1 /* 2 * fs/userfaultfd.c 3 * 4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 5 * Copyright (C) 2008-2009 Red Hat, Inc. 6 * Copyright (C) 2015 Red Hat, Inc. 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2. See 9 * the COPYING file in the top-level directory. 10 * 11 * Some part derived from fs/eventfd.c (anon inode setup) and 12 * mm/ksm.c (mm hashing). 13 */ 14 15 #include <linux/list.h> 16 #include <linux/hashtable.h> 17 #include <linux/sched/signal.h> 18 #include <linux/sched/mm.h> 19 #include <linux/mm.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 34 35 enum userfaultfd_state { 36 UFFD_STATE_WAIT_API, 37 UFFD_STATE_RUNNING, 38 }; 39 40 /* 41 * Start with fault_pending_wqh and fault_wqh so they're more likely 42 * to be in the same cacheline. 43 */ 44 struct userfaultfd_ctx { 45 /* waitqueue head for the pending (i.e. not read) userfaults */ 46 wait_queue_head_t fault_pending_wqh; 47 /* waitqueue head for the userfaults */ 48 wait_queue_head_t fault_wqh; 49 /* waitqueue head for the pseudo fd to wakeup poll/read */ 50 wait_queue_head_t fd_wqh; 51 /* waitqueue head for events */ 52 wait_queue_head_t event_wqh; 53 /* a refile sequence protected by fault_pending_wqh lock */ 54 struct seqcount refile_seq; 55 /* pseudo fd refcounting */ 56 atomic_t refcount; 57 /* userfaultfd syscall flags */ 58 unsigned int flags; 59 /* features requested from the userspace */ 60 unsigned int features; 61 /* state machine */ 62 enum userfaultfd_state state; 63 /* released */ 64 bool released; 65 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 66 struct mm_struct *mm; 67 }; 68 69 struct userfaultfd_fork_ctx { 70 struct userfaultfd_ctx *orig; 71 struct userfaultfd_ctx *new; 72 struct list_head list; 73 }; 74 75 struct userfaultfd_unmap_ctx { 76 struct userfaultfd_ctx *ctx; 77 unsigned long start; 78 unsigned long end; 79 struct list_head list; 80 }; 81 82 struct userfaultfd_wait_queue { 83 struct uffd_msg msg; 84 wait_queue_t wq; 85 struct userfaultfd_ctx *ctx; 86 bool waken; 87 }; 88 89 struct userfaultfd_wake_range { 90 unsigned long start; 91 unsigned long len; 92 }; 93 94 static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode, 95 int wake_flags, void *key) 96 { 97 struct userfaultfd_wake_range *range = key; 98 int ret; 99 struct userfaultfd_wait_queue *uwq; 100 unsigned long start, len; 101 102 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 103 ret = 0; 104 /* len == 0 means wake all */ 105 start = range->start; 106 len = range->len; 107 if (len && (start > uwq->msg.arg.pagefault.address || 108 start + len <= uwq->msg.arg.pagefault.address)) 109 goto out; 110 WRITE_ONCE(uwq->waken, true); 111 /* 112 * The implicit smp_mb__before_spinlock in try_to_wake_up() 113 * renders uwq->waken visible to other CPUs before the task is 114 * waken. 115 */ 116 ret = wake_up_state(wq->private, mode); 117 if (ret) 118 /* 119 * Wake only once, autoremove behavior. 120 * 121 * After the effect of list_del_init is visible to the 122 * other CPUs, the waitqueue may disappear from under 123 * us, see the !list_empty_careful() in 124 * handle_userfault(). try_to_wake_up() has an 125 * implicit smp_mb__before_spinlock, and the 126 * wq->private is read before calling the extern 127 * function "wake_up_state" (which in turns calls 128 * try_to_wake_up). While the spin_lock;spin_unlock; 129 * wouldn't be enough, the smp_mb__before_spinlock is 130 * enough to avoid an explicit smp_mb() here. 131 */ 132 list_del_init(&wq->task_list); 133 out: 134 return ret; 135 } 136 137 /** 138 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 139 * context. 140 * @ctx: [in] Pointer to the userfaultfd context. 141 * 142 * Returns: In case of success, returns not zero. 143 */ 144 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 145 { 146 if (!atomic_inc_not_zero(&ctx->refcount)) 147 BUG(); 148 } 149 150 /** 151 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 152 * context. 153 * @ctx: [in] Pointer to userfaultfd context. 154 * 155 * The userfaultfd context reference must have been previously acquired either 156 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 157 */ 158 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 159 { 160 if (atomic_dec_and_test(&ctx->refcount)) { 161 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 162 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 163 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 164 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 165 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 166 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 167 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 168 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 169 mmdrop(ctx->mm); 170 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 171 } 172 } 173 174 static inline void msg_init(struct uffd_msg *msg) 175 { 176 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 177 /* 178 * Must use memset to zero out the paddings or kernel data is 179 * leaked to userland. 180 */ 181 memset(msg, 0, sizeof(struct uffd_msg)); 182 } 183 184 static inline struct uffd_msg userfault_msg(unsigned long address, 185 unsigned int flags, 186 unsigned long reason) 187 { 188 struct uffd_msg msg; 189 msg_init(&msg); 190 msg.event = UFFD_EVENT_PAGEFAULT; 191 msg.arg.pagefault.address = address; 192 if (flags & FAULT_FLAG_WRITE) 193 /* 194 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 195 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE 196 * was not set in a UFFD_EVENT_PAGEFAULT, it means it 197 * was a read fault, otherwise if set it means it's 198 * a write fault. 199 */ 200 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 201 if (reason & VM_UFFD_WP) 202 /* 203 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 204 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was 205 * not set in a UFFD_EVENT_PAGEFAULT, it means it was 206 * a missing fault, otherwise if set it means it's a 207 * write protect fault. 208 */ 209 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 210 return msg; 211 } 212 213 #ifdef CONFIG_HUGETLB_PAGE 214 /* 215 * Same functionality as userfaultfd_must_wait below with modifications for 216 * hugepmd ranges. 217 */ 218 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 219 unsigned long address, 220 unsigned long flags, 221 unsigned long reason) 222 { 223 struct mm_struct *mm = ctx->mm; 224 pte_t *pte; 225 bool ret = true; 226 227 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 228 229 pte = huge_pte_offset(mm, address); 230 if (!pte) 231 goto out; 232 233 ret = false; 234 235 /* 236 * Lockless access: we're in a wait_event so it's ok if it 237 * changes under us. 238 */ 239 if (huge_pte_none(*pte)) 240 ret = true; 241 if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP)) 242 ret = true; 243 out: 244 return ret; 245 } 246 #else 247 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 248 unsigned long address, 249 unsigned long flags, 250 unsigned long reason) 251 { 252 return false; /* should never get here */ 253 } 254 #endif /* CONFIG_HUGETLB_PAGE */ 255 256 /* 257 * Verify the pagetables are still not ok after having reigstered into 258 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 259 * userfault that has already been resolved, if userfaultfd_read and 260 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 261 * threads. 262 */ 263 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 264 unsigned long address, 265 unsigned long flags, 266 unsigned long reason) 267 { 268 struct mm_struct *mm = ctx->mm; 269 pgd_t *pgd; 270 pud_t *pud; 271 pmd_t *pmd, _pmd; 272 pte_t *pte; 273 bool ret = true; 274 275 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 276 277 pgd = pgd_offset(mm, address); 278 if (!pgd_present(*pgd)) 279 goto out; 280 pud = pud_offset(pgd, address); 281 if (!pud_present(*pud)) 282 goto out; 283 pmd = pmd_offset(pud, address); 284 /* 285 * READ_ONCE must function as a barrier with narrower scope 286 * and it must be equivalent to: 287 * _pmd = *pmd; barrier(); 288 * 289 * This is to deal with the instability (as in 290 * pmd_trans_unstable) of the pmd. 291 */ 292 _pmd = READ_ONCE(*pmd); 293 if (!pmd_present(_pmd)) 294 goto out; 295 296 ret = false; 297 if (pmd_trans_huge(_pmd)) 298 goto out; 299 300 /* 301 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 302 * and use the standard pte_offset_map() instead of parsing _pmd. 303 */ 304 pte = pte_offset_map(pmd, address); 305 /* 306 * Lockless access: we're in a wait_event so it's ok if it 307 * changes under us. 308 */ 309 if (pte_none(*pte)) 310 ret = true; 311 pte_unmap(pte); 312 313 out: 314 return ret; 315 } 316 317 /* 318 * The locking rules involved in returning VM_FAULT_RETRY depending on 319 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 320 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 321 * recommendation in __lock_page_or_retry is not an understatement. 322 * 323 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released 324 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 325 * not set. 326 * 327 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 328 * set, VM_FAULT_RETRY can still be returned if and only if there are 329 * fatal_signal_pending()s, and the mmap_sem must be released before 330 * returning it. 331 */ 332 int handle_userfault(struct vm_fault *vmf, unsigned long reason) 333 { 334 struct mm_struct *mm = vmf->vma->vm_mm; 335 struct userfaultfd_ctx *ctx; 336 struct userfaultfd_wait_queue uwq; 337 int ret; 338 bool must_wait, return_to_userland; 339 long blocking_state; 340 341 BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 342 343 ret = VM_FAULT_SIGBUS; 344 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 345 if (!ctx) 346 goto out; 347 348 BUG_ON(ctx->mm != mm); 349 350 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); 351 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); 352 353 /* 354 * If it's already released don't get it. This avoids to loop 355 * in __get_user_pages if userfaultfd_release waits on the 356 * caller of handle_userfault to release the mmap_sem. 357 */ 358 if (unlikely(ACCESS_ONCE(ctx->released))) 359 goto out; 360 361 /* 362 * We don't do userfault handling for the final child pid update. 363 */ 364 if (current->flags & PF_EXITING) 365 goto out; 366 367 /* 368 * Check that we can return VM_FAULT_RETRY. 369 * 370 * NOTE: it should become possible to return VM_FAULT_RETRY 371 * even if FAULT_FLAG_TRIED is set without leading to gup() 372 * -EBUSY failures, if the userfaultfd is to be extended for 373 * VM_UFFD_WP tracking and we intend to arm the userfault 374 * without first stopping userland access to the memory. For 375 * VM_UFFD_MISSING userfaults this is enough for now. 376 */ 377 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 378 /* 379 * Validate the invariant that nowait must allow retry 380 * to be sure not to return SIGBUS erroneously on 381 * nowait invocations. 382 */ 383 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 384 #ifdef CONFIG_DEBUG_VM 385 if (printk_ratelimit()) { 386 printk(KERN_WARNING 387 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 388 vmf->flags); 389 dump_stack(); 390 } 391 #endif 392 goto out; 393 } 394 395 /* 396 * Handle nowait, not much to do other than tell it to retry 397 * and wait. 398 */ 399 ret = VM_FAULT_RETRY; 400 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 401 goto out; 402 403 /* take the reference before dropping the mmap_sem */ 404 userfaultfd_ctx_get(ctx); 405 406 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 407 uwq.wq.private = current; 408 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason); 409 uwq.ctx = ctx; 410 uwq.waken = false; 411 412 return_to_userland = 413 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) == 414 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE); 415 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE : 416 TASK_KILLABLE; 417 418 spin_lock(&ctx->fault_pending_wqh.lock); 419 /* 420 * After the __add_wait_queue the uwq is visible to userland 421 * through poll/read(). 422 */ 423 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 424 /* 425 * The smp_mb() after __set_current_state prevents the reads 426 * following the spin_unlock to happen before the list_add in 427 * __add_wait_queue. 428 */ 429 set_current_state(blocking_state); 430 spin_unlock(&ctx->fault_pending_wqh.lock); 431 432 if (!is_vm_hugetlb_page(vmf->vma)) 433 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 434 reason); 435 else 436 must_wait = userfaultfd_huge_must_wait(ctx, vmf->address, 437 vmf->flags, reason); 438 up_read(&mm->mmap_sem); 439 440 if (likely(must_wait && !ACCESS_ONCE(ctx->released) && 441 (return_to_userland ? !signal_pending(current) : 442 !fatal_signal_pending(current)))) { 443 wake_up_poll(&ctx->fd_wqh, POLLIN); 444 schedule(); 445 ret |= VM_FAULT_MAJOR; 446 447 /* 448 * False wakeups can orginate even from rwsem before 449 * up_read() however userfaults will wait either for a 450 * targeted wakeup on the specific uwq waitqueue from 451 * wake_userfault() or for signals or for uffd 452 * release. 453 */ 454 while (!READ_ONCE(uwq.waken)) { 455 /* 456 * This needs the full smp_store_mb() 457 * guarantee as the state write must be 458 * visible to other CPUs before reading 459 * uwq.waken from other CPUs. 460 */ 461 set_current_state(blocking_state); 462 if (READ_ONCE(uwq.waken) || 463 READ_ONCE(ctx->released) || 464 (return_to_userland ? signal_pending(current) : 465 fatal_signal_pending(current))) 466 break; 467 schedule(); 468 } 469 } 470 471 __set_current_state(TASK_RUNNING); 472 473 if (return_to_userland) { 474 if (signal_pending(current) && 475 !fatal_signal_pending(current)) { 476 /* 477 * If we got a SIGSTOP or SIGCONT and this is 478 * a normal userland page fault, just let 479 * userland return so the signal will be 480 * handled and gdb debugging works. The page 481 * fault code immediately after we return from 482 * this function is going to release the 483 * mmap_sem and it's not depending on it 484 * (unlike gup would if we were not to return 485 * VM_FAULT_RETRY). 486 * 487 * If a fatal signal is pending we still take 488 * the streamlined VM_FAULT_RETRY failure path 489 * and there's no need to retake the mmap_sem 490 * in such case. 491 */ 492 down_read(&mm->mmap_sem); 493 ret = 0; 494 } 495 } 496 497 /* 498 * Here we race with the list_del; list_add in 499 * userfaultfd_ctx_read(), however because we don't ever run 500 * list_del_init() to refile across the two lists, the prev 501 * and next pointers will never point to self. list_add also 502 * would never let any of the two pointers to point to 503 * self. So list_empty_careful won't risk to see both pointers 504 * pointing to self at any time during the list refile. The 505 * only case where list_del_init() is called is the full 506 * removal in the wake function and there we don't re-list_add 507 * and it's fine not to block on the spinlock. The uwq on this 508 * kernel stack can be released after the list_del_init. 509 */ 510 if (!list_empty_careful(&uwq.wq.task_list)) { 511 spin_lock(&ctx->fault_pending_wqh.lock); 512 /* 513 * No need of list_del_init(), the uwq on the stack 514 * will be freed shortly anyway. 515 */ 516 list_del(&uwq.wq.task_list); 517 spin_unlock(&ctx->fault_pending_wqh.lock); 518 } 519 520 /* 521 * ctx may go away after this if the userfault pseudo fd is 522 * already released. 523 */ 524 userfaultfd_ctx_put(ctx); 525 526 out: 527 return ret; 528 } 529 530 static int userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 531 struct userfaultfd_wait_queue *ewq) 532 { 533 int ret = 0; 534 535 ewq->ctx = ctx; 536 init_waitqueue_entry(&ewq->wq, current); 537 538 spin_lock(&ctx->event_wqh.lock); 539 /* 540 * After the __add_wait_queue the uwq is visible to userland 541 * through poll/read(). 542 */ 543 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 544 for (;;) { 545 set_current_state(TASK_KILLABLE); 546 if (ewq->msg.event == 0) 547 break; 548 if (ACCESS_ONCE(ctx->released) || 549 fatal_signal_pending(current)) { 550 ret = -1; 551 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 552 break; 553 } 554 555 spin_unlock(&ctx->event_wqh.lock); 556 557 wake_up_poll(&ctx->fd_wqh, POLLIN); 558 schedule(); 559 560 spin_lock(&ctx->event_wqh.lock); 561 } 562 __set_current_state(TASK_RUNNING); 563 spin_unlock(&ctx->event_wqh.lock); 564 565 /* 566 * ctx may go away after this if the userfault pseudo fd is 567 * already released. 568 */ 569 570 userfaultfd_ctx_put(ctx); 571 return ret; 572 } 573 574 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 575 struct userfaultfd_wait_queue *ewq) 576 { 577 ewq->msg.event = 0; 578 wake_up_locked(&ctx->event_wqh); 579 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 580 } 581 582 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 583 { 584 struct userfaultfd_ctx *ctx = NULL, *octx; 585 struct userfaultfd_fork_ctx *fctx; 586 587 octx = vma->vm_userfaultfd_ctx.ctx; 588 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 589 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 590 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 591 return 0; 592 } 593 594 list_for_each_entry(fctx, fcs, list) 595 if (fctx->orig == octx) { 596 ctx = fctx->new; 597 break; 598 } 599 600 if (!ctx) { 601 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 602 if (!fctx) 603 return -ENOMEM; 604 605 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 606 if (!ctx) { 607 kfree(fctx); 608 return -ENOMEM; 609 } 610 611 atomic_set(&ctx->refcount, 1); 612 ctx->flags = octx->flags; 613 ctx->state = UFFD_STATE_RUNNING; 614 ctx->features = octx->features; 615 ctx->released = false; 616 ctx->mm = vma->vm_mm; 617 atomic_inc(&ctx->mm->mm_count); 618 619 userfaultfd_ctx_get(octx); 620 fctx->orig = octx; 621 fctx->new = ctx; 622 list_add_tail(&fctx->list, fcs); 623 } 624 625 vma->vm_userfaultfd_ctx.ctx = ctx; 626 return 0; 627 } 628 629 static int dup_fctx(struct userfaultfd_fork_ctx *fctx) 630 { 631 struct userfaultfd_ctx *ctx = fctx->orig; 632 struct userfaultfd_wait_queue ewq; 633 634 msg_init(&ewq.msg); 635 636 ewq.msg.event = UFFD_EVENT_FORK; 637 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 638 639 return userfaultfd_event_wait_completion(ctx, &ewq); 640 } 641 642 void dup_userfaultfd_complete(struct list_head *fcs) 643 { 644 int ret = 0; 645 struct userfaultfd_fork_ctx *fctx, *n; 646 647 list_for_each_entry_safe(fctx, n, fcs, list) { 648 if (!ret) 649 ret = dup_fctx(fctx); 650 list_del(&fctx->list); 651 kfree(fctx); 652 } 653 } 654 655 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 656 struct vm_userfaultfd_ctx *vm_ctx) 657 { 658 struct userfaultfd_ctx *ctx; 659 660 ctx = vma->vm_userfaultfd_ctx.ctx; 661 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) { 662 vm_ctx->ctx = ctx; 663 userfaultfd_ctx_get(ctx); 664 } 665 } 666 667 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 668 unsigned long from, unsigned long to, 669 unsigned long len) 670 { 671 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 672 struct userfaultfd_wait_queue ewq; 673 674 if (!ctx) 675 return; 676 677 if (to & ~PAGE_MASK) { 678 userfaultfd_ctx_put(ctx); 679 return; 680 } 681 682 msg_init(&ewq.msg); 683 684 ewq.msg.event = UFFD_EVENT_REMAP; 685 ewq.msg.arg.remap.from = from; 686 ewq.msg.arg.remap.to = to; 687 ewq.msg.arg.remap.len = len; 688 689 userfaultfd_event_wait_completion(ctx, &ewq); 690 } 691 692 void userfaultfd_remove(struct vm_area_struct *vma, 693 struct vm_area_struct **prev, 694 unsigned long start, unsigned long end) 695 { 696 struct mm_struct *mm = vma->vm_mm; 697 struct userfaultfd_ctx *ctx; 698 struct userfaultfd_wait_queue ewq; 699 700 ctx = vma->vm_userfaultfd_ctx.ctx; 701 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 702 return; 703 704 userfaultfd_ctx_get(ctx); 705 up_read(&mm->mmap_sem); 706 707 *prev = NULL; /* We wait for ACK w/o the mmap semaphore */ 708 709 msg_init(&ewq.msg); 710 711 ewq.msg.event = UFFD_EVENT_REMOVE; 712 ewq.msg.arg.remove.start = start; 713 ewq.msg.arg.remove.end = end; 714 715 userfaultfd_event_wait_completion(ctx, &ewq); 716 717 down_read(&mm->mmap_sem); 718 } 719 720 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 721 unsigned long start, unsigned long end) 722 { 723 struct userfaultfd_unmap_ctx *unmap_ctx; 724 725 list_for_each_entry(unmap_ctx, unmaps, list) 726 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 727 unmap_ctx->end == end) 728 return true; 729 730 return false; 731 } 732 733 int userfaultfd_unmap_prep(struct vm_area_struct *vma, 734 unsigned long start, unsigned long end, 735 struct list_head *unmaps) 736 { 737 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 738 struct userfaultfd_unmap_ctx *unmap_ctx; 739 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 740 741 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 742 has_unmap_ctx(ctx, unmaps, start, end)) 743 continue; 744 745 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 746 if (!unmap_ctx) 747 return -ENOMEM; 748 749 userfaultfd_ctx_get(ctx); 750 unmap_ctx->ctx = ctx; 751 unmap_ctx->start = start; 752 unmap_ctx->end = end; 753 list_add_tail(&unmap_ctx->list, unmaps); 754 } 755 756 return 0; 757 } 758 759 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 760 { 761 struct userfaultfd_unmap_ctx *ctx, *n; 762 struct userfaultfd_wait_queue ewq; 763 764 list_for_each_entry_safe(ctx, n, uf, list) { 765 msg_init(&ewq.msg); 766 767 ewq.msg.event = UFFD_EVENT_UNMAP; 768 ewq.msg.arg.remove.start = ctx->start; 769 ewq.msg.arg.remove.end = ctx->end; 770 771 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 772 773 list_del(&ctx->list); 774 kfree(ctx); 775 } 776 } 777 778 void userfaultfd_exit(struct mm_struct *mm) 779 { 780 struct vm_area_struct *vma = mm->mmap; 781 782 /* 783 * We can do the vma walk without locking because the caller 784 * (exit_mm) knows it now has exclusive access 785 */ 786 while (vma) { 787 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 788 789 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_EXIT)) { 790 struct userfaultfd_wait_queue ewq; 791 792 userfaultfd_ctx_get(ctx); 793 794 msg_init(&ewq.msg); 795 ewq.msg.event = UFFD_EVENT_EXIT; 796 797 userfaultfd_event_wait_completion(ctx, &ewq); 798 799 ctx->features &= ~UFFD_FEATURE_EVENT_EXIT; 800 } 801 802 vma = vma->vm_next; 803 } 804 } 805 806 static int userfaultfd_release(struct inode *inode, struct file *file) 807 { 808 struct userfaultfd_ctx *ctx = file->private_data; 809 struct mm_struct *mm = ctx->mm; 810 struct vm_area_struct *vma, *prev; 811 /* len == 0 means wake all */ 812 struct userfaultfd_wake_range range = { .len = 0, }; 813 unsigned long new_flags; 814 815 ACCESS_ONCE(ctx->released) = true; 816 817 if (!mmget_not_zero(mm)) 818 goto wakeup; 819 820 /* 821 * Flush page faults out of all CPUs. NOTE: all page faults 822 * must be retried without returning VM_FAULT_SIGBUS if 823 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 824 * changes while handle_userfault released the mmap_sem. So 825 * it's critical that released is set to true (above), before 826 * taking the mmap_sem for writing. 827 */ 828 down_write(&mm->mmap_sem); 829 prev = NULL; 830 for (vma = mm->mmap; vma; vma = vma->vm_next) { 831 cond_resched(); 832 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 833 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 834 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 835 prev = vma; 836 continue; 837 } 838 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 839 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 840 new_flags, vma->anon_vma, 841 vma->vm_file, vma->vm_pgoff, 842 vma_policy(vma), 843 NULL_VM_UFFD_CTX); 844 if (prev) 845 vma = prev; 846 else 847 prev = vma; 848 vma->vm_flags = new_flags; 849 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 850 } 851 up_write(&mm->mmap_sem); 852 mmput(mm); 853 wakeup: 854 /* 855 * After no new page faults can wait on this fault_*wqh, flush 856 * the last page faults that may have been already waiting on 857 * the fault_*wqh. 858 */ 859 spin_lock(&ctx->fault_pending_wqh.lock); 860 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 861 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range); 862 spin_unlock(&ctx->fault_pending_wqh.lock); 863 864 wake_up_poll(&ctx->fd_wqh, POLLHUP); 865 userfaultfd_ctx_put(ctx); 866 return 0; 867 } 868 869 /* fault_pending_wqh.lock must be hold by the caller */ 870 static inline struct userfaultfd_wait_queue *find_userfault_in( 871 wait_queue_head_t *wqh) 872 { 873 wait_queue_t *wq; 874 struct userfaultfd_wait_queue *uwq; 875 876 VM_BUG_ON(!spin_is_locked(&wqh->lock)); 877 878 uwq = NULL; 879 if (!waitqueue_active(wqh)) 880 goto out; 881 /* walk in reverse to provide FIFO behavior to read userfaults */ 882 wq = list_last_entry(&wqh->task_list, typeof(*wq), task_list); 883 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 884 out: 885 return uwq; 886 } 887 888 static inline struct userfaultfd_wait_queue *find_userfault( 889 struct userfaultfd_ctx *ctx) 890 { 891 return find_userfault_in(&ctx->fault_pending_wqh); 892 } 893 894 static inline struct userfaultfd_wait_queue *find_userfault_evt( 895 struct userfaultfd_ctx *ctx) 896 { 897 return find_userfault_in(&ctx->event_wqh); 898 } 899 900 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait) 901 { 902 struct userfaultfd_ctx *ctx = file->private_data; 903 unsigned int ret; 904 905 poll_wait(file, &ctx->fd_wqh, wait); 906 907 switch (ctx->state) { 908 case UFFD_STATE_WAIT_API: 909 return POLLERR; 910 case UFFD_STATE_RUNNING: 911 /* 912 * poll() never guarantees that read won't block. 913 * userfaults can be waken before they're read(). 914 */ 915 if (unlikely(!(file->f_flags & O_NONBLOCK))) 916 return POLLERR; 917 /* 918 * lockless access to see if there are pending faults 919 * __pollwait last action is the add_wait_queue but 920 * the spin_unlock would allow the waitqueue_active to 921 * pass above the actual list_add inside 922 * add_wait_queue critical section. So use a full 923 * memory barrier to serialize the list_add write of 924 * add_wait_queue() with the waitqueue_active read 925 * below. 926 */ 927 ret = 0; 928 smp_mb(); 929 if (waitqueue_active(&ctx->fault_pending_wqh)) 930 ret = POLLIN; 931 else if (waitqueue_active(&ctx->event_wqh)) 932 ret = POLLIN; 933 934 return ret; 935 default: 936 WARN_ON_ONCE(1); 937 return POLLERR; 938 } 939 } 940 941 static const struct file_operations userfaultfd_fops; 942 943 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, 944 struct userfaultfd_ctx *new, 945 struct uffd_msg *msg) 946 { 947 int fd; 948 struct file *file; 949 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS; 950 951 fd = get_unused_fd_flags(flags); 952 if (fd < 0) 953 return fd; 954 955 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new, 956 O_RDWR | flags); 957 if (IS_ERR(file)) { 958 put_unused_fd(fd); 959 return PTR_ERR(file); 960 } 961 962 fd_install(fd, file); 963 msg->arg.reserved.reserved1 = 0; 964 msg->arg.fork.ufd = fd; 965 966 return 0; 967 } 968 969 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 970 struct uffd_msg *msg) 971 { 972 ssize_t ret; 973 DECLARE_WAITQUEUE(wait, current); 974 struct userfaultfd_wait_queue *uwq; 975 /* 976 * Handling fork event requires sleeping operations, so 977 * we drop the event_wqh lock, then do these ops, then 978 * lock it back and wake up the waiter. While the lock is 979 * dropped the ewq may go away so we keep track of it 980 * carefully. 981 */ 982 LIST_HEAD(fork_event); 983 struct userfaultfd_ctx *fork_nctx = NULL; 984 985 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 986 spin_lock(&ctx->fd_wqh.lock); 987 __add_wait_queue(&ctx->fd_wqh, &wait); 988 for (;;) { 989 set_current_state(TASK_INTERRUPTIBLE); 990 spin_lock(&ctx->fault_pending_wqh.lock); 991 uwq = find_userfault(ctx); 992 if (uwq) { 993 /* 994 * Use a seqcount to repeat the lockless check 995 * in wake_userfault() to avoid missing 996 * wakeups because during the refile both 997 * waitqueue could become empty if this is the 998 * only userfault. 999 */ 1000 write_seqcount_begin(&ctx->refile_seq); 1001 1002 /* 1003 * The fault_pending_wqh.lock prevents the uwq 1004 * to disappear from under us. 1005 * 1006 * Refile this userfault from 1007 * fault_pending_wqh to fault_wqh, it's not 1008 * pending anymore after we read it. 1009 * 1010 * Use list_del() by hand (as 1011 * userfaultfd_wake_function also uses 1012 * list_del_init() by hand) to be sure nobody 1013 * changes __remove_wait_queue() to use 1014 * list_del_init() in turn breaking the 1015 * !list_empty_careful() check in 1016 * handle_userfault(). The uwq->wq.task_list 1017 * must never be empty at any time during the 1018 * refile, or the waitqueue could disappear 1019 * from under us. The "wait_queue_head_t" 1020 * parameter of __remove_wait_queue() is unused 1021 * anyway. 1022 */ 1023 list_del(&uwq->wq.task_list); 1024 __add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1025 1026 write_seqcount_end(&ctx->refile_seq); 1027 1028 /* careful to always initialize msg if ret == 0 */ 1029 *msg = uwq->msg; 1030 spin_unlock(&ctx->fault_pending_wqh.lock); 1031 ret = 0; 1032 break; 1033 } 1034 spin_unlock(&ctx->fault_pending_wqh.lock); 1035 1036 spin_lock(&ctx->event_wqh.lock); 1037 uwq = find_userfault_evt(ctx); 1038 if (uwq) { 1039 *msg = uwq->msg; 1040 1041 if (uwq->msg.event == UFFD_EVENT_FORK) { 1042 fork_nctx = (struct userfaultfd_ctx *) 1043 (unsigned long) 1044 uwq->msg.arg.reserved.reserved1; 1045 list_move(&uwq->wq.task_list, &fork_event); 1046 spin_unlock(&ctx->event_wqh.lock); 1047 ret = 0; 1048 break; 1049 } 1050 1051 userfaultfd_event_complete(ctx, uwq); 1052 spin_unlock(&ctx->event_wqh.lock); 1053 ret = 0; 1054 break; 1055 } 1056 spin_unlock(&ctx->event_wqh.lock); 1057 1058 if (signal_pending(current)) { 1059 ret = -ERESTARTSYS; 1060 break; 1061 } 1062 if (no_wait) { 1063 ret = -EAGAIN; 1064 break; 1065 } 1066 spin_unlock(&ctx->fd_wqh.lock); 1067 schedule(); 1068 spin_lock(&ctx->fd_wqh.lock); 1069 } 1070 __remove_wait_queue(&ctx->fd_wqh, &wait); 1071 __set_current_state(TASK_RUNNING); 1072 spin_unlock(&ctx->fd_wqh.lock); 1073 1074 if (!ret && msg->event == UFFD_EVENT_FORK) { 1075 ret = resolve_userfault_fork(ctx, fork_nctx, msg); 1076 1077 if (!ret) { 1078 spin_lock(&ctx->event_wqh.lock); 1079 if (!list_empty(&fork_event)) { 1080 uwq = list_first_entry(&fork_event, 1081 typeof(*uwq), 1082 wq.task_list); 1083 list_del(&uwq->wq.task_list); 1084 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1085 userfaultfd_event_complete(ctx, uwq); 1086 } 1087 spin_unlock(&ctx->event_wqh.lock); 1088 } 1089 } 1090 1091 return ret; 1092 } 1093 1094 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1095 size_t count, loff_t *ppos) 1096 { 1097 struct userfaultfd_ctx *ctx = file->private_data; 1098 ssize_t _ret, ret = 0; 1099 struct uffd_msg msg; 1100 int no_wait = file->f_flags & O_NONBLOCK; 1101 1102 if (ctx->state == UFFD_STATE_WAIT_API) 1103 return -EINVAL; 1104 1105 for (;;) { 1106 if (count < sizeof(msg)) 1107 return ret ? ret : -EINVAL; 1108 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); 1109 if (_ret < 0) 1110 return ret ? ret : _ret; 1111 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1112 return ret ? ret : -EFAULT; 1113 ret += sizeof(msg); 1114 buf += sizeof(msg); 1115 count -= sizeof(msg); 1116 /* 1117 * Allow to read more than one fault at time but only 1118 * block if waiting for the very first one. 1119 */ 1120 no_wait = O_NONBLOCK; 1121 } 1122 } 1123 1124 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1125 struct userfaultfd_wake_range *range) 1126 { 1127 unsigned long start, end; 1128 1129 start = range->start; 1130 end = range->start + range->len; 1131 1132 spin_lock(&ctx->fault_pending_wqh.lock); 1133 /* wake all in the range and autoremove */ 1134 if (waitqueue_active(&ctx->fault_pending_wqh)) 1135 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1136 range); 1137 if (waitqueue_active(&ctx->fault_wqh)) 1138 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range); 1139 spin_unlock(&ctx->fault_pending_wqh.lock); 1140 } 1141 1142 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1143 struct userfaultfd_wake_range *range) 1144 { 1145 unsigned seq; 1146 bool need_wakeup; 1147 1148 /* 1149 * To be sure waitqueue_active() is not reordered by the CPU 1150 * before the pagetable update, use an explicit SMP memory 1151 * barrier here. PT lock release or up_read(mmap_sem) still 1152 * have release semantics that can allow the 1153 * waitqueue_active() to be reordered before the pte update. 1154 */ 1155 smp_mb(); 1156 1157 /* 1158 * Use waitqueue_active because it's very frequent to 1159 * change the address space atomically even if there are no 1160 * userfaults yet. So we take the spinlock only when we're 1161 * sure we've userfaults to wake. 1162 */ 1163 do { 1164 seq = read_seqcount_begin(&ctx->refile_seq); 1165 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1166 waitqueue_active(&ctx->fault_wqh); 1167 cond_resched(); 1168 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1169 if (need_wakeup) 1170 __wake_userfault(ctx, range); 1171 } 1172 1173 static __always_inline int validate_range(struct mm_struct *mm, 1174 __u64 start, __u64 len) 1175 { 1176 __u64 task_size = mm->task_size; 1177 1178 if (start & ~PAGE_MASK) 1179 return -EINVAL; 1180 if (len & ~PAGE_MASK) 1181 return -EINVAL; 1182 if (!len) 1183 return -EINVAL; 1184 if (start < mmap_min_addr) 1185 return -EINVAL; 1186 if (start >= task_size) 1187 return -EINVAL; 1188 if (len > task_size - start) 1189 return -EINVAL; 1190 return 0; 1191 } 1192 1193 static inline bool vma_can_userfault(struct vm_area_struct *vma) 1194 { 1195 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || 1196 vma_is_shmem(vma); 1197 } 1198 1199 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1200 unsigned long arg) 1201 { 1202 struct mm_struct *mm = ctx->mm; 1203 struct vm_area_struct *vma, *prev, *cur; 1204 int ret; 1205 struct uffdio_register uffdio_register; 1206 struct uffdio_register __user *user_uffdio_register; 1207 unsigned long vm_flags, new_flags; 1208 bool found; 1209 bool non_anon_pages; 1210 unsigned long start, end, vma_end; 1211 1212 user_uffdio_register = (struct uffdio_register __user *) arg; 1213 1214 ret = -EFAULT; 1215 if (copy_from_user(&uffdio_register, user_uffdio_register, 1216 sizeof(uffdio_register)-sizeof(__u64))) 1217 goto out; 1218 1219 ret = -EINVAL; 1220 if (!uffdio_register.mode) 1221 goto out; 1222 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| 1223 UFFDIO_REGISTER_MODE_WP)) 1224 goto out; 1225 vm_flags = 0; 1226 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1227 vm_flags |= VM_UFFD_MISSING; 1228 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1229 vm_flags |= VM_UFFD_WP; 1230 /* 1231 * FIXME: remove the below error constraint by 1232 * implementing the wprotect tracking mode. 1233 */ 1234 ret = -EINVAL; 1235 goto out; 1236 } 1237 1238 ret = validate_range(mm, uffdio_register.range.start, 1239 uffdio_register.range.len); 1240 if (ret) 1241 goto out; 1242 1243 start = uffdio_register.range.start; 1244 end = start + uffdio_register.range.len; 1245 1246 ret = -ENOMEM; 1247 if (!mmget_not_zero(mm)) 1248 goto out; 1249 1250 down_write(&mm->mmap_sem); 1251 vma = find_vma_prev(mm, start, &prev); 1252 if (!vma) 1253 goto out_unlock; 1254 1255 /* check that there's at least one vma in the range */ 1256 ret = -EINVAL; 1257 if (vma->vm_start >= end) 1258 goto out_unlock; 1259 1260 /* 1261 * If the first vma contains huge pages, make sure start address 1262 * is aligned to huge page size. 1263 */ 1264 if (is_vm_hugetlb_page(vma)) { 1265 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1266 1267 if (start & (vma_hpagesize - 1)) 1268 goto out_unlock; 1269 } 1270 1271 /* 1272 * Search for not compatible vmas. 1273 */ 1274 found = false; 1275 non_anon_pages = false; 1276 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1277 cond_resched(); 1278 1279 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1280 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1281 1282 /* check not compatible vmas */ 1283 ret = -EINVAL; 1284 if (!vma_can_userfault(cur)) 1285 goto out_unlock; 1286 /* 1287 * If this vma contains ending address, and huge pages 1288 * check alignment. 1289 */ 1290 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1291 end > cur->vm_start) { 1292 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1293 1294 ret = -EINVAL; 1295 1296 if (end & (vma_hpagesize - 1)) 1297 goto out_unlock; 1298 } 1299 1300 /* 1301 * Check that this vma isn't already owned by a 1302 * different userfaultfd. We can't allow more than one 1303 * userfaultfd to own a single vma simultaneously or we 1304 * wouldn't know which one to deliver the userfaults to. 1305 */ 1306 ret = -EBUSY; 1307 if (cur->vm_userfaultfd_ctx.ctx && 1308 cur->vm_userfaultfd_ctx.ctx != ctx) 1309 goto out_unlock; 1310 1311 /* 1312 * Note vmas containing huge pages 1313 */ 1314 if (is_vm_hugetlb_page(cur) || vma_is_shmem(cur)) 1315 non_anon_pages = true; 1316 1317 found = true; 1318 } 1319 BUG_ON(!found); 1320 1321 if (vma->vm_start < start) 1322 prev = vma; 1323 1324 ret = 0; 1325 do { 1326 cond_resched(); 1327 1328 BUG_ON(!vma_can_userfault(vma)); 1329 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1330 vma->vm_userfaultfd_ctx.ctx != ctx); 1331 1332 /* 1333 * Nothing to do: this vma is already registered into this 1334 * userfaultfd and with the right tracking mode too. 1335 */ 1336 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1337 (vma->vm_flags & vm_flags) == vm_flags) 1338 goto skip; 1339 1340 if (vma->vm_start > start) 1341 start = vma->vm_start; 1342 vma_end = min(end, vma->vm_end); 1343 1344 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags; 1345 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1346 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1347 vma_policy(vma), 1348 ((struct vm_userfaultfd_ctx){ ctx })); 1349 if (prev) { 1350 vma = prev; 1351 goto next; 1352 } 1353 if (vma->vm_start < start) { 1354 ret = split_vma(mm, vma, start, 1); 1355 if (ret) 1356 break; 1357 } 1358 if (vma->vm_end > end) { 1359 ret = split_vma(mm, vma, end, 0); 1360 if (ret) 1361 break; 1362 } 1363 next: 1364 /* 1365 * In the vma_merge() successful mprotect-like case 8: 1366 * the next vma was merged into the current one and 1367 * the current one has not been updated yet. 1368 */ 1369 vma->vm_flags = new_flags; 1370 vma->vm_userfaultfd_ctx.ctx = ctx; 1371 1372 skip: 1373 prev = vma; 1374 start = vma->vm_end; 1375 vma = vma->vm_next; 1376 } while (vma && vma->vm_start < end); 1377 out_unlock: 1378 up_write(&mm->mmap_sem); 1379 mmput(mm); 1380 if (!ret) { 1381 /* 1382 * Now that we scanned all vmas we can already tell 1383 * userland which ioctls methods are guaranteed to 1384 * succeed on this range. 1385 */ 1386 if (put_user(non_anon_pages ? UFFD_API_RANGE_IOCTLS_BASIC : 1387 UFFD_API_RANGE_IOCTLS, 1388 &user_uffdio_register->ioctls)) 1389 ret = -EFAULT; 1390 } 1391 out: 1392 return ret; 1393 } 1394 1395 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1396 unsigned long arg) 1397 { 1398 struct mm_struct *mm = ctx->mm; 1399 struct vm_area_struct *vma, *prev, *cur; 1400 int ret; 1401 struct uffdio_range uffdio_unregister; 1402 unsigned long new_flags; 1403 bool found; 1404 unsigned long start, end, vma_end; 1405 const void __user *buf = (void __user *)arg; 1406 1407 ret = -EFAULT; 1408 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1409 goto out; 1410 1411 ret = validate_range(mm, uffdio_unregister.start, 1412 uffdio_unregister.len); 1413 if (ret) 1414 goto out; 1415 1416 start = uffdio_unregister.start; 1417 end = start + uffdio_unregister.len; 1418 1419 ret = -ENOMEM; 1420 if (!mmget_not_zero(mm)) 1421 goto out; 1422 1423 down_write(&mm->mmap_sem); 1424 vma = find_vma_prev(mm, start, &prev); 1425 if (!vma) 1426 goto out_unlock; 1427 1428 /* check that there's at least one vma in the range */ 1429 ret = -EINVAL; 1430 if (vma->vm_start >= end) 1431 goto out_unlock; 1432 1433 /* 1434 * If the first vma contains huge pages, make sure start address 1435 * is aligned to huge page size. 1436 */ 1437 if (is_vm_hugetlb_page(vma)) { 1438 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1439 1440 if (start & (vma_hpagesize - 1)) 1441 goto out_unlock; 1442 } 1443 1444 /* 1445 * Search for not compatible vmas. 1446 */ 1447 found = false; 1448 ret = -EINVAL; 1449 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1450 cond_resched(); 1451 1452 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1453 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1454 1455 /* 1456 * Check not compatible vmas, not strictly required 1457 * here as not compatible vmas cannot have an 1458 * userfaultfd_ctx registered on them, but this 1459 * provides for more strict behavior to notice 1460 * unregistration errors. 1461 */ 1462 if (!vma_can_userfault(cur)) 1463 goto out_unlock; 1464 1465 found = true; 1466 } 1467 BUG_ON(!found); 1468 1469 if (vma->vm_start < start) 1470 prev = vma; 1471 1472 ret = 0; 1473 do { 1474 cond_resched(); 1475 1476 BUG_ON(!vma_can_userfault(vma)); 1477 1478 /* 1479 * Nothing to do: this vma is already registered into this 1480 * userfaultfd and with the right tracking mode too. 1481 */ 1482 if (!vma->vm_userfaultfd_ctx.ctx) 1483 goto skip; 1484 1485 if (vma->vm_start > start) 1486 start = vma->vm_start; 1487 vma_end = min(end, vma->vm_end); 1488 1489 if (userfaultfd_missing(vma)) { 1490 /* 1491 * Wake any concurrent pending userfault while 1492 * we unregister, so they will not hang 1493 * permanently and it avoids userland to call 1494 * UFFDIO_WAKE explicitly. 1495 */ 1496 struct userfaultfd_wake_range range; 1497 range.start = start; 1498 range.len = vma_end - start; 1499 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1500 } 1501 1502 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 1503 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1504 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1505 vma_policy(vma), 1506 NULL_VM_UFFD_CTX); 1507 if (prev) { 1508 vma = prev; 1509 goto next; 1510 } 1511 if (vma->vm_start < start) { 1512 ret = split_vma(mm, vma, start, 1); 1513 if (ret) 1514 break; 1515 } 1516 if (vma->vm_end > end) { 1517 ret = split_vma(mm, vma, end, 0); 1518 if (ret) 1519 break; 1520 } 1521 next: 1522 /* 1523 * In the vma_merge() successful mprotect-like case 8: 1524 * the next vma was merged into the current one and 1525 * the current one has not been updated yet. 1526 */ 1527 vma->vm_flags = new_flags; 1528 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1529 1530 skip: 1531 prev = vma; 1532 start = vma->vm_end; 1533 vma = vma->vm_next; 1534 } while (vma && vma->vm_start < end); 1535 out_unlock: 1536 up_write(&mm->mmap_sem); 1537 mmput(mm); 1538 out: 1539 return ret; 1540 } 1541 1542 /* 1543 * userfaultfd_wake may be used in combination with the 1544 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1545 */ 1546 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1547 unsigned long arg) 1548 { 1549 int ret; 1550 struct uffdio_range uffdio_wake; 1551 struct userfaultfd_wake_range range; 1552 const void __user *buf = (void __user *)arg; 1553 1554 ret = -EFAULT; 1555 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1556 goto out; 1557 1558 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1559 if (ret) 1560 goto out; 1561 1562 range.start = uffdio_wake.start; 1563 range.len = uffdio_wake.len; 1564 1565 /* 1566 * len == 0 means wake all and we don't want to wake all here, 1567 * so check it again to be sure. 1568 */ 1569 VM_BUG_ON(!range.len); 1570 1571 wake_userfault(ctx, &range); 1572 ret = 0; 1573 1574 out: 1575 return ret; 1576 } 1577 1578 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1579 unsigned long arg) 1580 { 1581 __s64 ret; 1582 struct uffdio_copy uffdio_copy; 1583 struct uffdio_copy __user *user_uffdio_copy; 1584 struct userfaultfd_wake_range range; 1585 1586 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1587 1588 ret = -EFAULT; 1589 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1590 /* don't copy "copy" last field */ 1591 sizeof(uffdio_copy)-sizeof(__s64))) 1592 goto out; 1593 1594 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1595 if (ret) 1596 goto out; 1597 /* 1598 * double check for wraparound just in case. copy_from_user() 1599 * will later check uffdio_copy.src + uffdio_copy.len to fit 1600 * in the userland range. 1601 */ 1602 ret = -EINVAL; 1603 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1604 goto out; 1605 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) 1606 goto out; 1607 if (mmget_not_zero(ctx->mm)) { 1608 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1609 uffdio_copy.len); 1610 mmput(ctx->mm); 1611 } else { 1612 return -ENOSPC; 1613 } 1614 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1615 return -EFAULT; 1616 if (ret < 0) 1617 goto out; 1618 BUG_ON(!ret); 1619 /* len == 0 would wake all */ 1620 range.len = ret; 1621 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1622 range.start = uffdio_copy.dst; 1623 wake_userfault(ctx, &range); 1624 } 1625 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1626 out: 1627 return ret; 1628 } 1629 1630 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1631 unsigned long arg) 1632 { 1633 __s64 ret; 1634 struct uffdio_zeropage uffdio_zeropage; 1635 struct uffdio_zeropage __user *user_uffdio_zeropage; 1636 struct userfaultfd_wake_range range; 1637 1638 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1639 1640 ret = -EFAULT; 1641 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1642 /* don't copy "zeropage" last field */ 1643 sizeof(uffdio_zeropage)-sizeof(__s64))) 1644 goto out; 1645 1646 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1647 uffdio_zeropage.range.len); 1648 if (ret) 1649 goto out; 1650 ret = -EINVAL; 1651 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1652 goto out; 1653 1654 if (mmget_not_zero(ctx->mm)) { 1655 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1656 uffdio_zeropage.range.len); 1657 mmput(ctx->mm); 1658 } 1659 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1660 return -EFAULT; 1661 if (ret < 0) 1662 goto out; 1663 /* len == 0 would wake all */ 1664 BUG_ON(!ret); 1665 range.len = ret; 1666 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1667 range.start = uffdio_zeropage.range.start; 1668 wake_userfault(ctx, &range); 1669 } 1670 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1671 out: 1672 return ret; 1673 } 1674 1675 static inline unsigned int uffd_ctx_features(__u64 user_features) 1676 { 1677 /* 1678 * For the current set of features the bits just coincide 1679 */ 1680 return (unsigned int)user_features; 1681 } 1682 1683 /* 1684 * userland asks for a certain API version and we return which bits 1685 * and ioctl commands are implemented in this kernel for such API 1686 * version or -EINVAL if unknown. 1687 */ 1688 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1689 unsigned long arg) 1690 { 1691 struct uffdio_api uffdio_api; 1692 void __user *buf = (void __user *)arg; 1693 int ret; 1694 __u64 features; 1695 1696 ret = -EINVAL; 1697 if (ctx->state != UFFD_STATE_WAIT_API) 1698 goto out; 1699 ret = -EFAULT; 1700 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1701 goto out; 1702 features = uffdio_api.features; 1703 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) { 1704 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1705 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1706 goto out; 1707 ret = -EINVAL; 1708 goto out; 1709 } 1710 /* report all available features and ioctls to userland */ 1711 uffdio_api.features = UFFD_API_FEATURES; 1712 uffdio_api.ioctls = UFFD_API_IOCTLS; 1713 ret = -EFAULT; 1714 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1715 goto out; 1716 ctx->state = UFFD_STATE_RUNNING; 1717 /* only enable the requested features for this uffd context */ 1718 ctx->features = uffd_ctx_features(features); 1719 ret = 0; 1720 out: 1721 return ret; 1722 } 1723 1724 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1725 unsigned long arg) 1726 { 1727 int ret = -EINVAL; 1728 struct userfaultfd_ctx *ctx = file->private_data; 1729 1730 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) 1731 return -EINVAL; 1732 1733 switch(cmd) { 1734 case UFFDIO_API: 1735 ret = userfaultfd_api(ctx, arg); 1736 break; 1737 case UFFDIO_REGISTER: 1738 ret = userfaultfd_register(ctx, arg); 1739 break; 1740 case UFFDIO_UNREGISTER: 1741 ret = userfaultfd_unregister(ctx, arg); 1742 break; 1743 case UFFDIO_WAKE: 1744 ret = userfaultfd_wake(ctx, arg); 1745 break; 1746 case UFFDIO_COPY: 1747 ret = userfaultfd_copy(ctx, arg); 1748 break; 1749 case UFFDIO_ZEROPAGE: 1750 ret = userfaultfd_zeropage(ctx, arg); 1751 break; 1752 } 1753 return ret; 1754 } 1755 1756 #ifdef CONFIG_PROC_FS 1757 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 1758 { 1759 struct userfaultfd_ctx *ctx = f->private_data; 1760 wait_queue_t *wq; 1761 struct userfaultfd_wait_queue *uwq; 1762 unsigned long pending = 0, total = 0; 1763 1764 spin_lock(&ctx->fault_pending_wqh.lock); 1765 list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) { 1766 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 1767 pending++; 1768 total++; 1769 } 1770 list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) { 1771 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 1772 total++; 1773 } 1774 spin_unlock(&ctx->fault_pending_wqh.lock); 1775 1776 /* 1777 * If more protocols will be added, there will be all shown 1778 * separated by a space. Like this: 1779 * protocols: aa:... bb:... 1780 */ 1781 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 1782 pending, total, UFFD_API, UFFD_API_FEATURES, 1783 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 1784 } 1785 #endif 1786 1787 static const struct file_operations userfaultfd_fops = { 1788 #ifdef CONFIG_PROC_FS 1789 .show_fdinfo = userfaultfd_show_fdinfo, 1790 #endif 1791 .release = userfaultfd_release, 1792 .poll = userfaultfd_poll, 1793 .read = userfaultfd_read, 1794 .unlocked_ioctl = userfaultfd_ioctl, 1795 .compat_ioctl = userfaultfd_ioctl, 1796 .llseek = noop_llseek, 1797 }; 1798 1799 static void init_once_userfaultfd_ctx(void *mem) 1800 { 1801 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 1802 1803 init_waitqueue_head(&ctx->fault_pending_wqh); 1804 init_waitqueue_head(&ctx->fault_wqh); 1805 init_waitqueue_head(&ctx->event_wqh); 1806 init_waitqueue_head(&ctx->fd_wqh); 1807 seqcount_init(&ctx->refile_seq); 1808 } 1809 1810 /** 1811 * userfaultfd_file_create - Creates a userfaultfd file pointer. 1812 * @flags: Flags for the userfaultfd file. 1813 * 1814 * This function creates a userfaultfd file pointer, w/out installing 1815 * it into the fd table. This is useful when the userfaultfd file is 1816 * used during the initialization of data structures that require 1817 * extra setup after the userfaultfd creation. So the userfaultfd 1818 * creation is split into the file pointer creation phase, and the 1819 * file descriptor installation phase. In this way races with 1820 * userspace closing the newly installed file descriptor can be 1821 * avoided. Returns a userfaultfd file pointer, or a proper error 1822 * pointer. 1823 */ 1824 static struct file *userfaultfd_file_create(int flags) 1825 { 1826 struct file *file; 1827 struct userfaultfd_ctx *ctx; 1828 1829 BUG_ON(!current->mm); 1830 1831 /* Check the UFFD_* constants for consistency. */ 1832 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 1833 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 1834 1835 file = ERR_PTR(-EINVAL); 1836 if (flags & ~UFFD_SHARED_FCNTL_FLAGS) 1837 goto out; 1838 1839 file = ERR_PTR(-ENOMEM); 1840 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 1841 if (!ctx) 1842 goto out; 1843 1844 atomic_set(&ctx->refcount, 1); 1845 ctx->flags = flags; 1846 ctx->features = 0; 1847 ctx->state = UFFD_STATE_WAIT_API; 1848 ctx->released = false; 1849 ctx->mm = current->mm; 1850 /* prevent the mm struct to be freed */ 1851 mmgrab(ctx->mm); 1852 1853 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx, 1854 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); 1855 if (IS_ERR(file)) { 1856 mmdrop(ctx->mm); 1857 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 1858 } 1859 out: 1860 return file; 1861 } 1862 1863 SYSCALL_DEFINE1(userfaultfd, int, flags) 1864 { 1865 int fd, error; 1866 struct file *file; 1867 1868 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS); 1869 if (error < 0) 1870 return error; 1871 fd = error; 1872 1873 file = userfaultfd_file_create(flags); 1874 if (IS_ERR(file)) { 1875 error = PTR_ERR(file); 1876 goto err_put_unused_fd; 1877 } 1878 fd_install(fd, file); 1879 1880 return fd; 1881 1882 err_put_unused_fd: 1883 put_unused_fd(fd); 1884 1885 return error; 1886 } 1887 1888 static int __init userfaultfd_init(void) 1889 { 1890 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 1891 sizeof(struct userfaultfd_ctx), 1892 0, 1893 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 1894 init_once_userfaultfd_ctx); 1895 return 0; 1896 } 1897 __initcall(userfaultfd_init); 1898