xref: /openbmc/linux/fs/userfaultfd.c (revision 9d5dbfe0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12 
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 #include <linux/swapops.h>
33 #include <linux/miscdevice.h>
34 
35 int sysctl_unprivileged_userfaultfd __read_mostly;
36 
37 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
38 
39 /*
40  * Start with fault_pending_wqh and fault_wqh so they're more likely
41  * to be in the same cacheline.
42  *
43  * Locking order:
44  *	fd_wqh.lock
45  *		fault_pending_wqh.lock
46  *			fault_wqh.lock
47  *		event_wqh.lock
48  *
49  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
50  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
51  * also taken in IRQ context.
52  */
53 struct userfaultfd_ctx {
54 	/* waitqueue head for the pending (i.e. not read) userfaults */
55 	wait_queue_head_t fault_pending_wqh;
56 	/* waitqueue head for the userfaults */
57 	wait_queue_head_t fault_wqh;
58 	/* waitqueue head for the pseudo fd to wakeup poll/read */
59 	wait_queue_head_t fd_wqh;
60 	/* waitqueue head for events */
61 	wait_queue_head_t event_wqh;
62 	/* a refile sequence protected by fault_pending_wqh lock */
63 	seqcount_spinlock_t refile_seq;
64 	/* pseudo fd refcounting */
65 	refcount_t refcount;
66 	/* userfaultfd syscall flags */
67 	unsigned int flags;
68 	/* features requested from the userspace */
69 	unsigned int features;
70 	/* released */
71 	bool released;
72 	/* memory mappings are changing because of non-cooperative event */
73 	atomic_t mmap_changing;
74 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
75 	struct mm_struct *mm;
76 };
77 
78 struct userfaultfd_fork_ctx {
79 	struct userfaultfd_ctx *orig;
80 	struct userfaultfd_ctx *new;
81 	struct list_head list;
82 };
83 
84 struct userfaultfd_unmap_ctx {
85 	struct userfaultfd_ctx *ctx;
86 	unsigned long start;
87 	unsigned long end;
88 	struct list_head list;
89 };
90 
91 struct userfaultfd_wait_queue {
92 	struct uffd_msg msg;
93 	wait_queue_entry_t wq;
94 	struct userfaultfd_ctx *ctx;
95 	bool waken;
96 };
97 
98 struct userfaultfd_wake_range {
99 	unsigned long start;
100 	unsigned long len;
101 };
102 
103 /* internal indication that UFFD_API ioctl was successfully executed */
104 #define UFFD_FEATURE_INITIALIZED		(1u << 31)
105 
106 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
107 {
108 	return ctx->features & UFFD_FEATURE_INITIALIZED;
109 }
110 
111 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
112 				     vm_flags_t flags)
113 {
114 	const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
115 
116 	vma->vm_flags = flags;
117 	/*
118 	 * For shared mappings, we want to enable writenotify while
119 	 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
120 	 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
121 	 */
122 	if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
123 		vma_set_page_prot(vma);
124 }
125 
126 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
127 				     int wake_flags, void *key)
128 {
129 	struct userfaultfd_wake_range *range = key;
130 	int ret;
131 	struct userfaultfd_wait_queue *uwq;
132 	unsigned long start, len;
133 
134 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
135 	ret = 0;
136 	/* len == 0 means wake all */
137 	start = range->start;
138 	len = range->len;
139 	if (len && (start > uwq->msg.arg.pagefault.address ||
140 		    start + len <= uwq->msg.arg.pagefault.address))
141 		goto out;
142 	WRITE_ONCE(uwq->waken, true);
143 	/*
144 	 * The Program-Order guarantees provided by the scheduler
145 	 * ensure uwq->waken is visible before the task is woken.
146 	 */
147 	ret = wake_up_state(wq->private, mode);
148 	if (ret) {
149 		/*
150 		 * Wake only once, autoremove behavior.
151 		 *
152 		 * After the effect of list_del_init is visible to the other
153 		 * CPUs, the waitqueue may disappear from under us, see the
154 		 * !list_empty_careful() in handle_userfault().
155 		 *
156 		 * try_to_wake_up() has an implicit smp_mb(), and the
157 		 * wq->private is read before calling the extern function
158 		 * "wake_up_state" (which in turns calls try_to_wake_up).
159 		 */
160 		list_del_init(&wq->entry);
161 	}
162 out:
163 	return ret;
164 }
165 
166 /**
167  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
168  * context.
169  * @ctx: [in] Pointer to the userfaultfd context.
170  */
171 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
172 {
173 	refcount_inc(&ctx->refcount);
174 }
175 
176 /**
177  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
178  * context.
179  * @ctx: [in] Pointer to userfaultfd context.
180  *
181  * The userfaultfd context reference must have been previously acquired either
182  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
183  */
184 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
185 {
186 	if (refcount_dec_and_test(&ctx->refcount)) {
187 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
188 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
189 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
190 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
191 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
192 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
193 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
194 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
195 		mmdrop(ctx->mm);
196 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
197 	}
198 }
199 
200 static inline void msg_init(struct uffd_msg *msg)
201 {
202 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
203 	/*
204 	 * Must use memset to zero out the paddings or kernel data is
205 	 * leaked to userland.
206 	 */
207 	memset(msg, 0, sizeof(struct uffd_msg));
208 }
209 
210 static inline struct uffd_msg userfault_msg(unsigned long address,
211 					    unsigned long real_address,
212 					    unsigned int flags,
213 					    unsigned long reason,
214 					    unsigned int features)
215 {
216 	struct uffd_msg msg;
217 
218 	msg_init(&msg);
219 	msg.event = UFFD_EVENT_PAGEFAULT;
220 
221 	msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
222 				    real_address : address;
223 
224 	/*
225 	 * These flags indicate why the userfault occurred:
226 	 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
227 	 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
228 	 * - Neither of these flags being set indicates a MISSING fault.
229 	 *
230 	 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
231 	 * fault. Otherwise, it was a read fault.
232 	 */
233 	if (flags & FAULT_FLAG_WRITE)
234 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
235 	if (reason & VM_UFFD_WP)
236 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
237 	if (reason & VM_UFFD_MINOR)
238 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
239 	if (features & UFFD_FEATURE_THREAD_ID)
240 		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
241 	return msg;
242 }
243 
244 #ifdef CONFIG_HUGETLB_PAGE
245 /*
246  * Same functionality as userfaultfd_must_wait below with modifications for
247  * hugepmd ranges.
248  */
249 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
250 					 struct vm_area_struct *vma,
251 					 unsigned long address,
252 					 unsigned long flags,
253 					 unsigned long reason)
254 {
255 	struct mm_struct *mm = ctx->mm;
256 	pte_t *ptep, pte;
257 	bool ret = true;
258 
259 	mmap_assert_locked(mm);
260 
261 	ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
262 
263 	if (!ptep)
264 		goto out;
265 
266 	ret = false;
267 	pte = huge_ptep_get(ptep);
268 
269 	/*
270 	 * Lockless access: we're in a wait_event so it's ok if it
271 	 * changes under us.  PTE markers should be handled the same as none
272 	 * ptes here.
273 	 */
274 	if (huge_pte_none_mostly(pte))
275 		ret = true;
276 	if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
277 		ret = true;
278 out:
279 	return ret;
280 }
281 #else
282 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
283 					 struct vm_area_struct *vma,
284 					 unsigned long address,
285 					 unsigned long flags,
286 					 unsigned long reason)
287 {
288 	return false;	/* should never get here */
289 }
290 #endif /* CONFIG_HUGETLB_PAGE */
291 
292 /*
293  * Verify the pagetables are still not ok after having reigstered into
294  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
295  * userfault that has already been resolved, if userfaultfd_read and
296  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
297  * threads.
298  */
299 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
300 					 unsigned long address,
301 					 unsigned long flags,
302 					 unsigned long reason)
303 {
304 	struct mm_struct *mm = ctx->mm;
305 	pgd_t *pgd;
306 	p4d_t *p4d;
307 	pud_t *pud;
308 	pmd_t *pmd, _pmd;
309 	pte_t *pte;
310 	bool ret = true;
311 
312 	mmap_assert_locked(mm);
313 
314 	pgd = pgd_offset(mm, address);
315 	if (!pgd_present(*pgd))
316 		goto out;
317 	p4d = p4d_offset(pgd, address);
318 	if (!p4d_present(*p4d))
319 		goto out;
320 	pud = pud_offset(p4d, address);
321 	if (!pud_present(*pud))
322 		goto out;
323 	pmd = pmd_offset(pud, address);
324 	/*
325 	 * READ_ONCE must function as a barrier with narrower scope
326 	 * and it must be equivalent to:
327 	 *	_pmd = *pmd; barrier();
328 	 *
329 	 * This is to deal with the instability (as in
330 	 * pmd_trans_unstable) of the pmd.
331 	 */
332 	_pmd = READ_ONCE(*pmd);
333 	if (pmd_none(_pmd))
334 		goto out;
335 
336 	ret = false;
337 	if (!pmd_present(_pmd))
338 		goto out;
339 
340 	if (pmd_trans_huge(_pmd)) {
341 		if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
342 			ret = true;
343 		goto out;
344 	}
345 
346 	/*
347 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
348 	 * and use the standard pte_offset_map() instead of parsing _pmd.
349 	 */
350 	pte = pte_offset_map(pmd, address);
351 	/*
352 	 * Lockless access: we're in a wait_event so it's ok if it
353 	 * changes under us.  PTE markers should be handled the same as none
354 	 * ptes here.
355 	 */
356 	if (pte_none_mostly(*pte))
357 		ret = true;
358 	if (!pte_write(*pte) && (reason & VM_UFFD_WP))
359 		ret = true;
360 	pte_unmap(pte);
361 
362 out:
363 	return ret;
364 }
365 
366 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
367 {
368 	if (flags & FAULT_FLAG_INTERRUPTIBLE)
369 		return TASK_INTERRUPTIBLE;
370 
371 	if (flags & FAULT_FLAG_KILLABLE)
372 		return TASK_KILLABLE;
373 
374 	return TASK_UNINTERRUPTIBLE;
375 }
376 
377 /*
378  * The locking rules involved in returning VM_FAULT_RETRY depending on
379  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
380  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
381  * recommendation in __lock_page_or_retry is not an understatement.
382  *
383  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
384  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
385  * not set.
386  *
387  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
388  * set, VM_FAULT_RETRY can still be returned if and only if there are
389  * fatal_signal_pending()s, and the mmap_lock must be released before
390  * returning it.
391  */
392 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
393 {
394 	struct mm_struct *mm = vmf->vma->vm_mm;
395 	struct userfaultfd_ctx *ctx;
396 	struct userfaultfd_wait_queue uwq;
397 	vm_fault_t ret = VM_FAULT_SIGBUS;
398 	bool must_wait;
399 	unsigned int blocking_state;
400 
401 	/*
402 	 * We don't do userfault handling for the final child pid update.
403 	 *
404 	 * We also don't do userfault handling during
405 	 * coredumping. hugetlbfs has the special
406 	 * follow_hugetlb_page() to skip missing pages in the
407 	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
408 	 * the no_page_table() helper in follow_page_mask(), but the
409 	 * shmem_vm_ops->fault method is invoked even during
410 	 * coredumping without mmap_lock and it ends up here.
411 	 */
412 	if (current->flags & (PF_EXITING|PF_DUMPCORE))
413 		goto out;
414 
415 	/*
416 	 * Coredumping runs without mmap_lock so we can only check that
417 	 * the mmap_lock is held, if PF_DUMPCORE was not set.
418 	 */
419 	mmap_assert_locked(mm);
420 
421 	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
422 	if (!ctx)
423 		goto out;
424 
425 	BUG_ON(ctx->mm != mm);
426 
427 	/* Any unrecognized flag is a bug. */
428 	VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
429 	/* 0 or > 1 flags set is a bug; we expect exactly 1. */
430 	VM_BUG_ON(!reason || (reason & (reason - 1)));
431 
432 	if (ctx->features & UFFD_FEATURE_SIGBUS)
433 		goto out;
434 	if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
435 		goto out;
436 
437 	/*
438 	 * If it's already released don't get it. This avoids to loop
439 	 * in __get_user_pages if userfaultfd_release waits on the
440 	 * caller of handle_userfault to release the mmap_lock.
441 	 */
442 	if (unlikely(READ_ONCE(ctx->released))) {
443 		/*
444 		 * Don't return VM_FAULT_SIGBUS in this case, so a non
445 		 * cooperative manager can close the uffd after the
446 		 * last UFFDIO_COPY, without risking to trigger an
447 		 * involuntary SIGBUS if the process was starting the
448 		 * userfaultfd while the userfaultfd was still armed
449 		 * (but after the last UFFDIO_COPY). If the uffd
450 		 * wasn't already closed when the userfault reached
451 		 * this point, that would normally be solved by
452 		 * userfaultfd_must_wait returning 'false'.
453 		 *
454 		 * If we were to return VM_FAULT_SIGBUS here, the non
455 		 * cooperative manager would be instead forced to
456 		 * always call UFFDIO_UNREGISTER before it can safely
457 		 * close the uffd.
458 		 */
459 		ret = VM_FAULT_NOPAGE;
460 		goto out;
461 	}
462 
463 	/*
464 	 * Check that we can return VM_FAULT_RETRY.
465 	 *
466 	 * NOTE: it should become possible to return VM_FAULT_RETRY
467 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
468 	 * -EBUSY failures, if the userfaultfd is to be extended for
469 	 * VM_UFFD_WP tracking and we intend to arm the userfault
470 	 * without first stopping userland access to the memory. For
471 	 * VM_UFFD_MISSING userfaults this is enough for now.
472 	 */
473 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
474 		/*
475 		 * Validate the invariant that nowait must allow retry
476 		 * to be sure not to return SIGBUS erroneously on
477 		 * nowait invocations.
478 		 */
479 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
480 #ifdef CONFIG_DEBUG_VM
481 		if (printk_ratelimit()) {
482 			printk(KERN_WARNING
483 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
484 			       vmf->flags);
485 			dump_stack();
486 		}
487 #endif
488 		goto out;
489 	}
490 
491 	/*
492 	 * Handle nowait, not much to do other than tell it to retry
493 	 * and wait.
494 	 */
495 	ret = VM_FAULT_RETRY;
496 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
497 		goto out;
498 
499 	/* take the reference before dropping the mmap_lock */
500 	userfaultfd_ctx_get(ctx);
501 
502 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
503 	uwq.wq.private = current;
504 	uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
505 				reason, ctx->features);
506 	uwq.ctx = ctx;
507 	uwq.waken = false;
508 
509 	blocking_state = userfaultfd_get_blocking_state(vmf->flags);
510 
511 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
512 	/*
513 	 * After the __add_wait_queue the uwq is visible to userland
514 	 * through poll/read().
515 	 */
516 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
517 	/*
518 	 * The smp_mb() after __set_current_state prevents the reads
519 	 * following the spin_unlock to happen before the list_add in
520 	 * __add_wait_queue.
521 	 */
522 	set_current_state(blocking_state);
523 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
524 
525 	if (!is_vm_hugetlb_page(vmf->vma))
526 		must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
527 						  reason);
528 	else
529 		must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
530 						       vmf->address,
531 						       vmf->flags, reason);
532 	mmap_read_unlock(mm);
533 
534 	if (likely(must_wait && !READ_ONCE(ctx->released))) {
535 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
536 		schedule();
537 	}
538 
539 	__set_current_state(TASK_RUNNING);
540 
541 	/*
542 	 * Here we race with the list_del; list_add in
543 	 * userfaultfd_ctx_read(), however because we don't ever run
544 	 * list_del_init() to refile across the two lists, the prev
545 	 * and next pointers will never point to self. list_add also
546 	 * would never let any of the two pointers to point to
547 	 * self. So list_empty_careful won't risk to see both pointers
548 	 * pointing to self at any time during the list refile. The
549 	 * only case where list_del_init() is called is the full
550 	 * removal in the wake function and there we don't re-list_add
551 	 * and it's fine not to block on the spinlock. The uwq on this
552 	 * kernel stack can be released after the list_del_init.
553 	 */
554 	if (!list_empty_careful(&uwq.wq.entry)) {
555 		spin_lock_irq(&ctx->fault_pending_wqh.lock);
556 		/*
557 		 * No need of list_del_init(), the uwq on the stack
558 		 * will be freed shortly anyway.
559 		 */
560 		list_del(&uwq.wq.entry);
561 		spin_unlock_irq(&ctx->fault_pending_wqh.lock);
562 	}
563 
564 	/*
565 	 * ctx may go away after this if the userfault pseudo fd is
566 	 * already released.
567 	 */
568 	userfaultfd_ctx_put(ctx);
569 
570 out:
571 	return ret;
572 }
573 
574 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
575 					      struct userfaultfd_wait_queue *ewq)
576 {
577 	struct userfaultfd_ctx *release_new_ctx;
578 
579 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
580 		goto out;
581 
582 	ewq->ctx = ctx;
583 	init_waitqueue_entry(&ewq->wq, current);
584 	release_new_ctx = NULL;
585 
586 	spin_lock_irq(&ctx->event_wqh.lock);
587 	/*
588 	 * After the __add_wait_queue the uwq is visible to userland
589 	 * through poll/read().
590 	 */
591 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
592 	for (;;) {
593 		set_current_state(TASK_KILLABLE);
594 		if (ewq->msg.event == 0)
595 			break;
596 		if (READ_ONCE(ctx->released) ||
597 		    fatal_signal_pending(current)) {
598 			/*
599 			 * &ewq->wq may be queued in fork_event, but
600 			 * __remove_wait_queue ignores the head
601 			 * parameter. It would be a problem if it
602 			 * didn't.
603 			 */
604 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
605 			if (ewq->msg.event == UFFD_EVENT_FORK) {
606 				struct userfaultfd_ctx *new;
607 
608 				new = (struct userfaultfd_ctx *)
609 					(unsigned long)
610 					ewq->msg.arg.reserved.reserved1;
611 				release_new_ctx = new;
612 			}
613 			break;
614 		}
615 
616 		spin_unlock_irq(&ctx->event_wqh.lock);
617 
618 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
619 		schedule();
620 
621 		spin_lock_irq(&ctx->event_wqh.lock);
622 	}
623 	__set_current_state(TASK_RUNNING);
624 	spin_unlock_irq(&ctx->event_wqh.lock);
625 
626 	if (release_new_ctx) {
627 		struct vm_area_struct *vma;
628 		struct mm_struct *mm = release_new_ctx->mm;
629 		VMA_ITERATOR(vmi, mm, 0);
630 
631 		/* the various vma->vm_userfaultfd_ctx still points to it */
632 		mmap_write_lock(mm);
633 		for_each_vma(vmi, vma) {
634 			if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
635 				vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
636 				userfaultfd_set_vm_flags(vma,
637 							 vma->vm_flags & ~__VM_UFFD_FLAGS);
638 			}
639 		}
640 		mmap_write_unlock(mm);
641 
642 		userfaultfd_ctx_put(release_new_ctx);
643 	}
644 
645 	/*
646 	 * ctx may go away after this if the userfault pseudo fd is
647 	 * already released.
648 	 */
649 out:
650 	atomic_dec(&ctx->mmap_changing);
651 	VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
652 	userfaultfd_ctx_put(ctx);
653 }
654 
655 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
656 				       struct userfaultfd_wait_queue *ewq)
657 {
658 	ewq->msg.event = 0;
659 	wake_up_locked(&ctx->event_wqh);
660 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
661 }
662 
663 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
664 {
665 	struct userfaultfd_ctx *ctx = NULL, *octx;
666 	struct userfaultfd_fork_ctx *fctx;
667 
668 	octx = vma->vm_userfaultfd_ctx.ctx;
669 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
670 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
671 		userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
672 		return 0;
673 	}
674 
675 	list_for_each_entry(fctx, fcs, list)
676 		if (fctx->orig == octx) {
677 			ctx = fctx->new;
678 			break;
679 		}
680 
681 	if (!ctx) {
682 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
683 		if (!fctx)
684 			return -ENOMEM;
685 
686 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
687 		if (!ctx) {
688 			kfree(fctx);
689 			return -ENOMEM;
690 		}
691 
692 		refcount_set(&ctx->refcount, 1);
693 		ctx->flags = octx->flags;
694 		ctx->features = octx->features;
695 		ctx->released = false;
696 		atomic_set(&ctx->mmap_changing, 0);
697 		ctx->mm = vma->vm_mm;
698 		mmgrab(ctx->mm);
699 
700 		userfaultfd_ctx_get(octx);
701 		atomic_inc(&octx->mmap_changing);
702 		fctx->orig = octx;
703 		fctx->new = ctx;
704 		list_add_tail(&fctx->list, fcs);
705 	}
706 
707 	vma->vm_userfaultfd_ctx.ctx = ctx;
708 	return 0;
709 }
710 
711 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
712 {
713 	struct userfaultfd_ctx *ctx = fctx->orig;
714 	struct userfaultfd_wait_queue ewq;
715 
716 	msg_init(&ewq.msg);
717 
718 	ewq.msg.event = UFFD_EVENT_FORK;
719 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
720 
721 	userfaultfd_event_wait_completion(ctx, &ewq);
722 }
723 
724 void dup_userfaultfd_complete(struct list_head *fcs)
725 {
726 	struct userfaultfd_fork_ctx *fctx, *n;
727 
728 	list_for_each_entry_safe(fctx, n, fcs, list) {
729 		dup_fctx(fctx);
730 		list_del(&fctx->list);
731 		kfree(fctx);
732 	}
733 }
734 
735 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
736 			     struct vm_userfaultfd_ctx *vm_ctx)
737 {
738 	struct userfaultfd_ctx *ctx;
739 
740 	ctx = vma->vm_userfaultfd_ctx.ctx;
741 
742 	if (!ctx)
743 		return;
744 
745 	if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
746 		vm_ctx->ctx = ctx;
747 		userfaultfd_ctx_get(ctx);
748 		atomic_inc(&ctx->mmap_changing);
749 	} else {
750 		/* Drop uffd context if remap feature not enabled */
751 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
752 		userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
753 	}
754 }
755 
756 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
757 				 unsigned long from, unsigned long to,
758 				 unsigned long len)
759 {
760 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
761 	struct userfaultfd_wait_queue ewq;
762 
763 	if (!ctx)
764 		return;
765 
766 	if (to & ~PAGE_MASK) {
767 		userfaultfd_ctx_put(ctx);
768 		return;
769 	}
770 
771 	msg_init(&ewq.msg);
772 
773 	ewq.msg.event = UFFD_EVENT_REMAP;
774 	ewq.msg.arg.remap.from = from;
775 	ewq.msg.arg.remap.to = to;
776 	ewq.msg.arg.remap.len = len;
777 
778 	userfaultfd_event_wait_completion(ctx, &ewq);
779 }
780 
781 bool userfaultfd_remove(struct vm_area_struct *vma,
782 			unsigned long start, unsigned long end)
783 {
784 	struct mm_struct *mm = vma->vm_mm;
785 	struct userfaultfd_ctx *ctx;
786 	struct userfaultfd_wait_queue ewq;
787 
788 	ctx = vma->vm_userfaultfd_ctx.ctx;
789 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
790 		return true;
791 
792 	userfaultfd_ctx_get(ctx);
793 	atomic_inc(&ctx->mmap_changing);
794 	mmap_read_unlock(mm);
795 
796 	msg_init(&ewq.msg);
797 
798 	ewq.msg.event = UFFD_EVENT_REMOVE;
799 	ewq.msg.arg.remove.start = start;
800 	ewq.msg.arg.remove.end = end;
801 
802 	userfaultfd_event_wait_completion(ctx, &ewq);
803 
804 	return false;
805 }
806 
807 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
808 			  unsigned long start, unsigned long end)
809 {
810 	struct userfaultfd_unmap_ctx *unmap_ctx;
811 
812 	list_for_each_entry(unmap_ctx, unmaps, list)
813 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
814 		    unmap_ctx->end == end)
815 			return true;
816 
817 	return false;
818 }
819 
820 int userfaultfd_unmap_prep(struct mm_struct *mm, unsigned long start,
821 			   unsigned long end, struct list_head *unmaps)
822 {
823 	VMA_ITERATOR(vmi, mm, start);
824 	struct vm_area_struct *vma;
825 
826 	for_each_vma_range(vmi, vma, end) {
827 		struct userfaultfd_unmap_ctx *unmap_ctx;
828 		struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
829 
830 		if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
831 		    has_unmap_ctx(ctx, unmaps, start, end))
832 			continue;
833 
834 		unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
835 		if (!unmap_ctx)
836 			return -ENOMEM;
837 
838 		userfaultfd_ctx_get(ctx);
839 		atomic_inc(&ctx->mmap_changing);
840 		unmap_ctx->ctx = ctx;
841 		unmap_ctx->start = start;
842 		unmap_ctx->end = end;
843 		list_add_tail(&unmap_ctx->list, unmaps);
844 	}
845 
846 	return 0;
847 }
848 
849 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
850 {
851 	struct userfaultfd_unmap_ctx *ctx, *n;
852 	struct userfaultfd_wait_queue ewq;
853 
854 	list_for_each_entry_safe(ctx, n, uf, list) {
855 		msg_init(&ewq.msg);
856 
857 		ewq.msg.event = UFFD_EVENT_UNMAP;
858 		ewq.msg.arg.remove.start = ctx->start;
859 		ewq.msg.arg.remove.end = ctx->end;
860 
861 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
862 
863 		list_del(&ctx->list);
864 		kfree(ctx);
865 	}
866 }
867 
868 static int userfaultfd_release(struct inode *inode, struct file *file)
869 {
870 	struct userfaultfd_ctx *ctx = file->private_data;
871 	struct mm_struct *mm = ctx->mm;
872 	struct vm_area_struct *vma, *prev;
873 	/* len == 0 means wake all */
874 	struct userfaultfd_wake_range range = { .len = 0, };
875 	unsigned long new_flags;
876 	MA_STATE(mas, &mm->mm_mt, 0, 0);
877 
878 	WRITE_ONCE(ctx->released, true);
879 
880 	if (!mmget_not_zero(mm))
881 		goto wakeup;
882 
883 	/*
884 	 * Flush page faults out of all CPUs. NOTE: all page faults
885 	 * must be retried without returning VM_FAULT_SIGBUS if
886 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
887 	 * changes while handle_userfault released the mmap_lock. So
888 	 * it's critical that released is set to true (above), before
889 	 * taking the mmap_lock for writing.
890 	 */
891 	mmap_write_lock(mm);
892 	prev = NULL;
893 	mas_for_each(&mas, vma, ULONG_MAX) {
894 		cond_resched();
895 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
896 		       !!(vma->vm_flags & __VM_UFFD_FLAGS));
897 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
898 			prev = vma;
899 			continue;
900 		}
901 		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
902 		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
903 				 new_flags, vma->anon_vma,
904 				 vma->vm_file, vma->vm_pgoff,
905 				 vma_policy(vma),
906 				 NULL_VM_UFFD_CTX, anon_vma_name(vma));
907 		if (prev) {
908 			mas_pause(&mas);
909 			vma = prev;
910 		} else {
911 			prev = vma;
912 		}
913 
914 		userfaultfd_set_vm_flags(vma, new_flags);
915 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
916 	}
917 	mmap_write_unlock(mm);
918 	mmput(mm);
919 wakeup:
920 	/*
921 	 * After no new page faults can wait on this fault_*wqh, flush
922 	 * the last page faults that may have been already waiting on
923 	 * the fault_*wqh.
924 	 */
925 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
926 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
927 	__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
928 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
929 
930 	/* Flush pending events that may still wait on event_wqh */
931 	wake_up_all(&ctx->event_wqh);
932 
933 	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
934 	userfaultfd_ctx_put(ctx);
935 	return 0;
936 }
937 
938 /* fault_pending_wqh.lock must be hold by the caller */
939 static inline struct userfaultfd_wait_queue *find_userfault_in(
940 		wait_queue_head_t *wqh)
941 {
942 	wait_queue_entry_t *wq;
943 	struct userfaultfd_wait_queue *uwq;
944 
945 	lockdep_assert_held(&wqh->lock);
946 
947 	uwq = NULL;
948 	if (!waitqueue_active(wqh))
949 		goto out;
950 	/* walk in reverse to provide FIFO behavior to read userfaults */
951 	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
952 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
953 out:
954 	return uwq;
955 }
956 
957 static inline struct userfaultfd_wait_queue *find_userfault(
958 		struct userfaultfd_ctx *ctx)
959 {
960 	return find_userfault_in(&ctx->fault_pending_wqh);
961 }
962 
963 static inline struct userfaultfd_wait_queue *find_userfault_evt(
964 		struct userfaultfd_ctx *ctx)
965 {
966 	return find_userfault_in(&ctx->event_wqh);
967 }
968 
969 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
970 {
971 	struct userfaultfd_ctx *ctx = file->private_data;
972 	__poll_t ret;
973 
974 	poll_wait(file, &ctx->fd_wqh, wait);
975 
976 	if (!userfaultfd_is_initialized(ctx))
977 		return EPOLLERR;
978 
979 	/*
980 	 * poll() never guarantees that read won't block.
981 	 * userfaults can be waken before they're read().
982 	 */
983 	if (unlikely(!(file->f_flags & O_NONBLOCK)))
984 		return EPOLLERR;
985 	/*
986 	 * lockless access to see if there are pending faults
987 	 * __pollwait last action is the add_wait_queue but
988 	 * the spin_unlock would allow the waitqueue_active to
989 	 * pass above the actual list_add inside
990 	 * add_wait_queue critical section. So use a full
991 	 * memory barrier to serialize the list_add write of
992 	 * add_wait_queue() with the waitqueue_active read
993 	 * below.
994 	 */
995 	ret = 0;
996 	smp_mb();
997 	if (waitqueue_active(&ctx->fault_pending_wqh))
998 		ret = EPOLLIN;
999 	else if (waitqueue_active(&ctx->event_wqh))
1000 		ret = EPOLLIN;
1001 
1002 	return ret;
1003 }
1004 
1005 static const struct file_operations userfaultfd_fops;
1006 
1007 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1008 				  struct inode *inode,
1009 				  struct uffd_msg *msg)
1010 {
1011 	int fd;
1012 
1013 	fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
1014 			O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
1015 	if (fd < 0)
1016 		return fd;
1017 
1018 	msg->arg.reserved.reserved1 = 0;
1019 	msg->arg.fork.ufd = fd;
1020 	return 0;
1021 }
1022 
1023 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1024 				    struct uffd_msg *msg, struct inode *inode)
1025 {
1026 	ssize_t ret;
1027 	DECLARE_WAITQUEUE(wait, current);
1028 	struct userfaultfd_wait_queue *uwq;
1029 	/*
1030 	 * Handling fork event requires sleeping operations, so
1031 	 * we drop the event_wqh lock, then do these ops, then
1032 	 * lock it back and wake up the waiter. While the lock is
1033 	 * dropped the ewq may go away so we keep track of it
1034 	 * carefully.
1035 	 */
1036 	LIST_HEAD(fork_event);
1037 	struct userfaultfd_ctx *fork_nctx = NULL;
1038 
1039 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1040 	spin_lock_irq(&ctx->fd_wqh.lock);
1041 	__add_wait_queue(&ctx->fd_wqh, &wait);
1042 	for (;;) {
1043 		set_current_state(TASK_INTERRUPTIBLE);
1044 		spin_lock(&ctx->fault_pending_wqh.lock);
1045 		uwq = find_userfault(ctx);
1046 		if (uwq) {
1047 			/*
1048 			 * Use a seqcount to repeat the lockless check
1049 			 * in wake_userfault() to avoid missing
1050 			 * wakeups because during the refile both
1051 			 * waitqueue could become empty if this is the
1052 			 * only userfault.
1053 			 */
1054 			write_seqcount_begin(&ctx->refile_seq);
1055 
1056 			/*
1057 			 * The fault_pending_wqh.lock prevents the uwq
1058 			 * to disappear from under us.
1059 			 *
1060 			 * Refile this userfault from
1061 			 * fault_pending_wqh to fault_wqh, it's not
1062 			 * pending anymore after we read it.
1063 			 *
1064 			 * Use list_del() by hand (as
1065 			 * userfaultfd_wake_function also uses
1066 			 * list_del_init() by hand) to be sure nobody
1067 			 * changes __remove_wait_queue() to use
1068 			 * list_del_init() in turn breaking the
1069 			 * !list_empty_careful() check in
1070 			 * handle_userfault(). The uwq->wq.head list
1071 			 * must never be empty at any time during the
1072 			 * refile, or the waitqueue could disappear
1073 			 * from under us. The "wait_queue_head_t"
1074 			 * parameter of __remove_wait_queue() is unused
1075 			 * anyway.
1076 			 */
1077 			list_del(&uwq->wq.entry);
1078 			add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1079 
1080 			write_seqcount_end(&ctx->refile_seq);
1081 
1082 			/* careful to always initialize msg if ret == 0 */
1083 			*msg = uwq->msg;
1084 			spin_unlock(&ctx->fault_pending_wqh.lock);
1085 			ret = 0;
1086 			break;
1087 		}
1088 		spin_unlock(&ctx->fault_pending_wqh.lock);
1089 
1090 		spin_lock(&ctx->event_wqh.lock);
1091 		uwq = find_userfault_evt(ctx);
1092 		if (uwq) {
1093 			*msg = uwq->msg;
1094 
1095 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1096 				fork_nctx = (struct userfaultfd_ctx *)
1097 					(unsigned long)
1098 					uwq->msg.arg.reserved.reserved1;
1099 				list_move(&uwq->wq.entry, &fork_event);
1100 				/*
1101 				 * fork_nctx can be freed as soon as
1102 				 * we drop the lock, unless we take a
1103 				 * reference on it.
1104 				 */
1105 				userfaultfd_ctx_get(fork_nctx);
1106 				spin_unlock(&ctx->event_wqh.lock);
1107 				ret = 0;
1108 				break;
1109 			}
1110 
1111 			userfaultfd_event_complete(ctx, uwq);
1112 			spin_unlock(&ctx->event_wqh.lock);
1113 			ret = 0;
1114 			break;
1115 		}
1116 		spin_unlock(&ctx->event_wqh.lock);
1117 
1118 		if (signal_pending(current)) {
1119 			ret = -ERESTARTSYS;
1120 			break;
1121 		}
1122 		if (no_wait) {
1123 			ret = -EAGAIN;
1124 			break;
1125 		}
1126 		spin_unlock_irq(&ctx->fd_wqh.lock);
1127 		schedule();
1128 		spin_lock_irq(&ctx->fd_wqh.lock);
1129 	}
1130 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1131 	__set_current_state(TASK_RUNNING);
1132 	spin_unlock_irq(&ctx->fd_wqh.lock);
1133 
1134 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1135 		ret = resolve_userfault_fork(fork_nctx, inode, msg);
1136 		spin_lock_irq(&ctx->event_wqh.lock);
1137 		if (!list_empty(&fork_event)) {
1138 			/*
1139 			 * The fork thread didn't abort, so we can
1140 			 * drop the temporary refcount.
1141 			 */
1142 			userfaultfd_ctx_put(fork_nctx);
1143 
1144 			uwq = list_first_entry(&fork_event,
1145 					       typeof(*uwq),
1146 					       wq.entry);
1147 			/*
1148 			 * If fork_event list wasn't empty and in turn
1149 			 * the event wasn't already released by fork
1150 			 * (the event is allocated on fork kernel
1151 			 * stack), put the event back to its place in
1152 			 * the event_wq. fork_event head will be freed
1153 			 * as soon as we return so the event cannot
1154 			 * stay queued there no matter the current
1155 			 * "ret" value.
1156 			 */
1157 			list_del(&uwq->wq.entry);
1158 			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1159 
1160 			/*
1161 			 * Leave the event in the waitqueue and report
1162 			 * error to userland if we failed to resolve
1163 			 * the userfault fork.
1164 			 */
1165 			if (likely(!ret))
1166 				userfaultfd_event_complete(ctx, uwq);
1167 		} else {
1168 			/*
1169 			 * Here the fork thread aborted and the
1170 			 * refcount from the fork thread on fork_nctx
1171 			 * has already been released. We still hold
1172 			 * the reference we took before releasing the
1173 			 * lock above. If resolve_userfault_fork
1174 			 * failed we've to drop it because the
1175 			 * fork_nctx has to be freed in such case. If
1176 			 * it succeeded we'll hold it because the new
1177 			 * uffd references it.
1178 			 */
1179 			if (ret)
1180 				userfaultfd_ctx_put(fork_nctx);
1181 		}
1182 		spin_unlock_irq(&ctx->event_wqh.lock);
1183 	}
1184 
1185 	return ret;
1186 }
1187 
1188 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1189 				size_t count, loff_t *ppos)
1190 {
1191 	struct userfaultfd_ctx *ctx = file->private_data;
1192 	ssize_t _ret, ret = 0;
1193 	struct uffd_msg msg;
1194 	int no_wait = file->f_flags & O_NONBLOCK;
1195 	struct inode *inode = file_inode(file);
1196 
1197 	if (!userfaultfd_is_initialized(ctx))
1198 		return -EINVAL;
1199 
1200 	for (;;) {
1201 		if (count < sizeof(msg))
1202 			return ret ? ret : -EINVAL;
1203 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1204 		if (_ret < 0)
1205 			return ret ? ret : _ret;
1206 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1207 			return ret ? ret : -EFAULT;
1208 		ret += sizeof(msg);
1209 		buf += sizeof(msg);
1210 		count -= sizeof(msg);
1211 		/*
1212 		 * Allow to read more than one fault at time but only
1213 		 * block if waiting for the very first one.
1214 		 */
1215 		no_wait = O_NONBLOCK;
1216 	}
1217 }
1218 
1219 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1220 			     struct userfaultfd_wake_range *range)
1221 {
1222 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
1223 	/* wake all in the range and autoremove */
1224 	if (waitqueue_active(&ctx->fault_pending_wqh))
1225 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1226 				     range);
1227 	if (waitqueue_active(&ctx->fault_wqh))
1228 		__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1229 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1230 }
1231 
1232 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1233 					   struct userfaultfd_wake_range *range)
1234 {
1235 	unsigned seq;
1236 	bool need_wakeup;
1237 
1238 	/*
1239 	 * To be sure waitqueue_active() is not reordered by the CPU
1240 	 * before the pagetable update, use an explicit SMP memory
1241 	 * barrier here. PT lock release or mmap_read_unlock(mm) still
1242 	 * have release semantics that can allow the
1243 	 * waitqueue_active() to be reordered before the pte update.
1244 	 */
1245 	smp_mb();
1246 
1247 	/*
1248 	 * Use waitqueue_active because it's very frequent to
1249 	 * change the address space atomically even if there are no
1250 	 * userfaults yet. So we take the spinlock only when we're
1251 	 * sure we've userfaults to wake.
1252 	 */
1253 	do {
1254 		seq = read_seqcount_begin(&ctx->refile_seq);
1255 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1256 			waitqueue_active(&ctx->fault_wqh);
1257 		cond_resched();
1258 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1259 	if (need_wakeup)
1260 		__wake_userfault(ctx, range);
1261 }
1262 
1263 static __always_inline int validate_range(struct mm_struct *mm,
1264 					  __u64 start, __u64 len)
1265 {
1266 	__u64 task_size = mm->task_size;
1267 
1268 	if (start & ~PAGE_MASK)
1269 		return -EINVAL;
1270 	if (len & ~PAGE_MASK)
1271 		return -EINVAL;
1272 	if (!len)
1273 		return -EINVAL;
1274 	if (start < mmap_min_addr)
1275 		return -EINVAL;
1276 	if (start >= task_size)
1277 		return -EINVAL;
1278 	if (len > task_size - start)
1279 		return -EINVAL;
1280 	return 0;
1281 }
1282 
1283 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1284 				unsigned long arg)
1285 {
1286 	struct mm_struct *mm = ctx->mm;
1287 	struct vm_area_struct *vma, *prev, *cur;
1288 	int ret;
1289 	struct uffdio_register uffdio_register;
1290 	struct uffdio_register __user *user_uffdio_register;
1291 	unsigned long vm_flags, new_flags;
1292 	bool found;
1293 	bool basic_ioctls;
1294 	unsigned long start, end, vma_end;
1295 	MA_STATE(mas, &mm->mm_mt, 0, 0);
1296 
1297 	user_uffdio_register = (struct uffdio_register __user *) arg;
1298 
1299 	ret = -EFAULT;
1300 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1301 			   sizeof(uffdio_register)-sizeof(__u64)))
1302 		goto out;
1303 
1304 	ret = -EINVAL;
1305 	if (!uffdio_register.mode)
1306 		goto out;
1307 	if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1308 		goto out;
1309 	vm_flags = 0;
1310 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1311 		vm_flags |= VM_UFFD_MISSING;
1312 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1313 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1314 		goto out;
1315 #endif
1316 		vm_flags |= VM_UFFD_WP;
1317 	}
1318 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1319 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1320 		goto out;
1321 #endif
1322 		vm_flags |= VM_UFFD_MINOR;
1323 	}
1324 
1325 	ret = validate_range(mm, uffdio_register.range.start,
1326 			     uffdio_register.range.len);
1327 	if (ret)
1328 		goto out;
1329 
1330 	start = uffdio_register.range.start;
1331 	end = start + uffdio_register.range.len;
1332 
1333 	ret = -ENOMEM;
1334 	if (!mmget_not_zero(mm))
1335 		goto out;
1336 
1337 	mmap_write_lock(mm);
1338 	mas_set(&mas, start);
1339 	vma = mas_find(&mas, ULONG_MAX);
1340 	if (!vma)
1341 		goto out_unlock;
1342 
1343 	/* check that there's at least one vma in the range */
1344 	ret = -EINVAL;
1345 	if (vma->vm_start >= end)
1346 		goto out_unlock;
1347 
1348 	/*
1349 	 * If the first vma contains huge pages, make sure start address
1350 	 * is aligned to huge page size.
1351 	 */
1352 	if (is_vm_hugetlb_page(vma)) {
1353 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1354 
1355 		if (start & (vma_hpagesize - 1))
1356 			goto out_unlock;
1357 	}
1358 
1359 	/*
1360 	 * Search for not compatible vmas.
1361 	 */
1362 	found = false;
1363 	basic_ioctls = false;
1364 	for (cur = vma; cur; cur = mas_next(&mas, end - 1)) {
1365 		cond_resched();
1366 
1367 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1368 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1369 
1370 		/* check not compatible vmas */
1371 		ret = -EINVAL;
1372 		if (!vma_can_userfault(cur, vm_flags))
1373 			goto out_unlock;
1374 
1375 		/*
1376 		 * UFFDIO_COPY will fill file holes even without
1377 		 * PROT_WRITE. This check enforces that if this is a
1378 		 * MAP_SHARED, the process has write permission to the backing
1379 		 * file. If VM_MAYWRITE is set it also enforces that on a
1380 		 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1381 		 * F_WRITE_SEAL can be taken until the vma is destroyed.
1382 		 */
1383 		ret = -EPERM;
1384 		if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1385 			goto out_unlock;
1386 
1387 		/*
1388 		 * If this vma contains ending address, and huge pages
1389 		 * check alignment.
1390 		 */
1391 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1392 		    end > cur->vm_start) {
1393 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1394 
1395 			ret = -EINVAL;
1396 
1397 			if (end & (vma_hpagesize - 1))
1398 				goto out_unlock;
1399 		}
1400 		if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1401 			goto out_unlock;
1402 
1403 		/*
1404 		 * Check that this vma isn't already owned by a
1405 		 * different userfaultfd. We can't allow more than one
1406 		 * userfaultfd to own a single vma simultaneously or we
1407 		 * wouldn't know which one to deliver the userfaults to.
1408 		 */
1409 		ret = -EBUSY;
1410 		if (cur->vm_userfaultfd_ctx.ctx &&
1411 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1412 			goto out_unlock;
1413 
1414 		/*
1415 		 * Note vmas containing huge pages
1416 		 */
1417 		if (is_vm_hugetlb_page(cur))
1418 			basic_ioctls = true;
1419 
1420 		found = true;
1421 	}
1422 	BUG_ON(!found);
1423 
1424 	mas_set(&mas, start);
1425 	prev = mas_prev(&mas, 0);
1426 	if (prev != vma)
1427 		mas_next(&mas, ULONG_MAX);
1428 
1429 	ret = 0;
1430 	do {
1431 		cond_resched();
1432 
1433 		BUG_ON(!vma_can_userfault(vma, vm_flags));
1434 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1435 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1436 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1437 
1438 		/*
1439 		 * Nothing to do: this vma is already registered into this
1440 		 * userfaultfd and with the right tracking mode too.
1441 		 */
1442 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1443 		    (vma->vm_flags & vm_flags) == vm_flags)
1444 			goto skip;
1445 
1446 		if (vma->vm_start > start)
1447 			start = vma->vm_start;
1448 		vma_end = min(end, vma->vm_end);
1449 
1450 		new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1451 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1452 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1453 				 vma_policy(vma),
1454 				 ((struct vm_userfaultfd_ctx){ ctx }),
1455 				 anon_vma_name(vma));
1456 		if (prev) {
1457 			/* vma_merge() invalidated the mas */
1458 			mas_pause(&mas);
1459 			vma = prev;
1460 			goto next;
1461 		}
1462 		if (vma->vm_start < start) {
1463 			ret = split_vma(mm, vma, start, 1);
1464 			if (ret)
1465 				break;
1466 			/* split_vma() invalidated the mas */
1467 			mas_pause(&mas);
1468 		}
1469 		if (vma->vm_end > end) {
1470 			ret = split_vma(mm, vma, end, 0);
1471 			if (ret)
1472 				break;
1473 			/* split_vma() invalidated the mas */
1474 			mas_pause(&mas);
1475 		}
1476 	next:
1477 		/*
1478 		 * In the vma_merge() successful mprotect-like case 8:
1479 		 * the next vma was merged into the current one and
1480 		 * the current one has not been updated yet.
1481 		 */
1482 		userfaultfd_set_vm_flags(vma, new_flags);
1483 		vma->vm_userfaultfd_ctx.ctx = ctx;
1484 
1485 		if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1486 			hugetlb_unshare_all_pmds(vma);
1487 
1488 	skip:
1489 		prev = vma;
1490 		start = vma->vm_end;
1491 		vma = mas_next(&mas, end - 1);
1492 	} while (vma);
1493 out_unlock:
1494 	mmap_write_unlock(mm);
1495 	mmput(mm);
1496 	if (!ret) {
1497 		__u64 ioctls_out;
1498 
1499 		ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1500 		    UFFD_API_RANGE_IOCTLS;
1501 
1502 		/*
1503 		 * Declare the WP ioctl only if the WP mode is
1504 		 * specified and all checks passed with the range
1505 		 */
1506 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1507 			ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1508 
1509 		/* CONTINUE ioctl is only supported for MINOR ranges. */
1510 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1511 			ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1512 
1513 		/*
1514 		 * Now that we scanned all vmas we can already tell
1515 		 * userland which ioctls methods are guaranteed to
1516 		 * succeed on this range.
1517 		 */
1518 		if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1519 			ret = -EFAULT;
1520 	}
1521 out:
1522 	return ret;
1523 }
1524 
1525 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1526 				  unsigned long arg)
1527 {
1528 	struct mm_struct *mm = ctx->mm;
1529 	struct vm_area_struct *vma, *prev, *cur;
1530 	int ret;
1531 	struct uffdio_range uffdio_unregister;
1532 	unsigned long new_flags;
1533 	bool found;
1534 	unsigned long start, end, vma_end;
1535 	const void __user *buf = (void __user *)arg;
1536 	MA_STATE(mas, &mm->mm_mt, 0, 0);
1537 
1538 	ret = -EFAULT;
1539 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1540 		goto out;
1541 
1542 	ret = validate_range(mm, uffdio_unregister.start,
1543 			     uffdio_unregister.len);
1544 	if (ret)
1545 		goto out;
1546 
1547 	start = uffdio_unregister.start;
1548 	end = start + uffdio_unregister.len;
1549 
1550 	ret = -ENOMEM;
1551 	if (!mmget_not_zero(mm))
1552 		goto out;
1553 
1554 	mmap_write_lock(mm);
1555 	mas_set(&mas, start);
1556 	vma = mas_find(&mas, ULONG_MAX);
1557 	if (!vma)
1558 		goto out_unlock;
1559 
1560 	/* check that there's at least one vma in the range */
1561 	ret = -EINVAL;
1562 	if (vma->vm_start >= end)
1563 		goto out_unlock;
1564 
1565 	/*
1566 	 * If the first vma contains huge pages, make sure start address
1567 	 * is aligned to huge page size.
1568 	 */
1569 	if (is_vm_hugetlb_page(vma)) {
1570 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1571 
1572 		if (start & (vma_hpagesize - 1))
1573 			goto out_unlock;
1574 	}
1575 
1576 	/*
1577 	 * Search for not compatible vmas.
1578 	 */
1579 	found = false;
1580 	ret = -EINVAL;
1581 	for (cur = vma; cur; cur = mas_next(&mas, end - 1)) {
1582 		cond_resched();
1583 
1584 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1585 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1586 
1587 		/*
1588 		 * Check not compatible vmas, not strictly required
1589 		 * here as not compatible vmas cannot have an
1590 		 * userfaultfd_ctx registered on them, but this
1591 		 * provides for more strict behavior to notice
1592 		 * unregistration errors.
1593 		 */
1594 		if (!vma_can_userfault(cur, cur->vm_flags))
1595 			goto out_unlock;
1596 
1597 		found = true;
1598 	}
1599 	BUG_ON(!found);
1600 
1601 	mas_set(&mas, start);
1602 	prev = mas_prev(&mas, 0);
1603 	if (prev != vma)
1604 		mas_next(&mas, ULONG_MAX);
1605 
1606 	ret = 0;
1607 	do {
1608 		cond_resched();
1609 
1610 		BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1611 
1612 		/*
1613 		 * Nothing to do: this vma is already registered into this
1614 		 * userfaultfd and with the right tracking mode too.
1615 		 */
1616 		if (!vma->vm_userfaultfd_ctx.ctx)
1617 			goto skip;
1618 
1619 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1620 
1621 		if (vma->vm_start > start)
1622 			start = vma->vm_start;
1623 		vma_end = min(end, vma->vm_end);
1624 
1625 		if (userfaultfd_missing(vma)) {
1626 			/*
1627 			 * Wake any concurrent pending userfault while
1628 			 * we unregister, so they will not hang
1629 			 * permanently and it avoids userland to call
1630 			 * UFFDIO_WAKE explicitly.
1631 			 */
1632 			struct userfaultfd_wake_range range;
1633 			range.start = start;
1634 			range.len = vma_end - start;
1635 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1636 		}
1637 
1638 		/* Reset ptes for the whole vma range if wr-protected */
1639 		if (userfaultfd_wp(vma))
1640 			uffd_wp_range(mm, vma, start, vma_end - start, false);
1641 
1642 		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1643 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1644 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1645 				 vma_policy(vma),
1646 				 NULL_VM_UFFD_CTX, anon_vma_name(vma));
1647 		if (prev) {
1648 			vma = prev;
1649 			mas_pause(&mas);
1650 			goto next;
1651 		}
1652 		if (vma->vm_start < start) {
1653 			ret = split_vma(mm, vma, start, 1);
1654 			if (ret)
1655 				break;
1656 			mas_pause(&mas);
1657 		}
1658 		if (vma->vm_end > end) {
1659 			ret = split_vma(mm, vma, end, 0);
1660 			if (ret)
1661 				break;
1662 			mas_pause(&mas);
1663 		}
1664 	next:
1665 		/*
1666 		 * In the vma_merge() successful mprotect-like case 8:
1667 		 * the next vma was merged into the current one and
1668 		 * the current one has not been updated yet.
1669 		 */
1670 		userfaultfd_set_vm_flags(vma, new_flags);
1671 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1672 
1673 	skip:
1674 		prev = vma;
1675 		start = vma->vm_end;
1676 		vma = mas_next(&mas, end - 1);
1677 	} while (vma);
1678 out_unlock:
1679 	mmap_write_unlock(mm);
1680 	mmput(mm);
1681 out:
1682 	return ret;
1683 }
1684 
1685 /*
1686  * userfaultfd_wake may be used in combination with the
1687  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1688  */
1689 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1690 			    unsigned long arg)
1691 {
1692 	int ret;
1693 	struct uffdio_range uffdio_wake;
1694 	struct userfaultfd_wake_range range;
1695 	const void __user *buf = (void __user *)arg;
1696 
1697 	ret = -EFAULT;
1698 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1699 		goto out;
1700 
1701 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1702 	if (ret)
1703 		goto out;
1704 
1705 	range.start = uffdio_wake.start;
1706 	range.len = uffdio_wake.len;
1707 
1708 	/*
1709 	 * len == 0 means wake all and we don't want to wake all here,
1710 	 * so check it again to be sure.
1711 	 */
1712 	VM_BUG_ON(!range.len);
1713 
1714 	wake_userfault(ctx, &range);
1715 	ret = 0;
1716 
1717 out:
1718 	return ret;
1719 }
1720 
1721 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1722 			    unsigned long arg)
1723 {
1724 	__s64 ret;
1725 	struct uffdio_copy uffdio_copy;
1726 	struct uffdio_copy __user *user_uffdio_copy;
1727 	struct userfaultfd_wake_range range;
1728 
1729 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1730 
1731 	ret = -EAGAIN;
1732 	if (atomic_read(&ctx->mmap_changing))
1733 		goto out;
1734 
1735 	ret = -EFAULT;
1736 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1737 			   /* don't copy "copy" last field */
1738 			   sizeof(uffdio_copy)-sizeof(__s64)))
1739 		goto out;
1740 
1741 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1742 	if (ret)
1743 		goto out;
1744 	/*
1745 	 * double check for wraparound just in case. copy_from_user()
1746 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1747 	 * in the userland range.
1748 	 */
1749 	ret = -EINVAL;
1750 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1751 		goto out;
1752 	if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1753 		goto out;
1754 	if (mmget_not_zero(ctx->mm)) {
1755 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1756 				   uffdio_copy.len, &ctx->mmap_changing,
1757 				   uffdio_copy.mode);
1758 		mmput(ctx->mm);
1759 	} else {
1760 		return -ESRCH;
1761 	}
1762 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1763 		return -EFAULT;
1764 	if (ret < 0)
1765 		goto out;
1766 	BUG_ON(!ret);
1767 	/* len == 0 would wake all */
1768 	range.len = ret;
1769 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1770 		range.start = uffdio_copy.dst;
1771 		wake_userfault(ctx, &range);
1772 	}
1773 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1774 out:
1775 	return ret;
1776 }
1777 
1778 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1779 				unsigned long arg)
1780 {
1781 	__s64 ret;
1782 	struct uffdio_zeropage uffdio_zeropage;
1783 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1784 	struct userfaultfd_wake_range range;
1785 
1786 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1787 
1788 	ret = -EAGAIN;
1789 	if (atomic_read(&ctx->mmap_changing))
1790 		goto out;
1791 
1792 	ret = -EFAULT;
1793 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1794 			   /* don't copy "zeropage" last field */
1795 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1796 		goto out;
1797 
1798 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1799 			     uffdio_zeropage.range.len);
1800 	if (ret)
1801 		goto out;
1802 	ret = -EINVAL;
1803 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1804 		goto out;
1805 
1806 	if (mmget_not_zero(ctx->mm)) {
1807 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1808 				     uffdio_zeropage.range.len,
1809 				     &ctx->mmap_changing);
1810 		mmput(ctx->mm);
1811 	} else {
1812 		return -ESRCH;
1813 	}
1814 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1815 		return -EFAULT;
1816 	if (ret < 0)
1817 		goto out;
1818 	/* len == 0 would wake all */
1819 	BUG_ON(!ret);
1820 	range.len = ret;
1821 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1822 		range.start = uffdio_zeropage.range.start;
1823 		wake_userfault(ctx, &range);
1824 	}
1825 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1826 out:
1827 	return ret;
1828 }
1829 
1830 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1831 				    unsigned long arg)
1832 {
1833 	int ret;
1834 	struct uffdio_writeprotect uffdio_wp;
1835 	struct uffdio_writeprotect __user *user_uffdio_wp;
1836 	struct userfaultfd_wake_range range;
1837 	bool mode_wp, mode_dontwake;
1838 
1839 	if (atomic_read(&ctx->mmap_changing))
1840 		return -EAGAIN;
1841 
1842 	user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1843 
1844 	if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1845 			   sizeof(struct uffdio_writeprotect)))
1846 		return -EFAULT;
1847 
1848 	ret = validate_range(ctx->mm, uffdio_wp.range.start,
1849 			     uffdio_wp.range.len);
1850 	if (ret)
1851 		return ret;
1852 
1853 	if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1854 			       UFFDIO_WRITEPROTECT_MODE_WP))
1855 		return -EINVAL;
1856 
1857 	mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1858 	mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1859 
1860 	if (mode_wp && mode_dontwake)
1861 		return -EINVAL;
1862 
1863 	if (mmget_not_zero(ctx->mm)) {
1864 		ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1865 					  uffdio_wp.range.len, mode_wp,
1866 					  &ctx->mmap_changing);
1867 		mmput(ctx->mm);
1868 	} else {
1869 		return -ESRCH;
1870 	}
1871 
1872 	if (ret)
1873 		return ret;
1874 
1875 	if (!mode_wp && !mode_dontwake) {
1876 		range.start = uffdio_wp.range.start;
1877 		range.len = uffdio_wp.range.len;
1878 		wake_userfault(ctx, &range);
1879 	}
1880 	return ret;
1881 }
1882 
1883 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1884 {
1885 	__s64 ret;
1886 	struct uffdio_continue uffdio_continue;
1887 	struct uffdio_continue __user *user_uffdio_continue;
1888 	struct userfaultfd_wake_range range;
1889 
1890 	user_uffdio_continue = (struct uffdio_continue __user *)arg;
1891 
1892 	ret = -EAGAIN;
1893 	if (atomic_read(&ctx->mmap_changing))
1894 		goto out;
1895 
1896 	ret = -EFAULT;
1897 	if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1898 			   /* don't copy the output fields */
1899 			   sizeof(uffdio_continue) - (sizeof(__s64))))
1900 		goto out;
1901 
1902 	ret = validate_range(ctx->mm, uffdio_continue.range.start,
1903 			     uffdio_continue.range.len);
1904 	if (ret)
1905 		goto out;
1906 
1907 	ret = -EINVAL;
1908 	/* double check for wraparound just in case. */
1909 	if (uffdio_continue.range.start + uffdio_continue.range.len <=
1910 	    uffdio_continue.range.start) {
1911 		goto out;
1912 	}
1913 	if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE)
1914 		goto out;
1915 
1916 	if (mmget_not_zero(ctx->mm)) {
1917 		ret = mcopy_continue(ctx->mm, uffdio_continue.range.start,
1918 				     uffdio_continue.range.len,
1919 				     &ctx->mmap_changing);
1920 		mmput(ctx->mm);
1921 	} else {
1922 		return -ESRCH;
1923 	}
1924 
1925 	if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1926 		return -EFAULT;
1927 	if (ret < 0)
1928 		goto out;
1929 
1930 	/* len == 0 would wake all */
1931 	BUG_ON(!ret);
1932 	range.len = ret;
1933 	if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1934 		range.start = uffdio_continue.range.start;
1935 		wake_userfault(ctx, &range);
1936 	}
1937 	ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1938 
1939 out:
1940 	return ret;
1941 }
1942 
1943 static inline unsigned int uffd_ctx_features(__u64 user_features)
1944 {
1945 	/*
1946 	 * For the current set of features the bits just coincide. Set
1947 	 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1948 	 */
1949 	return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1950 }
1951 
1952 /*
1953  * userland asks for a certain API version and we return which bits
1954  * and ioctl commands are implemented in this kernel for such API
1955  * version or -EINVAL if unknown.
1956  */
1957 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1958 			   unsigned long arg)
1959 {
1960 	struct uffdio_api uffdio_api;
1961 	void __user *buf = (void __user *)arg;
1962 	unsigned int ctx_features;
1963 	int ret;
1964 	__u64 features;
1965 
1966 	ret = -EFAULT;
1967 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1968 		goto out;
1969 	/* Ignore unsupported features (userspace built against newer kernel) */
1970 	features = uffdio_api.features & UFFD_API_FEATURES;
1971 	ret = -EPERM;
1972 	if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1973 		goto err_out;
1974 	/* report all available features and ioctls to userland */
1975 	uffdio_api.features = UFFD_API_FEATURES;
1976 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1977 	uffdio_api.features &=
1978 		~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
1979 #endif
1980 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1981 	uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
1982 #endif
1983 #ifndef CONFIG_PTE_MARKER_UFFD_WP
1984 	uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
1985 #endif
1986 	uffdio_api.ioctls = UFFD_API_IOCTLS;
1987 	ret = -EFAULT;
1988 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1989 		goto out;
1990 
1991 	/* only enable the requested features for this uffd context */
1992 	ctx_features = uffd_ctx_features(features);
1993 	ret = -EINVAL;
1994 	if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
1995 		goto err_out;
1996 
1997 	ret = 0;
1998 out:
1999 	return ret;
2000 err_out:
2001 	memset(&uffdio_api, 0, sizeof(uffdio_api));
2002 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2003 		ret = -EFAULT;
2004 	goto out;
2005 }
2006 
2007 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2008 			      unsigned long arg)
2009 {
2010 	int ret = -EINVAL;
2011 	struct userfaultfd_ctx *ctx = file->private_data;
2012 
2013 	if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2014 		return -EINVAL;
2015 
2016 	switch(cmd) {
2017 	case UFFDIO_API:
2018 		ret = userfaultfd_api(ctx, arg);
2019 		break;
2020 	case UFFDIO_REGISTER:
2021 		ret = userfaultfd_register(ctx, arg);
2022 		break;
2023 	case UFFDIO_UNREGISTER:
2024 		ret = userfaultfd_unregister(ctx, arg);
2025 		break;
2026 	case UFFDIO_WAKE:
2027 		ret = userfaultfd_wake(ctx, arg);
2028 		break;
2029 	case UFFDIO_COPY:
2030 		ret = userfaultfd_copy(ctx, arg);
2031 		break;
2032 	case UFFDIO_ZEROPAGE:
2033 		ret = userfaultfd_zeropage(ctx, arg);
2034 		break;
2035 	case UFFDIO_WRITEPROTECT:
2036 		ret = userfaultfd_writeprotect(ctx, arg);
2037 		break;
2038 	case UFFDIO_CONTINUE:
2039 		ret = userfaultfd_continue(ctx, arg);
2040 		break;
2041 	}
2042 	return ret;
2043 }
2044 
2045 #ifdef CONFIG_PROC_FS
2046 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2047 {
2048 	struct userfaultfd_ctx *ctx = f->private_data;
2049 	wait_queue_entry_t *wq;
2050 	unsigned long pending = 0, total = 0;
2051 
2052 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
2053 	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2054 		pending++;
2055 		total++;
2056 	}
2057 	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2058 		total++;
2059 	}
2060 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2061 
2062 	/*
2063 	 * If more protocols will be added, there will be all shown
2064 	 * separated by a space. Like this:
2065 	 *	protocols: aa:... bb:...
2066 	 */
2067 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2068 		   pending, total, UFFD_API, ctx->features,
2069 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2070 }
2071 #endif
2072 
2073 static const struct file_operations userfaultfd_fops = {
2074 #ifdef CONFIG_PROC_FS
2075 	.show_fdinfo	= userfaultfd_show_fdinfo,
2076 #endif
2077 	.release	= userfaultfd_release,
2078 	.poll		= userfaultfd_poll,
2079 	.read		= userfaultfd_read,
2080 	.unlocked_ioctl = userfaultfd_ioctl,
2081 	.compat_ioctl	= compat_ptr_ioctl,
2082 	.llseek		= noop_llseek,
2083 };
2084 
2085 static void init_once_userfaultfd_ctx(void *mem)
2086 {
2087 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2088 
2089 	init_waitqueue_head(&ctx->fault_pending_wqh);
2090 	init_waitqueue_head(&ctx->fault_wqh);
2091 	init_waitqueue_head(&ctx->event_wqh);
2092 	init_waitqueue_head(&ctx->fd_wqh);
2093 	seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2094 }
2095 
2096 static int new_userfaultfd(int flags)
2097 {
2098 	struct userfaultfd_ctx *ctx;
2099 	int fd;
2100 
2101 	BUG_ON(!current->mm);
2102 
2103 	/* Check the UFFD_* constants for consistency.  */
2104 	BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2105 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2106 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2107 
2108 	if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2109 		return -EINVAL;
2110 
2111 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2112 	if (!ctx)
2113 		return -ENOMEM;
2114 
2115 	refcount_set(&ctx->refcount, 1);
2116 	ctx->flags = flags;
2117 	ctx->features = 0;
2118 	ctx->released = false;
2119 	atomic_set(&ctx->mmap_changing, 0);
2120 	ctx->mm = current->mm;
2121 	/* prevent the mm struct to be freed */
2122 	mmgrab(ctx->mm);
2123 
2124 	fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2125 			O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2126 	if (fd < 0) {
2127 		mmdrop(ctx->mm);
2128 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2129 	}
2130 	return fd;
2131 }
2132 
2133 static inline bool userfaultfd_syscall_allowed(int flags)
2134 {
2135 	/* Userspace-only page faults are always allowed */
2136 	if (flags & UFFD_USER_MODE_ONLY)
2137 		return true;
2138 
2139 	/*
2140 	 * The user is requesting a userfaultfd which can handle kernel faults.
2141 	 * Privileged users are always allowed to do this.
2142 	 */
2143 	if (capable(CAP_SYS_PTRACE))
2144 		return true;
2145 
2146 	/* Otherwise, access to kernel fault handling is sysctl controlled. */
2147 	return sysctl_unprivileged_userfaultfd;
2148 }
2149 
2150 SYSCALL_DEFINE1(userfaultfd, int, flags)
2151 {
2152 	if (!userfaultfd_syscall_allowed(flags))
2153 		return -EPERM;
2154 
2155 	return new_userfaultfd(flags);
2156 }
2157 
2158 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2159 {
2160 	if (cmd != USERFAULTFD_IOC_NEW)
2161 		return -EINVAL;
2162 
2163 	return new_userfaultfd(flags);
2164 }
2165 
2166 static const struct file_operations userfaultfd_dev_fops = {
2167 	.unlocked_ioctl = userfaultfd_dev_ioctl,
2168 	.compat_ioctl = userfaultfd_dev_ioctl,
2169 	.owner = THIS_MODULE,
2170 	.llseek = noop_llseek,
2171 };
2172 
2173 static struct miscdevice userfaultfd_misc = {
2174 	.minor = MISC_DYNAMIC_MINOR,
2175 	.name = "userfaultfd",
2176 	.fops = &userfaultfd_dev_fops
2177 };
2178 
2179 static int __init userfaultfd_init(void)
2180 {
2181 	int ret;
2182 
2183 	ret = misc_register(&userfaultfd_misc);
2184 	if (ret)
2185 		return ret;
2186 
2187 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2188 						sizeof(struct userfaultfd_ctx),
2189 						0,
2190 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2191 						init_once_userfaultfd_ctx);
2192 	return 0;
2193 }
2194 __initcall(userfaultfd_init);
2195