1 /* 2 * fs/userfaultfd.c 3 * 4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 5 * Copyright (C) 2008-2009 Red Hat, Inc. 6 * Copyright (C) 2015 Red Hat, Inc. 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2. See 9 * the COPYING file in the top-level directory. 10 * 11 * Some part derived from fs/eventfd.c (anon inode setup) and 12 * mm/ksm.c (mm hashing). 13 */ 14 15 #include <linux/list.h> 16 #include <linux/hashtable.h> 17 #include <linux/sched/signal.h> 18 #include <linux/sched/mm.h> 19 #include <linux/mm.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 34 35 enum userfaultfd_state { 36 UFFD_STATE_WAIT_API, 37 UFFD_STATE_RUNNING, 38 }; 39 40 /* 41 * Start with fault_pending_wqh and fault_wqh so they're more likely 42 * to be in the same cacheline. 43 */ 44 struct userfaultfd_ctx { 45 /* waitqueue head for the pending (i.e. not read) userfaults */ 46 wait_queue_head_t fault_pending_wqh; 47 /* waitqueue head for the userfaults */ 48 wait_queue_head_t fault_wqh; 49 /* waitqueue head for the pseudo fd to wakeup poll/read */ 50 wait_queue_head_t fd_wqh; 51 /* waitqueue head for events */ 52 wait_queue_head_t event_wqh; 53 /* a refile sequence protected by fault_pending_wqh lock */ 54 struct seqcount refile_seq; 55 /* pseudo fd refcounting */ 56 atomic_t refcount; 57 /* userfaultfd syscall flags */ 58 unsigned int flags; 59 /* features requested from the userspace */ 60 unsigned int features; 61 /* state machine */ 62 enum userfaultfd_state state; 63 /* released */ 64 bool released; 65 /* memory mappings are changing because of non-cooperative event */ 66 bool mmap_changing; 67 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 68 struct mm_struct *mm; 69 }; 70 71 struct userfaultfd_fork_ctx { 72 struct userfaultfd_ctx *orig; 73 struct userfaultfd_ctx *new; 74 struct list_head list; 75 }; 76 77 struct userfaultfd_unmap_ctx { 78 struct userfaultfd_ctx *ctx; 79 unsigned long start; 80 unsigned long end; 81 struct list_head list; 82 }; 83 84 struct userfaultfd_wait_queue { 85 struct uffd_msg msg; 86 wait_queue_entry_t wq; 87 struct userfaultfd_ctx *ctx; 88 bool waken; 89 }; 90 91 struct userfaultfd_wake_range { 92 unsigned long start; 93 unsigned long len; 94 }; 95 96 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 97 int wake_flags, void *key) 98 { 99 struct userfaultfd_wake_range *range = key; 100 int ret; 101 struct userfaultfd_wait_queue *uwq; 102 unsigned long start, len; 103 104 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 105 ret = 0; 106 /* len == 0 means wake all */ 107 start = range->start; 108 len = range->len; 109 if (len && (start > uwq->msg.arg.pagefault.address || 110 start + len <= uwq->msg.arg.pagefault.address)) 111 goto out; 112 WRITE_ONCE(uwq->waken, true); 113 /* 114 * The Program-Order guarantees provided by the scheduler 115 * ensure uwq->waken is visible before the task is woken. 116 */ 117 ret = wake_up_state(wq->private, mode); 118 if (ret) { 119 /* 120 * Wake only once, autoremove behavior. 121 * 122 * After the effect of list_del_init is visible to the other 123 * CPUs, the waitqueue may disappear from under us, see the 124 * !list_empty_careful() in handle_userfault(). 125 * 126 * try_to_wake_up() has an implicit smp_mb(), and the 127 * wq->private is read before calling the extern function 128 * "wake_up_state" (which in turns calls try_to_wake_up). 129 */ 130 list_del_init(&wq->entry); 131 } 132 out: 133 return ret; 134 } 135 136 /** 137 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 138 * context. 139 * @ctx: [in] Pointer to the userfaultfd context. 140 */ 141 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 142 { 143 if (!atomic_inc_not_zero(&ctx->refcount)) 144 BUG(); 145 } 146 147 /** 148 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 149 * context. 150 * @ctx: [in] Pointer to userfaultfd context. 151 * 152 * The userfaultfd context reference must have been previously acquired either 153 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 154 */ 155 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 156 { 157 if (atomic_dec_and_test(&ctx->refcount)) { 158 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 159 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 160 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 161 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 162 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 163 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 164 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 165 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 166 mmdrop(ctx->mm); 167 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 168 } 169 } 170 171 static inline void msg_init(struct uffd_msg *msg) 172 { 173 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 174 /* 175 * Must use memset to zero out the paddings or kernel data is 176 * leaked to userland. 177 */ 178 memset(msg, 0, sizeof(struct uffd_msg)); 179 } 180 181 static inline struct uffd_msg userfault_msg(unsigned long address, 182 unsigned int flags, 183 unsigned long reason, 184 unsigned int features) 185 { 186 struct uffd_msg msg; 187 msg_init(&msg); 188 msg.event = UFFD_EVENT_PAGEFAULT; 189 msg.arg.pagefault.address = address; 190 if (flags & FAULT_FLAG_WRITE) 191 /* 192 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 193 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE 194 * was not set in a UFFD_EVENT_PAGEFAULT, it means it 195 * was a read fault, otherwise if set it means it's 196 * a write fault. 197 */ 198 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 199 if (reason & VM_UFFD_WP) 200 /* 201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was 203 * not set in a UFFD_EVENT_PAGEFAULT, it means it was 204 * a missing fault, otherwise if set it means it's a 205 * write protect fault. 206 */ 207 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 208 if (features & UFFD_FEATURE_THREAD_ID) 209 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 210 return msg; 211 } 212 213 #ifdef CONFIG_HUGETLB_PAGE 214 /* 215 * Same functionality as userfaultfd_must_wait below with modifications for 216 * hugepmd ranges. 217 */ 218 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 219 struct vm_area_struct *vma, 220 unsigned long address, 221 unsigned long flags, 222 unsigned long reason) 223 { 224 struct mm_struct *mm = ctx->mm; 225 pte_t *ptep, pte; 226 bool ret = true; 227 228 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 229 230 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); 231 232 if (!ptep) 233 goto out; 234 235 ret = false; 236 pte = huge_ptep_get(ptep); 237 238 /* 239 * Lockless access: we're in a wait_event so it's ok if it 240 * changes under us. 241 */ 242 if (huge_pte_none(pte)) 243 ret = true; 244 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 245 ret = true; 246 out: 247 return ret; 248 } 249 #else 250 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 251 struct vm_area_struct *vma, 252 unsigned long address, 253 unsigned long flags, 254 unsigned long reason) 255 { 256 return false; /* should never get here */ 257 } 258 #endif /* CONFIG_HUGETLB_PAGE */ 259 260 /* 261 * Verify the pagetables are still not ok after having reigstered into 262 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 263 * userfault that has already been resolved, if userfaultfd_read and 264 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 265 * threads. 266 */ 267 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 268 unsigned long address, 269 unsigned long flags, 270 unsigned long reason) 271 { 272 struct mm_struct *mm = ctx->mm; 273 pgd_t *pgd; 274 p4d_t *p4d; 275 pud_t *pud; 276 pmd_t *pmd, _pmd; 277 pte_t *pte; 278 bool ret = true; 279 280 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 281 282 pgd = pgd_offset(mm, address); 283 if (!pgd_present(*pgd)) 284 goto out; 285 p4d = p4d_offset(pgd, address); 286 if (!p4d_present(*p4d)) 287 goto out; 288 pud = pud_offset(p4d, address); 289 if (!pud_present(*pud)) 290 goto out; 291 pmd = pmd_offset(pud, address); 292 /* 293 * READ_ONCE must function as a barrier with narrower scope 294 * and it must be equivalent to: 295 * _pmd = *pmd; barrier(); 296 * 297 * This is to deal with the instability (as in 298 * pmd_trans_unstable) of the pmd. 299 */ 300 _pmd = READ_ONCE(*pmd); 301 if (pmd_none(_pmd)) 302 goto out; 303 304 ret = false; 305 if (!pmd_present(_pmd)) 306 goto out; 307 308 if (pmd_trans_huge(_pmd)) 309 goto out; 310 311 /* 312 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 313 * and use the standard pte_offset_map() instead of parsing _pmd. 314 */ 315 pte = pte_offset_map(pmd, address); 316 /* 317 * Lockless access: we're in a wait_event so it's ok if it 318 * changes under us. 319 */ 320 if (pte_none(*pte)) 321 ret = true; 322 pte_unmap(pte); 323 324 out: 325 return ret; 326 } 327 328 /* 329 * The locking rules involved in returning VM_FAULT_RETRY depending on 330 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 331 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 332 * recommendation in __lock_page_or_retry is not an understatement. 333 * 334 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released 335 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 336 * not set. 337 * 338 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 339 * set, VM_FAULT_RETRY can still be returned if and only if there are 340 * fatal_signal_pending()s, and the mmap_sem must be released before 341 * returning it. 342 */ 343 int handle_userfault(struct vm_fault *vmf, unsigned long reason) 344 { 345 struct mm_struct *mm = vmf->vma->vm_mm; 346 struct userfaultfd_ctx *ctx; 347 struct userfaultfd_wait_queue uwq; 348 int ret; 349 bool must_wait, return_to_userland; 350 long blocking_state; 351 352 ret = VM_FAULT_SIGBUS; 353 354 /* 355 * We don't do userfault handling for the final child pid update. 356 * 357 * We also don't do userfault handling during 358 * coredumping. hugetlbfs has the special 359 * follow_hugetlb_page() to skip missing pages in the 360 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 361 * the no_page_table() helper in follow_page_mask(), but the 362 * shmem_vm_ops->fault method is invoked even during 363 * coredumping without mmap_sem and it ends up here. 364 */ 365 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 366 goto out; 367 368 /* 369 * Coredumping runs without mmap_sem so we can only check that 370 * the mmap_sem is held, if PF_DUMPCORE was not set. 371 */ 372 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem)); 373 374 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 375 if (!ctx) 376 goto out; 377 378 BUG_ON(ctx->mm != mm); 379 380 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); 381 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); 382 383 if (ctx->features & UFFD_FEATURE_SIGBUS) 384 goto out; 385 386 /* 387 * If it's already released don't get it. This avoids to loop 388 * in __get_user_pages if userfaultfd_release waits on the 389 * caller of handle_userfault to release the mmap_sem. 390 */ 391 if (unlikely(READ_ONCE(ctx->released))) { 392 /* 393 * Don't return VM_FAULT_SIGBUS in this case, so a non 394 * cooperative manager can close the uffd after the 395 * last UFFDIO_COPY, without risking to trigger an 396 * involuntary SIGBUS if the process was starting the 397 * userfaultfd while the userfaultfd was still armed 398 * (but after the last UFFDIO_COPY). If the uffd 399 * wasn't already closed when the userfault reached 400 * this point, that would normally be solved by 401 * userfaultfd_must_wait returning 'false'. 402 * 403 * If we were to return VM_FAULT_SIGBUS here, the non 404 * cooperative manager would be instead forced to 405 * always call UFFDIO_UNREGISTER before it can safely 406 * close the uffd. 407 */ 408 ret = VM_FAULT_NOPAGE; 409 goto out; 410 } 411 412 /* 413 * Check that we can return VM_FAULT_RETRY. 414 * 415 * NOTE: it should become possible to return VM_FAULT_RETRY 416 * even if FAULT_FLAG_TRIED is set without leading to gup() 417 * -EBUSY failures, if the userfaultfd is to be extended for 418 * VM_UFFD_WP tracking and we intend to arm the userfault 419 * without first stopping userland access to the memory. For 420 * VM_UFFD_MISSING userfaults this is enough for now. 421 */ 422 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 423 /* 424 * Validate the invariant that nowait must allow retry 425 * to be sure not to return SIGBUS erroneously on 426 * nowait invocations. 427 */ 428 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 429 #ifdef CONFIG_DEBUG_VM 430 if (printk_ratelimit()) { 431 printk(KERN_WARNING 432 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 433 vmf->flags); 434 dump_stack(); 435 } 436 #endif 437 goto out; 438 } 439 440 /* 441 * Handle nowait, not much to do other than tell it to retry 442 * and wait. 443 */ 444 ret = VM_FAULT_RETRY; 445 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 446 goto out; 447 448 /* take the reference before dropping the mmap_sem */ 449 userfaultfd_ctx_get(ctx); 450 451 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 452 uwq.wq.private = current; 453 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason, 454 ctx->features); 455 uwq.ctx = ctx; 456 uwq.waken = false; 457 458 return_to_userland = 459 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) == 460 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE); 461 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE : 462 TASK_KILLABLE; 463 464 spin_lock(&ctx->fault_pending_wqh.lock); 465 /* 466 * After the __add_wait_queue the uwq is visible to userland 467 * through poll/read(). 468 */ 469 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 470 /* 471 * The smp_mb() after __set_current_state prevents the reads 472 * following the spin_unlock to happen before the list_add in 473 * __add_wait_queue. 474 */ 475 set_current_state(blocking_state); 476 spin_unlock(&ctx->fault_pending_wqh.lock); 477 478 if (!is_vm_hugetlb_page(vmf->vma)) 479 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 480 reason); 481 else 482 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, 483 vmf->address, 484 vmf->flags, reason); 485 up_read(&mm->mmap_sem); 486 487 if (likely(must_wait && !READ_ONCE(ctx->released) && 488 (return_to_userland ? !signal_pending(current) : 489 !fatal_signal_pending(current)))) { 490 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 491 schedule(); 492 ret |= VM_FAULT_MAJOR; 493 494 /* 495 * False wakeups can orginate even from rwsem before 496 * up_read() however userfaults will wait either for a 497 * targeted wakeup on the specific uwq waitqueue from 498 * wake_userfault() or for signals or for uffd 499 * release. 500 */ 501 while (!READ_ONCE(uwq.waken)) { 502 /* 503 * This needs the full smp_store_mb() 504 * guarantee as the state write must be 505 * visible to other CPUs before reading 506 * uwq.waken from other CPUs. 507 */ 508 set_current_state(blocking_state); 509 if (READ_ONCE(uwq.waken) || 510 READ_ONCE(ctx->released) || 511 (return_to_userland ? signal_pending(current) : 512 fatal_signal_pending(current))) 513 break; 514 schedule(); 515 } 516 } 517 518 __set_current_state(TASK_RUNNING); 519 520 if (return_to_userland) { 521 if (signal_pending(current) && 522 !fatal_signal_pending(current)) { 523 /* 524 * If we got a SIGSTOP or SIGCONT and this is 525 * a normal userland page fault, just let 526 * userland return so the signal will be 527 * handled and gdb debugging works. The page 528 * fault code immediately after we return from 529 * this function is going to release the 530 * mmap_sem and it's not depending on it 531 * (unlike gup would if we were not to return 532 * VM_FAULT_RETRY). 533 * 534 * If a fatal signal is pending we still take 535 * the streamlined VM_FAULT_RETRY failure path 536 * and there's no need to retake the mmap_sem 537 * in such case. 538 */ 539 down_read(&mm->mmap_sem); 540 ret = VM_FAULT_NOPAGE; 541 } 542 } 543 544 /* 545 * Here we race with the list_del; list_add in 546 * userfaultfd_ctx_read(), however because we don't ever run 547 * list_del_init() to refile across the two lists, the prev 548 * and next pointers will never point to self. list_add also 549 * would never let any of the two pointers to point to 550 * self. So list_empty_careful won't risk to see both pointers 551 * pointing to self at any time during the list refile. The 552 * only case where list_del_init() is called is the full 553 * removal in the wake function and there we don't re-list_add 554 * and it's fine not to block on the spinlock. The uwq on this 555 * kernel stack can be released after the list_del_init. 556 */ 557 if (!list_empty_careful(&uwq.wq.entry)) { 558 spin_lock(&ctx->fault_pending_wqh.lock); 559 /* 560 * No need of list_del_init(), the uwq on the stack 561 * will be freed shortly anyway. 562 */ 563 list_del(&uwq.wq.entry); 564 spin_unlock(&ctx->fault_pending_wqh.lock); 565 } 566 567 /* 568 * ctx may go away after this if the userfault pseudo fd is 569 * already released. 570 */ 571 userfaultfd_ctx_put(ctx); 572 573 out: 574 return ret; 575 } 576 577 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 578 struct userfaultfd_wait_queue *ewq) 579 { 580 struct userfaultfd_ctx *release_new_ctx; 581 582 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 583 goto out; 584 585 ewq->ctx = ctx; 586 init_waitqueue_entry(&ewq->wq, current); 587 release_new_ctx = NULL; 588 589 spin_lock(&ctx->event_wqh.lock); 590 /* 591 * After the __add_wait_queue the uwq is visible to userland 592 * through poll/read(). 593 */ 594 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 595 for (;;) { 596 set_current_state(TASK_KILLABLE); 597 if (ewq->msg.event == 0) 598 break; 599 if (READ_ONCE(ctx->released) || 600 fatal_signal_pending(current)) { 601 /* 602 * &ewq->wq may be queued in fork_event, but 603 * __remove_wait_queue ignores the head 604 * parameter. It would be a problem if it 605 * didn't. 606 */ 607 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 608 if (ewq->msg.event == UFFD_EVENT_FORK) { 609 struct userfaultfd_ctx *new; 610 611 new = (struct userfaultfd_ctx *) 612 (unsigned long) 613 ewq->msg.arg.reserved.reserved1; 614 release_new_ctx = new; 615 } 616 break; 617 } 618 619 spin_unlock(&ctx->event_wqh.lock); 620 621 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 622 schedule(); 623 624 spin_lock(&ctx->event_wqh.lock); 625 } 626 __set_current_state(TASK_RUNNING); 627 spin_unlock(&ctx->event_wqh.lock); 628 629 if (release_new_ctx) { 630 struct vm_area_struct *vma; 631 struct mm_struct *mm = release_new_ctx->mm; 632 633 /* the various vma->vm_userfaultfd_ctx still points to it */ 634 down_write(&mm->mmap_sem); 635 for (vma = mm->mmap; vma; vma = vma->vm_next) 636 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 637 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 638 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 639 } 640 up_write(&mm->mmap_sem); 641 642 userfaultfd_ctx_put(release_new_ctx); 643 } 644 645 /* 646 * ctx may go away after this if the userfault pseudo fd is 647 * already released. 648 */ 649 out: 650 WRITE_ONCE(ctx->mmap_changing, false); 651 userfaultfd_ctx_put(ctx); 652 } 653 654 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 655 struct userfaultfd_wait_queue *ewq) 656 { 657 ewq->msg.event = 0; 658 wake_up_locked(&ctx->event_wqh); 659 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 660 } 661 662 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 663 { 664 struct userfaultfd_ctx *ctx = NULL, *octx; 665 struct userfaultfd_fork_ctx *fctx; 666 667 octx = vma->vm_userfaultfd_ctx.ctx; 668 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 669 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 670 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 671 return 0; 672 } 673 674 list_for_each_entry(fctx, fcs, list) 675 if (fctx->orig == octx) { 676 ctx = fctx->new; 677 break; 678 } 679 680 if (!ctx) { 681 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 682 if (!fctx) 683 return -ENOMEM; 684 685 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 686 if (!ctx) { 687 kfree(fctx); 688 return -ENOMEM; 689 } 690 691 atomic_set(&ctx->refcount, 1); 692 ctx->flags = octx->flags; 693 ctx->state = UFFD_STATE_RUNNING; 694 ctx->features = octx->features; 695 ctx->released = false; 696 ctx->mmap_changing = false; 697 ctx->mm = vma->vm_mm; 698 mmgrab(ctx->mm); 699 700 userfaultfd_ctx_get(octx); 701 WRITE_ONCE(octx->mmap_changing, true); 702 fctx->orig = octx; 703 fctx->new = ctx; 704 list_add_tail(&fctx->list, fcs); 705 } 706 707 vma->vm_userfaultfd_ctx.ctx = ctx; 708 return 0; 709 } 710 711 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 712 { 713 struct userfaultfd_ctx *ctx = fctx->orig; 714 struct userfaultfd_wait_queue ewq; 715 716 msg_init(&ewq.msg); 717 718 ewq.msg.event = UFFD_EVENT_FORK; 719 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 720 721 userfaultfd_event_wait_completion(ctx, &ewq); 722 } 723 724 void dup_userfaultfd_complete(struct list_head *fcs) 725 { 726 struct userfaultfd_fork_ctx *fctx, *n; 727 728 list_for_each_entry_safe(fctx, n, fcs, list) { 729 dup_fctx(fctx); 730 list_del(&fctx->list); 731 kfree(fctx); 732 } 733 } 734 735 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 736 struct vm_userfaultfd_ctx *vm_ctx) 737 { 738 struct userfaultfd_ctx *ctx; 739 740 ctx = vma->vm_userfaultfd_ctx.ctx; 741 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) { 742 vm_ctx->ctx = ctx; 743 userfaultfd_ctx_get(ctx); 744 WRITE_ONCE(ctx->mmap_changing, true); 745 } 746 } 747 748 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 749 unsigned long from, unsigned long to, 750 unsigned long len) 751 { 752 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 753 struct userfaultfd_wait_queue ewq; 754 755 if (!ctx) 756 return; 757 758 if (to & ~PAGE_MASK) { 759 userfaultfd_ctx_put(ctx); 760 return; 761 } 762 763 msg_init(&ewq.msg); 764 765 ewq.msg.event = UFFD_EVENT_REMAP; 766 ewq.msg.arg.remap.from = from; 767 ewq.msg.arg.remap.to = to; 768 ewq.msg.arg.remap.len = len; 769 770 userfaultfd_event_wait_completion(ctx, &ewq); 771 } 772 773 bool userfaultfd_remove(struct vm_area_struct *vma, 774 unsigned long start, unsigned long end) 775 { 776 struct mm_struct *mm = vma->vm_mm; 777 struct userfaultfd_ctx *ctx; 778 struct userfaultfd_wait_queue ewq; 779 780 ctx = vma->vm_userfaultfd_ctx.ctx; 781 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 782 return true; 783 784 userfaultfd_ctx_get(ctx); 785 WRITE_ONCE(ctx->mmap_changing, true); 786 up_read(&mm->mmap_sem); 787 788 msg_init(&ewq.msg); 789 790 ewq.msg.event = UFFD_EVENT_REMOVE; 791 ewq.msg.arg.remove.start = start; 792 ewq.msg.arg.remove.end = end; 793 794 userfaultfd_event_wait_completion(ctx, &ewq); 795 796 return false; 797 } 798 799 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 800 unsigned long start, unsigned long end) 801 { 802 struct userfaultfd_unmap_ctx *unmap_ctx; 803 804 list_for_each_entry(unmap_ctx, unmaps, list) 805 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 806 unmap_ctx->end == end) 807 return true; 808 809 return false; 810 } 811 812 int userfaultfd_unmap_prep(struct vm_area_struct *vma, 813 unsigned long start, unsigned long end, 814 struct list_head *unmaps) 815 { 816 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 817 struct userfaultfd_unmap_ctx *unmap_ctx; 818 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 819 820 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 821 has_unmap_ctx(ctx, unmaps, start, end)) 822 continue; 823 824 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 825 if (!unmap_ctx) 826 return -ENOMEM; 827 828 userfaultfd_ctx_get(ctx); 829 WRITE_ONCE(ctx->mmap_changing, true); 830 unmap_ctx->ctx = ctx; 831 unmap_ctx->start = start; 832 unmap_ctx->end = end; 833 list_add_tail(&unmap_ctx->list, unmaps); 834 } 835 836 return 0; 837 } 838 839 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 840 { 841 struct userfaultfd_unmap_ctx *ctx, *n; 842 struct userfaultfd_wait_queue ewq; 843 844 list_for_each_entry_safe(ctx, n, uf, list) { 845 msg_init(&ewq.msg); 846 847 ewq.msg.event = UFFD_EVENT_UNMAP; 848 ewq.msg.arg.remove.start = ctx->start; 849 ewq.msg.arg.remove.end = ctx->end; 850 851 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 852 853 list_del(&ctx->list); 854 kfree(ctx); 855 } 856 } 857 858 static int userfaultfd_release(struct inode *inode, struct file *file) 859 { 860 struct userfaultfd_ctx *ctx = file->private_data; 861 struct mm_struct *mm = ctx->mm; 862 struct vm_area_struct *vma, *prev; 863 /* len == 0 means wake all */ 864 struct userfaultfd_wake_range range = { .len = 0, }; 865 unsigned long new_flags; 866 867 WRITE_ONCE(ctx->released, true); 868 869 if (!mmget_not_zero(mm)) 870 goto wakeup; 871 872 /* 873 * Flush page faults out of all CPUs. NOTE: all page faults 874 * must be retried without returning VM_FAULT_SIGBUS if 875 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 876 * changes while handle_userfault released the mmap_sem. So 877 * it's critical that released is set to true (above), before 878 * taking the mmap_sem for writing. 879 */ 880 down_write(&mm->mmap_sem); 881 prev = NULL; 882 for (vma = mm->mmap; vma; vma = vma->vm_next) { 883 cond_resched(); 884 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 885 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 886 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 887 prev = vma; 888 continue; 889 } 890 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 891 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 892 new_flags, vma->anon_vma, 893 vma->vm_file, vma->vm_pgoff, 894 vma_policy(vma), 895 NULL_VM_UFFD_CTX); 896 if (prev) 897 vma = prev; 898 else 899 prev = vma; 900 vma->vm_flags = new_flags; 901 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 902 } 903 up_write(&mm->mmap_sem); 904 mmput(mm); 905 wakeup: 906 /* 907 * After no new page faults can wait on this fault_*wqh, flush 908 * the last page faults that may have been already waiting on 909 * the fault_*wqh. 910 */ 911 spin_lock(&ctx->fault_pending_wqh.lock); 912 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 913 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 914 spin_unlock(&ctx->fault_pending_wqh.lock); 915 916 /* Flush pending events that may still wait on event_wqh */ 917 wake_up_all(&ctx->event_wqh); 918 919 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 920 userfaultfd_ctx_put(ctx); 921 return 0; 922 } 923 924 /* fault_pending_wqh.lock must be hold by the caller */ 925 static inline struct userfaultfd_wait_queue *find_userfault_in( 926 wait_queue_head_t *wqh) 927 { 928 wait_queue_entry_t *wq; 929 struct userfaultfd_wait_queue *uwq; 930 931 VM_BUG_ON(!spin_is_locked(&wqh->lock)); 932 933 uwq = NULL; 934 if (!waitqueue_active(wqh)) 935 goto out; 936 /* walk in reverse to provide FIFO behavior to read userfaults */ 937 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 938 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 939 out: 940 return uwq; 941 } 942 943 static inline struct userfaultfd_wait_queue *find_userfault( 944 struct userfaultfd_ctx *ctx) 945 { 946 return find_userfault_in(&ctx->fault_pending_wqh); 947 } 948 949 static inline struct userfaultfd_wait_queue *find_userfault_evt( 950 struct userfaultfd_ctx *ctx) 951 { 952 return find_userfault_in(&ctx->event_wqh); 953 } 954 955 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 956 { 957 struct userfaultfd_ctx *ctx = file->private_data; 958 __poll_t ret; 959 960 poll_wait(file, &ctx->fd_wqh, wait); 961 962 switch (ctx->state) { 963 case UFFD_STATE_WAIT_API: 964 return EPOLLERR; 965 case UFFD_STATE_RUNNING: 966 /* 967 * poll() never guarantees that read won't block. 968 * userfaults can be waken before they're read(). 969 */ 970 if (unlikely(!(file->f_flags & O_NONBLOCK))) 971 return EPOLLERR; 972 /* 973 * lockless access to see if there are pending faults 974 * __pollwait last action is the add_wait_queue but 975 * the spin_unlock would allow the waitqueue_active to 976 * pass above the actual list_add inside 977 * add_wait_queue critical section. So use a full 978 * memory barrier to serialize the list_add write of 979 * add_wait_queue() with the waitqueue_active read 980 * below. 981 */ 982 ret = 0; 983 smp_mb(); 984 if (waitqueue_active(&ctx->fault_pending_wqh)) 985 ret = EPOLLIN; 986 else if (waitqueue_active(&ctx->event_wqh)) 987 ret = EPOLLIN; 988 989 return ret; 990 default: 991 WARN_ON_ONCE(1); 992 return EPOLLERR; 993 } 994 } 995 996 static const struct file_operations userfaultfd_fops; 997 998 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, 999 struct userfaultfd_ctx *new, 1000 struct uffd_msg *msg) 1001 { 1002 int fd; 1003 1004 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new, 1005 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS)); 1006 if (fd < 0) 1007 return fd; 1008 1009 msg->arg.reserved.reserved1 = 0; 1010 msg->arg.fork.ufd = fd; 1011 return 0; 1012 } 1013 1014 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1015 struct uffd_msg *msg) 1016 { 1017 ssize_t ret; 1018 DECLARE_WAITQUEUE(wait, current); 1019 struct userfaultfd_wait_queue *uwq; 1020 /* 1021 * Handling fork event requires sleeping operations, so 1022 * we drop the event_wqh lock, then do these ops, then 1023 * lock it back and wake up the waiter. While the lock is 1024 * dropped the ewq may go away so we keep track of it 1025 * carefully. 1026 */ 1027 LIST_HEAD(fork_event); 1028 struct userfaultfd_ctx *fork_nctx = NULL; 1029 1030 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1031 spin_lock(&ctx->fd_wqh.lock); 1032 __add_wait_queue(&ctx->fd_wqh, &wait); 1033 for (;;) { 1034 set_current_state(TASK_INTERRUPTIBLE); 1035 spin_lock(&ctx->fault_pending_wqh.lock); 1036 uwq = find_userfault(ctx); 1037 if (uwq) { 1038 /* 1039 * Use a seqcount to repeat the lockless check 1040 * in wake_userfault() to avoid missing 1041 * wakeups because during the refile both 1042 * waitqueue could become empty if this is the 1043 * only userfault. 1044 */ 1045 write_seqcount_begin(&ctx->refile_seq); 1046 1047 /* 1048 * The fault_pending_wqh.lock prevents the uwq 1049 * to disappear from under us. 1050 * 1051 * Refile this userfault from 1052 * fault_pending_wqh to fault_wqh, it's not 1053 * pending anymore after we read it. 1054 * 1055 * Use list_del() by hand (as 1056 * userfaultfd_wake_function also uses 1057 * list_del_init() by hand) to be sure nobody 1058 * changes __remove_wait_queue() to use 1059 * list_del_init() in turn breaking the 1060 * !list_empty_careful() check in 1061 * handle_userfault(). The uwq->wq.head list 1062 * must never be empty at any time during the 1063 * refile, or the waitqueue could disappear 1064 * from under us. The "wait_queue_head_t" 1065 * parameter of __remove_wait_queue() is unused 1066 * anyway. 1067 */ 1068 list_del(&uwq->wq.entry); 1069 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1070 1071 write_seqcount_end(&ctx->refile_seq); 1072 1073 /* careful to always initialize msg if ret == 0 */ 1074 *msg = uwq->msg; 1075 spin_unlock(&ctx->fault_pending_wqh.lock); 1076 ret = 0; 1077 break; 1078 } 1079 spin_unlock(&ctx->fault_pending_wqh.lock); 1080 1081 spin_lock(&ctx->event_wqh.lock); 1082 uwq = find_userfault_evt(ctx); 1083 if (uwq) { 1084 *msg = uwq->msg; 1085 1086 if (uwq->msg.event == UFFD_EVENT_FORK) { 1087 fork_nctx = (struct userfaultfd_ctx *) 1088 (unsigned long) 1089 uwq->msg.arg.reserved.reserved1; 1090 list_move(&uwq->wq.entry, &fork_event); 1091 /* 1092 * fork_nctx can be freed as soon as 1093 * we drop the lock, unless we take a 1094 * reference on it. 1095 */ 1096 userfaultfd_ctx_get(fork_nctx); 1097 spin_unlock(&ctx->event_wqh.lock); 1098 ret = 0; 1099 break; 1100 } 1101 1102 userfaultfd_event_complete(ctx, uwq); 1103 spin_unlock(&ctx->event_wqh.lock); 1104 ret = 0; 1105 break; 1106 } 1107 spin_unlock(&ctx->event_wqh.lock); 1108 1109 if (signal_pending(current)) { 1110 ret = -ERESTARTSYS; 1111 break; 1112 } 1113 if (no_wait) { 1114 ret = -EAGAIN; 1115 break; 1116 } 1117 spin_unlock(&ctx->fd_wqh.lock); 1118 schedule(); 1119 spin_lock(&ctx->fd_wqh.lock); 1120 } 1121 __remove_wait_queue(&ctx->fd_wqh, &wait); 1122 __set_current_state(TASK_RUNNING); 1123 spin_unlock(&ctx->fd_wqh.lock); 1124 1125 if (!ret && msg->event == UFFD_EVENT_FORK) { 1126 ret = resolve_userfault_fork(ctx, fork_nctx, msg); 1127 spin_lock(&ctx->event_wqh.lock); 1128 if (!list_empty(&fork_event)) { 1129 /* 1130 * The fork thread didn't abort, so we can 1131 * drop the temporary refcount. 1132 */ 1133 userfaultfd_ctx_put(fork_nctx); 1134 1135 uwq = list_first_entry(&fork_event, 1136 typeof(*uwq), 1137 wq.entry); 1138 /* 1139 * If fork_event list wasn't empty and in turn 1140 * the event wasn't already released by fork 1141 * (the event is allocated on fork kernel 1142 * stack), put the event back to its place in 1143 * the event_wq. fork_event head will be freed 1144 * as soon as we return so the event cannot 1145 * stay queued there no matter the current 1146 * "ret" value. 1147 */ 1148 list_del(&uwq->wq.entry); 1149 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1150 1151 /* 1152 * Leave the event in the waitqueue and report 1153 * error to userland if we failed to resolve 1154 * the userfault fork. 1155 */ 1156 if (likely(!ret)) 1157 userfaultfd_event_complete(ctx, uwq); 1158 } else { 1159 /* 1160 * Here the fork thread aborted and the 1161 * refcount from the fork thread on fork_nctx 1162 * has already been released. We still hold 1163 * the reference we took before releasing the 1164 * lock above. If resolve_userfault_fork 1165 * failed we've to drop it because the 1166 * fork_nctx has to be freed in such case. If 1167 * it succeeded we'll hold it because the new 1168 * uffd references it. 1169 */ 1170 if (ret) 1171 userfaultfd_ctx_put(fork_nctx); 1172 } 1173 spin_unlock(&ctx->event_wqh.lock); 1174 } 1175 1176 return ret; 1177 } 1178 1179 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1180 size_t count, loff_t *ppos) 1181 { 1182 struct userfaultfd_ctx *ctx = file->private_data; 1183 ssize_t _ret, ret = 0; 1184 struct uffd_msg msg; 1185 int no_wait = file->f_flags & O_NONBLOCK; 1186 1187 if (ctx->state == UFFD_STATE_WAIT_API) 1188 return -EINVAL; 1189 1190 for (;;) { 1191 if (count < sizeof(msg)) 1192 return ret ? ret : -EINVAL; 1193 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); 1194 if (_ret < 0) 1195 return ret ? ret : _ret; 1196 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1197 return ret ? ret : -EFAULT; 1198 ret += sizeof(msg); 1199 buf += sizeof(msg); 1200 count -= sizeof(msg); 1201 /* 1202 * Allow to read more than one fault at time but only 1203 * block if waiting for the very first one. 1204 */ 1205 no_wait = O_NONBLOCK; 1206 } 1207 } 1208 1209 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1210 struct userfaultfd_wake_range *range) 1211 { 1212 spin_lock(&ctx->fault_pending_wqh.lock); 1213 /* wake all in the range and autoremove */ 1214 if (waitqueue_active(&ctx->fault_pending_wqh)) 1215 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1216 range); 1217 if (waitqueue_active(&ctx->fault_wqh)) 1218 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1219 spin_unlock(&ctx->fault_pending_wqh.lock); 1220 } 1221 1222 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1223 struct userfaultfd_wake_range *range) 1224 { 1225 unsigned seq; 1226 bool need_wakeup; 1227 1228 /* 1229 * To be sure waitqueue_active() is not reordered by the CPU 1230 * before the pagetable update, use an explicit SMP memory 1231 * barrier here. PT lock release or up_read(mmap_sem) still 1232 * have release semantics that can allow the 1233 * waitqueue_active() to be reordered before the pte update. 1234 */ 1235 smp_mb(); 1236 1237 /* 1238 * Use waitqueue_active because it's very frequent to 1239 * change the address space atomically even if there are no 1240 * userfaults yet. So we take the spinlock only when we're 1241 * sure we've userfaults to wake. 1242 */ 1243 do { 1244 seq = read_seqcount_begin(&ctx->refile_seq); 1245 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1246 waitqueue_active(&ctx->fault_wqh); 1247 cond_resched(); 1248 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1249 if (need_wakeup) 1250 __wake_userfault(ctx, range); 1251 } 1252 1253 static __always_inline int validate_range(struct mm_struct *mm, 1254 __u64 start, __u64 len) 1255 { 1256 __u64 task_size = mm->task_size; 1257 1258 if (start & ~PAGE_MASK) 1259 return -EINVAL; 1260 if (len & ~PAGE_MASK) 1261 return -EINVAL; 1262 if (!len) 1263 return -EINVAL; 1264 if (start < mmap_min_addr) 1265 return -EINVAL; 1266 if (start >= task_size) 1267 return -EINVAL; 1268 if (len > task_size - start) 1269 return -EINVAL; 1270 return 0; 1271 } 1272 1273 static inline bool vma_can_userfault(struct vm_area_struct *vma) 1274 { 1275 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || 1276 vma_is_shmem(vma); 1277 } 1278 1279 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1280 unsigned long arg) 1281 { 1282 struct mm_struct *mm = ctx->mm; 1283 struct vm_area_struct *vma, *prev, *cur; 1284 int ret; 1285 struct uffdio_register uffdio_register; 1286 struct uffdio_register __user *user_uffdio_register; 1287 unsigned long vm_flags, new_flags; 1288 bool found; 1289 bool basic_ioctls; 1290 unsigned long start, end, vma_end; 1291 1292 user_uffdio_register = (struct uffdio_register __user *) arg; 1293 1294 ret = -EFAULT; 1295 if (copy_from_user(&uffdio_register, user_uffdio_register, 1296 sizeof(uffdio_register)-sizeof(__u64))) 1297 goto out; 1298 1299 ret = -EINVAL; 1300 if (!uffdio_register.mode) 1301 goto out; 1302 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| 1303 UFFDIO_REGISTER_MODE_WP)) 1304 goto out; 1305 vm_flags = 0; 1306 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1307 vm_flags |= VM_UFFD_MISSING; 1308 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1309 vm_flags |= VM_UFFD_WP; 1310 /* 1311 * FIXME: remove the below error constraint by 1312 * implementing the wprotect tracking mode. 1313 */ 1314 ret = -EINVAL; 1315 goto out; 1316 } 1317 1318 ret = validate_range(mm, uffdio_register.range.start, 1319 uffdio_register.range.len); 1320 if (ret) 1321 goto out; 1322 1323 start = uffdio_register.range.start; 1324 end = start + uffdio_register.range.len; 1325 1326 ret = -ENOMEM; 1327 if (!mmget_not_zero(mm)) 1328 goto out; 1329 1330 down_write(&mm->mmap_sem); 1331 vma = find_vma_prev(mm, start, &prev); 1332 if (!vma) 1333 goto out_unlock; 1334 1335 /* check that there's at least one vma in the range */ 1336 ret = -EINVAL; 1337 if (vma->vm_start >= end) 1338 goto out_unlock; 1339 1340 /* 1341 * If the first vma contains huge pages, make sure start address 1342 * is aligned to huge page size. 1343 */ 1344 if (is_vm_hugetlb_page(vma)) { 1345 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1346 1347 if (start & (vma_hpagesize - 1)) 1348 goto out_unlock; 1349 } 1350 1351 /* 1352 * Search for not compatible vmas. 1353 */ 1354 found = false; 1355 basic_ioctls = false; 1356 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1357 cond_resched(); 1358 1359 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1360 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1361 1362 /* check not compatible vmas */ 1363 ret = -EINVAL; 1364 if (!vma_can_userfault(cur)) 1365 goto out_unlock; 1366 /* 1367 * If this vma contains ending address, and huge pages 1368 * check alignment. 1369 */ 1370 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1371 end > cur->vm_start) { 1372 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1373 1374 ret = -EINVAL; 1375 1376 if (end & (vma_hpagesize - 1)) 1377 goto out_unlock; 1378 } 1379 1380 /* 1381 * Check that this vma isn't already owned by a 1382 * different userfaultfd. We can't allow more than one 1383 * userfaultfd to own a single vma simultaneously or we 1384 * wouldn't know which one to deliver the userfaults to. 1385 */ 1386 ret = -EBUSY; 1387 if (cur->vm_userfaultfd_ctx.ctx && 1388 cur->vm_userfaultfd_ctx.ctx != ctx) 1389 goto out_unlock; 1390 1391 /* 1392 * Note vmas containing huge pages 1393 */ 1394 if (is_vm_hugetlb_page(cur)) 1395 basic_ioctls = true; 1396 1397 found = true; 1398 } 1399 BUG_ON(!found); 1400 1401 if (vma->vm_start < start) 1402 prev = vma; 1403 1404 ret = 0; 1405 do { 1406 cond_resched(); 1407 1408 BUG_ON(!vma_can_userfault(vma)); 1409 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1410 vma->vm_userfaultfd_ctx.ctx != ctx); 1411 1412 /* 1413 * Nothing to do: this vma is already registered into this 1414 * userfaultfd and with the right tracking mode too. 1415 */ 1416 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1417 (vma->vm_flags & vm_flags) == vm_flags) 1418 goto skip; 1419 1420 if (vma->vm_start > start) 1421 start = vma->vm_start; 1422 vma_end = min(end, vma->vm_end); 1423 1424 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags; 1425 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1426 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1427 vma_policy(vma), 1428 ((struct vm_userfaultfd_ctx){ ctx })); 1429 if (prev) { 1430 vma = prev; 1431 goto next; 1432 } 1433 if (vma->vm_start < start) { 1434 ret = split_vma(mm, vma, start, 1); 1435 if (ret) 1436 break; 1437 } 1438 if (vma->vm_end > end) { 1439 ret = split_vma(mm, vma, end, 0); 1440 if (ret) 1441 break; 1442 } 1443 next: 1444 /* 1445 * In the vma_merge() successful mprotect-like case 8: 1446 * the next vma was merged into the current one and 1447 * the current one has not been updated yet. 1448 */ 1449 vma->vm_flags = new_flags; 1450 vma->vm_userfaultfd_ctx.ctx = ctx; 1451 1452 skip: 1453 prev = vma; 1454 start = vma->vm_end; 1455 vma = vma->vm_next; 1456 } while (vma && vma->vm_start < end); 1457 out_unlock: 1458 up_write(&mm->mmap_sem); 1459 mmput(mm); 1460 if (!ret) { 1461 /* 1462 * Now that we scanned all vmas we can already tell 1463 * userland which ioctls methods are guaranteed to 1464 * succeed on this range. 1465 */ 1466 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1467 UFFD_API_RANGE_IOCTLS, 1468 &user_uffdio_register->ioctls)) 1469 ret = -EFAULT; 1470 } 1471 out: 1472 return ret; 1473 } 1474 1475 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1476 unsigned long arg) 1477 { 1478 struct mm_struct *mm = ctx->mm; 1479 struct vm_area_struct *vma, *prev, *cur; 1480 int ret; 1481 struct uffdio_range uffdio_unregister; 1482 unsigned long new_flags; 1483 bool found; 1484 unsigned long start, end, vma_end; 1485 const void __user *buf = (void __user *)arg; 1486 1487 ret = -EFAULT; 1488 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1489 goto out; 1490 1491 ret = validate_range(mm, uffdio_unregister.start, 1492 uffdio_unregister.len); 1493 if (ret) 1494 goto out; 1495 1496 start = uffdio_unregister.start; 1497 end = start + uffdio_unregister.len; 1498 1499 ret = -ENOMEM; 1500 if (!mmget_not_zero(mm)) 1501 goto out; 1502 1503 down_write(&mm->mmap_sem); 1504 vma = find_vma_prev(mm, start, &prev); 1505 if (!vma) 1506 goto out_unlock; 1507 1508 /* check that there's at least one vma in the range */ 1509 ret = -EINVAL; 1510 if (vma->vm_start >= end) 1511 goto out_unlock; 1512 1513 /* 1514 * If the first vma contains huge pages, make sure start address 1515 * is aligned to huge page size. 1516 */ 1517 if (is_vm_hugetlb_page(vma)) { 1518 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1519 1520 if (start & (vma_hpagesize - 1)) 1521 goto out_unlock; 1522 } 1523 1524 /* 1525 * Search for not compatible vmas. 1526 */ 1527 found = false; 1528 ret = -EINVAL; 1529 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1530 cond_resched(); 1531 1532 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1533 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1534 1535 /* 1536 * Check not compatible vmas, not strictly required 1537 * here as not compatible vmas cannot have an 1538 * userfaultfd_ctx registered on them, but this 1539 * provides for more strict behavior to notice 1540 * unregistration errors. 1541 */ 1542 if (!vma_can_userfault(cur)) 1543 goto out_unlock; 1544 1545 found = true; 1546 } 1547 BUG_ON(!found); 1548 1549 if (vma->vm_start < start) 1550 prev = vma; 1551 1552 ret = 0; 1553 do { 1554 cond_resched(); 1555 1556 BUG_ON(!vma_can_userfault(vma)); 1557 1558 /* 1559 * Nothing to do: this vma is already registered into this 1560 * userfaultfd and with the right tracking mode too. 1561 */ 1562 if (!vma->vm_userfaultfd_ctx.ctx) 1563 goto skip; 1564 1565 if (vma->vm_start > start) 1566 start = vma->vm_start; 1567 vma_end = min(end, vma->vm_end); 1568 1569 if (userfaultfd_missing(vma)) { 1570 /* 1571 * Wake any concurrent pending userfault while 1572 * we unregister, so they will not hang 1573 * permanently and it avoids userland to call 1574 * UFFDIO_WAKE explicitly. 1575 */ 1576 struct userfaultfd_wake_range range; 1577 range.start = start; 1578 range.len = vma_end - start; 1579 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1580 } 1581 1582 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 1583 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1584 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1585 vma_policy(vma), 1586 NULL_VM_UFFD_CTX); 1587 if (prev) { 1588 vma = prev; 1589 goto next; 1590 } 1591 if (vma->vm_start < start) { 1592 ret = split_vma(mm, vma, start, 1); 1593 if (ret) 1594 break; 1595 } 1596 if (vma->vm_end > end) { 1597 ret = split_vma(mm, vma, end, 0); 1598 if (ret) 1599 break; 1600 } 1601 next: 1602 /* 1603 * In the vma_merge() successful mprotect-like case 8: 1604 * the next vma was merged into the current one and 1605 * the current one has not been updated yet. 1606 */ 1607 vma->vm_flags = new_flags; 1608 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1609 1610 skip: 1611 prev = vma; 1612 start = vma->vm_end; 1613 vma = vma->vm_next; 1614 } while (vma && vma->vm_start < end); 1615 out_unlock: 1616 up_write(&mm->mmap_sem); 1617 mmput(mm); 1618 out: 1619 return ret; 1620 } 1621 1622 /* 1623 * userfaultfd_wake may be used in combination with the 1624 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1625 */ 1626 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1627 unsigned long arg) 1628 { 1629 int ret; 1630 struct uffdio_range uffdio_wake; 1631 struct userfaultfd_wake_range range; 1632 const void __user *buf = (void __user *)arg; 1633 1634 ret = -EFAULT; 1635 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1636 goto out; 1637 1638 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1639 if (ret) 1640 goto out; 1641 1642 range.start = uffdio_wake.start; 1643 range.len = uffdio_wake.len; 1644 1645 /* 1646 * len == 0 means wake all and we don't want to wake all here, 1647 * so check it again to be sure. 1648 */ 1649 VM_BUG_ON(!range.len); 1650 1651 wake_userfault(ctx, &range); 1652 ret = 0; 1653 1654 out: 1655 return ret; 1656 } 1657 1658 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1659 unsigned long arg) 1660 { 1661 __s64 ret; 1662 struct uffdio_copy uffdio_copy; 1663 struct uffdio_copy __user *user_uffdio_copy; 1664 struct userfaultfd_wake_range range; 1665 1666 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1667 1668 ret = -EAGAIN; 1669 if (READ_ONCE(ctx->mmap_changing)) 1670 goto out; 1671 1672 ret = -EFAULT; 1673 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1674 /* don't copy "copy" last field */ 1675 sizeof(uffdio_copy)-sizeof(__s64))) 1676 goto out; 1677 1678 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1679 if (ret) 1680 goto out; 1681 /* 1682 * double check for wraparound just in case. copy_from_user() 1683 * will later check uffdio_copy.src + uffdio_copy.len to fit 1684 * in the userland range. 1685 */ 1686 ret = -EINVAL; 1687 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1688 goto out; 1689 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) 1690 goto out; 1691 if (mmget_not_zero(ctx->mm)) { 1692 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1693 uffdio_copy.len, &ctx->mmap_changing); 1694 mmput(ctx->mm); 1695 } else { 1696 return -ESRCH; 1697 } 1698 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1699 return -EFAULT; 1700 if (ret < 0) 1701 goto out; 1702 BUG_ON(!ret); 1703 /* len == 0 would wake all */ 1704 range.len = ret; 1705 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1706 range.start = uffdio_copy.dst; 1707 wake_userfault(ctx, &range); 1708 } 1709 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1710 out: 1711 return ret; 1712 } 1713 1714 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1715 unsigned long arg) 1716 { 1717 __s64 ret; 1718 struct uffdio_zeropage uffdio_zeropage; 1719 struct uffdio_zeropage __user *user_uffdio_zeropage; 1720 struct userfaultfd_wake_range range; 1721 1722 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1723 1724 ret = -EAGAIN; 1725 if (READ_ONCE(ctx->mmap_changing)) 1726 goto out; 1727 1728 ret = -EFAULT; 1729 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1730 /* don't copy "zeropage" last field */ 1731 sizeof(uffdio_zeropage)-sizeof(__s64))) 1732 goto out; 1733 1734 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1735 uffdio_zeropage.range.len); 1736 if (ret) 1737 goto out; 1738 ret = -EINVAL; 1739 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1740 goto out; 1741 1742 if (mmget_not_zero(ctx->mm)) { 1743 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1744 uffdio_zeropage.range.len, 1745 &ctx->mmap_changing); 1746 mmput(ctx->mm); 1747 } else { 1748 return -ESRCH; 1749 } 1750 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1751 return -EFAULT; 1752 if (ret < 0) 1753 goto out; 1754 /* len == 0 would wake all */ 1755 BUG_ON(!ret); 1756 range.len = ret; 1757 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1758 range.start = uffdio_zeropage.range.start; 1759 wake_userfault(ctx, &range); 1760 } 1761 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1762 out: 1763 return ret; 1764 } 1765 1766 static inline unsigned int uffd_ctx_features(__u64 user_features) 1767 { 1768 /* 1769 * For the current set of features the bits just coincide 1770 */ 1771 return (unsigned int)user_features; 1772 } 1773 1774 /* 1775 * userland asks for a certain API version and we return which bits 1776 * and ioctl commands are implemented in this kernel for such API 1777 * version or -EINVAL if unknown. 1778 */ 1779 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1780 unsigned long arg) 1781 { 1782 struct uffdio_api uffdio_api; 1783 void __user *buf = (void __user *)arg; 1784 int ret; 1785 __u64 features; 1786 1787 ret = -EINVAL; 1788 if (ctx->state != UFFD_STATE_WAIT_API) 1789 goto out; 1790 ret = -EFAULT; 1791 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1792 goto out; 1793 features = uffdio_api.features; 1794 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) { 1795 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1796 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1797 goto out; 1798 ret = -EINVAL; 1799 goto out; 1800 } 1801 /* report all available features and ioctls to userland */ 1802 uffdio_api.features = UFFD_API_FEATURES; 1803 uffdio_api.ioctls = UFFD_API_IOCTLS; 1804 ret = -EFAULT; 1805 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1806 goto out; 1807 ctx->state = UFFD_STATE_RUNNING; 1808 /* only enable the requested features for this uffd context */ 1809 ctx->features = uffd_ctx_features(features); 1810 ret = 0; 1811 out: 1812 return ret; 1813 } 1814 1815 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1816 unsigned long arg) 1817 { 1818 int ret = -EINVAL; 1819 struct userfaultfd_ctx *ctx = file->private_data; 1820 1821 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) 1822 return -EINVAL; 1823 1824 switch(cmd) { 1825 case UFFDIO_API: 1826 ret = userfaultfd_api(ctx, arg); 1827 break; 1828 case UFFDIO_REGISTER: 1829 ret = userfaultfd_register(ctx, arg); 1830 break; 1831 case UFFDIO_UNREGISTER: 1832 ret = userfaultfd_unregister(ctx, arg); 1833 break; 1834 case UFFDIO_WAKE: 1835 ret = userfaultfd_wake(ctx, arg); 1836 break; 1837 case UFFDIO_COPY: 1838 ret = userfaultfd_copy(ctx, arg); 1839 break; 1840 case UFFDIO_ZEROPAGE: 1841 ret = userfaultfd_zeropage(ctx, arg); 1842 break; 1843 } 1844 return ret; 1845 } 1846 1847 #ifdef CONFIG_PROC_FS 1848 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 1849 { 1850 struct userfaultfd_ctx *ctx = f->private_data; 1851 wait_queue_entry_t *wq; 1852 unsigned long pending = 0, total = 0; 1853 1854 spin_lock(&ctx->fault_pending_wqh.lock); 1855 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 1856 pending++; 1857 total++; 1858 } 1859 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 1860 total++; 1861 } 1862 spin_unlock(&ctx->fault_pending_wqh.lock); 1863 1864 /* 1865 * If more protocols will be added, there will be all shown 1866 * separated by a space. Like this: 1867 * protocols: aa:... bb:... 1868 */ 1869 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 1870 pending, total, UFFD_API, ctx->features, 1871 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 1872 } 1873 #endif 1874 1875 static const struct file_operations userfaultfd_fops = { 1876 #ifdef CONFIG_PROC_FS 1877 .show_fdinfo = userfaultfd_show_fdinfo, 1878 #endif 1879 .release = userfaultfd_release, 1880 .poll = userfaultfd_poll, 1881 .read = userfaultfd_read, 1882 .unlocked_ioctl = userfaultfd_ioctl, 1883 .compat_ioctl = userfaultfd_ioctl, 1884 .llseek = noop_llseek, 1885 }; 1886 1887 static void init_once_userfaultfd_ctx(void *mem) 1888 { 1889 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 1890 1891 init_waitqueue_head(&ctx->fault_pending_wqh); 1892 init_waitqueue_head(&ctx->fault_wqh); 1893 init_waitqueue_head(&ctx->event_wqh); 1894 init_waitqueue_head(&ctx->fd_wqh); 1895 seqcount_init(&ctx->refile_seq); 1896 } 1897 1898 SYSCALL_DEFINE1(userfaultfd, int, flags) 1899 { 1900 struct userfaultfd_ctx *ctx; 1901 int fd; 1902 1903 BUG_ON(!current->mm); 1904 1905 /* Check the UFFD_* constants for consistency. */ 1906 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 1907 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 1908 1909 if (flags & ~UFFD_SHARED_FCNTL_FLAGS) 1910 return -EINVAL; 1911 1912 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 1913 if (!ctx) 1914 return -ENOMEM; 1915 1916 atomic_set(&ctx->refcount, 1); 1917 ctx->flags = flags; 1918 ctx->features = 0; 1919 ctx->state = UFFD_STATE_WAIT_API; 1920 ctx->released = false; 1921 ctx->mmap_changing = false; 1922 ctx->mm = current->mm; 1923 /* prevent the mm struct to be freed */ 1924 mmgrab(ctx->mm); 1925 1926 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx, 1927 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); 1928 if (fd < 0) { 1929 mmdrop(ctx->mm); 1930 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 1931 } 1932 return fd; 1933 } 1934 1935 static int __init userfaultfd_init(void) 1936 { 1937 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 1938 sizeof(struct userfaultfd_ctx), 1939 0, 1940 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 1941 init_once_userfaultfd_ctx); 1942 return 0; 1943 } 1944 __initcall(userfaultfd_init); 1945