1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/userfaultfd.c 4 * 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 8 * 9 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 11 */ 12 13 #include <linux/list.h> 14 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/mmu_notifier.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 #include <linux/swapops.h> 33 #include <linux/miscdevice.h> 34 35 static int sysctl_unprivileged_userfaultfd __read_mostly; 36 37 #ifdef CONFIG_SYSCTL 38 static struct ctl_table vm_userfaultfd_table[] = { 39 { 40 .procname = "unprivileged_userfaultfd", 41 .data = &sysctl_unprivileged_userfaultfd, 42 .maxlen = sizeof(sysctl_unprivileged_userfaultfd), 43 .mode = 0644, 44 .proc_handler = proc_dointvec_minmax, 45 .extra1 = SYSCTL_ZERO, 46 .extra2 = SYSCTL_ONE, 47 }, 48 { } 49 }; 50 #endif 51 52 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 53 54 /* 55 * Start with fault_pending_wqh and fault_wqh so they're more likely 56 * to be in the same cacheline. 57 * 58 * Locking order: 59 * fd_wqh.lock 60 * fault_pending_wqh.lock 61 * fault_wqh.lock 62 * event_wqh.lock 63 * 64 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, 65 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's 66 * also taken in IRQ context. 67 */ 68 struct userfaultfd_ctx { 69 /* waitqueue head for the pending (i.e. not read) userfaults */ 70 wait_queue_head_t fault_pending_wqh; 71 /* waitqueue head for the userfaults */ 72 wait_queue_head_t fault_wqh; 73 /* waitqueue head for the pseudo fd to wakeup poll/read */ 74 wait_queue_head_t fd_wqh; 75 /* waitqueue head for events */ 76 wait_queue_head_t event_wqh; 77 /* a refile sequence protected by fault_pending_wqh lock */ 78 seqcount_spinlock_t refile_seq; 79 /* pseudo fd refcounting */ 80 refcount_t refcount; 81 /* userfaultfd syscall flags */ 82 unsigned int flags; 83 /* features requested from the userspace */ 84 unsigned int features; 85 /* released */ 86 bool released; 87 /* memory mappings are changing because of non-cooperative event */ 88 atomic_t mmap_changing; 89 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 90 struct mm_struct *mm; 91 }; 92 93 struct userfaultfd_fork_ctx { 94 struct userfaultfd_ctx *orig; 95 struct userfaultfd_ctx *new; 96 struct list_head list; 97 }; 98 99 struct userfaultfd_unmap_ctx { 100 struct userfaultfd_ctx *ctx; 101 unsigned long start; 102 unsigned long end; 103 struct list_head list; 104 }; 105 106 struct userfaultfd_wait_queue { 107 struct uffd_msg msg; 108 wait_queue_entry_t wq; 109 struct userfaultfd_ctx *ctx; 110 bool waken; 111 }; 112 113 struct userfaultfd_wake_range { 114 unsigned long start; 115 unsigned long len; 116 }; 117 118 /* internal indication that UFFD_API ioctl was successfully executed */ 119 #define UFFD_FEATURE_INITIALIZED (1u << 31) 120 121 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx) 122 { 123 return ctx->features & UFFD_FEATURE_INITIALIZED; 124 } 125 126 /* 127 * Whether WP_UNPOPULATED is enabled on the uffd context. It is only 128 * meaningful when userfaultfd_wp()==true on the vma and when it's 129 * anonymous. 130 */ 131 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma) 132 { 133 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 134 135 if (!ctx) 136 return false; 137 138 return ctx->features & UFFD_FEATURE_WP_UNPOPULATED; 139 } 140 141 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma, 142 vm_flags_t flags) 143 { 144 const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP; 145 146 vm_flags_reset(vma, flags); 147 /* 148 * For shared mappings, we want to enable writenotify while 149 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply 150 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes. 151 */ 152 if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed) 153 vma_set_page_prot(vma); 154 } 155 156 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 157 int wake_flags, void *key) 158 { 159 struct userfaultfd_wake_range *range = key; 160 int ret; 161 struct userfaultfd_wait_queue *uwq; 162 unsigned long start, len; 163 164 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 165 ret = 0; 166 /* len == 0 means wake all */ 167 start = range->start; 168 len = range->len; 169 if (len && (start > uwq->msg.arg.pagefault.address || 170 start + len <= uwq->msg.arg.pagefault.address)) 171 goto out; 172 WRITE_ONCE(uwq->waken, true); 173 /* 174 * The Program-Order guarantees provided by the scheduler 175 * ensure uwq->waken is visible before the task is woken. 176 */ 177 ret = wake_up_state(wq->private, mode); 178 if (ret) { 179 /* 180 * Wake only once, autoremove behavior. 181 * 182 * After the effect of list_del_init is visible to the other 183 * CPUs, the waitqueue may disappear from under us, see the 184 * !list_empty_careful() in handle_userfault(). 185 * 186 * try_to_wake_up() has an implicit smp_mb(), and the 187 * wq->private is read before calling the extern function 188 * "wake_up_state" (which in turns calls try_to_wake_up). 189 */ 190 list_del_init(&wq->entry); 191 } 192 out: 193 return ret; 194 } 195 196 /** 197 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 198 * context. 199 * @ctx: [in] Pointer to the userfaultfd context. 200 */ 201 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 202 { 203 refcount_inc(&ctx->refcount); 204 } 205 206 /** 207 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 208 * context. 209 * @ctx: [in] Pointer to userfaultfd context. 210 * 211 * The userfaultfd context reference must have been previously acquired either 212 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 213 */ 214 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 215 { 216 if (refcount_dec_and_test(&ctx->refcount)) { 217 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 218 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 219 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 220 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 221 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 222 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 223 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 224 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 225 mmdrop(ctx->mm); 226 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 227 } 228 } 229 230 static inline void msg_init(struct uffd_msg *msg) 231 { 232 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 233 /* 234 * Must use memset to zero out the paddings or kernel data is 235 * leaked to userland. 236 */ 237 memset(msg, 0, sizeof(struct uffd_msg)); 238 } 239 240 static inline struct uffd_msg userfault_msg(unsigned long address, 241 unsigned long real_address, 242 unsigned int flags, 243 unsigned long reason, 244 unsigned int features) 245 { 246 struct uffd_msg msg; 247 248 msg_init(&msg); 249 msg.event = UFFD_EVENT_PAGEFAULT; 250 251 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ? 252 real_address : address; 253 254 /* 255 * These flags indicate why the userfault occurred: 256 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault. 257 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault. 258 * - Neither of these flags being set indicates a MISSING fault. 259 * 260 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write 261 * fault. Otherwise, it was a read fault. 262 */ 263 if (flags & FAULT_FLAG_WRITE) 264 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 265 if (reason & VM_UFFD_WP) 266 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 267 if (reason & VM_UFFD_MINOR) 268 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR; 269 if (features & UFFD_FEATURE_THREAD_ID) 270 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 271 return msg; 272 } 273 274 #ifdef CONFIG_HUGETLB_PAGE 275 /* 276 * Same functionality as userfaultfd_must_wait below with modifications for 277 * hugepmd ranges. 278 */ 279 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 280 struct vm_fault *vmf, 281 unsigned long reason) 282 { 283 struct vm_area_struct *vma = vmf->vma; 284 pte_t *ptep, pte; 285 bool ret = true; 286 287 assert_fault_locked(vmf); 288 289 ptep = hugetlb_walk(vma, vmf->address, vma_mmu_pagesize(vma)); 290 if (!ptep) 291 goto out; 292 293 ret = false; 294 pte = huge_ptep_get(ptep); 295 296 /* 297 * Lockless access: we're in a wait_event so it's ok if it 298 * changes under us. PTE markers should be handled the same as none 299 * ptes here. 300 */ 301 if (huge_pte_none_mostly(pte)) 302 ret = true; 303 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 304 ret = true; 305 out: 306 return ret; 307 } 308 #else 309 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 310 struct vm_fault *vmf, 311 unsigned long reason) 312 { 313 return false; /* should never get here */ 314 } 315 #endif /* CONFIG_HUGETLB_PAGE */ 316 317 /* 318 * Verify the pagetables are still not ok after having reigstered into 319 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 320 * userfault that has already been resolved, if userfaultfd_read and 321 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 322 * threads. 323 */ 324 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 325 struct vm_fault *vmf, 326 unsigned long reason) 327 { 328 struct mm_struct *mm = ctx->mm; 329 unsigned long address = vmf->address; 330 pgd_t *pgd; 331 p4d_t *p4d; 332 pud_t *pud; 333 pmd_t *pmd, _pmd; 334 pte_t *pte; 335 pte_t ptent; 336 bool ret = true; 337 338 assert_fault_locked(vmf); 339 340 pgd = pgd_offset(mm, address); 341 if (!pgd_present(*pgd)) 342 goto out; 343 p4d = p4d_offset(pgd, address); 344 if (!p4d_present(*p4d)) 345 goto out; 346 pud = pud_offset(p4d, address); 347 if (!pud_present(*pud)) 348 goto out; 349 pmd = pmd_offset(pud, address); 350 again: 351 _pmd = pmdp_get_lockless(pmd); 352 if (pmd_none(_pmd)) 353 goto out; 354 355 ret = false; 356 if (!pmd_present(_pmd) || pmd_devmap(_pmd)) 357 goto out; 358 359 if (pmd_trans_huge(_pmd)) { 360 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) 361 ret = true; 362 goto out; 363 } 364 365 pte = pte_offset_map(pmd, address); 366 if (!pte) { 367 ret = true; 368 goto again; 369 } 370 /* 371 * Lockless access: we're in a wait_event so it's ok if it 372 * changes under us. PTE markers should be handled the same as none 373 * ptes here. 374 */ 375 ptent = ptep_get(pte); 376 if (pte_none_mostly(ptent)) 377 ret = true; 378 if (!pte_write(ptent) && (reason & VM_UFFD_WP)) 379 ret = true; 380 pte_unmap(pte); 381 382 out: 383 return ret; 384 } 385 386 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags) 387 { 388 if (flags & FAULT_FLAG_INTERRUPTIBLE) 389 return TASK_INTERRUPTIBLE; 390 391 if (flags & FAULT_FLAG_KILLABLE) 392 return TASK_KILLABLE; 393 394 return TASK_UNINTERRUPTIBLE; 395 } 396 397 /* 398 * The locking rules involved in returning VM_FAULT_RETRY depending on 399 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 400 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 401 * recommendation in __lock_page_or_retry is not an understatement. 402 * 403 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released 404 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 405 * not set. 406 * 407 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 408 * set, VM_FAULT_RETRY can still be returned if and only if there are 409 * fatal_signal_pending()s, and the mmap_lock must be released before 410 * returning it. 411 */ 412 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 413 { 414 struct vm_area_struct *vma = vmf->vma; 415 struct mm_struct *mm = vma->vm_mm; 416 struct userfaultfd_ctx *ctx; 417 struct userfaultfd_wait_queue uwq; 418 vm_fault_t ret = VM_FAULT_SIGBUS; 419 bool must_wait; 420 unsigned int blocking_state; 421 422 /* 423 * We don't do userfault handling for the final child pid update. 424 * 425 * We also don't do userfault handling during 426 * coredumping. hugetlbfs has the special 427 * hugetlb_follow_page_mask() to skip missing pages in the 428 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 429 * the no_page_table() helper in follow_page_mask(), but the 430 * shmem_vm_ops->fault method is invoked even during 431 * coredumping and it ends up here. 432 */ 433 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 434 goto out; 435 436 assert_fault_locked(vmf); 437 438 ctx = vma->vm_userfaultfd_ctx.ctx; 439 if (!ctx) 440 goto out; 441 442 BUG_ON(ctx->mm != mm); 443 444 /* Any unrecognized flag is a bug. */ 445 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS); 446 /* 0 or > 1 flags set is a bug; we expect exactly 1. */ 447 VM_BUG_ON(!reason || (reason & (reason - 1))); 448 449 if (ctx->features & UFFD_FEATURE_SIGBUS) 450 goto out; 451 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY)) 452 goto out; 453 454 /* 455 * If it's already released don't get it. This avoids to loop 456 * in __get_user_pages if userfaultfd_release waits on the 457 * caller of handle_userfault to release the mmap_lock. 458 */ 459 if (unlikely(READ_ONCE(ctx->released))) { 460 /* 461 * Don't return VM_FAULT_SIGBUS in this case, so a non 462 * cooperative manager can close the uffd after the 463 * last UFFDIO_COPY, without risking to trigger an 464 * involuntary SIGBUS if the process was starting the 465 * userfaultfd while the userfaultfd was still armed 466 * (but after the last UFFDIO_COPY). If the uffd 467 * wasn't already closed when the userfault reached 468 * this point, that would normally be solved by 469 * userfaultfd_must_wait returning 'false'. 470 * 471 * If we were to return VM_FAULT_SIGBUS here, the non 472 * cooperative manager would be instead forced to 473 * always call UFFDIO_UNREGISTER before it can safely 474 * close the uffd. 475 */ 476 ret = VM_FAULT_NOPAGE; 477 goto out; 478 } 479 480 /* 481 * Check that we can return VM_FAULT_RETRY. 482 * 483 * NOTE: it should become possible to return VM_FAULT_RETRY 484 * even if FAULT_FLAG_TRIED is set without leading to gup() 485 * -EBUSY failures, if the userfaultfd is to be extended for 486 * VM_UFFD_WP tracking and we intend to arm the userfault 487 * without first stopping userland access to the memory. For 488 * VM_UFFD_MISSING userfaults this is enough for now. 489 */ 490 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 491 /* 492 * Validate the invariant that nowait must allow retry 493 * to be sure not to return SIGBUS erroneously on 494 * nowait invocations. 495 */ 496 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 497 #ifdef CONFIG_DEBUG_VM 498 if (printk_ratelimit()) { 499 printk(KERN_WARNING 500 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 501 vmf->flags); 502 dump_stack(); 503 } 504 #endif 505 goto out; 506 } 507 508 /* 509 * Handle nowait, not much to do other than tell it to retry 510 * and wait. 511 */ 512 ret = VM_FAULT_RETRY; 513 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 514 goto out; 515 516 /* take the reference before dropping the mmap_lock */ 517 userfaultfd_ctx_get(ctx); 518 519 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 520 uwq.wq.private = current; 521 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags, 522 reason, ctx->features); 523 uwq.ctx = ctx; 524 uwq.waken = false; 525 526 blocking_state = userfaultfd_get_blocking_state(vmf->flags); 527 528 /* 529 * Take the vma lock now, in order to safely call 530 * userfaultfd_huge_must_wait() later. Since acquiring the 531 * (sleepable) vma lock can modify the current task state, that 532 * must be before explicitly calling set_current_state(). 533 */ 534 if (is_vm_hugetlb_page(vma)) 535 hugetlb_vma_lock_read(vma); 536 537 spin_lock_irq(&ctx->fault_pending_wqh.lock); 538 /* 539 * After the __add_wait_queue the uwq is visible to userland 540 * through poll/read(). 541 */ 542 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 543 /* 544 * The smp_mb() after __set_current_state prevents the reads 545 * following the spin_unlock to happen before the list_add in 546 * __add_wait_queue. 547 */ 548 set_current_state(blocking_state); 549 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 550 551 if (!is_vm_hugetlb_page(vma)) 552 must_wait = userfaultfd_must_wait(ctx, vmf, reason); 553 else 554 must_wait = userfaultfd_huge_must_wait(ctx, vmf, reason); 555 if (is_vm_hugetlb_page(vma)) 556 hugetlb_vma_unlock_read(vma); 557 release_fault_lock(vmf); 558 559 if (likely(must_wait && !READ_ONCE(ctx->released))) { 560 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 561 schedule(); 562 } 563 564 __set_current_state(TASK_RUNNING); 565 566 /* 567 * Here we race with the list_del; list_add in 568 * userfaultfd_ctx_read(), however because we don't ever run 569 * list_del_init() to refile across the two lists, the prev 570 * and next pointers will never point to self. list_add also 571 * would never let any of the two pointers to point to 572 * self. So list_empty_careful won't risk to see both pointers 573 * pointing to self at any time during the list refile. The 574 * only case where list_del_init() is called is the full 575 * removal in the wake function and there we don't re-list_add 576 * and it's fine not to block on the spinlock. The uwq on this 577 * kernel stack can be released after the list_del_init. 578 */ 579 if (!list_empty_careful(&uwq.wq.entry)) { 580 spin_lock_irq(&ctx->fault_pending_wqh.lock); 581 /* 582 * No need of list_del_init(), the uwq on the stack 583 * will be freed shortly anyway. 584 */ 585 list_del(&uwq.wq.entry); 586 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 587 } 588 589 /* 590 * ctx may go away after this if the userfault pseudo fd is 591 * already released. 592 */ 593 userfaultfd_ctx_put(ctx); 594 595 out: 596 return ret; 597 } 598 599 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 600 struct userfaultfd_wait_queue *ewq) 601 { 602 struct userfaultfd_ctx *release_new_ctx; 603 604 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 605 goto out; 606 607 ewq->ctx = ctx; 608 init_waitqueue_entry(&ewq->wq, current); 609 release_new_ctx = NULL; 610 611 spin_lock_irq(&ctx->event_wqh.lock); 612 /* 613 * After the __add_wait_queue the uwq is visible to userland 614 * through poll/read(). 615 */ 616 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 617 for (;;) { 618 set_current_state(TASK_KILLABLE); 619 if (ewq->msg.event == 0) 620 break; 621 if (READ_ONCE(ctx->released) || 622 fatal_signal_pending(current)) { 623 /* 624 * &ewq->wq may be queued in fork_event, but 625 * __remove_wait_queue ignores the head 626 * parameter. It would be a problem if it 627 * didn't. 628 */ 629 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 630 if (ewq->msg.event == UFFD_EVENT_FORK) { 631 struct userfaultfd_ctx *new; 632 633 new = (struct userfaultfd_ctx *) 634 (unsigned long) 635 ewq->msg.arg.reserved.reserved1; 636 release_new_ctx = new; 637 } 638 break; 639 } 640 641 spin_unlock_irq(&ctx->event_wqh.lock); 642 643 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 644 schedule(); 645 646 spin_lock_irq(&ctx->event_wqh.lock); 647 } 648 __set_current_state(TASK_RUNNING); 649 spin_unlock_irq(&ctx->event_wqh.lock); 650 651 if (release_new_ctx) { 652 struct vm_area_struct *vma; 653 struct mm_struct *mm = release_new_ctx->mm; 654 VMA_ITERATOR(vmi, mm, 0); 655 656 /* the various vma->vm_userfaultfd_ctx still points to it */ 657 mmap_write_lock(mm); 658 for_each_vma(vmi, vma) { 659 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 660 vma_start_write(vma); 661 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 662 userfaultfd_set_vm_flags(vma, 663 vma->vm_flags & ~__VM_UFFD_FLAGS); 664 } 665 } 666 mmap_write_unlock(mm); 667 668 userfaultfd_ctx_put(release_new_ctx); 669 } 670 671 /* 672 * ctx may go away after this if the userfault pseudo fd is 673 * already released. 674 */ 675 out: 676 atomic_dec(&ctx->mmap_changing); 677 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0); 678 userfaultfd_ctx_put(ctx); 679 } 680 681 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 682 struct userfaultfd_wait_queue *ewq) 683 { 684 ewq->msg.event = 0; 685 wake_up_locked(&ctx->event_wqh); 686 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 687 } 688 689 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 690 { 691 struct userfaultfd_ctx *ctx = NULL, *octx; 692 struct userfaultfd_fork_ctx *fctx; 693 694 octx = vma->vm_userfaultfd_ctx.ctx; 695 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 696 vma_start_write(vma); 697 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 698 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS); 699 return 0; 700 } 701 702 list_for_each_entry(fctx, fcs, list) 703 if (fctx->orig == octx) { 704 ctx = fctx->new; 705 break; 706 } 707 708 if (!ctx) { 709 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 710 if (!fctx) 711 return -ENOMEM; 712 713 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 714 if (!ctx) { 715 kfree(fctx); 716 return -ENOMEM; 717 } 718 719 refcount_set(&ctx->refcount, 1); 720 ctx->flags = octx->flags; 721 ctx->features = octx->features; 722 ctx->released = false; 723 atomic_set(&ctx->mmap_changing, 0); 724 ctx->mm = vma->vm_mm; 725 mmgrab(ctx->mm); 726 727 userfaultfd_ctx_get(octx); 728 atomic_inc(&octx->mmap_changing); 729 fctx->orig = octx; 730 fctx->new = ctx; 731 list_add_tail(&fctx->list, fcs); 732 } 733 734 vma->vm_userfaultfd_ctx.ctx = ctx; 735 return 0; 736 } 737 738 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 739 { 740 struct userfaultfd_ctx *ctx = fctx->orig; 741 struct userfaultfd_wait_queue ewq; 742 743 msg_init(&ewq.msg); 744 745 ewq.msg.event = UFFD_EVENT_FORK; 746 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 747 748 userfaultfd_event_wait_completion(ctx, &ewq); 749 } 750 751 void dup_userfaultfd_complete(struct list_head *fcs) 752 { 753 struct userfaultfd_fork_ctx *fctx, *n; 754 755 list_for_each_entry_safe(fctx, n, fcs, list) { 756 dup_fctx(fctx); 757 list_del(&fctx->list); 758 kfree(fctx); 759 } 760 } 761 762 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 763 struct vm_userfaultfd_ctx *vm_ctx) 764 { 765 struct userfaultfd_ctx *ctx; 766 767 ctx = vma->vm_userfaultfd_ctx.ctx; 768 769 if (!ctx) 770 return; 771 772 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 773 vm_ctx->ctx = ctx; 774 userfaultfd_ctx_get(ctx); 775 atomic_inc(&ctx->mmap_changing); 776 } else { 777 /* Drop uffd context if remap feature not enabled */ 778 vma_start_write(vma); 779 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 780 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS); 781 } 782 } 783 784 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 785 unsigned long from, unsigned long to, 786 unsigned long len) 787 { 788 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 789 struct userfaultfd_wait_queue ewq; 790 791 if (!ctx) 792 return; 793 794 if (to & ~PAGE_MASK) { 795 userfaultfd_ctx_put(ctx); 796 return; 797 } 798 799 msg_init(&ewq.msg); 800 801 ewq.msg.event = UFFD_EVENT_REMAP; 802 ewq.msg.arg.remap.from = from; 803 ewq.msg.arg.remap.to = to; 804 ewq.msg.arg.remap.len = len; 805 806 userfaultfd_event_wait_completion(ctx, &ewq); 807 } 808 809 bool userfaultfd_remove(struct vm_area_struct *vma, 810 unsigned long start, unsigned long end) 811 { 812 struct mm_struct *mm = vma->vm_mm; 813 struct userfaultfd_ctx *ctx; 814 struct userfaultfd_wait_queue ewq; 815 816 ctx = vma->vm_userfaultfd_ctx.ctx; 817 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 818 return true; 819 820 userfaultfd_ctx_get(ctx); 821 atomic_inc(&ctx->mmap_changing); 822 mmap_read_unlock(mm); 823 824 msg_init(&ewq.msg); 825 826 ewq.msg.event = UFFD_EVENT_REMOVE; 827 ewq.msg.arg.remove.start = start; 828 ewq.msg.arg.remove.end = end; 829 830 userfaultfd_event_wait_completion(ctx, &ewq); 831 832 return false; 833 } 834 835 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 836 unsigned long start, unsigned long end) 837 { 838 struct userfaultfd_unmap_ctx *unmap_ctx; 839 840 list_for_each_entry(unmap_ctx, unmaps, list) 841 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 842 unmap_ctx->end == end) 843 return true; 844 845 return false; 846 } 847 848 int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start, 849 unsigned long end, struct list_head *unmaps) 850 { 851 struct userfaultfd_unmap_ctx *unmap_ctx; 852 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 853 854 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 855 has_unmap_ctx(ctx, unmaps, start, end)) 856 return 0; 857 858 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 859 if (!unmap_ctx) 860 return -ENOMEM; 861 862 userfaultfd_ctx_get(ctx); 863 atomic_inc(&ctx->mmap_changing); 864 unmap_ctx->ctx = ctx; 865 unmap_ctx->start = start; 866 unmap_ctx->end = end; 867 list_add_tail(&unmap_ctx->list, unmaps); 868 869 return 0; 870 } 871 872 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 873 { 874 struct userfaultfd_unmap_ctx *ctx, *n; 875 struct userfaultfd_wait_queue ewq; 876 877 list_for_each_entry_safe(ctx, n, uf, list) { 878 msg_init(&ewq.msg); 879 880 ewq.msg.event = UFFD_EVENT_UNMAP; 881 ewq.msg.arg.remove.start = ctx->start; 882 ewq.msg.arg.remove.end = ctx->end; 883 884 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 885 886 list_del(&ctx->list); 887 kfree(ctx); 888 } 889 } 890 891 static int userfaultfd_release(struct inode *inode, struct file *file) 892 { 893 struct userfaultfd_ctx *ctx = file->private_data; 894 struct mm_struct *mm = ctx->mm; 895 struct vm_area_struct *vma, *prev; 896 /* len == 0 means wake all */ 897 struct userfaultfd_wake_range range = { .len = 0, }; 898 unsigned long new_flags; 899 VMA_ITERATOR(vmi, mm, 0); 900 901 WRITE_ONCE(ctx->released, true); 902 903 if (!mmget_not_zero(mm)) 904 goto wakeup; 905 906 /* 907 * Flush page faults out of all CPUs. NOTE: all page faults 908 * must be retried without returning VM_FAULT_SIGBUS if 909 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 910 * changes while handle_userfault released the mmap_lock. So 911 * it's critical that released is set to true (above), before 912 * taking the mmap_lock for writing. 913 */ 914 mmap_write_lock(mm); 915 prev = NULL; 916 for_each_vma(vmi, vma) { 917 cond_resched(); 918 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 919 !!(vma->vm_flags & __VM_UFFD_FLAGS)); 920 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 921 prev = vma; 922 continue; 923 } 924 /* Reset ptes for the whole vma range if wr-protected */ 925 if (userfaultfd_wp(vma)) 926 uffd_wp_range(vma, vma->vm_start, 927 vma->vm_end - vma->vm_start, false); 928 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 929 prev = vma_merge(&vmi, mm, prev, vma->vm_start, vma->vm_end, 930 new_flags, vma->anon_vma, 931 vma->vm_file, vma->vm_pgoff, 932 vma_policy(vma), 933 NULL_VM_UFFD_CTX, anon_vma_name(vma)); 934 if (prev) { 935 vma = prev; 936 } else { 937 prev = vma; 938 } 939 940 vma_start_write(vma); 941 userfaultfd_set_vm_flags(vma, new_flags); 942 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 943 } 944 mmap_write_unlock(mm); 945 mmput(mm); 946 wakeup: 947 /* 948 * After no new page faults can wait on this fault_*wqh, flush 949 * the last page faults that may have been already waiting on 950 * the fault_*wqh. 951 */ 952 spin_lock_irq(&ctx->fault_pending_wqh.lock); 953 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 954 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 955 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 956 957 /* Flush pending events that may still wait on event_wqh */ 958 wake_up_all(&ctx->event_wqh); 959 960 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 961 userfaultfd_ctx_put(ctx); 962 return 0; 963 } 964 965 /* fault_pending_wqh.lock must be hold by the caller */ 966 static inline struct userfaultfd_wait_queue *find_userfault_in( 967 wait_queue_head_t *wqh) 968 { 969 wait_queue_entry_t *wq; 970 struct userfaultfd_wait_queue *uwq; 971 972 lockdep_assert_held(&wqh->lock); 973 974 uwq = NULL; 975 if (!waitqueue_active(wqh)) 976 goto out; 977 /* walk in reverse to provide FIFO behavior to read userfaults */ 978 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 979 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 980 out: 981 return uwq; 982 } 983 984 static inline struct userfaultfd_wait_queue *find_userfault( 985 struct userfaultfd_ctx *ctx) 986 { 987 return find_userfault_in(&ctx->fault_pending_wqh); 988 } 989 990 static inline struct userfaultfd_wait_queue *find_userfault_evt( 991 struct userfaultfd_ctx *ctx) 992 { 993 return find_userfault_in(&ctx->event_wqh); 994 } 995 996 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 997 { 998 struct userfaultfd_ctx *ctx = file->private_data; 999 __poll_t ret; 1000 1001 poll_wait(file, &ctx->fd_wqh, wait); 1002 1003 if (!userfaultfd_is_initialized(ctx)) 1004 return EPOLLERR; 1005 1006 /* 1007 * poll() never guarantees that read won't block. 1008 * userfaults can be waken before they're read(). 1009 */ 1010 if (unlikely(!(file->f_flags & O_NONBLOCK))) 1011 return EPOLLERR; 1012 /* 1013 * lockless access to see if there are pending faults 1014 * __pollwait last action is the add_wait_queue but 1015 * the spin_unlock would allow the waitqueue_active to 1016 * pass above the actual list_add inside 1017 * add_wait_queue critical section. So use a full 1018 * memory barrier to serialize the list_add write of 1019 * add_wait_queue() with the waitqueue_active read 1020 * below. 1021 */ 1022 ret = 0; 1023 smp_mb(); 1024 if (waitqueue_active(&ctx->fault_pending_wqh)) 1025 ret = EPOLLIN; 1026 else if (waitqueue_active(&ctx->event_wqh)) 1027 ret = EPOLLIN; 1028 1029 return ret; 1030 } 1031 1032 static const struct file_operations userfaultfd_fops; 1033 1034 static int resolve_userfault_fork(struct userfaultfd_ctx *new, 1035 struct inode *inode, 1036 struct uffd_msg *msg) 1037 { 1038 int fd; 1039 1040 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new, 1041 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode); 1042 if (fd < 0) 1043 return fd; 1044 1045 msg->arg.reserved.reserved1 = 0; 1046 msg->arg.fork.ufd = fd; 1047 return 0; 1048 } 1049 1050 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1051 struct uffd_msg *msg, struct inode *inode) 1052 { 1053 ssize_t ret; 1054 DECLARE_WAITQUEUE(wait, current); 1055 struct userfaultfd_wait_queue *uwq; 1056 /* 1057 * Handling fork event requires sleeping operations, so 1058 * we drop the event_wqh lock, then do these ops, then 1059 * lock it back and wake up the waiter. While the lock is 1060 * dropped the ewq may go away so we keep track of it 1061 * carefully. 1062 */ 1063 LIST_HEAD(fork_event); 1064 struct userfaultfd_ctx *fork_nctx = NULL; 1065 1066 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1067 spin_lock_irq(&ctx->fd_wqh.lock); 1068 __add_wait_queue(&ctx->fd_wqh, &wait); 1069 for (;;) { 1070 set_current_state(TASK_INTERRUPTIBLE); 1071 spin_lock(&ctx->fault_pending_wqh.lock); 1072 uwq = find_userfault(ctx); 1073 if (uwq) { 1074 /* 1075 * Use a seqcount to repeat the lockless check 1076 * in wake_userfault() to avoid missing 1077 * wakeups because during the refile both 1078 * waitqueue could become empty if this is the 1079 * only userfault. 1080 */ 1081 write_seqcount_begin(&ctx->refile_seq); 1082 1083 /* 1084 * The fault_pending_wqh.lock prevents the uwq 1085 * to disappear from under us. 1086 * 1087 * Refile this userfault from 1088 * fault_pending_wqh to fault_wqh, it's not 1089 * pending anymore after we read it. 1090 * 1091 * Use list_del() by hand (as 1092 * userfaultfd_wake_function also uses 1093 * list_del_init() by hand) to be sure nobody 1094 * changes __remove_wait_queue() to use 1095 * list_del_init() in turn breaking the 1096 * !list_empty_careful() check in 1097 * handle_userfault(). The uwq->wq.head list 1098 * must never be empty at any time during the 1099 * refile, or the waitqueue could disappear 1100 * from under us. The "wait_queue_head_t" 1101 * parameter of __remove_wait_queue() is unused 1102 * anyway. 1103 */ 1104 list_del(&uwq->wq.entry); 1105 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1106 1107 write_seqcount_end(&ctx->refile_seq); 1108 1109 /* careful to always initialize msg if ret == 0 */ 1110 *msg = uwq->msg; 1111 spin_unlock(&ctx->fault_pending_wqh.lock); 1112 ret = 0; 1113 break; 1114 } 1115 spin_unlock(&ctx->fault_pending_wqh.lock); 1116 1117 spin_lock(&ctx->event_wqh.lock); 1118 uwq = find_userfault_evt(ctx); 1119 if (uwq) { 1120 *msg = uwq->msg; 1121 1122 if (uwq->msg.event == UFFD_EVENT_FORK) { 1123 fork_nctx = (struct userfaultfd_ctx *) 1124 (unsigned long) 1125 uwq->msg.arg.reserved.reserved1; 1126 list_move(&uwq->wq.entry, &fork_event); 1127 /* 1128 * fork_nctx can be freed as soon as 1129 * we drop the lock, unless we take a 1130 * reference on it. 1131 */ 1132 userfaultfd_ctx_get(fork_nctx); 1133 spin_unlock(&ctx->event_wqh.lock); 1134 ret = 0; 1135 break; 1136 } 1137 1138 userfaultfd_event_complete(ctx, uwq); 1139 spin_unlock(&ctx->event_wqh.lock); 1140 ret = 0; 1141 break; 1142 } 1143 spin_unlock(&ctx->event_wqh.lock); 1144 1145 if (signal_pending(current)) { 1146 ret = -ERESTARTSYS; 1147 break; 1148 } 1149 if (no_wait) { 1150 ret = -EAGAIN; 1151 break; 1152 } 1153 spin_unlock_irq(&ctx->fd_wqh.lock); 1154 schedule(); 1155 spin_lock_irq(&ctx->fd_wqh.lock); 1156 } 1157 __remove_wait_queue(&ctx->fd_wqh, &wait); 1158 __set_current_state(TASK_RUNNING); 1159 spin_unlock_irq(&ctx->fd_wqh.lock); 1160 1161 if (!ret && msg->event == UFFD_EVENT_FORK) { 1162 ret = resolve_userfault_fork(fork_nctx, inode, msg); 1163 spin_lock_irq(&ctx->event_wqh.lock); 1164 if (!list_empty(&fork_event)) { 1165 /* 1166 * The fork thread didn't abort, so we can 1167 * drop the temporary refcount. 1168 */ 1169 userfaultfd_ctx_put(fork_nctx); 1170 1171 uwq = list_first_entry(&fork_event, 1172 typeof(*uwq), 1173 wq.entry); 1174 /* 1175 * If fork_event list wasn't empty and in turn 1176 * the event wasn't already released by fork 1177 * (the event is allocated on fork kernel 1178 * stack), put the event back to its place in 1179 * the event_wq. fork_event head will be freed 1180 * as soon as we return so the event cannot 1181 * stay queued there no matter the current 1182 * "ret" value. 1183 */ 1184 list_del(&uwq->wq.entry); 1185 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1186 1187 /* 1188 * Leave the event in the waitqueue and report 1189 * error to userland if we failed to resolve 1190 * the userfault fork. 1191 */ 1192 if (likely(!ret)) 1193 userfaultfd_event_complete(ctx, uwq); 1194 } else { 1195 /* 1196 * Here the fork thread aborted and the 1197 * refcount from the fork thread on fork_nctx 1198 * has already been released. We still hold 1199 * the reference we took before releasing the 1200 * lock above. If resolve_userfault_fork 1201 * failed we've to drop it because the 1202 * fork_nctx has to be freed in such case. If 1203 * it succeeded we'll hold it because the new 1204 * uffd references it. 1205 */ 1206 if (ret) 1207 userfaultfd_ctx_put(fork_nctx); 1208 } 1209 spin_unlock_irq(&ctx->event_wqh.lock); 1210 } 1211 1212 return ret; 1213 } 1214 1215 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1216 size_t count, loff_t *ppos) 1217 { 1218 struct userfaultfd_ctx *ctx = file->private_data; 1219 ssize_t _ret, ret = 0; 1220 struct uffd_msg msg; 1221 int no_wait = file->f_flags & O_NONBLOCK; 1222 struct inode *inode = file_inode(file); 1223 1224 if (!userfaultfd_is_initialized(ctx)) 1225 return -EINVAL; 1226 1227 for (;;) { 1228 if (count < sizeof(msg)) 1229 return ret ? ret : -EINVAL; 1230 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode); 1231 if (_ret < 0) 1232 return ret ? ret : _ret; 1233 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1234 return ret ? ret : -EFAULT; 1235 ret += sizeof(msg); 1236 buf += sizeof(msg); 1237 count -= sizeof(msg); 1238 /* 1239 * Allow to read more than one fault at time but only 1240 * block if waiting for the very first one. 1241 */ 1242 no_wait = O_NONBLOCK; 1243 } 1244 } 1245 1246 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1247 struct userfaultfd_wake_range *range) 1248 { 1249 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1250 /* wake all in the range and autoremove */ 1251 if (waitqueue_active(&ctx->fault_pending_wqh)) 1252 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1253 range); 1254 if (waitqueue_active(&ctx->fault_wqh)) 1255 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1256 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1257 } 1258 1259 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1260 struct userfaultfd_wake_range *range) 1261 { 1262 unsigned seq; 1263 bool need_wakeup; 1264 1265 /* 1266 * To be sure waitqueue_active() is not reordered by the CPU 1267 * before the pagetable update, use an explicit SMP memory 1268 * barrier here. PT lock release or mmap_read_unlock(mm) still 1269 * have release semantics that can allow the 1270 * waitqueue_active() to be reordered before the pte update. 1271 */ 1272 smp_mb(); 1273 1274 /* 1275 * Use waitqueue_active because it's very frequent to 1276 * change the address space atomically even if there are no 1277 * userfaults yet. So we take the spinlock only when we're 1278 * sure we've userfaults to wake. 1279 */ 1280 do { 1281 seq = read_seqcount_begin(&ctx->refile_seq); 1282 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1283 waitqueue_active(&ctx->fault_wqh); 1284 cond_resched(); 1285 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1286 if (need_wakeup) 1287 __wake_userfault(ctx, range); 1288 } 1289 1290 static __always_inline int validate_unaligned_range( 1291 struct mm_struct *mm, __u64 start, __u64 len) 1292 { 1293 __u64 task_size = mm->task_size; 1294 1295 if (len & ~PAGE_MASK) 1296 return -EINVAL; 1297 if (!len) 1298 return -EINVAL; 1299 if (start < mmap_min_addr) 1300 return -EINVAL; 1301 if (start >= task_size) 1302 return -EINVAL; 1303 if (len > task_size - start) 1304 return -EINVAL; 1305 if (start + len <= start) 1306 return -EINVAL; 1307 return 0; 1308 } 1309 1310 static __always_inline int validate_range(struct mm_struct *mm, 1311 __u64 start, __u64 len) 1312 { 1313 if (start & ~PAGE_MASK) 1314 return -EINVAL; 1315 1316 return validate_unaligned_range(mm, start, len); 1317 } 1318 1319 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1320 unsigned long arg) 1321 { 1322 struct mm_struct *mm = ctx->mm; 1323 struct vm_area_struct *vma, *prev, *cur; 1324 int ret; 1325 struct uffdio_register uffdio_register; 1326 struct uffdio_register __user *user_uffdio_register; 1327 unsigned long vm_flags, new_flags; 1328 bool found; 1329 bool basic_ioctls; 1330 unsigned long start, end, vma_end; 1331 struct vma_iterator vmi; 1332 pgoff_t pgoff; 1333 1334 user_uffdio_register = (struct uffdio_register __user *) arg; 1335 1336 ret = -EFAULT; 1337 if (copy_from_user(&uffdio_register, user_uffdio_register, 1338 sizeof(uffdio_register)-sizeof(__u64))) 1339 goto out; 1340 1341 ret = -EINVAL; 1342 if (!uffdio_register.mode) 1343 goto out; 1344 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES) 1345 goto out; 1346 vm_flags = 0; 1347 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1348 vm_flags |= VM_UFFD_MISSING; 1349 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1350 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1351 goto out; 1352 #endif 1353 vm_flags |= VM_UFFD_WP; 1354 } 1355 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) { 1356 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1357 goto out; 1358 #endif 1359 vm_flags |= VM_UFFD_MINOR; 1360 } 1361 1362 ret = validate_range(mm, uffdio_register.range.start, 1363 uffdio_register.range.len); 1364 if (ret) 1365 goto out; 1366 1367 start = uffdio_register.range.start; 1368 end = start + uffdio_register.range.len; 1369 1370 ret = -ENOMEM; 1371 if (!mmget_not_zero(mm)) 1372 goto out; 1373 1374 ret = -EINVAL; 1375 mmap_write_lock(mm); 1376 vma_iter_init(&vmi, mm, start); 1377 vma = vma_find(&vmi, end); 1378 if (!vma) 1379 goto out_unlock; 1380 1381 /* 1382 * If the first vma contains huge pages, make sure start address 1383 * is aligned to huge page size. 1384 */ 1385 if (is_vm_hugetlb_page(vma)) { 1386 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1387 1388 if (start & (vma_hpagesize - 1)) 1389 goto out_unlock; 1390 } 1391 1392 /* 1393 * Search for not compatible vmas. 1394 */ 1395 found = false; 1396 basic_ioctls = false; 1397 cur = vma; 1398 do { 1399 cond_resched(); 1400 1401 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1402 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1403 1404 /* check not compatible vmas */ 1405 ret = -EINVAL; 1406 if (!vma_can_userfault(cur, vm_flags)) 1407 goto out_unlock; 1408 1409 /* 1410 * UFFDIO_COPY will fill file holes even without 1411 * PROT_WRITE. This check enforces that if this is a 1412 * MAP_SHARED, the process has write permission to the backing 1413 * file. If VM_MAYWRITE is set it also enforces that on a 1414 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1415 * F_WRITE_SEAL can be taken until the vma is destroyed. 1416 */ 1417 ret = -EPERM; 1418 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1419 goto out_unlock; 1420 1421 /* 1422 * If this vma contains ending address, and huge pages 1423 * check alignment. 1424 */ 1425 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1426 end > cur->vm_start) { 1427 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1428 1429 ret = -EINVAL; 1430 1431 if (end & (vma_hpagesize - 1)) 1432 goto out_unlock; 1433 } 1434 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) 1435 goto out_unlock; 1436 1437 /* 1438 * Check that this vma isn't already owned by a 1439 * different userfaultfd. We can't allow more than one 1440 * userfaultfd to own a single vma simultaneously or we 1441 * wouldn't know which one to deliver the userfaults to. 1442 */ 1443 ret = -EBUSY; 1444 if (cur->vm_userfaultfd_ctx.ctx && 1445 cur->vm_userfaultfd_ctx.ctx != ctx) 1446 goto out_unlock; 1447 1448 /* 1449 * Note vmas containing huge pages 1450 */ 1451 if (is_vm_hugetlb_page(cur)) 1452 basic_ioctls = true; 1453 1454 found = true; 1455 } for_each_vma_range(vmi, cur, end); 1456 BUG_ON(!found); 1457 1458 vma_iter_set(&vmi, start); 1459 prev = vma_prev(&vmi); 1460 if (vma->vm_start < start) 1461 prev = vma; 1462 1463 ret = 0; 1464 for_each_vma_range(vmi, vma, end) { 1465 cond_resched(); 1466 1467 BUG_ON(!vma_can_userfault(vma, vm_flags)); 1468 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1469 vma->vm_userfaultfd_ctx.ctx != ctx); 1470 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1471 1472 /* 1473 * Nothing to do: this vma is already registered into this 1474 * userfaultfd and with the right tracking mode too. 1475 */ 1476 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1477 (vma->vm_flags & vm_flags) == vm_flags) 1478 goto skip; 1479 1480 if (vma->vm_start > start) 1481 start = vma->vm_start; 1482 vma_end = min(end, vma->vm_end); 1483 1484 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags; 1485 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 1486 prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags, 1487 vma->anon_vma, vma->vm_file, pgoff, 1488 vma_policy(vma), 1489 ((struct vm_userfaultfd_ctx){ ctx }), 1490 anon_vma_name(vma)); 1491 if (prev) { 1492 /* vma_merge() invalidated the mas */ 1493 vma = prev; 1494 goto next; 1495 } 1496 if (vma->vm_start < start) { 1497 ret = split_vma(&vmi, vma, start, 1); 1498 if (ret) 1499 break; 1500 } 1501 if (vma->vm_end > end) { 1502 ret = split_vma(&vmi, vma, end, 0); 1503 if (ret) 1504 break; 1505 } 1506 next: 1507 /* 1508 * In the vma_merge() successful mprotect-like case 8: 1509 * the next vma was merged into the current one and 1510 * the current one has not been updated yet. 1511 */ 1512 vma_start_write(vma); 1513 userfaultfd_set_vm_flags(vma, new_flags); 1514 vma->vm_userfaultfd_ctx.ctx = ctx; 1515 1516 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma)) 1517 hugetlb_unshare_all_pmds(vma); 1518 1519 skip: 1520 prev = vma; 1521 start = vma->vm_end; 1522 } 1523 1524 out_unlock: 1525 mmap_write_unlock(mm); 1526 mmput(mm); 1527 if (!ret) { 1528 __u64 ioctls_out; 1529 1530 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1531 UFFD_API_RANGE_IOCTLS; 1532 1533 /* 1534 * Declare the WP ioctl only if the WP mode is 1535 * specified and all checks passed with the range 1536 */ 1537 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) 1538 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); 1539 1540 /* CONTINUE ioctl is only supported for MINOR ranges. */ 1541 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR)) 1542 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE); 1543 1544 /* 1545 * Now that we scanned all vmas we can already tell 1546 * userland which ioctls methods are guaranteed to 1547 * succeed on this range. 1548 */ 1549 if (put_user(ioctls_out, &user_uffdio_register->ioctls)) 1550 ret = -EFAULT; 1551 } 1552 out: 1553 return ret; 1554 } 1555 1556 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1557 unsigned long arg) 1558 { 1559 struct mm_struct *mm = ctx->mm; 1560 struct vm_area_struct *vma, *prev, *cur; 1561 int ret; 1562 struct uffdio_range uffdio_unregister; 1563 unsigned long new_flags; 1564 bool found; 1565 unsigned long start, end, vma_end; 1566 const void __user *buf = (void __user *)arg; 1567 struct vma_iterator vmi; 1568 pgoff_t pgoff; 1569 1570 ret = -EFAULT; 1571 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1572 goto out; 1573 1574 ret = validate_range(mm, uffdio_unregister.start, 1575 uffdio_unregister.len); 1576 if (ret) 1577 goto out; 1578 1579 start = uffdio_unregister.start; 1580 end = start + uffdio_unregister.len; 1581 1582 ret = -ENOMEM; 1583 if (!mmget_not_zero(mm)) 1584 goto out; 1585 1586 mmap_write_lock(mm); 1587 ret = -EINVAL; 1588 vma_iter_init(&vmi, mm, start); 1589 vma = vma_find(&vmi, end); 1590 if (!vma) 1591 goto out_unlock; 1592 1593 /* 1594 * If the first vma contains huge pages, make sure start address 1595 * is aligned to huge page size. 1596 */ 1597 if (is_vm_hugetlb_page(vma)) { 1598 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1599 1600 if (start & (vma_hpagesize - 1)) 1601 goto out_unlock; 1602 } 1603 1604 /* 1605 * Search for not compatible vmas. 1606 */ 1607 found = false; 1608 cur = vma; 1609 do { 1610 cond_resched(); 1611 1612 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1613 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1614 1615 /* 1616 * Check not compatible vmas, not strictly required 1617 * here as not compatible vmas cannot have an 1618 * userfaultfd_ctx registered on them, but this 1619 * provides for more strict behavior to notice 1620 * unregistration errors. 1621 */ 1622 if (!vma_can_userfault(cur, cur->vm_flags)) 1623 goto out_unlock; 1624 1625 found = true; 1626 } for_each_vma_range(vmi, cur, end); 1627 BUG_ON(!found); 1628 1629 vma_iter_set(&vmi, start); 1630 prev = vma_prev(&vmi); 1631 if (vma->vm_start < start) 1632 prev = vma; 1633 1634 ret = 0; 1635 for_each_vma_range(vmi, vma, end) { 1636 cond_resched(); 1637 1638 BUG_ON(!vma_can_userfault(vma, vma->vm_flags)); 1639 1640 /* 1641 * Nothing to do: this vma is already registered into this 1642 * userfaultfd and with the right tracking mode too. 1643 */ 1644 if (!vma->vm_userfaultfd_ctx.ctx) 1645 goto skip; 1646 1647 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1648 1649 if (vma->vm_start > start) 1650 start = vma->vm_start; 1651 vma_end = min(end, vma->vm_end); 1652 1653 if (userfaultfd_missing(vma)) { 1654 /* 1655 * Wake any concurrent pending userfault while 1656 * we unregister, so they will not hang 1657 * permanently and it avoids userland to call 1658 * UFFDIO_WAKE explicitly. 1659 */ 1660 struct userfaultfd_wake_range range; 1661 range.start = start; 1662 range.len = vma_end - start; 1663 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1664 } 1665 1666 /* Reset ptes for the whole vma range if wr-protected */ 1667 if (userfaultfd_wp(vma)) 1668 uffd_wp_range(vma, start, vma_end - start, false); 1669 1670 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 1671 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 1672 prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags, 1673 vma->anon_vma, vma->vm_file, pgoff, 1674 vma_policy(vma), 1675 NULL_VM_UFFD_CTX, anon_vma_name(vma)); 1676 if (prev) { 1677 vma = prev; 1678 goto next; 1679 } 1680 if (vma->vm_start < start) { 1681 ret = split_vma(&vmi, vma, start, 1); 1682 if (ret) 1683 break; 1684 } 1685 if (vma->vm_end > end) { 1686 ret = split_vma(&vmi, vma, end, 0); 1687 if (ret) 1688 break; 1689 } 1690 next: 1691 /* 1692 * In the vma_merge() successful mprotect-like case 8: 1693 * the next vma was merged into the current one and 1694 * the current one has not been updated yet. 1695 */ 1696 vma_start_write(vma); 1697 userfaultfd_set_vm_flags(vma, new_flags); 1698 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1699 1700 skip: 1701 prev = vma; 1702 start = vma->vm_end; 1703 } 1704 1705 out_unlock: 1706 mmap_write_unlock(mm); 1707 mmput(mm); 1708 out: 1709 return ret; 1710 } 1711 1712 /* 1713 * userfaultfd_wake may be used in combination with the 1714 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1715 */ 1716 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1717 unsigned long arg) 1718 { 1719 int ret; 1720 struct uffdio_range uffdio_wake; 1721 struct userfaultfd_wake_range range; 1722 const void __user *buf = (void __user *)arg; 1723 1724 ret = -EFAULT; 1725 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1726 goto out; 1727 1728 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1729 if (ret) 1730 goto out; 1731 1732 range.start = uffdio_wake.start; 1733 range.len = uffdio_wake.len; 1734 1735 /* 1736 * len == 0 means wake all and we don't want to wake all here, 1737 * so check it again to be sure. 1738 */ 1739 VM_BUG_ON(!range.len); 1740 1741 wake_userfault(ctx, &range); 1742 ret = 0; 1743 1744 out: 1745 return ret; 1746 } 1747 1748 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1749 unsigned long arg) 1750 { 1751 __s64 ret; 1752 struct uffdio_copy uffdio_copy; 1753 struct uffdio_copy __user *user_uffdio_copy; 1754 struct userfaultfd_wake_range range; 1755 uffd_flags_t flags = 0; 1756 1757 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1758 1759 ret = -EAGAIN; 1760 if (atomic_read(&ctx->mmap_changing)) 1761 goto out; 1762 1763 ret = -EFAULT; 1764 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1765 /* don't copy "copy" last field */ 1766 sizeof(uffdio_copy)-sizeof(__s64))) 1767 goto out; 1768 1769 ret = validate_unaligned_range(ctx->mm, uffdio_copy.src, 1770 uffdio_copy.len); 1771 if (ret) 1772 goto out; 1773 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1774 if (ret) 1775 goto out; 1776 1777 ret = -EINVAL; 1778 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) 1779 goto out; 1780 if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP) 1781 flags |= MFILL_ATOMIC_WP; 1782 if (mmget_not_zero(ctx->mm)) { 1783 ret = mfill_atomic_copy(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1784 uffdio_copy.len, &ctx->mmap_changing, 1785 flags); 1786 mmput(ctx->mm); 1787 } else { 1788 return -ESRCH; 1789 } 1790 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1791 return -EFAULT; 1792 if (ret < 0) 1793 goto out; 1794 BUG_ON(!ret); 1795 /* len == 0 would wake all */ 1796 range.len = ret; 1797 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1798 range.start = uffdio_copy.dst; 1799 wake_userfault(ctx, &range); 1800 } 1801 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1802 out: 1803 return ret; 1804 } 1805 1806 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1807 unsigned long arg) 1808 { 1809 __s64 ret; 1810 struct uffdio_zeropage uffdio_zeropage; 1811 struct uffdio_zeropage __user *user_uffdio_zeropage; 1812 struct userfaultfd_wake_range range; 1813 1814 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1815 1816 ret = -EAGAIN; 1817 if (atomic_read(&ctx->mmap_changing)) 1818 goto out; 1819 1820 ret = -EFAULT; 1821 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1822 /* don't copy "zeropage" last field */ 1823 sizeof(uffdio_zeropage)-sizeof(__s64))) 1824 goto out; 1825 1826 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1827 uffdio_zeropage.range.len); 1828 if (ret) 1829 goto out; 1830 ret = -EINVAL; 1831 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1832 goto out; 1833 1834 if (mmget_not_zero(ctx->mm)) { 1835 ret = mfill_atomic_zeropage(ctx->mm, uffdio_zeropage.range.start, 1836 uffdio_zeropage.range.len, 1837 &ctx->mmap_changing); 1838 mmput(ctx->mm); 1839 } else { 1840 return -ESRCH; 1841 } 1842 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1843 return -EFAULT; 1844 if (ret < 0) 1845 goto out; 1846 /* len == 0 would wake all */ 1847 BUG_ON(!ret); 1848 range.len = ret; 1849 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1850 range.start = uffdio_zeropage.range.start; 1851 wake_userfault(ctx, &range); 1852 } 1853 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1854 out: 1855 return ret; 1856 } 1857 1858 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, 1859 unsigned long arg) 1860 { 1861 int ret; 1862 struct uffdio_writeprotect uffdio_wp; 1863 struct uffdio_writeprotect __user *user_uffdio_wp; 1864 struct userfaultfd_wake_range range; 1865 bool mode_wp, mode_dontwake; 1866 1867 if (atomic_read(&ctx->mmap_changing)) 1868 return -EAGAIN; 1869 1870 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; 1871 1872 if (copy_from_user(&uffdio_wp, user_uffdio_wp, 1873 sizeof(struct uffdio_writeprotect))) 1874 return -EFAULT; 1875 1876 ret = validate_range(ctx->mm, uffdio_wp.range.start, 1877 uffdio_wp.range.len); 1878 if (ret) 1879 return ret; 1880 1881 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | 1882 UFFDIO_WRITEPROTECT_MODE_WP)) 1883 return -EINVAL; 1884 1885 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; 1886 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; 1887 1888 if (mode_wp && mode_dontwake) 1889 return -EINVAL; 1890 1891 if (mmget_not_zero(ctx->mm)) { 1892 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start, 1893 uffdio_wp.range.len, mode_wp, 1894 &ctx->mmap_changing); 1895 mmput(ctx->mm); 1896 } else { 1897 return -ESRCH; 1898 } 1899 1900 if (ret) 1901 return ret; 1902 1903 if (!mode_wp && !mode_dontwake) { 1904 range.start = uffdio_wp.range.start; 1905 range.len = uffdio_wp.range.len; 1906 wake_userfault(ctx, &range); 1907 } 1908 return ret; 1909 } 1910 1911 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg) 1912 { 1913 __s64 ret; 1914 struct uffdio_continue uffdio_continue; 1915 struct uffdio_continue __user *user_uffdio_continue; 1916 struct userfaultfd_wake_range range; 1917 uffd_flags_t flags = 0; 1918 1919 user_uffdio_continue = (struct uffdio_continue __user *)arg; 1920 1921 ret = -EAGAIN; 1922 if (atomic_read(&ctx->mmap_changing)) 1923 goto out; 1924 1925 ret = -EFAULT; 1926 if (copy_from_user(&uffdio_continue, user_uffdio_continue, 1927 /* don't copy the output fields */ 1928 sizeof(uffdio_continue) - (sizeof(__s64)))) 1929 goto out; 1930 1931 ret = validate_range(ctx->mm, uffdio_continue.range.start, 1932 uffdio_continue.range.len); 1933 if (ret) 1934 goto out; 1935 1936 ret = -EINVAL; 1937 if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE | 1938 UFFDIO_CONTINUE_MODE_WP)) 1939 goto out; 1940 if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP) 1941 flags |= MFILL_ATOMIC_WP; 1942 1943 if (mmget_not_zero(ctx->mm)) { 1944 ret = mfill_atomic_continue(ctx->mm, uffdio_continue.range.start, 1945 uffdio_continue.range.len, 1946 &ctx->mmap_changing, flags); 1947 mmput(ctx->mm); 1948 } else { 1949 return -ESRCH; 1950 } 1951 1952 if (unlikely(put_user(ret, &user_uffdio_continue->mapped))) 1953 return -EFAULT; 1954 if (ret < 0) 1955 goto out; 1956 1957 /* len == 0 would wake all */ 1958 BUG_ON(!ret); 1959 range.len = ret; 1960 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) { 1961 range.start = uffdio_continue.range.start; 1962 wake_userfault(ctx, &range); 1963 } 1964 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN; 1965 1966 out: 1967 return ret; 1968 } 1969 1970 static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg) 1971 { 1972 __s64 ret; 1973 struct uffdio_poison uffdio_poison; 1974 struct uffdio_poison __user *user_uffdio_poison; 1975 struct userfaultfd_wake_range range; 1976 1977 user_uffdio_poison = (struct uffdio_poison __user *)arg; 1978 1979 ret = -EAGAIN; 1980 if (atomic_read(&ctx->mmap_changing)) 1981 goto out; 1982 1983 ret = -EFAULT; 1984 if (copy_from_user(&uffdio_poison, user_uffdio_poison, 1985 /* don't copy the output fields */ 1986 sizeof(uffdio_poison) - (sizeof(__s64)))) 1987 goto out; 1988 1989 ret = validate_range(ctx->mm, uffdio_poison.range.start, 1990 uffdio_poison.range.len); 1991 if (ret) 1992 goto out; 1993 1994 ret = -EINVAL; 1995 if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE) 1996 goto out; 1997 1998 if (mmget_not_zero(ctx->mm)) { 1999 ret = mfill_atomic_poison(ctx->mm, uffdio_poison.range.start, 2000 uffdio_poison.range.len, 2001 &ctx->mmap_changing, 0); 2002 mmput(ctx->mm); 2003 } else { 2004 return -ESRCH; 2005 } 2006 2007 if (unlikely(put_user(ret, &user_uffdio_poison->updated))) 2008 return -EFAULT; 2009 if (ret < 0) 2010 goto out; 2011 2012 /* len == 0 would wake all */ 2013 BUG_ON(!ret); 2014 range.len = ret; 2015 if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) { 2016 range.start = uffdio_poison.range.start; 2017 wake_userfault(ctx, &range); 2018 } 2019 ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN; 2020 2021 out: 2022 return ret; 2023 } 2024 2025 static inline unsigned int uffd_ctx_features(__u64 user_features) 2026 { 2027 /* 2028 * For the current set of features the bits just coincide. Set 2029 * UFFD_FEATURE_INITIALIZED to mark the features as enabled. 2030 */ 2031 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED; 2032 } 2033 2034 /* 2035 * userland asks for a certain API version and we return which bits 2036 * and ioctl commands are implemented in this kernel for such API 2037 * version or -EINVAL if unknown. 2038 */ 2039 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 2040 unsigned long arg) 2041 { 2042 struct uffdio_api uffdio_api; 2043 void __user *buf = (void __user *)arg; 2044 unsigned int ctx_features; 2045 int ret; 2046 __u64 features; 2047 2048 ret = -EFAULT; 2049 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 2050 goto out; 2051 features = uffdio_api.features; 2052 ret = -EINVAL; 2053 if (uffdio_api.api != UFFD_API) 2054 goto err_out; 2055 ret = -EPERM; 2056 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) 2057 goto err_out; 2058 /* report all available features and ioctls to userland */ 2059 uffdio_api.features = UFFD_API_FEATURES; 2060 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 2061 uffdio_api.features &= 2062 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM); 2063 #endif 2064 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 2065 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP; 2066 #endif 2067 #ifndef CONFIG_PTE_MARKER_UFFD_WP 2068 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM; 2069 uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED; 2070 #endif 2071 2072 ret = -EINVAL; 2073 if (features & ~uffdio_api.features) 2074 goto err_out; 2075 2076 uffdio_api.ioctls = UFFD_API_IOCTLS; 2077 ret = -EFAULT; 2078 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2079 goto out; 2080 2081 /* only enable the requested features for this uffd context */ 2082 ctx_features = uffd_ctx_features(features); 2083 ret = -EINVAL; 2084 if (cmpxchg(&ctx->features, 0, ctx_features) != 0) 2085 goto err_out; 2086 2087 ret = 0; 2088 out: 2089 return ret; 2090 err_out: 2091 memset(&uffdio_api, 0, sizeof(uffdio_api)); 2092 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2093 ret = -EFAULT; 2094 goto out; 2095 } 2096 2097 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 2098 unsigned long arg) 2099 { 2100 int ret = -EINVAL; 2101 struct userfaultfd_ctx *ctx = file->private_data; 2102 2103 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx)) 2104 return -EINVAL; 2105 2106 switch(cmd) { 2107 case UFFDIO_API: 2108 ret = userfaultfd_api(ctx, arg); 2109 break; 2110 case UFFDIO_REGISTER: 2111 ret = userfaultfd_register(ctx, arg); 2112 break; 2113 case UFFDIO_UNREGISTER: 2114 ret = userfaultfd_unregister(ctx, arg); 2115 break; 2116 case UFFDIO_WAKE: 2117 ret = userfaultfd_wake(ctx, arg); 2118 break; 2119 case UFFDIO_COPY: 2120 ret = userfaultfd_copy(ctx, arg); 2121 break; 2122 case UFFDIO_ZEROPAGE: 2123 ret = userfaultfd_zeropage(ctx, arg); 2124 break; 2125 case UFFDIO_WRITEPROTECT: 2126 ret = userfaultfd_writeprotect(ctx, arg); 2127 break; 2128 case UFFDIO_CONTINUE: 2129 ret = userfaultfd_continue(ctx, arg); 2130 break; 2131 case UFFDIO_POISON: 2132 ret = userfaultfd_poison(ctx, arg); 2133 break; 2134 } 2135 return ret; 2136 } 2137 2138 #ifdef CONFIG_PROC_FS 2139 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 2140 { 2141 struct userfaultfd_ctx *ctx = f->private_data; 2142 wait_queue_entry_t *wq; 2143 unsigned long pending = 0, total = 0; 2144 2145 spin_lock_irq(&ctx->fault_pending_wqh.lock); 2146 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 2147 pending++; 2148 total++; 2149 } 2150 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 2151 total++; 2152 } 2153 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 2154 2155 /* 2156 * If more protocols will be added, there will be all shown 2157 * separated by a space. Like this: 2158 * protocols: aa:... bb:... 2159 */ 2160 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 2161 pending, total, UFFD_API, ctx->features, 2162 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 2163 } 2164 #endif 2165 2166 static const struct file_operations userfaultfd_fops = { 2167 #ifdef CONFIG_PROC_FS 2168 .show_fdinfo = userfaultfd_show_fdinfo, 2169 #endif 2170 .release = userfaultfd_release, 2171 .poll = userfaultfd_poll, 2172 .read = userfaultfd_read, 2173 .unlocked_ioctl = userfaultfd_ioctl, 2174 .compat_ioctl = compat_ptr_ioctl, 2175 .llseek = noop_llseek, 2176 }; 2177 2178 static void init_once_userfaultfd_ctx(void *mem) 2179 { 2180 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 2181 2182 init_waitqueue_head(&ctx->fault_pending_wqh); 2183 init_waitqueue_head(&ctx->fault_wqh); 2184 init_waitqueue_head(&ctx->event_wqh); 2185 init_waitqueue_head(&ctx->fd_wqh); 2186 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); 2187 } 2188 2189 static int new_userfaultfd(int flags) 2190 { 2191 struct userfaultfd_ctx *ctx; 2192 int fd; 2193 2194 BUG_ON(!current->mm); 2195 2196 /* Check the UFFD_* constants for consistency. */ 2197 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS); 2198 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 2199 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 2200 2201 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY)) 2202 return -EINVAL; 2203 2204 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 2205 if (!ctx) 2206 return -ENOMEM; 2207 2208 refcount_set(&ctx->refcount, 1); 2209 ctx->flags = flags; 2210 ctx->features = 0; 2211 ctx->released = false; 2212 atomic_set(&ctx->mmap_changing, 0); 2213 ctx->mm = current->mm; 2214 /* prevent the mm struct to be freed */ 2215 mmgrab(ctx->mm); 2216 2217 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx, 2218 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL); 2219 if (fd < 0) { 2220 mmdrop(ctx->mm); 2221 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 2222 } 2223 return fd; 2224 } 2225 2226 static inline bool userfaultfd_syscall_allowed(int flags) 2227 { 2228 /* Userspace-only page faults are always allowed */ 2229 if (flags & UFFD_USER_MODE_ONLY) 2230 return true; 2231 2232 /* 2233 * The user is requesting a userfaultfd which can handle kernel faults. 2234 * Privileged users are always allowed to do this. 2235 */ 2236 if (capable(CAP_SYS_PTRACE)) 2237 return true; 2238 2239 /* Otherwise, access to kernel fault handling is sysctl controlled. */ 2240 return sysctl_unprivileged_userfaultfd; 2241 } 2242 2243 SYSCALL_DEFINE1(userfaultfd, int, flags) 2244 { 2245 if (!userfaultfd_syscall_allowed(flags)) 2246 return -EPERM; 2247 2248 return new_userfaultfd(flags); 2249 } 2250 2251 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags) 2252 { 2253 if (cmd != USERFAULTFD_IOC_NEW) 2254 return -EINVAL; 2255 2256 return new_userfaultfd(flags); 2257 } 2258 2259 static const struct file_operations userfaultfd_dev_fops = { 2260 .unlocked_ioctl = userfaultfd_dev_ioctl, 2261 .compat_ioctl = userfaultfd_dev_ioctl, 2262 .owner = THIS_MODULE, 2263 .llseek = noop_llseek, 2264 }; 2265 2266 static struct miscdevice userfaultfd_misc = { 2267 .minor = MISC_DYNAMIC_MINOR, 2268 .name = "userfaultfd", 2269 .fops = &userfaultfd_dev_fops 2270 }; 2271 2272 static int __init userfaultfd_init(void) 2273 { 2274 int ret; 2275 2276 ret = misc_register(&userfaultfd_misc); 2277 if (ret) 2278 return ret; 2279 2280 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 2281 sizeof(struct userfaultfd_ctx), 2282 0, 2283 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2284 init_once_userfaultfd_ctx); 2285 #ifdef CONFIG_SYSCTL 2286 register_sysctl_init("vm", vm_userfaultfd_table); 2287 #endif 2288 return 0; 2289 } 2290 __initcall(userfaultfd_init); 2291