xref: /openbmc/linux/fs/userfaultfd.c (revision aac5987a)
1 /*
2  *  fs/userfaultfd.c
3  *
4  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
5  *  Copyright (C) 2008-2009 Red Hat, Inc.
6  *  Copyright (C) 2015  Red Hat, Inc.
7  *
8  *  This work is licensed under the terms of the GNU GPL, version 2. See
9  *  the COPYING file in the top-level directory.
10  *
11  *  Some part derived from fs/eventfd.c (anon inode setup) and
12  *  mm/ksm.c (mm hashing).
13  */
14 
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34 
35 enum userfaultfd_state {
36 	UFFD_STATE_WAIT_API,
37 	UFFD_STATE_RUNNING,
38 };
39 
40 /*
41  * Start with fault_pending_wqh and fault_wqh so they're more likely
42  * to be in the same cacheline.
43  */
44 struct userfaultfd_ctx {
45 	/* waitqueue head for the pending (i.e. not read) userfaults */
46 	wait_queue_head_t fault_pending_wqh;
47 	/* waitqueue head for the userfaults */
48 	wait_queue_head_t fault_wqh;
49 	/* waitqueue head for the pseudo fd to wakeup poll/read */
50 	wait_queue_head_t fd_wqh;
51 	/* waitqueue head for events */
52 	wait_queue_head_t event_wqh;
53 	/* a refile sequence protected by fault_pending_wqh lock */
54 	struct seqcount refile_seq;
55 	/* pseudo fd refcounting */
56 	atomic_t refcount;
57 	/* userfaultfd syscall flags */
58 	unsigned int flags;
59 	/* features requested from the userspace */
60 	unsigned int features;
61 	/* state machine */
62 	enum userfaultfd_state state;
63 	/* released */
64 	bool released;
65 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
66 	struct mm_struct *mm;
67 };
68 
69 struct userfaultfd_fork_ctx {
70 	struct userfaultfd_ctx *orig;
71 	struct userfaultfd_ctx *new;
72 	struct list_head list;
73 };
74 
75 struct userfaultfd_unmap_ctx {
76 	struct userfaultfd_ctx *ctx;
77 	unsigned long start;
78 	unsigned long end;
79 	struct list_head list;
80 };
81 
82 struct userfaultfd_wait_queue {
83 	struct uffd_msg msg;
84 	wait_queue_t wq;
85 	struct userfaultfd_ctx *ctx;
86 	bool waken;
87 };
88 
89 struct userfaultfd_wake_range {
90 	unsigned long start;
91 	unsigned long len;
92 };
93 
94 static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
95 				     int wake_flags, void *key)
96 {
97 	struct userfaultfd_wake_range *range = key;
98 	int ret;
99 	struct userfaultfd_wait_queue *uwq;
100 	unsigned long start, len;
101 
102 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
103 	ret = 0;
104 	/* len == 0 means wake all */
105 	start = range->start;
106 	len = range->len;
107 	if (len && (start > uwq->msg.arg.pagefault.address ||
108 		    start + len <= uwq->msg.arg.pagefault.address))
109 		goto out;
110 	WRITE_ONCE(uwq->waken, true);
111 	/*
112 	 * The implicit smp_mb__before_spinlock in try_to_wake_up()
113 	 * renders uwq->waken visible to other CPUs before the task is
114 	 * waken.
115 	 */
116 	ret = wake_up_state(wq->private, mode);
117 	if (ret)
118 		/*
119 		 * Wake only once, autoremove behavior.
120 		 *
121 		 * After the effect of list_del_init is visible to the
122 		 * other CPUs, the waitqueue may disappear from under
123 		 * us, see the !list_empty_careful() in
124 		 * handle_userfault(). try_to_wake_up() has an
125 		 * implicit smp_mb__before_spinlock, and the
126 		 * wq->private is read before calling the extern
127 		 * function "wake_up_state" (which in turns calls
128 		 * try_to_wake_up). While the spin_lock;spin_unlock;
129 		 * wouldn't be enough, the smp_mb__before_spinlock is
130 		 * enough to avoid an explicit smp_mb() here.
131 		 */
132 		list_del_init(&wq->task_list);
133 out:
134 	return ret;
135 }
136 
137 /**
138  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
139  * context.
140  * @ctx: [in] Pointer to the userfaultfd context.
141  *
142  * Returns: In case of success, returns not zero.
143  */
144 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
145 {
146 	if (!atomic_inc_not_zero(&ctx->refcount))
147 		BUG();
148 }
149 
150 /**
151  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
152  * context.
153  * @ctx: [in] Pointer to userfaultfd context.
154  *
155  * The userfaultfd context reference must have been previously acquired either
156  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
157  */
158 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
159 {
160 	if (atomic_dec_and_test(&ctx->refcount)) {
161 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
162 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
163 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
164 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
165 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
166 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
167 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
168 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
169 		mmdrop(ctx->mm);
170 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
171 	}
172 }
173 
174 static inline void msg_init(struct uffd_msg *msg)
175 {
176 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
177 	/*
178 	 * Must use memset to zero out the paddings or kernel data is
179 	 * leaked to userland.
180 	 */
181 	memset(msg, 0, sizeof(struct uffd_msg));
182 }
183 
184 static inline struct uffd_msg userfault_msg(unsigned long address,
185 					    unsigned int flags,
186 					    unsigned long reason)
187 {
188 	struct uffd_msg msg;
189 	msg_init(&msg);
190 	msg.event = UFFD_EVENT_PAGEFAULT;
191 	msg.arg.pagefault.address = address;
192 	if (flags & FAULT_FLAG_WRITE)
193 		/*
194 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
195 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
196 		 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
197 		 * was a read fault, otherwise if set it means it's
198 		 * a write fault.
199 		 */
200 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
201 	if (reason & VM_UFFD_WP)
202 		/*
203 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
204 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
205 		 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
206 		 * a missing fault, otherwise if set it means it's a
207 		 * write protect fault.
208 		 */
209 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
210 	return msg;
211 }
212 
213 #ifdef CONFIG_HUGETLB_PAGE
214 /*
215  * Same functionality as userfaultfd_must_wait below with modifications for
216  * hugepmd ranges.
217  */
218 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
219 					 unsigned long address,
220 					 unsigned long flags,
221 					 unsigned long reason)
222 {
223 	struct mm_struct *mm = ctx->mm;
224 	pte_t *pte;
225 	bool ret = true;
226 
227 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
228 
229 	pte = huge_pte_offset(mm, address);
230 	if (!pte)
231 		goto out;
232 
233 	ret = false;
234 
235 	/*
236 	 * Lockless access: we're in a wait_event so it's ok if it
237 	 * changes under us.
238 	 */
239 	if (huge_pte_none(*pte))
240 		ret = true;
241 	if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP))
242 		ret = true;
243 out:
244 	return ret;
245 }
246 #else
247 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
248 					 unsigned long address,
249 					 unsigned long flags,
250 					 unsigned long reason)
251 {
252 	return false;	/* should never get here */
253 }
254 #endif /* CONFIG_HUGETLB_PAGE */
255 
256 /*
257  * Verify the pagetables are still not ok after having reigstered into
258  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
259  * userfault that has already been resolved, if userfaultfd_read and
260  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
261  * threads.
262  */
263 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
264 					 unsigned long address,
265 					 unsigned long flags,
266 					 unsigned long reason)
267 {
268 	struct mm_struct *mm = ctx->mm;
269 	pgd_t *pgd;
270 	pud_t *pud;
271 	pmd_t *pmd, _pmd;
272 	pte_t *pte;
273 	bool ret = true;
274 
275 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
276 
277 	pgd = pgd_offset(mm, address);
278 	if (!pgd_present(*pgd))
279 		goto out;
280 	pud = pud_offset(pgd, address);
281 	if (!pud_present(*pud))
282 		goto out;
283 	pmd = pmd_offset(pud, address);
284 	/*
285 	 * READ_ONCE must function as a barrier with narrower scope
286 	 * and it must be equivalent to:
287 	 *	_pmd = *pmd; barrier();
288 	 *
289 	 * This is to deal with the instability (as in
290 	 * pmd_trans_unstable) of the pmd.
291 	 */
292 	_pmd = READ_ONCE(*pmd);
293 	if (!pmd_present(_pmd))
294 		goto out;
295 
296 	ret = false;
297 	if (pmd_trans_huge(_pmd))
298 		goto out;
299 
300 	/*
301 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
302 	 * and use the standard pte_offset_map() instead of parsing _pmd.
303 	 */
304 	pte = pte_offset_map(pmd, address);
305 	/*
306 	 * Lockless access: we're in a wait_event so it's ok if it
307 	 * changes under us.
308 	 */
309 	if (pte_none(*pte))
310 		ret = true;
311 	pte_unmap(pte);
312 
313 out:
314 	return ret;
315 }
316 
317 /*
318  * The locking rules involved in returning VM_FAULT_RETRY depending on
319  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
320  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
321  * recommendation in __lock_page_or_retry is not an understatement.
322  *
323  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
324  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
325  * not set.
326  *
327  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
328  * set, VM_FAULT_RETRY can still be returned if and only if there are
329  * fatal_signal_pending()s, and the mmap_sem must be released before
330  * returning it.
331  */
332 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
333 {
334 	struct mm_struct *mm = vmf->vma->vm_mm;
335 	struct userfaultfd_ctx *ctx;
336 	struct userfaultfd_wait_queue uwq;
337 	int ret;
338 	bool must_wait, return_to_userland;
339 	long blocking_state;
340 
341 	BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
342 
343 	ret = VM_FAULT_SIGBUS;
344 	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
345 	if (!ctx)
346 		goto out;
347 
348 	BUG_ON(ctx->mm != mm);
349 
350 	VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
351 	VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
352 
353 	/*
354 	 * If it's already released don't get it. This avoids to loop
355 	 * in __get_user_pages if userfaultfd_release waits on the
356 	 * caller of handle_userfault to release the mmap_sem.
357 	 */
358 	if (unlikely(ACCESS_ONCE(ctx->released)))
359 		goto out;
360 
361 	/*
362 	 * We don't do userfault handling for the final child pid update.
363 	 */
364 	if (current->flags & PF_EXITING)
365 		goto out;
366 
367 	/*
368 	 * Check that we can return VM_FAULT_RETRY.
369 	 *
370 	 * NOTE: it should become possible to return VM_FAULT_RETRY
371 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
372 	 * -EBUSY failures, if the userfaultfd is to be extended for
373 	 * VM_UFFD_WP tracking and we intend to arm the userfault
374 	 * without first stopping userland access to the memory. For
375 	 * VM_UFFD_MISSING userfaults this is enough for now.
376 	 */
377 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
378 		/*
379 		 * Validate the invariant that nowait must allow retry
380 		 * to be sure not to return SIGBUS erroneously on
381 		 * nowait invocations.
382 		 */
383 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
384 #ifdef CONFIG_DEBUG_VM
385 		if (printk_ratelimit()) {
386 			printk(KERN_WARNING
387 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
388 			       vmf->flags);
389 			dump_stack();
390 		}
391 #endif
392 		goto out;
393 	}
394 
395 	/*
396 	 * Handle nowait, not much to do other than tell it to retry
397 	 * and wait.
398 	 */
399 	ret = VM_FAULT_RETRY;
400 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
401 		goto out;
402 
403 	/* take the reference before dropping the mmap_sem */
404 	userfaultfd_ctx_get(ctx);
405 
406 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
407 	uwq.wq.private = current;
408 	uwq.msg = userfault_msg(vmf->address, vmf->flags, reason);
409 	uwq.ctx = ctx;
410 	uwq.waken = false;
411 
412 	return_to_userland =
413 		(vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
414 		(FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
415 	blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
416 			 TASK_KILLABLE;
417 
418 	spin_lock(&ctx->fault_pending_wqh.lock);
419 	/*
420 	 * After the __add_wait_queue the uwq is visible to userland
421 	 * through poll/read().
422 	 */
423 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
424 	/*
425 	 * The smp_mb() after __set_current_state prevents the reads
426 	 * following the spin_unlock to happen before the list_add in
427 	 * __add_wait_queue.
428 	 */
429 	set_current_state(blocking_state);
430 	spin_unlock(&ctx->fault_pending_wqh.lock);
431 
432 	if (!is_vm_hugetlb_page(vmf->vma))
433 		must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
434 						  reason);
435 	else
436 		must_wait = userfaultfd_huge_must_wait(ctx, vmf->address,
437 						       vmf->flags, reason);
438 	up_read(&mm->mmap_sem);
439 
440 	if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
441 		   (return_to_userland ? !signal_pending(current) :
442 		    !fatal_signal_pending(current)))) {
443 		wake_up_poll(&ctx->fd_wqh, POLLIN);
444 		schedule();
445 		ret |= VM_FAULT_MAJOR;
446 
447 		/*
448 		 * False wakeups can orginate even from rwsem before
449 		 * up_read() however userfaults will wait either for a
450 		 * targeted wakeup on the specific uwq waitqueue from
451 		 * wake_userfault() or for signals or for uffd
452 		 * release.
453 		 */
454 		while (!READ_ONCE(uwq.waken)) {
455 			/*
456 			 * This needs the full smp_store_mb()
457 			 * guarantee as the state write must be
458 			 * visible to other CPUs before reading
459 			 * uwq.waken from other CPUs.
460 			 */
461 			set_current_state(blocking_state);
462 			if (READ_ONCE(uwq.waken) ||
463 			    READ_ONCE(ctx->released) ||
464 			    (return_to_userland ? signal_pending(current) :
465 			     fatal_signal_pending(current)))
466 				break;
467 			schedule();
468 		}
469 	}
470 
471 	__set_current_state(TASK_RUNNING);
472 
473 	if (return_to_userland) {
474 		if (signal_pending(current) &&
475 		    !fatal_signal_pending(current)) {
476 			/*
477 			 * If we got a SIGSTOP or SIGCONT and this is
478 			 * a normal userland page fault, just let
479 			 * userland return so the signal will be
480 			 * handled and gdb debugging works.  The page
481 			 * fault code immediately after we return from
482 			 * this function is going to release the
483 			 * mmap_sem and it's not depending on it
484 			 * (unlike gup would if we were not to return
485 			 * VM_FAULT_RETRY).
486 			 *
487 			 * If a fatal signal is pending we still take
488 			 * the streamlined VM_FAULT_RETRY failure path
489 			 * and there's no need to retake the mmap_sem
490 			 * in such case.
491 			 */
492 			down_read(&mm->mmap_sem);
493 			ret = 0;
494 		}
495 	}
496 
497 	/*
498 	 * Here we race with the list_del; list_add in
499 	 * userfaultfd_ctx_read(), however because we don't ever run
500 	 * list_del_init() to refile across the two lists, the prev
501 	 * and next pointers will never point to self. list_add also
502 	 * would never let any of the two pointers to point to
503 	 * self. So list_empty_careful won't risk to see both pointers
504 	 * pointing to self at any time during the list refile. The
505 	 * only case where list_del_init() is called is the full
506 	 * removal in the wake function and there we don't re-list_add
507 	 * and it's fine not to block on the spinlock. The uwq on this
508 	 * kernel stack can be released after the list_del_init.
509 	 */
510 	if (!list_empty_careful(&uwq.wq.task_list)) {
511 		spin_lock(&ctx->fault_pending_wqh.lock);
512 		/*
513 		 * No need of list_del_init(), the uwq on the stack
514 		 * will be freed shortly anyway.
515 		 */
516 		list_del(&uwq.wq.task_list);
517 		spin_unlock(&ctx->fault_pending_wqh.lock);
518 	}
519 
520 	/*
521 	 * ctx may go away after this if the userfault pseudo fd is
522 	 * already released.
523 	 */
524 	userfaultfd_ctx_put(ctx);
525 
526 out:
527 	return ret;
528 }
529 
530 static int userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
531 					     struct userfaultfd_wait_queue *ewq)
532 {
533 	int ret = 0;
534 
535 	ewq->ctx = ctx;
536 	init_waitqueue_entry(&ewq->wq, current);
537 
538 	spin_lock(&ctx->event_wqh.lock);
539 	/*
540 	 * After the __add_wait_queue the uwq is visible to userland
541 	 * through poll/read().
542 	 */
543 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
544 	for (;;) {
545 		set_current_state(TASK_KILLABLE);
546 		if (ewq->msg.event == 0)
547 			break;
548 		if (ACCESS_ONCE(ctx->released) ||
549 		    fatal_signal_pending(current)) {
550 			ret = -1;
551 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
552 			break;
553 		}
554 
555 		spin_unlock(&ctx->event_wqh.lock);
556 
557 		wake_up_poll(&ctx->fd_wqh, POLLIN);
558 		schedule();
559 
560 		spin_lock(&ctx->event_wqh.lock);
561 	}
562 	__set_current_state(TASK_RUNNING);
563 	spin_unlock(&ctx->event_wqh.lock);
564 
565 	/*
566 	 * ctx may go away after this if the userfault pseudo fd is
567 	 * already released.
568 	 */
569 
570 	userfaultfd_ctx_put(ctx);
571 	return ret;
572 }
573 
574 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
575 				       struct userfaultfd_wait_queue *ewq)
576 {
577 	ewq->msg.event = 0;
578 	wake_up_locked(&ctx->event_wqh);
579 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
580 }
581 
582 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
583 {
584 	struct userfaultfd_ctx *ctx = NULL, *octx;
585 	struct userfaultfd_fork_ctx *fctx;
586 
587 	octx = vma->vm_userfaultfd_ctx.ctx;
588 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
589 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
590 		vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
591 		return 0;
592 	}
593 
594 	list_for_each_entry(fctx, fcs, list)
595 		if (fctx->orig == octx) {
596 			ctx = fctx->new;
597 			break;
598 		}
599 
600 	if (!ctx) {
601 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
602 		if (!fctx)
603 			return -ENOMEM;
604 
605 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
606 		if (!ctx) {
607 			kfree(fctx);
608 			return -ENOMEM;
609 		}
610 
611 		atomic_set(&ctx->refcount, 1);
612 		ctx->flags = octx->flags;
613 		ctx->state = UFFD_STATE_RUNNING;
614 		ctx->features = octx->features;
615 		ctx->released = false;
616 		ctx->mm = vma->vm_mm;
617 		atomic_inc(&ctx->mm->mm_count);
618 
619 		userfaultfd_ctx_get(octx);
620 		fctx->orig = octx;
621 		fctx->new = ctx;
622 		list_add_tail(&fctx->list, fcs);
623 	}
624 
625 	vma->vm_userfaultfd_ctx.ctx = ctx;
626 	return 0;
627 }
628 
629 static int dup_fctx(struct userfaultfd_fork_ctx *fctx)
630 {
631 	struct userfaultfd_ctx *ctx = fctx->orig;
632 	struct userfaultfd_wait_queue ewq;
633 
634 	msg_init(&ewq.msg);
635 
636 	ewq.msg.event = UFFD_EVENT_FORK;
637 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
638 
639 	return userfaultfd_event_wait_completion(ctx, &ewq);
640 }
641 
642 void dup_userfaultfd_complete(struct list_head *fcs)
643 {
644 	int ret = 0;
645 	struct userfaultfd_fork_ctx *fctx, *n;
646 
647 	list_for_each_entry_safe(fctx, n, fcs, list) {
648 		if (!ret)
649 			ret = dup_fctx(fctx);
650 		list_del(&fctx->list);
651 		kfree(fctx);
652 	}
653 }
654 
655 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
656 			     struct vm_userfaultfd_ctx *vm_ctx)
657 {
658 	struct userfaultfd_ctx *ctx;
659 
660 	ctx = vma->vm_userfaultfd_ctx.ctx;
661 	if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
662 		vm_ctx->ctx = ctx;
663 		userfaultfd_ctx_get(ctx);
664 	}
665 }
666 
667 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
668 				 unsigned long from, unsigned long to,
669 				 unsigned long len)
670 {
671 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
672 	struct userfaultfd_wait_queue ewq;
673 
674 	if (!ctx)
675 		return;
676 
677 	if (to & ~PAGE_MASK) {
678 		userfaultfd_ctx_put(ctx);
679 		return;
680 	}
681 
682 	msg_init(&ewq.msg);
683 
684 	ewq.msg.event = UFFD_EVENT_REMAP;
685 	ewq.msg.arg.remap.from = from;
686 	ewq.msg.arg.remap.to = to;
687 	ewq.msg.arg.remap.len = len;
688 
689 	userfaultfd_event_wait_completion(ctx, &ewq);
690 }
691 
692 void userfaultfd_remove(struct vm_area_struct *vma,
693 			struct vm_area_struct **prev,
694 			unsigned long start, unsigned long end)
695 {
696 	struct mm_struct *mm = vma->vm_mm;
697 	struct userfaultfd_ctx *ctx;
698 	struct userfaultfd_wait_queue ewq;
699 
700 	ctx = vma->vm_userfaultfd_ctx.ctx;
701 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
702 		return;
703 
704 	userfaultfd_ctx_get(ctx);
705 	up_read(&mm->mmap_sem);
706 
707 	*prev = NULL; /* We wait for ACK w/o the mmap semaphore */
708 
709 	msg_init(&ewq.msg);
710 
711 	ewq.msg.event = UFFD_EVENT_REMOVE;
712 	ewq.msg.arg.remove.start = start;
713 	ewq.msg.arg.remove.end = end;
714 
715 	userfaultfd_event_wait_completion(ctx, &ewq);
716 
717 	down_read(&mm->mmap_sem);
718 }
719 
720 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
721 			  unsigned long start, unsigned long end)
722 {
723 	struct userfaultfd_unmap_ctx *unmap_ctx;
724 
725 	list_for_each_entry(unmap_ctx, unmaps, list)
726 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
727 		    unmap_ctx->end == end)
728 			return true;
729 
730 	return false;
731 }
732 
733 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
734 			   unsigned long start, unsigned long end,
735 			   struct list_head *unmaps)
736 {
737 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
738 		struct userfaultfd_unmap_ctx *unmap_ctx;
739 		struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
740 
741 		if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
742 		    has_unmap_ctx(ctx, unmaps, start, end))
743 			continue;
744 
745 		unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
746 		if (!unmap_ctx)
747 			return -ENOMEM;
748 
749 		userfaultfd_ctx_get(ctx);
750 		unmap_ctx->ctx = ctx;
751 		unmap_ctx->start = start;
752 		unmap_ctx->end = end;
753 		list_add_tail(&unmap_ctx->list, unmaps);
754 	}
755 
756 	return 0;
757 }
758 
759 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
760 {
761 	struct userfaultfd_unmap_ctx *ctx, *n;
762 	struct userfaultfd_wait_queue ewq;
763 
764 	list_for_each_entry_safe(ctx, n, uf, list) {
765 		msg_init(&ewq.msg);
766 
767 		ewq.msg.event = UFFD_EVENT_UNMAP;
768 		ewq.msg.arg.remove.start = ctx->start;
769 		ewq.msg.arg.remove.end = ctx->end;
770 
771 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
772 
773 		list_del(&ctx->list);
774 		kfree(ctx);
775 	}
776 }
777 
778 void userfaultfd_exit(struct mm_struct *mm)
779 {
780 	struct vm_area_struct *vma = mm->mmap;
781 
782 	/*
783 	 * We can do the vma walk without locking because the caller
784 	 * (exit_mm) knows it now has exclusive access
785 	 */
786 	while (vma) {
787 		struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
788 
789 		if (ctx && (ctx->features & UFFD_FEATURE_EVENT_EXIT)) {
790 			struct userfaultfd_wait_queue ewq;
791 
792 			userfaultfd_ctx_get(ctx);
793 
794 			msg_init(&ewq.msg);
795 			ewq.msg.event = UFFD_EVENT_EXIT;
796 
797 			userfaultfd_event_wait_completion(ctx, &ewq);
798 
799 			ctx->features &= ~UFFD_FEATURE_EVENT_EXIT;
800 		}
801 
802 		vma = vma->vm_next;
803 	}
804 }
805 
806 static int userfaultfd_release(struct inode *inode, struct file *file)
807 {
808 	struct userfaultfd_ctx *ctx = file->private_data;
809 	struct mm_struct *mm = ctx->mm;
810 	struct vm_area_struct *vma, *prev;
811 	/* len == 0 means wake all */
812 	struct userfaultfd_wake_range range = { .len = 0, };
813 	unsigned long new_flags;
814 
815 	ACCESS_ONCE(ctx->released) = true;
816 
817 	if (!mmget_not_zero(mm))
818 		goto wakeup;
819 
820 	/*
821 	 * Flush page faults out of all CPUs. NOTE: all page faults
822 	 * must be retried without returning VM_FAULT_SIGBUS if
823 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
824 	 * changes while handle_userfault released the mmap_sem. So
825 	 * it's critical that released is set to true (above), before
826 	 * taking the mmap_sem for writing.
827 	 */
828 	down_write(&mm->mmap_sem);
829 	prev = NULL;
830 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
831 		cond_resched();
832 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
833 		       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
834 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
835 			prev = vma;
836 			continue;
837 		}
838 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
839 		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
840 				 new_flags, vma->anon_vma,
841 				 vma->vm_file, vma->vm_pgoff,
842 				 vma_policy(vma),
843 				 NULL_VM_UFFD_CTX);
844 		if (prev)
845 			vma = prev;
846 		else
847 			prev = vma;
848 		vma->vm_flags = new_flags;
849 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
850 	}
851 	up_write(&mm->mmap_sem);
852 	mmput(mm);
853 wakeup:
854 	/*
855 	 * After no new page faults can wait on this fault_*wqh, flush
856 	 * the last page faults that may have been already waiting on
857 	 * the fault_*wqh.
858 	 */
859 	spin_lock(&ctx->fault_pending_wqh.lock);
860 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
861 	__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
862 	spin_unlock(&ctx->fault_pending_wqh.lock);
863 
864 	wake_up_poll(&ctx->fd_wqh, POLLHUP);
865 	userfaultfd_ctx_put(ctx);
866 	return 0;
867 }
868 
869 /* fault_pending_wqh.lock must be hold by the caller */
870 static inline struct userfaultfd_wait_queue *find_userfault_in(
871 		wait_queue_head_t *wqh)
872 {
873 	wait_queue_t *wq;
874 	struct userfaultfd_wait_queue *uwq;
875 
876 	VM_BUG_ON(!spin_is_locked(&wqh->lock));
877 
878 	uwq = NULL;
879 	if (!waitqueue_active(wqh))
880 		goto out;
881 	/* walk in reverse to provide FIFO behavior to read userfaults */
882 	wq = list_last_entry(&wqh->task_list, typeof(*wq), task_list);
883 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
884 out:
885 	return uwq;
886 }
887 
888 static inline struct userfaultfd_wait_queue *find_userfault(
889 		struct userfaultfd_ctx *ctx)
890 {
891 	return find_userfault_in(&ctx->fault_pending_wqh);
892 }
893 
894 static inline struct userfaultfd_wait_queue *find_userfault_evt(
895 		struct userfaultfd_ctx *ctx)
896 {
897 	return find_userfault_in(&ctx->event_wqh);
898 }
899 
900 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
901 {
902 	struct userfaultfd_ctx *ctx = file->private_data;
903 	unsigned int ret;
904 
905 	poll_wait(file, &ctx->fd_wqh, wait);
906 
907 	switch (ctx->state) {
908 	case UFFD_STATE_WAIT_API:
909 		return POLLERR;
910 	case UFFD_STATE_RUNNING:
911 		/*
912 		 * poll() never guarantees that read won't block.
913 		 * userfaults can be waken before they're read().
914 		 */
915 		if (unlikely(!(file->f_flags & O_NONBLOCK)))
916 			return POLLERR;
917 		/*
918 		 * lockless access to see if there are pending faults
919 		 * __pollwait last action is the add_wait_queue but
920 		 * the spin_unlock would allow the waitqueue_active to
921 		 * pass above the actual list_add inside
922 		 * add_wait_queue critical section. So use a full
923 		 * memory barrier to serialize the list_add write of
924 		 * add_wait_queue() with the waitqueue_active read
925 		 * below.
926 		 */
927 		ret = 0;
928 		smp_mb();
929 		if (waitqueue_active(&ctx->fault_pending_wqh))
930 			ret = POLLIN;
931 		else if (waitqueue_active(&ctx->event_wqh))
932 			ret = POLLIN;
933 
934 		return ret;
935 	default:
936 		WARN_ON_ONCE(1);
937 		return POLLERR;
938 	}
939 }
940 
941 static const struct file_operations userfaultfd_fops;
942 
943 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
944 				  struct userfaultfd_ctx *new,
945 				  struct uffd_msg *msg)
946 {
947 	int fd;
948 	struct file *file;
949 	unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
950 
951 	fd = get_unused_fd_flags(flags);
952 	if (fd < 0)
953 		return fd;
954 
955 	file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
956 				  O_RDWR | flags);
957 	if (IS_ERR(file)) {
958 		put_unused_fd(fd);
959 		return PTR_ERR(file);
960 	}
961 
962 	fd_install(fd, file);
963 	msg->arg.reserved.reserved1 = 0;
964 	msg->arg.fork.ufd = fd;
965 
966 	return 0;
967 }
968 
969 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
970 				    struct uffd_msg *msg)
971 {
972 	ssize_t ret;
973 	DECLARE_WAITQUEUE(wait, current);
974 	struct userfaultfd_wait_queue *uwq;
975 	/*
976 	 * Handling fork event requires sleeping operations, so
977 	 * we drop the event_wqh lock, then do these ops, then
978 	 * lock it back and wake up the waiter. While the lock is
979 	 * dropped the ewq may go away so we keep track of it
980 	 * carefully.
981 	 */
982 	LIST_HEAD(fork_event);
983 	struct userfaultfd_ctx *fork_nctx = NULL;
984 
985 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
986 	spin_lock(&ctx->fd_wqh.lock);
987 	__add_wait_queue(&ctx->fd_wqh, &wait);
988 	for (;;) {
989 		set_current_state(TASK_INTERRUPTIBLE);
990 		spin_lock(&ctx->fault_pending_wqh.lock);
991 		uwq = find_userfault(ctx);
992 		if (uwq) {
993 			/*
994 			 * Use a seqcount to repeat the lockless check
995 			 * in wake_userfault() to avoid missing
996 			 * wakeups because during the refile both
997 			 * waitqueue could become empty if this is the
998 			 * only userfault.
999 			 */
1000 			write_seqcount_begin(&ctx->refile_seq);
1001 
1002 			/*
1003 			 * The fault_pending_wqh.lock prevents the uwq
1004 			 * to disappear from under us.
1005 			 *
1006 			 * Refile this userfault from
1007 			 * fault_pending_wqh to fault_wqh, it's not
1008 			 * pending anymore after we read it.
1009 			 *
1010 			 * Use list_del() by hand (as
1011 			 * userfaultfd_wake_function also uses
1012 			 * list_del_init() by hand) to be sure nobody
1013 			 * changes __remove_wait_queue() to use
1014 			 * list_del_init() in turn breaking the
1015 			 * !list_empty_careful() check in
1016 			 * handle_userfault(). The uwq->wq.task_list
1017 			 * must never be empty at any time during the
1018 			 * refile, or the waitqueue could disappear
1019 			 * from under us. The "wait_queue_head_t"
1020 			 * parameter of __remove_wait_queue() is unused
1021 			 * anyway.
1022 			 */
1023 			list_del(&uwq->wq.task_list);
1024 			__add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1025 
1026 			write_seqcount_end(&ctx->refile_seq);
1027 
1028 			/* careful to always initialize msg if ret == 0 */
1029 			*msg = uwq->msg;
1030 			spin_unlock(&ctx->fault_pending_wqh.lock);
1031 			ret = 0;
1032 			break;
1033 		}
1034 		spin_unlock(&ctx->fault_pending_wqh.lock);
1035 
1036 		spin_lock(&ctx->event_wqh.lock);
1037 		uwq = find_userfault_evt(ctx);
1038 		if (uwq) {
1039 			*msg = uwq->msg;
1040 
1041 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1042 				fork_nctx = (struct userfaultfd_ctx *)
1043 					(unsigned long)
1044 					uwq->msg.arg.reserved.reserved1;
1045 				list_move(&uwq->wq.task_list, &fork_event);
1046 				spin_unlock(&ctx->event_wqh.lock);
1047 				ret = 0;
1048 				break;
1049 			}
1050 
1051 			userfaultfd_event_complete(ctx, uwq);
1052 			spin_unlock(&ctx->event_wqh.lock);
1053 			ret = 0;
1054 			break;
1055 		}
1056 		spin_unlock(&ctx->event_wqh.lock);
1057 
1058 		if (signal_pending(current)) {
1059 			ret = -ERESTARTSYS;
1060 			break;
1061 		}
1062 		if (no_wait) {
1063 			ret = -EAGAIN;
1064 			break;
1065 		}
1066 		spin_unlock(&ctx->fd_wqh.lock);
1067 		schedule();
1068 		spin_lock(&ctx->fd_wqh.lock);
1069 	}
1070 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1071 	__set_current_state(TASK_RUNNING);
1072 	spin_unlock(&ctx->fd_wqh.lock);
1073 
1074 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1075 		ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1076 
1077 		if (!ret) {
1078 			spin_lock(&ctx->event_wqh.lock);
1079 			if (!list_empty(&fork_event)) {
1080 				uwq = list_first_entry(&fork_event,
1081 						       typeof(*uwq),
1082 						       wq.task_list);
1083 				list_del(&uwq->wq.task_list);
1084 				__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1085 				userfaultfd_event_complete(ctx, uwq);
1086 			}
1087 			spin_unlock(&ctx->event_wqh.lock);
1088 		}
1089 	}
1090 
1091 	return ret;
1092 }
1093 
1094 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1095 				size_t count, loff_t *ppos)
1096 {
1097 	struct userfaultfd_ctx *ctx = file->private_data;
1098 	ssize_t _ret, ret = 0;
1099 	struct uffd_msg msg;
1100 	int no_wait = file->f_flags & O_NONBLOCK;
1101 
1102 	if (ctx->state == UFFD_STATE_WAIT_API)
1103 		return -EINVAL;
1104 
1105 	for (;;) {
1106 		if (count < sizeof(msg))
1107 			return ret ? ret : -EINVAL;
1108 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1109 		if (_ret < 0)
1110 			return ret ? ret : _ret;
1111 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1112 			return ret ? ret : -EFAULT;
1113 		ret += sizeof(msg);
1114 		buf += sizeof(msg);
1115 		count -= sizeof(msg);
1116 		/*
1117 		 * Allow to read more than one fault at time but only
1118 		 * block if waiting for the very first one.
1119 		 */
1120 		no_wait = O_NONBLOCK;
1121 	}
1122 }
1123 
1124 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1125 			     struct userfaultfd_wake_range *range)
1126 {
1127 	unsigned long start, end;
1128 
1129 	start = range->start;
1130 	end = range->start + range->len;
1131 
1132 	spin_lock(&ctx->fault_pending_wqh.lock);
1133 	/* wake all in the range and autoremove */
1134 	if (waitqueue_active(&ctx->fault_pending_wqh))
1135 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1136 				     range);
1137 	if (waitqueue_active(&ctx->fault_wqh))
1138 		__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1139 	spin_unlock(&ctx->fault_pending_wqh.lock);
1140 }
1141 
1142 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1143 					   struct userfaultfd_wake_range *range)
1144 {
1145 	unsigned seq;
1146 	bool need_wakeup;
1147 
1148 	/*
1149 	 * To be sure waitqueue_active() is not reordered by the CPU
1150 	 * before the pagetable update, use an explicit SMP memory
1151 	 * barrier here. PT lock release or up_read(mmap_sem) still
1152 	 * have release semantics that can allow the
1153 	 * waitqueue_active() to be reordered before the pte update.
1154 	 */
1155 	smp_mb();
1156 
1157 	/*
1158 	 * Use waitqueue_active because it's very frequent to
1159 	 * change the address space atomically even if there are no
1160 	 * userfaults yet. So we take the spinlock only when we're
1161 	 * sure we've userfaults to wake.
1162 	 */
1163 	do {
1164 		seq = read_seqcount_begin(&ctx->refile_seq);
1165 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1166 			waitqueue_active(&ctx->fault_wqh);
1167 		cond_resched();
1168 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1169 	if (need_wakeup)
1170 		__wake_userfault(ctx, range);
1171 }
1172 
1173 static __always_inline int validate_range(struct mm_struct *mm,
1174 					  __u64 start, __u64 len)
1175 {
1176 	__u64 task_size = mm->task_size;
1177 
1178 	if (start & ~PAGE_MASK)
1179 		return -EINVAL;
1180 	if (len & ~PAGE_MASK)
1181 		return -EINVAL;
1182 	if (!len)
1183 		return -EINVAL;
1184 	if (start < mmap_min_addr)
1185 		return -EINVAL;
1186 	if (start >= task_size)
1187 		return -EINVAL;
1188 	if (len > task_size - start)
1189 		return -EINVAL;
1190 	return 0;
1191 }
1192 
1193 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1194 {
1195 	return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1196 		vma_is_shmem(vma);
1197 }
1198 
1199 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1200 				unsigned long arg)
1201 {
1202 	struct mm_struct *mm = ctx->mm;
1203 	struct vm_area_struct *vma, *prev, *cur;
1204 	int ret;
1205 	struct uffdio_register uffdio_register;
1206 	struct uffdio_register __user *user_uffdio_register;
1207 	unsigned long vm_flags, new_flags;
1208 	bool found;
1209 	bool non_anon_pages;
1210 	unsigned long start, end, vma_end;
1211 
1212 	user_uffdio_register = (struct uffdio_register __user *) arg;
1213 
1214 	ret = -EFAULT;
1215 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1216 			   sizeof(uffdio_register)-sizeof(__u64)))
1217 		goto out;
1218 
1219 	ret = -EINVAL;
1220 	if (!uffdio_register.mode)
1221 		goto out;
1222 	if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1223 				     UFFDIO_REGISTER_MODE_WP))
1224 		goto out;
1225 	vm_flags = 0;
1226 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1227 		vm_flags |= VM_UFFD_MISSING;
1228 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1229 		vm_flags |= VM_UFFD_WP;
1230 		/*
1231 		 * FIXME: remove the below error constraint by
1232 		 * implementing the wprotect tracking mode.
1233 		 */
1234 		ret = -EINVAL;
1235 		goto out;
1236 	}
1237 
1238 	ret = validate_range(mm, uffdio_register.range.start,
1239 			     uffdio_register.range.len);
1240 	if (ret)
1241 		goto out;
1242 
1243 	start = uffdio_register.range.start;
1244 	end = start + uffdio_register.range.len;
1245 
1246 	ret = -ENOMEM;
1247 	if (!mmget_not_zero(mm))
1248 		goto out;
1249 
1250 	down_write(&mm->mmap_sem);
1251 	vma = find_vma_prev(mm, start, &prev);
1252 	if (!vma)
1253 		goto out_unlock;
1254 
1255 	/* check that there's at least one vma in the range */
1256 	ret = -EINVAL;
1257 	if (vma->vm_start >= end)
1258 		goto out_unlock;
1259 
1260 	/*
1261 	 * If the first vma contains huge pages, make sure start address
1262 	 * is aligned to huge page size.
1263 	 */
1264 	if (is_vm_hugetlb_page(vma)) {
1265 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1266 
1267 		if (start & (vma_hpagesize - 1))
1268 			goto out_unlock;
1269 	}
1270 
1271 	/*
1272 	 * Search for not compatible vmas.
1273 	 */
1274 	found = false;
1275 	non_anon_pages = false;
1276 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1277 		cond_resched();
1278 
1279 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1280 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1281 
1282 		/* check not compatible vmas */
1283 		ret = -EINVAL;
1284 		if (!vma_can_userfault(cur))
1285 			goto out_unlock;
1286 		/*
1287 		 * If this vma contains ending address, and huge pages
1288 		 * check alignment.
1289 		 */
1290 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1291 		    end > cur->vm_start) {
1292 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1293 
1294 			ret = -EINVAL;
1295 
1296 			if (end & (vma_hpagesize - 1))
1297 				goto out_unlock;
1298 		}
1299 
1300 		/*
1301 		 * Check that this vma isn't already owned by a
1302 		 * different userfaultfd. We can't allow more than one
1303 		 * userfaultfd to own a single vma simultaneously or we
1304 		 * wouldn't know which one to deliver the userfaults to.
1305 		 */
1306 		ret = -EBUSY;
1307 		if (cur->vm_userfaultfd_ctx.ctx &&
1308 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1309 			goto out_unlock;
1310 
1311 		/*
1312 		 * Note vmas containing huge pages
1313 		 */
1314 		if (is_vm_hugetlb_page(cur) || vma_is_shmem(cur))
1315 			non_anon_pages = true;
1316 
1317 		found = true;
1318 	}
1319 	BUG_ON(!found);
1320 
1321 	if (vma->vm_start < start)
1322 		prev = vma;
1323 
1324 	ret = 0;
1325 	do {
1326 		cond_resched();
1327 
1328 		BUG_ON(!vma_can_userfault(vma));
1329 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1330 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1331 
1332 		/*
1333 		 * Nothing to do: this vma is already registered into this
1334 		 * userfaultfd and with the right tracking mode too.
1335 		 */
1336 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1337 		    (vma->vm_flags & vm_flags) == vm_flags)
1338 			goto skip;
1339 
1340 		if (vma->vm_start > start)
1341 			start = vma->vm_start;
1342 		vma_end = min(end, vma->vm_end);
1343 
1344 		new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1345 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1346 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1347 				 vma_policy(vma),
1348 				 ((struct vm_userfaultfd_ctx){ ctx }));
1349 		if (prev) {
1350 			vma = prev;
1351 			goto next;
1352 		}
1353 		if (vma->vm_start < start) {
1354 			ret = split_vma(mm, vma, start, 1);
1355 			if (ret)
1356 				break;
1357 		}
1358 		if (vma->vm_end > end) {
1359 			ret = split_vma(mm, vma, end, 0);
1360 			if (ret)
1361 				break;
1362 		}
1363 	next:
1364 		/*
1365 		 * In the vma_merge() successful mprotect-like case 8:
1366 		 * the next vma was merged into the current one and
1367 		 * the current one has not been updated yet.
1368 		 */
1369 		vma->vm_flags = new_flags;
1370 		vma->vm_userfaultfd_ctx.ctx = ctx;
1371 
1372 	skip:
1373 		prev = vma;
1374 		start = vma->vm_end;
1375 		vma = vma->vm_next;
1376 	} while (vma && vma->vm_start < end);
1377 out_unlock:
1378 	up_write(&mm->mmap_sem);
1379 	mmput(mm);
1380 	if (!ret) {
1381 		/*
1382 		 * Now that we scanned all vmas we can already tell
1383 		 * userland which ioctls methods are guaranteed to
1384 		 * succeed on this range.
1385 		 */
1386 		if (put_user(non_anon_pages ? UFFD_API_RANGE_IOCTLS_BASIC :
1387 			     UFFD_API_RANGE_IOCTLS,
1388 			     &user_uffdio_register->ioctls))
1389 			ret = -EFAULT;
1390 	}
1391 out:
1392 	return ret;
1393 }
1394 
1395 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1396 				  unsigned long arg)
1397 {
1398 	struct mm_struct *mm = ctx->mm;
1399 	struct vm_area_struct *vma, *prev, *cur;
1400 	int ret;
1401 	struct uffdio_range uffdio_unregister;
1402 	unsigned long new_flags;
1403 	bool found;
1404 	unsigned long start, end, vma_end;
1405 	const void __user *buf = (void __user *)arg;
1406 
1407 	ret = -EFAULT;
1408 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1409 		goto out;
1410 
1411 	ret = validate_range(mm, uffdio_unregister.start,
1412 			     uffdio_unregister.len);
1413 	if (ret)
1414 		goto out;
1415 
1416 	start = uffdio_unregister.start;
1417 	end = start + uffdio_unregister.len;
1418 
1419 	ret = -ENOMEM;
1420 	if (!mmget_not_zero(mm))
1421 		goto out;
1422 
1423 	down_write(&mm->mmap_sem);
1424 	vma = find_vma_prev(mm, start, &prev);
1425 	if (!vma)
1426 		goto out_unlock;
1427 
1428 	/* check that there's at least one vma in the range */
1429 	ret = -EINVAL;
1430 	if (vma->vm_start >= end)
1431 		goto out_unlock;
1432 
1433 	/*
1434 	 * If the first vma contains huge pages, make sure start address
1435 	 * is aligned to huge page size.
1436 	 */
1437 	if (is_vm_hugetlb_page(vma)) {
1438 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1439 
1440 		if (start & (vma_hpagesize - 1))
1441 			goto out_unlock;
1442 	}
1443 
1444 	/*
1445 	 * Search for not compatible vmas.
1446 	 */
1447 	found = false;
1448 	ret = -EINVAL;
1449 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1450 		cond_resched();
1451 
1452 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1453 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1454 
1455 		/*
1456 		 * Check not compatible vmas, not strictly required
1457 		 * here as not compatible vmas cannot have an
1458 		 * userfaultfd_ctx registered on them, but this
1459 		 * provides for more strict behavior to notice
1460 		 * unregistration errors.
1461 		 */
1462 		if (!vma_can_userfault(cur))
1463 			goto out_unlock;
1464 
1465 		found = true;
1466 	}
1467 	BUG_ON(!found);
1468 
1469 	if (vma->vm_start < start)
1470 		prev = vma;
1471 
1472 	ret = 0;
1473 	do {
1474 		cond_resched();
1475 
1476 		BUG_ON(!vma_can_userfault(vma));
1477 
1478 		/*
1479 		 * Nothing to do: this vma is already registered into this
1480 		 * userfaultfd and with the right tracking mode too.
1481 		 */
1482 		if (!vma->vm_userfaultfd_ctx.ctx)
1483 			goto skip;
1484 
1485 		if (vma->vm_start > start)
1486 			start = vma->vm_start;
1487 		vma_end = min(end, vma->vm_end);
1488 
1489 		if (userfaultfd_missing(vma)) {
1490 			/*
1491 			 * Wake any concurrent pending userfault while
1492 			 * we unregister, so they will not hang
1493 			 * permanently and it avoids userland to call
1494 			 * UFFDIO_WAKE explicitly.
1495 			 */
1496 			struct userfaultfd_wake_range range;
1497 			range.start = start;
1498 			range.len = vma_end - start;
1499 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1500 		}
1501 
1502 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1503 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1504 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1505 				 vma_policy(vma),
1506 				 NULL_VM_UFFD_CTX);
1507 		if (prev) {
1508 			vma = prev;
1509 			goto next;
1510 		}
1511 		if (vma->vm_start < start) {
1512 			ret = split_vma(mm, vma, start, 1);
1513 			if (ret)
1514 				break;
1515 		}
1516 		if (vma->vm_end > end) {
1517 			ret = split_vma(mm, vma, end, 0);
1518 			if (ret)
1519 				break;
1520 		}
1521 	next:
1522 		/*
1523 		 * In the vma_merge() successful mprotect-like case 8:
1524 		 * the next vma was merged into the current one and
1525 		 * the current one has not been updated yet.
1526 		 */
1527 		vma->vm_flags = new_flags;
1528 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1529 
1530 	skip:
1531 		prev = vma;
1532 		start = vma->vm_end;
1533 		vma = vma->vm_next;
1534 	} while (vma && vma->vm_start < end);
1535 out_unlock:
1536 	up_write(&mm->mmap_sem);
1537 	mmput(mm);
1538 out:
1539 	return ret;
1540 }
1541 
1542 /*
1543  * userfaultfd_wake may be used in combination with the
1544  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1545  */
1546 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1547 			    unsigned long arg)
1548 {
1549 	int ret;
1550 	struct uffdio_range uffdio_wake;
1551 	struct userfaultfd_wake_range range;
1552 	const void __user *buf = (void __user *)arg;
1553 
1554 	ret = -EFAULT;
1555 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1556 		goto out;
1557 
1558 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1559 	if (ret)
1560 		goto out;
1561 
1562 	range.start = uffdio_wake.start;
1563 	range.len = uffdio_wake.len;
1564 
1565 	/*
1566 	 * len == 0 means wake all and we don't want to wake all here,
1567 	 * so check it again to be sure.
1568 	 */
1569 	VM_BUG_ON(!range.len);
1570 
1571 	wake_userfault(ctx, &range);
1572 	ret = 0;
1573 
1574 out:
1575 	return ret;
1576 }
1577 
1578 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1579 			    unsigned long arg)
1580 {
1581 	__s64 ret;
1582 	struct uffdio_copy uffdio_copy;
1583 	struct uffdio_copy __user *user_uffdio_copy;
1584 	struct userfaultfd_wake_range range;
1585 
1586 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1587 
1588 	ret = -EFAULT;
1589 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1590 			   /* don't copy "copy" last field */
1591 			   sizeof(uffdio_copy)-sizeof(__s64)))
1592 		goto out;
1593 
1594 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1595 	if (ret)
1596 		goto out;
1597 	/*
1598 	 * double check for wraparound just in case. copy_from_user()
1599 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1600 	 * in the userland range.
1601 	 */
1602 	ret = -EINVAL;
1603 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1604 		goto out;
1605 	if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1606 		goto out;
1607 	if (mmget_not_zero(ctx->mm)) {
1608 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1609 				   uffdio_copy.len);
1610 		mmput(ctx->mm);
1611 	} else {
1612 		return -ENOSPC;
1613 	}
1614 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1615 		return -EFAULT;
1616 	if (ret < 0)
1617 		goto out;
1618 	BUG_ON(!ret);
1619 	/* len == 0 would wake all */
1620 	range.len = ret;
1621 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1622 		range.start = uffdio_copy.dst;
1623 		wake_userfault(ctx, &range);
1624 	}
1625 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1626 out:
1627 	return ret;
1628 }
1629 
1630 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1631 				unsigned long arg)
1632 {
1633 	__s64 ret;
1634 	struct uffdio_zeropage uffdio_zeropage;
1635 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1636 	struct userfaultfd_wake_range range;
1637 
1638 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1639 
1640 	ret = -EFAULT;
1641 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1642 			   /* don't copy "zeropage" last field */
1643 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1644 		goto out;
1645 
1646 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1647 			     uffdio_zeropage.range.len);
1648 	if (ret)
1649 		goto out;
1650 	ret = -EINVAL;
1651 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1652 		goto out;
1653 
1654 	if (mmget_not_zero(ctx->mm)) {
1655 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1656 				     uffdio_zeropage.range.len);
1657 		mmput(ctx->mm);
1658 	}
1659 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1660 		return -EFAULT;
1661 	if (ret < 0)
1662 		goto out;
1663 	/* len == 0 would wake all */
1664 	BUG_ON(!ret);
1665 	range.len = ret;
1666 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1667 		range.start = uffdio_zeropage.range.start;
1668 		wake_userfault(ctx, &range);
1669 	}
1670 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1671 out:
1672 	return ret;
1673 }
1674 
1675 static inline unsigned int uffd_ctx_features(__u64 user_features)
1676 {
1677 	/*
1678 	 * For the current set of features the bits just coincide
1679 	 */
1680 	return (unsigned int)user_features;
1681 }
1682 
1683 /*
1684  * userland asks for a certain API version and we return which bits
1685  * and ioctl commands are implemented in this kernel for such API
1686  * version or -EINVAL if unknown.
1687  */
1688 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1689 			   unsigned long arg)
1690 {
1691 	struct uffdio_api uffdio_api;
1692 	void __user *buf = (void __user *)arg;
1693 	int ret;
1694 	__u64 features;
1695 
1696 	ret = -EINVAL;
1697 	if (ctx->state != UFFD_STATE_WAIT_API)
1698 		goto out;
1699 	ret = -EFAULT;
1700 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1701 		goto out;
1702 	features = uffdio_api.features;
1703 	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1704 		memset(&uffdio_api, 0, sizeof(uffdio_api));
1705 		if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1706 			goto out;
1707 		ret = -EINVAL;
1708 		goto out;
1709 	}
1710 	/* report all available features and ioctls to userland */
1711 	uffdio_api.features = UFFD_API_FEATURES;
1712 	uffdio_api.ioctls = UFFD_API_IOCTLS;
1713 	ret = -EFAULT;
1714 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1715 		goto out;
1716 	ctx->state = UFFD_STATE_RUNNING;
1717 	/* only enable the requested features for this uffd context */
1718 	ctx->features = uffd_ctx_features(features);
1719 	ret = 0;
1720 out:
1721 	return ret;
1722 }
1723 
1724 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1725 			      unsigned long arg)
1726 {
1727 	int ret = -EINVAL;
1728 	struct userfaultfd_ctx *ctx = file->private_data;
1729 
1730 	if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1731 		return -EINVAL;
1732 
1733 	switch(cmd) {
1734 	case UFFDIO_API:
1735 		ret = userfaultfd_api(ctx, arg);
1736 		break;
1737 	case UFFDIO_REGISTER:
1738 		ret = userfaultfd_register(ctx, arg);
1739 		break;
1740 	case UFFDIO_UNREGISTER:
1741 		ret = userfaultfd_unregister(ctx, arg);
1742 		break;
1743 	case UFFDIO_WAKE:
1744 		ret = userfaultfd_wake(ctx, arg);
1745 		break;
1746 	case UFFDIO_COPY:
1747 		ret = userfaultfd_copy(ctx, arg);
1748 		break;
1749 	case UFFDIO_ZEROPAGE:
1750 		ret = userfaultfd_zeropage(ctx, arg);
1751 		break;
1752 	}
1753 	return ret;
1754 }
1755 
1756 #ifdef CONFIG_PROC_FS
1757 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1758 {
1759 	struct userfaultfd_ctx *ctx = f->private_data;
1760 	wait_queue_t *wq;
1761 	struct userfaultfd_wait_queue *uwq;
1762 	unsigned long pending = 0, total = 0;
1763 
1764 	spin_lock(&ctx->fault_pending_wqh.lock);
1765 	list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
1766 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1767 		pending++;
1768 		total++;
1769 	}
1770 	list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
1771 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1772 		total++;
1773 	}
1774 	spin_unlock(&ctx->fault_pending_wqh.lock);
1775 
1776 	/*
1777 	 * If more protocols will be added, there will be all shown
1778 	 * separated by a space. Like this:
1779 	 *	protocols: aa:... bb:...
1780 	 */
1781 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1782 		   pending, total, UFFD_API, UFFD_API_FEATURES,
1783 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1784 }
1785 #endif
1786 
1787 static const struct file_operations userfaultfd_fops = {
1788 #ifdef CONFIG_PROC_FS
1789 	.show_fdinfo	= userfaultfd_show_fdinfo,
1790 #endif
1791 	.release	= userfaultfd_release,
1792 	.poll		= userfaultfd_poll,
1793 	.read		= userfaultfd_read,
1794 	.unlocked_ioctl = userfaultfd_ioctl,
1795 	.compat_ioctl	= userfaultfd_ioctl,
1796 	.llseek		= noop_llseek,
1797 };
1798 
1799 static void init_once_userfaultfd_ctx(void *mem)
1800 {
1801 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1802 
1803 	init_waitqueue_head(&ctx->fault_pending_wqh);
1804 	init_waitqueue_head(&ctx->fault_wqh);
1805 	init_waitqueue_head(&ctx->event_wqh);
1806 	init_waitqueue_head(&ctx->fd_wqh);
1807 	seqcount_init(&ctx->refile_seq);
1808 }
1809 
1810 /**
1811  * userfaultfd_file_create - Creates a userfaultfd file pointer.
1812  * @flags: Flags for the userfaultfd file.
1813  *
1814  * This function creates a userfaultfd file pointer, w/out installing
1815  * it into the fd table. This is useful when the userfaultfd file is
1816  * used during the initialization of data structures that require
1817  * extra setup after the userfaultfd creation. So the userfaultfd
1818  * creation is split into the file pointer creation phase, and the
1819  * file descriptor installation phase.  In this way races with
1820  * userspace closing the newly installed file descriptor can be
1821  * avoided.  Returns a userfaultfd file pointer, or a proper error
1822  * pointer.
1823  */
1824 static struct file *userfaultfd_file_create(int flags)
1825 {
1826 	struct file *file;
1827 	struct userfaultfd_ctx *ctx;
1828 
1829 	BUG_ON(!current->mm);
1830 
1831 	/* Check the UFFD_* constants for consistency.  */
1832 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1833 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1834 
1835 	file = ERR_PTR(-EINVAL);
1836 	if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1837 		goto out;
1838 
1839 	file = ERR_PTR(-ENOMEM);
1840 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1841 	if (!ctx)
1842 		goto out;
1843 
1844 	atomic_set(&ctx->refcount, 1);
1845 	ctx->flags = flags;
1846 	ctx->features = 0;
1847 	ctx->state = UFFD_STATE_WAIT_API;
1848 	ctx->released = false;
1849 	ctx->mm = current->mm;
1850 	/* prevent the mm struct to be freed */
1851 	mmgrab(ctx->mm);
1852 
1853 	file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1854 				  O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1855 	if (IS_ERR(file)) {
1856 		mmdrop(ctx->mm);
1857 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1858 	}
1859 out:
1860 	return file;
1861 }
1862 
1863 SYSCALL_DEFINE1(userfaultfd, int, flags)
1864 {
1865 	int fd, error;
1866 	struct file *file;
1867 
1868 	error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1869 	if (error < 0)
1870 		return error;
1871 	fd = error;
1872 
1873 	file = userfaultfd_file_create(flags);
1874 	if (IS_ERR(file)) {
1875 		error = PTR_ERR(file);
1876 		goto err_put_unused_fd;
1877 	}
1878 	fd_install(fd, file);
1879 
1880 	return fd;
1881 
1882 err_put_unused_fd:
1883 	put_unused_fd(fd);
1884 
1885 	return error;
1886 }
1887 
1888 static int __init userfaultfd_init(void)
1889 {
1890 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1891 						sizeof(struct userfaultfd_ctx),
1892 						0,
1893 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1894 						init_once_userfaultfd_ctx);
1895 	return 0;
1896 }
1897 __initcall(userfaultfd_init);
1898