ctx); 443 444 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 445 uwq.wq.private = current; 446 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason, 447 ctx->features); 448 uwq.ctx = ctx; 449 uwq.waken = false; 450 451 return_to_userland = 452 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) == 453 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE); 454 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE : 455 TASK_KILLABLE; 456 457 spin_lock(&ctx->fault_pending_wqh.lock); 458 /* 459 * After the __add_wait_queue the uwq is visible to userland 460 * through poll/read(). 461 */ 462 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 463 /* 464 * The smp_mb() after __set_current_state prevents the reads 465 * following the spin_unlock to happen before the list_add in 466 * __add_wait_queue. 467 */ 468 set_current_state(blocking_state); 469 spin_unlock(&ctx->fault_pending_wqh.lock); 470 471 if (!is_vm_hugetlb_page(vmf->vma)) 472 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 473 reason); 474 else 475 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, 476 vmf->address, 477 vmf->flags, reason); 478 up_read(&mm->mmap_sem); 479 480 if (likely(must_wait && !ACCESS_ONCE(ctx->released) && 481 (return_to_userland ? !signal_pending(current) : 482 !fatal_signal_pending(current)))) { 483 wake_up_poll(&ctx->fd_wqh, POLLIN); 484 schedule(); 485 ret |= VM_FAULT_MAJOR; 486 487 /* 488 * False wakeups can orginate even from rwsem before 489 * up_read() however userfaults will wait either for a 490 * targeted wakeup on the specific uwq waitqueue from 491 * wake_userfault() or for signals or for uffd 492 * release. 493 */ 494 while (!READ_ONCE(uwq.waken)) { 495 /* 496 * This needs the full smp_store_mb() 497 * guarantee as the state write must be 498 * visible to other CPUs before reading 499 * uwq.waken from other CPUs. 500 */ 501 set_current_state(blocking_state); 502 if (READ_ONCE(uwq.waken) || 503 READ_ONCE(ctx->released) || 504 (return_to_userland ? signal_pending(current) : 505 fatal_signal_pending(current))) 506 break; 507 schedule(); 508 } 509 } 510 511 __set_current_state(TASK_RUNNING); 512 513 if (return_to_userland) { 514 if (signal_pending(current) && 515 !fatal_signal_pending(current)) { 516 /* 517 * If we got a SIGSTOP or SIGCONT and this is 518 * a normal userland page fault, just let 519 * userland return so the signal will be 520 * handled and gdb debugging works. The page 521 * fault code immediately after we return from 522 * this function is going to release the 523 * mmap_sem and it's not depending on it 524 * (unlike gup would if we were not to return 525 * VM_FAULT_RETRY). 526 * 527 * If a fatal signal is pending we still take 528 * the streamlined VM_FAULT_RETRY failure path 529 * and there's no need to retake the mmap_sem 530 * in such case. 531 */ 532 down_read(&mm->mmap_sem); 533 ret = VM_FAULT_NOPAGE; 534 } 535 } 536 537 /* 538 * Here we race with the list_del; list_add in 539 * userfaultfd_ctx_read(), however because we don't ever run 540 * list_del_init() to refile across the two lists, the prev 541 * and next pointers will never point to self. list_add also 542 * would never let any of the two pointers to point to 543 * self. So list_empty_careful won't risk to see both pointers 544 * pointing to self at any time during the list refile. The 545 * only case where list_del_init() is called is the full 546 * removal in the wake function and there we don't re-list_add 547 * and it's fine not to block on the spinlock. The uwq on this 548 * kernel stack can be released after the list_del_init. 549 */ 550 if (!list_empty_careful(&uwq.wq.entry)) { 551 spin_lock(&ctx->fault_pending_wqh.lock); 552 /* 553 * No need of list_del_init(), the uwq on the stack 554 * will be freed shortly anyway. 555 */ 556 list_del(&uwq.wq.entry); 557 spin_unlock(&ctx->fault_pending_wqh.lock); 558 } 559 560 /* 561 * ctx may go away after this if the userfault pseudo fd is 562 * already released. 563 */ 564 userfaultfd_ctx_put(ctx); 565 566 out: 567 return ret; 568 } 569 570 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 571 struct userfaultfd_wait_queue *ewq) 572 { 573 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 574 goto out; 575 576 ewq->ctx = ctx; 577 init_waitqueue_entry(&ewq->wq, current); 578 579 spin_lock(&ctx->event_wqh.lock); 580 /* 581 * After the __add_wait_queue the uwq is visible to userland 582 * through poll/read(). 583 */ 584 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 585 for (;;) { 586 set_current_state(TASK_KILLABLE); 587 if (ewq->msg.event == 0) 588 break; 589 if (ACCESS_ONCE(ctx->released) || 590 fatal_signal_pending(current)) { 591 /* 592 * &ewq->wq may be queued in fork_event, but 593 * __remove_wait_queue ignores the head 594 * parameter. It would be a problem if it 595 * didn't. 596 */ 597 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 598 if (ewq->msg.event == UFFD_EVENT_FORK) { 599 struct userfaultfd_ctx *new; 600 601 new = (struct userfaultfd_ctx *) 602 (unsigned long) 603 ewq->msg.arg.reserved.reserved1; 604 605 userfaultfd_ctx_put(new); 606 } 607 break; 608 } 609 610 spin_unlock(&ctx->event_wqh.lock); 611 612 wake_up_poll(&ctx->fd_wqh, POLLIN); 613 schedule(); 614 615 spin_lock(&ctx->event_wqh.lock); 616 } 617 __set_current_state(TASK_RUNNING); 618 spin_unlock(&ctx->event_wqh.lock); 619 620 /* 621 * ctx may go away after this if the userfault pseudo fd is 622 * already released. 623 */ 624 out: 625 userfaultfd_ctx_put(ctx); 626 } 627 628 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 629 struct userfaultfd_wait_queue *ewq) 630 { 631 ewq->msg.event = 0; 632 wake_up_locked(&ctx->event_wqh); 633 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 634 } 635 636 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 637 { 638 struct userfaultfd_ctx *ctx = NULL, *octx; 639 struct userfaultfd_fork_ctx *fctx; 640 641 octx = vma->vm_userfaultfd_ctx.ctx; 642 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 643 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 644 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 645 return 0; 646 } 647 648 list_for_each_entry(fctx, fcs, list) 649 if (fctx->orig == octx) { 650 ctx = fctx->new; 651 break; 652 } 653 654 if (!ctx) { 655 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 656 if (!fctx) 657 return -ENOMEM; 658 659 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 660 if (!ctx) { 661 kfree(fctx); 662 return -ENOMEM; 663 } 664 665 atomic_set(&ctx->refcount, 1); 666 ctx->flags = octx->flags; 667 ctx->state = UFFD_STATE_RUNNING; 668 ctx->features = octx->features; 669 ctx->released = false; 670 ctx->mm = vma->vm_mm; 671 atomic_inc(&ctx->mm->mm_count); 672 673 userfaultfd_ctx_get(octx); 674 fctx->orig = octx; 675 fctx->new = ctx; 676 list_add_tail(&fctx->list, fcs); 677 } 678 679 vma->vm_userfaultfd_ctx.ctx = ctx; 680 return 0; 681 } 682 683 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 684 { 685 struct userfaultfd_ctx *ctx = fctx->orig; 686 struct userfaultfd_wait_queue ewq; 687 688 msg_init(&ewq.msg); 689 690 ewq.msg.event = UFFD_EVENT_FORK; 691 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 692 693 userfaultfd_event_wait_completion(ctx, &ewq); 694 } 695 696 void dup_userfaultfd_complete(struct list_head *fcs) 697 { 698 struct userfaultfd_fork_ctx *fctx, *n; 699 700 list_for_each_entry_safe(fctx, n, fcs, list) { 701 dup_fctx(fctx); 702 list_del(&fctx->list); 703 kfree(fctx); 704 } 705 } 706 707 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 708 struct vm_userfaultfd_ctx *vm_ctx) 709 { 710 struct userfaultfd_ctx *ctx; 711 712 ctx = vma->vm_userfaultfd_ctx.ctx; 713 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) { 714 vm_ctx->ctx = ctx; 715 userfaultfd_ctx_get(ctx); 716 } 717 } 718 719 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 720 unsigned long from, unsigned long to, 721 unsigned long len) 722 { 723 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 724 struct userfaultfd_wait_queue ewq; 725 726 if (!ctx) 727 return; 728 729 if (to & ~PAGE_MASK) { 730 userfaultfd_ctx_put(ctx); 731 return; 732 } 733 734 msg_init(&ewq.msg); 735 736 ewq.msg.event = UFFD_EVENT_REMAP; 737 ewq.msg.arg.remap.from = from; 738 ewq.msg.arg.remap.to = to; 739 ewq.msg.arg.remap.len = len; 740 741 userfaultfd_event_wait_completion(ctx, &ewq); 742 } 743 744 bool userfaultfd_remove(struct vm_area_struct *vma, 745 unsigned long start, unsigned long end) 746 { 747 struct mm_struct *mm = vma->vm_mm; 748 struct userfaultfd_ctx *ctx; 749 struct userfaultfd_wait_queue ewq; 750 751 ctx = vma->vm_userfaultfd_ctx.ctx; 752 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 753 return true; 754 755 userfaultfd_ctx_get(ctx); 756 up_read(&mm->mmap_sem); 757 758 msg_init(&ewq.msg); 759 760 ewq.msg.event = UFFD_EVENT_REMOVE; 761 ewq.msg.arg.remove.start = start; 762 ewq.msg.arg.remove.end = end; 763 764 userfaultfd_event_wait_completion(ctx, &ewq); 765 766 return false; 767 } 768 769 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 770 unsigned long start, unsigned long end) 771 { 772 struct userfaultfd_unmap_ctx *unmap_ctx; 773 774 list_for_each_entry(unmap_ctx, unmaps, list) 775 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 776 unmap_ctx->end == end) 777 return true; 778 779 return false; 780 } 781 782 int userfaultfd_unmap_prep(struct vm_area_struct *vma, 783 unsigned long start, unsigned long end, 784 struct list_head *unmaps) 785 { 786 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 787 struct userfaultfd_unmap_ctx *unmap_ctx; 788 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 789 790 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 791 has_unmap_ctx(ctx, unmaps, start, end)) 792 continue; 793 794 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 795 if (!unmap_ctx) 796 return -ENOMEM; 797 798 userfaultfd_ctx_get(ctx); 799 unmap_ctx->ctx = ctx; 800 unmap_ctx->start = start; 801 unmap_ctx->end = end; 802 list_add_tail(&unmap_ctx->list, unmaps); 803 } 804 805 return 0; 806 } 807 808 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 809 { 810 struct userfaultfd_unmap_ctx *ctx, *n; 811 struct userfaultfd_wait_queue ewq; 812 813 list_for_each_entry_safe(ctx, n, uf, list) { 814 msg_init(&ewq.msg); 815 816 ewq.msg.event = UFFD_EVENT_UNMAP; 817 ewq.msg.arg.remove.start = ctx->start; 818 ewq.msg.arg.remove.end = ctx->end; 819 820 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 821 822 list_del(&ctx->list); 823 kfree(ctx); 824 } 825 } 826 827 static int userfaultfd_release(struct inode *inode, struct file *file) 828 { 829 struct userfaultfd_ctx *ctx = file->private_data; 830 struct mm_struct *mm = ctx->mm; 831 struct vm_area_struct *vma, *prev; 832 /* len == 0 means wake all */ 833 struct userfaultfd_wake_range range = { .len = 0, }; 834 unsigned long new_flags; 835 836 ACCESS_ONCE(ctx->released) = true; 837 838 if (!mmget_not_zero(mm)) 839 goto wakeup; 840 841 /* 842 * Flush page faults out of all CPUs. NOTE: all page faults 843 * must be retried without returning VM_FAULT_SIGBUS if 844 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 845 * changes while handle_userfault released the mmap_sem. So 846 * it's critical that released is set to true (above), before 847 * taking the mmap_sem for writing. 848 */ 849 down_write(&mm->mmap_sem); 850 prev = NULL; 851 for (vma = mm->mmap; vma; vma = vma->vm_next) { 852 cond_resched(); 853 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 854 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 855 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 856 prev = vma; 857 continue; 858 } 859 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 860 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 861 new_flags, vma->anon_vma, 862 vma->vm_file, vma->vm_pgoff, 863 vma_policy(vma), 864 NULL_VM_UFFD_CTX); 865 if (prev) 866 vma = prev; 867 else 868 prev = vma; 869 vma->vm_flags = new_flags; 870 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 871 } 872 up_write(&mm->mmap_sem); 873 mmput(mm); 874 wakeup: 875 /* 876 * After no new page faults can wait on this fault_*wqh, flush 877 * the last page faults that may have been already waiting on 878 * the fault_*wqh. 879 */ 880 spin_lock(&ctx->fault_pending_wqh.lock); 881 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 882 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range); 883 spin_unlock(&ctx->fault_pending_wqh.lock); 884 885 /* Flush pending events that may still wait on event_wqh */ 886 wake_up_all(&ctx->event_wqh); 887 888 wake_up_poll(&ctx->fd_wqh, POLLHUP); 889 userfaultfd_ctx_put(ctx); 890 return 0; 891 } 892 893 /* fault_pending_wqh.lock must be hold by the caller */ 894 static inline struct userfaultfd_wait_queue *find_userfault_in( 895 wait_queue_head_t *wqh) 896 { 897 wait_queue_entry_t *wq; 898 struct userfaultfd_wait_queue *uwq; 899 900 VM_BUG_ON(!spin_is_locked(&wqh->lock)); 901 902 uwq = NULL; 903 if (!waitqueue_active(wqh)) 904 goto out; 905 /* walk in reverse to provide FIFO behavior to read userfaults */ 906 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 907 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 908 out: 909 return uwq; 910 } 911 912 static inline struct userfaultfd_wait_queue *find_userfault( 913 struct userfaultfd_ctx *ctx) 914 { 915 return find_userfault_in(&ctx->fault_pending_wqh); 916 } 917 918 static inline struct userfaultfd_wait_queue *find_userfault_evt( 919 struct userfaultfd_ctx *ctx) 920 { 921 return find_userfault_in(&ctx->event_wqh); 922 } 923 924 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait) 925 { 926 struct userfaultfd_ctx *ctx = file->private_data; 927 unsigned int ret; 928 929 poll_wait(file, &ctx->fd_wqh, wait); 930 931 switch (ctx->state) { 932 case UFFD_STATE_WAIT_API: 933 return POLLERR; 934 case UFFD_STATE_RUNNING: 935 /* 936 * poll() never guarantees that read won't block. 937 * userfaults can be waken before they're read(). 938 */ 939 if (unlikely(!(file->f_flags & O_NONBLOCK))) 940 return POLLERR; 941 /* 942 * lockless access to see if there are pending faults 943 * __pollwait last action is the add_wait_queue but 944 * the spin_unlock would allow the waitqueue_active to 945 * pass above the actual list_add inside 946 * add_wait_queue critical section. So use a full 947 * memory barrier to serialize the list_add write of 948 * add_wait_queue() with the waitqueue_active read 949 * below. 950 */ 951 ret = 0; 952 smp_mb(); 953 if (waitqueue_active(&ctx->fault_pending_wqh)) 954 ret = POLLIN; 955 else if (waitqueue_active(&ctx->event_wqh)) 956 ret = POLLIN; 957 958 return ret; 959 default: 960 WARN_ON_ONCE(1); 961 return POLLERR; 962 } 963 } 964 965 static const struct file_operations userfaultfd_fops; 966 967 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, 968 struct userfaultfd_ctx *new, 969 struct uffd_msg *msg) 970 { 971 int fd; 972 struct file *file; 973 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS; 974 975 fd = get_unused_fd_flags(flags); 976 if (fd < 0) 977 return fd; 978 979 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new, 980 O_RDWR | flags); 981 if (IS_ERR(file)) { 982 put_unused_fd(fd); 983 return PTR_ERR(file); 984 } 985 986 fd_install(fd, file); 987 msg->arg.reserved.reserved1 = 0; 988 msg->arg.fork.ufd = fd; 989 990 return 0; 991 } 992 993 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 994 struct uffd_msg *msg) 995 { 996 ssize_t ret; 997 DECLARE_WAITQUEUE(wait, current); 998 struct userfaultfd_wait_queue *uwq; 999 /* 1000 * Handling fork event requires sleeping operations, so 1001 * we drop the event_wqh lock, then do these ops, then 1002 * lock it back and wake up the waiter. While the lock is 1003 * dropped the ewq may go away so we keep track of it 1004 * carefully. 1005 */ 1006 LIST_HEAD(fork_event); 1007 struct userfaultfd_ctx *fork_nctx = NULL; 1008 1009 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1010 spin_lock(&ctx->fd_wqh.lock); 1011 __add_wait_queue(&ctx->fd_wqh, &wait); 1012 for (;;) { 1013 set_current_state(TASK_INTERRUPTIBLE); 1014 spin_lock(&ctx->fault_pending_wqh.lock); 1015 uwq = find_userfault(ctx); 1016 if (uwq) { 1017 /* 1018 * Use a seqcount to repeat the lockless check 1019 * in wake_userfault() to avoid missing 1020 * wakeups because during the refile both 1021 * waitqueue could become empty if this is the 1022 * only userfault. 1023 */ 1024 write_seqcount_begin(&ctx->refile_seq); 1025 1026 /* 1027 * The fault_pending_wqh.lock prevents the uwq 1028 * to disappear from under us. 1029 * 1030 * Refile this userfault from 1031 * fault_pending_wqh to fault_wqh, it's not 1032 * pending anymore after we read it. 1033 * 1034 * Use list_del() by hand (as 1035 * userfaultfd_wake_function also uses 1036 * list_del_init() by hand) to be sure nobody 1037 * changes __remove_wait_queue() to use 1038 * list_del_init() in turn breaking the 1039 * !list_empty_careful() check in 1040 * handle_userfault(). The uwq->wq.head list 1041 * must never be empty at any time during the 1042 * refile, or the waitqueue could disappear 1043 * from under us. The "wait_queue_head_t" 1044 * parameter of __remove_wait_queue() is unused 1045 * anyway. 1046 */ 1047 list_del(&uwq->wq.entry); 1048 __add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1049 1050 write_seqcount_end(&ctx->refile_seq); 1051 1052 /* careful to always initialize msg if ret == 0 */ 1053 *msg = uwq->msg; 1054 spin_unlock(&ctx->fault_pending_wqh.lock); 1055 ret = 0; 1056 break; 1057 } 1058 spin_unlock(&ctx->fault_pending_wqh.lock); 1059 1060 spin_lock(&ctx->event_wqh.lock); 1061 uwq = find_userfault_evt(ctx); 1062 if (uwq) { 1063 *msg = uwq->msg; 1064 1065 if (uwq->msg.event == UFFD_EVENT_FORK) { 1066 fork_nctx = (struct userfaultfd_ctx *) 1067 (unsigned long) 1068 uwq->msg.arg.reserved.reserved1; 1069 list_move(&uwq->wq.entry, &fork_event); 1070 /* 1071 * fork_nctx can be freed as soon as 1072 * we drop the lock, unless we take a 1073 * reference on it. 1074 */ 1075 userfaultfd_ctx_get(fork_nctx); 1076 spin_unlock(&ctx->event_wqh.lock); 1077 ret = 0; 1078 break; 1079 } 1080 1081 userfaultfd_event_complete(ctx, uwq); 1082 spin_unlock(&ctx->event_wqh.lock); 1083 ret = 0; 1084 break; 1085 } 1086 spin_unlock(&ctx->event_wqh.lock); 1087 1088 if (signal_pending(current)) { 1089 ret = -ERESTARTSYS; 1090 break; 1091 } 1092 if (no_wait) { 1093 ret = -EAGAIN; 1094 break; 1095 } 1096 spin_unlock(&ctx->fd_wqh.lock); 1097 schedule(); 1098 spin_lock(&ctx->fd_wqh.lock); 1099 } 1100 __remove_wait_queue(&ctx->fd_wqh, &wait); 1101 __set_current_state(TASK_RUNNING); 1102 spin_unlock(&ctx->fd_wqh.lock); 1103 1104 if (!ret && msg->event == UFFD_EVENT_FORK) { 1105 ret = resolve_userfault_fork(ctx, fork_nctx, msg); 1106 spin_lock(&ctx->event_wqh.lock); 1107 if (!list_empty(&fork_event)) { 1108 /* 1109 * The fork thread didn't abort, so we can 1110 * drop the temporary refcount. 1111 */ 1112 userfaultfd_ctx_put(fork_nctx); 1113 1114 uwq = list_first_entry(&fork_event, 1115 typeof(*uwq), 1116 wq.entry); 1117 /* 1118 * If fork_event list wasn't empty and in turn 1119 * the event wasn't already released by fork 1120 * (the event is allocated on fork kernel 1121 * stack), put the event back to its place in 1122 * the event_wq. fork_event head will be freed 1123 * as soon as we return so the event cannot 1124 * stay queued there no matter the current 1125 * "ret" value. 1126 */ 1127 list_del(&uwq->wq.entry); 1128 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1129 1130 /* 1131 * Leave the event in the waitqueue and report 1132 * error to userland if we failed to resolve 1133 * the userfault fork. 1134 */ 1135 if (likely(!ret)) 1136 userfaultfd_event_complete(ctx, uwq); 1137 } else { 1138 /* 1139 * Here the fork thread aborted and the 1140 * refcount from the fork thread on fork_nctx 1141 * has already been released. We still hold 1142 * the reference we took before releasing the 1143 * lock above. If resolve_userfault_fork 1144 * failed we've to drop it because the 1145 * fork_nctx has to be freed in such case. If 1146 * it succeeded we'll hold it because the new 1147 * uffd references it. 1148 */ 1149 if (ret) 1150 userfaultfd_ctx_put(fork_nctx); 1151 } 1152 spin_unlock(&ctx->event_wqh.lock); 1153 } 1154 1155 return ret; 1156 } 1157 1158 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1159 size_t count, loff_t *ppos) 1160 { 1161 struct userfaultfd_ctx *ctx = file->private_data; 1162 ssize_t _ret, ret = 0; 1163 struct uffd_msg msg; 1164 int no_wait = file->f_flags & O_NONBLOCK; 1165 1166 if (ctx->state == UFFD_STATE_WAIT_API) 1167 return -EINVAL; 1168 1169 for (;;) { 1170 if (count < sizeof(msg)) 1171 return ret ? ret : -EINVAL; 1172 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); 1173 if (_ret < 0) 1174 return ret ? ret : _ret; 1175 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1176 return ret ? ret : -EFAULT; 1177 ret += sizeof(msg); 1178 buf += sizeof(msg); 1179 count -= sizeof(msg); 1180 /* 1181 * Allow to read more than one fault at time but only 1182 * block if waiting for the very first one. 1183 */ 1184 no_wait = O_NONBLOCK; 1185 } 1186 } 1187 1188 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1189 struct userfaultfd_wake_range *range) 1190 { 1191 spin_lock(&ctx->fault_pending_wqh.lock); 1192 /* wake all in the range and autoremove */ 1193 if (waitqueue_active(&ctx->fault_pending_wqh)) 1194 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1195 range); 1196 if (waitqueue_active(&ctx->fault_wqh)) 1197 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range); 1198 spin_unlock(&ctx->fault_pending_wqh.lock); 1199 } 1200 1201 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1202 struct userfaultfd_wake_range *range) 1203 { 1204 unsigned seq; 1205 bool need_wakeup; 1206 1207 /* 1208 * To be sure waitqueue_active() is not reordered by the CPU 1209 * before the pagetable update, use an explicit SMP memory 1210 * barrier here. PT lock release or up_read(mmap_sem) still 1211 * have release semantics that can allow the 1212 * waitqueue_active() to be reordered before the pte update. 1213 */ 1214 smp_mb(); 1215 1216 /* 1217 * Use waitqueue_active because it's very frequent to 1218 * change the address space atomically even if there are no 1219 * userfaults yet. So we take the spinlock only when we're 1220 * sure we've userfaults to wake. 1221 */ 1222 do { 1223 seq = read_seqcount_begin(&ctx->refile_seq); 1224 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1225 waitqueue_active(&ctx->fault_wqh); 1226 cond_resched(); 1227 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1228 if (need_wakeup) 1229 __wake_userfault(ctx, range); 1230 } 1231 1232 static __always_inline int validate_range(struct mm_struct *mm, 1233 __u64 start, __u64 len) 1234 { 1235 __u64 task_size = mm->task_size; 1236 1237 if (start & ~PAGE_MASK) 1238 return -EINVAL; 1239 if (len & ~PAGE_MASK) 1240 return -EINVAL; 1241 if (!len) 1242 return -EINVAL; 1243 if (start < mmap_min_addr) 1244 return -EINVAL; 1245 if (start >= task_size) 1246 return -EINVAL; 1247 if (len > task_size - start) 1248 return -EINVAL; 1249 return 0; 1250 } 1251 1252 static inline bool vma_can_userfault(struct vm_area_struct *vma) 1253 { 1254 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || 1255 vma_is_shmem(vma); 1256 } 1257 1258 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1259 unsigned long arg) 1260 { 1261 struct mm_struct *mm = ctx->mm; 1262 struct vm_area_struct *vma, *prev, *cur; 1263 int ret; 1264 struct uffdio_register uffdio_register; 1265 struct uffdio_register __user *user_uffdio_register; 1266 unsigned long vm_flags, new_flags; 1267 bool found; 1268 bool basic_ioctls; 1269 unsigned long start, end, vma_end; 1270 1271 user_uffdio_register = (struct uffdio_register __user *) arg; 1272 1273 ret = -EFAULT; 1274 if (copy_from_user(&uffdio_register, user_uffdio_register, 1275 sizeof(uffdio_register)-sizeof(__u64))) 1276 goto out; 1277 1278 ret = -EINVAL; 1279 if (!uffdio_register.mode) 1280 goto out; 1281 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| 1282 UFFDIO_REGISTER_MODE_WP)) 1283 goto out; 1284 vm_flags = 0; 1285 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1286 vm_flags |= VM_UFFD_MISSING; 1287 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1288 vm_flags |= VM_UFFD_WP; 1289 /* 1290 * FIXME: remove the below error constraint by 1291 * implementing the wprotect tracking mode. 1292 */ 1293 ret = -EINVAL; 1294 goto out; 1295 } 1296 1297 ret = validate_range(mm, uffdio_register.range.start, 1298 uffdio_register.range.len); 1299 if (ret) 1300 goto out; 1301 1302 start = uffdio_register.range.start; 1303 end = start + uffdio_register.range.len; 1304 1305 ret = -ENOMEM; 1306 if (!mmget_not_zero(mm)) 1307 goto out; 1308 1309 down_write(&mm->mmap_sem); 1310 vma = find_vma_prev(mm, start, &prev); 1311 if (!vma) 1312 goto out_unlock; 1313 1314 /* check that there's at least one vma in the range */ 1315 ret = -EINVAL; 1316 if (vma->vm_start >= end) 1317 goto out_unlock; 1318 1319 /* 1320 * If the first vma contains huge pages, make sure start address 1321 * is aligned to huge page size. 1322 */ 1323 if (is_vm_hugetlb_page(vma)) { 1324 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1325 1326 if (start & (vma_hpagesize - 1)) 1327 goto out_unlock; 1328 } 1329 1330 /* 1331 * Search for not compatible vmas. 1332 */ 1333 found = false; 1334 basic_ioctls = false; 1335 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1336 cond_resched(); 1337 1338 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1339 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1340 1341 /* check not compatible vmas */ 1342 ret = -EINVAL; 1343 if (!vma_can_userfault(cur)) 1344 goto out_unlock; 1345 /* 1346 * If this vma contains ending address, and huge pages 1347 * check alignment. 1348 */ 1349 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1350 end > cur->vm_start) { 1351 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1352 1353 ret = -EINVAL; 1354 1355 if (end & (vma_hpagesize - 1)) 1356 goto out_unlock; 1357 } 1358 1359 /* 1360 * Check that this vma isn't already owned by a 1361 * different userfaultfd. We can't allow more than one 1362 * userfaultfd to own a single vma simultaneously or we 1363 * wouldn't know which one to deliver the userfaults to. 1364 */ 1365 ret = -EBUSY; 1366 if (cur->vm_userfaultfd_ctx.ctx && 1367 cur->vm_userfaultfd_ctx.ctx != ctx) 1368 goto out_unlock; 1369 1370 /* 1371 * Note vmas containing huge pages 1372 */ 1373 if (is_vm_hugetlb_page(cur)) 1374 basic_ioctls = true; 1375 1376 found = true; 1377 } 1378 BUG_ON(!found); 1379 1380 if (vma->vm_start < start) 1381 prev = vma; 1382 1383 ret = 0; 1384 do { 1385 cond_resched(); 1386 1387 BUG_ON(!vma_can_userfault(vma)); 1388 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1389 vma->vm_userfaultfd_ctx.ctx != ctx); 1390 1391 /* 1392 * Nothing to do: this vma is already registered into this 1393 * userfaultfd and with the right tracking mode too. 1394 */ 1395 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1396 (vma->vm_flags & vm_flags) == vm_flags) 1397 goto skip; 1398 1399 if (vma->vm_start > start) 1400 start = vma->vm_start; 1401 vma_end = min(end, vma->vm_end); 1402 1403 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags; 1404 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1405 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1406 vma_policy(vma), 1407 ((struct vm_userfaultfd_ctx){ ctx })); 1408 if (prev) { 1409 vma = prev; 1410 goto next; 1411 } 1412 if (vma->vm_start < start) { 1413 ret = split_vma(mm, vma, start, 1); 1414 if (ret) 1415 break; 1416 } 1417 if (vma->vm_end > end) { 1418 ret = split_vma(mm, vma, end, 0); 1419 if (ret) 1420 break; 1421 } 1422 next: 1423 /* 1424 * In the vma_merge() successful mprotect-like case 8: 1425 * the next vma was merged into the current one and 1426 * the current one has not been updated yet. 1427 */ 1428 vma->vm_flags = new_flags; 1429 vma->vm_userfaultfd_ctx.ctx = ctx; 1430 1431 skip: 1432 prev = vma; 1433 start = vma->vm_end; 1434 vma = vma->vm_next; 1435 } while (vma && vma->vm_start < end); 1436 out_unlock: 1437 up_write(&mm->mmap_sem); 1438 mmput(mm); 1439 if (!ret) { 1440 /* 1441 * Now that we scanned all vmas we can already tell 1442 * userland which ioctls methods are guaranteed to 1443 * succeed on this range. 1444 */ 1445 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1446 UFFD_API_RANGE_IOCTLS, 1447 &user_uffdio_register->ioctls)) 1448 ret = -EFAULT; 1449 } 1450 out: 1451 return ret; 1452 } 1453 1454 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1455 unsigned long arg) 1456 { 1457 struct mm_struct *mm = ctx->mm; 1458 struct vm_area_struct *vma, *prev, *cur; 1459 int ret; 1460 struct uffdio_range uffdio_unregister; 1461 unsigned long new_flags; 1462 bool found; 1463 unsigned long start, end, vma_end; 1464 const void __user *buf = (void __user *)arg; 1465 1466 ret = -EFAULT; 1467 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1468 goto out; 1469 1470 ret = validate_range(mm, uffdio_unregister.start, 1471 uffdio_unregister.len); 1472 if (ret) 1473 goto out; 1474 1475 start = uffdio_unregister.start; 1476 end = start + uffdio_unregister.len; 1477 1478 ret = -ENOMEM; 1479 if (!mmget_not_zero(mm)) 1480 goto out; 1481 1482 down_write(&mm->mmap_sem); 1483 vma = find_vma_prev(mm, start, &prev); 1484 if (!vma) 1485 goto out_unlock; 1486 1487 /* check that there's at least one vma in the range */ 1488 ret = -EINVAL; 1489 if (vma->vm_start >= end) 1490 goto out_unlock; 1491 1492 /* 1493 * If the first vma contains huge pages, make sure start address 1494 * is aligned to huge page size. 1495 */ 1496 if (is_vm_hugetlb_page(vma)) { 1497 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1498 1499 if (start & (vma_hpagesize - 1)) 1500 goto out_unlock; 1501 } 1502 1503 /* 1504 * Search for not compatible vmas. 1505 */ 1506 found = false; 1507 ret = -EINVAL; 1508 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1509 cond_resched(); 1510 1511 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1512 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1513 1514 /* 1515 * Check not compatible vmas, not strictly required 1516 * here as not compatible vmas cannot have an 1517 * userfaultfd_ctx registered on them, but this 1518 * provides for more strict behavior to notice 1519 * unregistration errors. 1520 */ 1521 if (!vma_can_userfault(cur)) 1522 goto out_unlock; 1523 1524 found = true; 1525 } 1526 BUG_ON(!found); 1527 1528 if (vma->vm_start < start) 1529 prev = vma; 1530 1531 ret = 0; 1532 do { 1533 cond_resched(); 1534 1535 BUG_ON(!vma_can_userfault(vma)); 1536 1537 /* 1538 * Nothing to do: this vma is already registered into this 1539 * userfaultfd and with the right tracking mode too. 1540 */ 1541 if (!vma->vm_userfaultfd_ctx.ctx) 1542 goto skip; 1543 1544 if (vma->vm_start > start) 1545 start = vma->vm_start; 1546 vma_end = min(end, vma->vm_end); 1547 1548 if (userfaultfd_missing(vma)) { 1549 /* 1550 * Wake any concurrent pending userfault while 1551 * we unregister, so they will not hang 1552 * permanently and it avoids userland to call 1553 * UFFDIO_WAKE explicitly. 1554 */ 1555 struct userfaultfd_wake_range range; 1556 range.start = start; 1557 range.len = vma_end - start; 1558 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1559 } 1560 1561 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 1562 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1563 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1564 vma_policy(vma), 1565 NULL_VM_UFFD_CTX); 1566 if (prev) { 1567 vma = prev; 1568 goto next; 1569 } 1570 if (vma->vm_start < start) { 1571 ret = split_vma(mm, vma, start, 1); 1572 if (ret) 1573 break; 1574 } 1575 if (vma->vm_end > end) { 1576 ret = split_vma(mm, vma, end, 0); 1577 if (ret) 1578 break; 1579 } 1580 next: 1581 /* 1582 * In the vma_merge() successful mprotect-like case 8: 1583 * the next vma was merged into the current one and 1584 * the current one has not been updated yet. 1585 */ 1586 vma->vm_flags = new_flags; 1587 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1588 1589 skip: 1590 prev = vma; 1591 start = vma->vm_end; 1592 vma = vma->vm_next; 1593 } while (vma && vma->vm_start < end); 1594 out_unlock: 1595 up_write(&mm->mmap_sem); 1596 mmput(mm); 1597 out: 1598 return ret; 1599 } 1600 1601 /* 1602 * userfaultfd_wake may be used in combination with the 1603 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1604 */ 1605 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1606 unsigned long arg) 1607 { 1608 int ret; 1609 struct uffdio_range uffdio_wake; 1610 struct userfaultfd_wake_range range; 1611 const void __user *buf = (void __user *)arg; 1612 1613 ret = -EFAULT; 1614 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1615 goto out; 1616 1617 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1618 if (ret) 1619 goto out; 1620 1621 range.start = uffdio_wake.start; 1622 range.len = uffdio_wake.len; 1623 1624 /* 1625 * len == 0 means wake all and we don't want to wake all here, 1626 * so check it again to be sure. 1627 */ 1628 VM_BUG_ON(!range.len); 1629 1630 wake_userfault(ctx, &range); 1631 ret = 0; 1632 1633 out: 1634 return ret; 1635 } 1636 1637 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1638 unsigned long arg) 1639 { 1640 __s64 ret; 1641 struct uffdio_copy uffdio_copy; 1642 struct uffdio_copy __user *user_uffdio_copy; 1643 struct userfaultfd_wake_range range; 1644 1645 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1646 1647 ret = -EFAULT; 1648 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1649 /* don't copy "copy" last field */ 1650 sizeof(uffdio_copy)-sizeof(__s64))) 1651 goto out; 1652 1653 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1654 if (ret) 1655 goto out; 1656 /* 1657 * double check for wraparound just in case. copy_from_user() 1658 * will later check uffdio_copy.src + uffdio_copy.len to fit 1659 * in the userland range. 1660 */ 1661 ret = -EINVAL; 1662 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1663 goto out; 1664 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) 1665 goto out; 1666 if (mmget_not_zero(ctx->mm)) { 1667 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1668 uffdio_copy.len); 1669 mmput(ctx->mm); 1670 } else { 1671 return -ESRCH; 1672 } 1673 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1674 return -EFAULT; 1675 if (ret < 0) 1676 goto out; 1677 BUG_ON(!ret); 1678 /* len == 0 would wake all */ 1679 range.len = ret; 1680 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1681 range.start = uffdio_copy.dst; 1682 wake_userfault(ctx, &range); 1683 } 1684 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1685 out: 1686 return ret; 1687 } 1688 1689 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1690 unsigned long arg) 1691 { 1692 __s64 ret; 1693 struct uffdio_zeropage uffdio_zeropage; 1694 struct uffdio_zeropage __user *user_uffdio_zeropage; 1695 struct userfaultfd_wake_range range; 1696 1697 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1698 1699 ret = -EFAULT; 1700 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1701 /* don't copy "zeropage" last field */ 1702 sizeof(uffdio_zeropage)-sizeof(__s64))) 1703 goto out; 1704 1705 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1706 uffdio_zeropage.range.len); 1707 if (ret) 1708 goto out; 1709 ret = -EINVAL; 1710 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1711 goto out; 1712 1713 if (mmget_not_zero(ctx->mm)) { 1714 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1715 uffdio_zeropage.range.len); 1716 mmput(ctx->mm); 1717 } else { 1718 return -ESRCH; 1719 } 1720 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1721 return -EFAULT; 1722 if (ret < 0) 1723 goto out; 1724 /* len == 0 would wake all */ 1725 BUG_ON(!ret); 1726 range.len = ret; 1727 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1728 range.start = uffdio_zeropage.range.start; 1729 wake_userfault(ctx, &range); 1730 } 1731 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1732 out: 1733 return ret; 1734 } 1735 1736 static inline unsigned int uffd_ctx_features(__u64 user_features) 1737 { 1738 /* 1739 * For the current set of features the bits just coincide 1740 */ 1741 return (unsigned int)user_features; 1742 } 1743 1744 /* 1745 * userland asks for a certain API version and we return which bits 1746 * and ioctl commands are implemented in this kernel for such API 1747 * version or -EINVAL if unknown. 1748 */ 1749 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1750 unsigned long arg) 1751 { 1752 struct uffdio_api uffdio_api; 1753 void __user *buf = (void __user *)arg; 1754 int ret; 1755 __u64 features; 1756 1757 ret = -EINVAL; 1758 if (ctx->state != UFFD_STATE_WAIT_API) 1759 goto out; 1760 ret = -EFAULT; 1761 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1762 goto out; 1763 features = uffdio_api.features; 1764 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) { 1765 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1766 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1767 goto out; 1768 ret = -EINVAL; 1769 goto out; 1770 } 1771 /* report all available features and ioctls to userland */ 1772 uffdio_api.features = UFFD_API_FEATURES; 1773 uffdio_api.ioctls = UFFD_API_IOCTLS; 1774 ret = -EFAULT; 1775 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1776 goto out; 1777 ctx->state = UFFD_STATE_RUNNING; 1778 /* only enable the requested features for this uffd context */ 1779 ctx->features = uffd_ctx_features(features); 1780 ret = 0; 1781 out: 1782 return ret; 1783 } 1784 1785 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1786 unsigned long arg) 1787 { 1788 int ret = -EINVAL; 1789 struct userfaultfd_ctx *ctx = file->private_data; 1790 1791 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) 1792 return -EINVAL; 1793 1794 switch(cmd) { 1795 case UFFDIO_API: 1796 ret = userfaultfd_api(ctx, arg); 1797 break; 1798 case UFFDIO_REGISTER: 1799 ret = userfaultfd_register(ctx, arg); 1800 break; 1801 case UFFDIO_UNREGISTER: 1802 ret = userfaultfd_unregister(ctx, arg); 1803 break; 1804 case UFFDIO_WAKE: 1805 ret = userfaultfd_wake(ctx, arg); 1806 break; 1807 case UFFDIO_COPY: 1808 ret = userfaultfd_copy(ctx, arg); 1809 break; 1810 case UFFDIO_ZEROPAGE: 1811 ret = userfaultfd_zeropage(ctx, arg); 1812 break; 1813 } 1814 return ret; 1815 } 1816 1817 #ifdef CONFIG_PROC_FS 1818 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 1819 { 1820 struct userfaultfd_ctx *ctx = f->private_data; 1821 wait_queue_entry_t *wq; 1822 struct userfaultfd_wait_queue *uwq; 1823 unsigned long pending = 0, total = 0; 1824 1825 spin_lock(&ctx->fault_pending_wqh.lock); 1826 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 1827 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 1828 pending++; 1829 total++; 1830 } 1831 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 1832 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 1833 total++; 1834 } 1835 spin_unlock(&ctx->fault_pending_wqh.lock); 1836 1837 /* 1838 * If more protocols will be added, there will be all shown 1839 * separated by a space. Like this: 1840 * protocols: aa:... bb:... 1841 */ 1842 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 1843 pending, total, UFFD_API, ctx->features, 1844 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 1845 } 1846 #endif 1847 1848 static const struct file_operations userfaultfd_fops = { 1849 #ifdef CONFIG_PROC_FS 1850 .show_fdinfo = userfaultfd_show_fdinfo, 1851 #endif 1852 .release = userfaultfd_release, 1853 .poll = userfaultfd_poll, 1854 .read = userfaultfd_read, 1855 .unlocked_ioctl = userfaultfd_ioctl, 1856 .compat_ioctl = userfaultfd_ioctl, 1857 .llseek = noop_llseek, 1858 }; 1859 1860 static void init_once_userfaultfd_ctx(void *mem) 1861 { 1862 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 1863 1864 init_waitqueue_head(&ctx->fault_pending_wqh); 1865 init_waitqueue_head(&ctx->fault_wqh); 1866 init_waitqueue_head(&ctx->event_wqh); 1867 init_waitqueue_head(&ctx->fd_wqh); 1868 seqcount_init(&ctx->refile_seq); 1869 } 1870 1871 /** 1872 * userfaultfd_file_create - Creates a userfaultfd file pointer. 1873 * @flags: Flags for the userfaultfd file. 1874 * 1875 * This function creates a userfaultfd file pointer, w/out installing 1876 * it into the fd table. This is useful when the userfaultfd file is 1877 * used during the initialization of data structures that require 1878 * extra setup after the userfaultfd creation. So the userfaultfd 1879 * creation is split into the file pointer creation phase, and the 1880 * file descriptor installation phase. In this way races with 1881 * userspace closing the newly installed file descriptor can be 1882 * avoided. Returns a userfaultfd file pointer, or a proper error 1883 * pointer. 1884 */ 1885 static struct file *userfaultfd_file_create(int flags) 1886 { 1887 struct file *file; 1888 struct userfaultfd_ctx *ctx; 1889 1890 BUG_ON(!current->mm); 1891 1892 /* Check the UFFD_* constants for consistency. */ 1893 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 1894 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 1895 1896 file = ERR_PTR(-EINVAL); 1897 if (flags & ~UFFD_SHARED_FCNTL_FLAGS) 1898 goto out; 1899 1900 file = ERR_PTR(-ENOMEM); 1901 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 1902 if (!ctx) 1903 goto out; 1904 1905 atomic_set(&ctx->refcount, 1); 1906 ctx->flags = flags; 1907 ctx->features = 0; 1908 ctx->state = UFFD_STATE_WAIT_API; 1909 ctx->released = false; 1910 ctx->mm = current->mm; 1911 /* prevent the mm struct to be freed */ 1912 mmgrab(ctx->mm); 1913 1914 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx, 1915 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); 1916 if (IS_ERR(file)) { 1917 mmdrop(ctx->mm); 1918 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 1919 } 1920 out: 1921 return file; 1922 } 1923 1924 SYSCALL_DEFINE1(userfaultfd, int, flags) 1925 { 1926 int fd, error; 1927 struct file *file; 1928 1929 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS); 1930 if (error < 0) 1931 return error; 1932 fd = error; 1933 1934 file = userfaultfd_file_create(flags); 1935 if (IS_ERR(file)) { 1936 error = PTR_ERR(file); 1937 goto err_put_unused_fd; 1938 } 1939 fd_install(fd, file); 1940 1941 return fd; 1942 1943 err_put_unused_fd: 1944 put_unused_fd(fd); 1945 1946 return error; 1947 } 1948 1949 static int __init userfaultfd_init(void) 1950 { 1951 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 1952 sizeof(struct userfaultfd_ctx), 1953 0, 1954 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 1955 init_once_userfaultfd_ctx); 1956 return 0; 1957 } 1958 __initcall(userfaultfd_init); 1959