1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/userfaultfd.c 4 * 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 8 * 9 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 11 */ 12 13 #include <linux/list.h> 14 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/seq_file.h> 21 #include <linux/file.h> 22 #include <linux/bug.h> 23 #include <linux/anon_inodes.h> 24 #include <linux/syscalls.h> 25 #include <linux/userfaultfd_k.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ioctl.h> 28 #include <linux/security.h> 29 #include <linux/hugetlb.h> 30 31 int sysctl_unprivileged_userfaultfd __read_mostly = 1; 32 33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 34 35 enum userfaultfd_state { 36 UFFD_STATE_WAIT_API, 37 UFFD_STATE_RUNNING, 38 }; 39 40 /* 41 * Start with fault_pending_wqh and fault_wqh so they're more likely 42 * to be in the same cacheline. 43 * 44 * Locking order: 45 * fd_wqh.lock 46 * fault_pending_wqh.lock 47 * fault_wqh.lock 48 * event_wqh.lock 49 * 50 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, 51 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's 52 * also taken in IRQ context. 53 */ 54 struct userfaultfd_ctx { 55 /* waitqueue head for the pending (i.e. not read) userfaults */ 56 wait_queue_head_t fault_pending_wqh; 57 /* waitqueue head for the userfaults */ 58 wait_queue_head_t fault_wqh; 59 /* waitqueue head for the pseudo fd to wakeup poll/read */ 60 wait_queue_head_t fd_wqh; 61 /* waitqueue head for events */ 62 wait_queue_head_t event_wqh; 63 /* a refile sequence protected by fault_pending_wqh lock */ 64 struct seqcount refile_seq; 65 /* pseudo fd refcounting */ 66 refcount_t refcount; 67 /* userfaultfd syscall flags */ 68 unsigned int flags; 69 /* features requested from the userspace */ 70 unsigned int features; 71 /* state machine */ 72 enum userfaultfd_state state; 73 /* released */ 74 bool released; 75 /* memory mappings are changing because of non-cooperative event */ 76 bool mmap_changing; 77 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 78 struct mm_struct *mm; 79 }; 80 81 struct userfaultfd_fork_ctx { 82 struct userfaultfd_ctx *orig; 83 struct userfaultfd_ctx *new; 84 struct list_head list; 85 }; 86 87 struct userfaultfd_unmap_ctx { 88 struct userfaultfd_ctx *ctx; 89 unsigned long start; 90 unsigned long end; 91 struct list_head list; 92 }; 93 94 struct userfaultfd_wait_queue { 95 struct uffd_msg msg; 96 wait_queue_entry_t wq; 97 struct userfaultfd_ctx *ctx; 98 bool waken; 99 }; 100 101 struct userfaultfd_wake_range { 102 unsigned long start; 103 unsigned long len; 104 }; 105 106 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 107 int wake_flags, void *key) 108 { 109 struct userfaultfd_wake_range *range = key; 110 int ret; 111 struct userfaultfd_wait_queue *uwq; 112 unsigned long start, len; 113 114 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 115 ret = 0; 116 /* len == 0 means wake all */ 117 start = range->start; 118 len = range->len; 119 if (len && (start > uwq->msg.arg.pagefault.address || 120 start + len <= uwq->msg.arg.pagefault.address)) 121 goto out; 122 WRITE_ONCE(uwq->waken, true); 123 /* 124 * The Program-Order guarantees provided by the scheduler 125 * ensure uwq->waken is visible before the task is woken. 126 */ 127 ret = wake_up_state(wq->private, mode); 128 if (ret) { 129 /* 130 * Wake only once, autoremove behavior. 131 * 132 * After the effect of list_del_init is visible to the other 133 * CPUs, the waitqueue may disappear from under us, see the 134 * !list_empty_careful() in handle_userfault(). 135 * 136 * try_to_wake_up() has an implicit smp_mb(), and the 137 * wq->private is read before calling the extern function 138 * "wake_up_state" (which in turns calls try_to_wake_up). 139 */ 140 list_del_init(&wq->entry); 141 } 142 out: 143 return ret; 144 } 145 146 /** 147 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 148 * context. 149 * @ctx: [in] Pointer to the userfaultfd context. 150 */ 151 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 152 { 153 refcount_inc(&ctx->refcount); 154 } 155 156 /** 157 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 158 * context. 159 * @ctx: [in] Pointer to userfaultfd context. 160 * 161 * The userfaultfd context reference must have been previously acquired either 162 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 163 */ 164 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 165 { 166 if (refcount_dec_and_test(&ctx->refcount)) { 167 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 168 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 169 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 170 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 171 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 172 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 173 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 174 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 175 mmdrop(ctx->mm); 176 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 177 } 178 } 179 180 static inline void msg_init(struct uffd_msg *msg) 181 { 182 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 183 /* 184 * Must use memset to zero out the paddings or kernel data is 185 * leaked to userland. 186 */ 187 memset(msg, 0, sizeof(struct uffd_msg)); 188 } 189 190 static inline struct uffd_msg userfault_msg(unsigned long address, 191 unsigned int flags, 192 unsigned long reason, 193 unsigned int features) 194 { 195 struct uffd_msg msg; 196 msg_init(&msg); 197 msg.event = UFFD_EVENT_PAGEFAULT; 198 msg.arg.pagefault.address = address; 199 if (flags & FAULT_FLAG_WRITE) 200 /* 201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE 203 * was not set in a UFFD_EVENT_PAGEFAULT, it means it 204 * was a read fault, otherwise if set it means it's 205 * a write fault. 206 */ 207 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 208 if (reason & VM_UFFD_WP) 209 /* 210 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 211 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was 212 * not set in a UFFD_EVENT_PAGEFAULT, it means it was 213 * a missing fault, otherwise if set it means it's a 214 * write protect fault. 215 */ 216 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 217 if (features & UFFD_FEATURE_THREAD_ID) 218 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 219 return msg; 220 } 221 222 #ifdef CONFIG_HUGETLB_PAGE 223 /* 224 * Same functionality as userfaultfd_must_wait below with modifications for 225 * hugepmd ranges. 226 */ 227 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 228 struct vm_area_struct *vma, 229 unsigned long address, 230 unsigned long flags, 231 unsigned long reason) 232 { 233 struct mm_struct *mm = ctx->mm; 234 pte_t *ptep, pte; 235 bool ret = true; 236 237 mmap_assert_locked(mm); 238 239 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); 240 241 if (!ptep) 242 goto out; 243 244 ret = false; 245 pte = huge_ptep_get(ptep); 246 247 /* 248 * Lockless access: we're in a wait_event so it's ok if it 249 * changes under us. 250 */ 251 if (huge_pte_none(pte)) 252 ret = true; 253 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 254 ret = true; 255 out: 256 return ret; 257 } 258 #else 259 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 260 struct vm_area_struct *vma, 261 unsigned long address, 262 unsigned long flags, 263 unsigned long reason) 264 { 265 return false; /* should never get here */ 266 } 267 #endif /* CONFIG_HUGETLB_PAGE */ 268 269 /* 270 * Verify the pagetables are still not ok after having reigstered into 271 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 272 * userfault that has already been resolved, if userfaultfd_read and 273 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 274 * threads. 275 */ 276 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 277 unsigned long address, 278 unsigned long flags, 279 unsigned long reason) 280 { 281 struct mm_struct *mm = ctx->mm; 282 pgd_t *pgd; 283 p4d_t *p4d; 284 pud_t *pud; 285 pmd_t *pmd, _pmd; 286 pte_t *pte; 287 bool ret = true; 288 289 mmap_assert_locked(mm); 290 291 pgd = pgd_offset(mm, address); 292 if (!pgd_present(*pgd)) 293 goto out; 294 p4d = p4d_offset(pgd, address); 295 if (!p4d_present(*p4d)) 296 goto out; 297 pud = pud_offset(p4d, address); 298 if (!pud_present(*pud)) 299 goto out; 300 pmd = pmd_offset(pud, address); 301 /* 302 * READ_ONCE must function as a barrier with narrower scope 303 * and it must be equivalent to: 304 * _pmd = *pmd; barrier(); 305 * 306 * This is to deal with the instability (as in 307 * pmd_trans_unstable) of the pmd. 308 */ 309 _pmd = READ_ONCE(*pmd); 310 if (pmd_none(_pmd)) 311 goto out; 312 313 ret = false; 314 if (!pmd_present(_pmd)) 315 goto out; 316 317 if (pmd_trans_huge(_pmd)) { 318 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) 319 ret = true; 320 goto out; 321 } 322 323 /* 324 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 325 * and use the standard pte_offset_map() instead of parsing _pmd. 326 */ 327 pte = pte_offset_map(pmd, address); 328 /* 329 * Lockless access: we're in a wait_event so it's ok if it 330 * changes under us. 331 */ 332 if (pte_none(*pte)) 333 ret = true; 334 if (!pte_write(*pte) && (reason & VM_UFFD_WP)) 335 ret = true; 336 pte_unmap(pte); 337 338 out: 339 return ret; 340 } 341 342 /* Should pair with userfaultfd_signal_pending() */ 343 static inline long userfaultfd_get_blocking_state(unsigned int flags) 344 { 345 if (flags & FAULT_FLAG_INTERRUPTIBLE) 346 return TASK_INTERRUPTIBLE; 347 348 if (flags & FAULT_FLAG_KILLABLE) 349 return TASK_KILLABLE; 350 351 return TASK_UNINTERRUPTIBLE; 352 } 353 354 /* Should pair with userfaultfd_get_blocking_state() */ 355 static inline bool userfaultfd_signal_pending(unsigned int flags) 356 { 357 if (flags & FAULT_FLAG_INTERRUPTIBLE) 358 return signal_pending(current); 359 360 if (flags & FAULT_FLAG_KILLABLE) 361 return fatal_signal_pending(current); 362 363 return false; 364 } 365 366 /* 367 * The locking rules involved in returning VM_FAULT_RETRY depending on 368 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 369 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 370 * recommendation in __lock_page_or_retry is not an understatement. 371 * 372 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released 373 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 374 * not set. 375 * 376 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 377 * set, VM_FAULT_RETRY can still be returned if and only if there are 378 * fatal_signal_pending()s, and the mmap_lock must be released before 379 * returning it. 380 */ 381 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 382 { 383 struct mm_struct *mm = vmf->vma->vm_mm; 384 struct userfaultfd_ctx *ctx; 385 struct userfaultfd_wait_queue uwq; 386 vm_fault_t ret = VM_FAULT_SIGBUS; 387 bool must_wait; 388 long blocking_state; 389 390 /* 391 * We don't do userfault handling for the final child pid update. 392 * 393 * We also don't do userfault handling during 394 * coredumping. hugetlbfs has the special 395 * follow_hugetlb_page() to skip missing pages in the 396 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 397 * the no_page_table() helper in follow_page_mask(), but the 398 * shmem_vm_ops->fault method is invoked even during 399 * coredumping without mmap_lock and it ends up here. 400 */ 401 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 402 goto out; 403 404 /* 405 * Coredumping runs without mmap_lock so we can only check that 406 * the mmap_lock is held, if PF_DUMPCORE was not set. 407 */ 408 mmap_assert_locked(mm); 409 410 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 411 if (!ctx) 412 goto out; 413 414 BUG_ON(ctx->mm != mm); 415 416 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); 417 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); 418 419 if (ctx->features & UFFD_FEATURE_SIGBUS) 420 goto out; 421 422 /* 423 * If it's already released don't get it. This avoids to loop 424 * in __get_user_pages if userfaultfd_release waits on the 425 * caller of handle_userfault to release the mmap_lock. 426 */ 427 if (unlikely(READ_ONCE(ctx->released))) { 428 /* 429 * Don't return VM_FAULT_SIGBUS in this case, so a non 430 * cooperative manager can close the uffd after the 431 * last UFFDIO_COPY, without risking to trigger an 432 * involuntary SIGBUS if the process was starting the 433 * userfaultfd while the userfaultfd was still armed 434 * (but after the last UFFDIO_COPY). If the uffd 435 * wasn't already closed when the userfault reached 436 * this point, that would normally be solved by 437 * userfaultfd_must_wait returning 'false'. 438 * 439 * If we were to return VM_FAULT_SIGBUS here, the non 440 * cooperative manager would be instead forced to 441 * always call UFFDIO_UNREGISTER before it can safely 442 * close the uffd. 443 */ 444 ret = VM_FAULT_NOPAGE; 445 goto out; 446 } 447 448 /* 449 * Check that we can return VM_FAULT_RETRY. 450 * 451 * NOTE: it should become possible to return VM_FAULT_RETRY 452 * even if FAULT_FLAG_TRIED is set without leading to gup() 453 * -EBUSY failures, if the userfaultfd is to be extended for 454 * VM_UFFD_WP tracking and we intend to arm the userfault 455 * without first stopping userland access to the memory. For 456 * VM_UFFD_MISSING userfaults this is enough for now. 457 */ 458 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 459 /* 460 * Validate the invariant that nowait must allow retry 461 * to be sure not to return SIGBUS erroneously on 462 * nowait invocations. 463 */ 464 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 465 #ifdef CONFIG_DEBUG_VM 466 if (printk_ratelimit()) { 467 printk(KERN_WARNING 468 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 469 vmf->flags); 470 dump_stack(); 471 } 472 #endif 473 goto out; 474 } 475 476 /* 477 * Handle nowait, not much to do other than tell it to retry 478 * and wait. 479 */ 480 ret = VM_FAULT_RETRY; 481 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 482 goto out; 483 484 /* take the reference before dropping the mmap_lock */ 485 userfaultfd_ctx_get(ctx); 486 487 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 488 uwq.wq.private = current; 489 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason, 490 ctx->features); 491 uwq.ctx = ctx; 492 uwq.waken = false; 493 494 blocking_state = userfaultfd_get_blocking_state(vmf->flags); 495 496 spin_lock_irq(&ctx->fault_pending_wqh.lock); 497 /* 498 * After the __add_wait_queue the uwq is visible to userland 499 * through poll/read(). 500 */ 501 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 502 /* 503 * The smp_mb() after __set_current_state prevents the reads 504 * following the spin_unlock to happen before the list_add in 505 * __add_wait_queue. 506 */ 507 set_current_state(blocking_state); 508 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 509 510 if (!is_vm_hugetlb_page(vmf->vma)) 511 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 512 reason); 513 else 514 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, 515 vmf->address, 516 vmf->flags, reason); 517 mmap_read_unlock(mm); 518 519 if (likely(must_wait && !READ_ONCE(ctx->released) && 520 !userfaultfd_signal_pending(vmf->flags))) { 521 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 522 schedule(); 523 ret |= VM_FAULT_MAJOR; 524 525 /* 526 * False wakeups can orginate even from rwsem before 527 * up_read() however userfaults will wait either for a 528 * targeted wakeup on the specific uwq waitqueue from 529 * wake_userfault() or for signals or for uffd 530 * release. 531 */ 532 while (!READ_ONCE(uwq.waken)) { 533 /* 534 * This needs the full smp_store_mb() 535 * guarantee as the state write must be 536 * visible to other CPUs before reading 537 * uwq.waken from other CPUs. 538 */ 539 set_current_state(blocking_state); 540 if (READ_ONCE(uwq.waken) || 541 READ_ONCE(ctx->released) || 542 userfaultfd_signal_pending(vmf->flags)) 543 break; 544 schedule(); 545 } 546 } 547 548 __set_current_state(TASK_RUNNING); 549 550 /* 551 * Here we race with the list_del; list_add in 552 * userfaultfd_ctx_read(), however because we don't ever run 553 * list_del_init() to refile across the two lists, the prev 554 * and next pointers will never point to self. list_add also 555 * would never let any of the two pointers to point to 556 * self. So list_empty_careful won't risk to see both pointers 557 * pointing to self at any time during the list refile. The 558 * only case where list_del_init() is called is the full 559 * removal in the wake function and there we don't re-list_add 560 * and it's fine not to block on the spinlock. The uwq on this 561 * kernel stack can be released after the list_del_init. 562 */ 563 if (!list_empty_careful(&uwq.wq.entry)) { 564 spin_lock_irq(&ctx->fault_pending_wqh.lock); 565 /* 566 * No need of list_del_init(), the uwq on the stack 567 * will be freed shortly anyway. 568 */ 569 list_del(&uwq.wq.entry); 570 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 571 } 572 573 /* 574 * ctx may go away after this if the userfault pseudo fd is 575 * already released. 576 */ 577 userfaultfd_ctx_put(ctx); 578 579 out: 580 return ret; 581 } 582 583 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 584 struct userfaultfd_wait_queue *ewq) 585 { 586 struct userfaultfd_ctx *release_new_ctx; 587 588 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 589 goto out; 590 591 ewq->ctx = ctx; 592 init_waitqueue_entry(&ewq->wq, current); 593 release_new_ctx = NULL; 594 595 spin_lock_irq(&ctx->event_wqh.lock); 596 /* 597 * After the __add_wait_queue the uwq is visible to userland 598 * through poll/read(). 599 */ 600 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 601 for (;;) { 602 set_current_state(TASK_KILLABLE); 603 if (ewq->msg.event == 0) 604 break; 605 if (READ_ONCE(ctx->released) || 606 fatal_signal_pending(current)) { 607 /* 608 * &ewq->wq may be queued in fork_event, but 609 * __remove_wait_queue ignores the head 610 * parameter. It would be a problem if it 611 * didn't. 612 */ 613 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 614 if (ewq->msg.event == UFFD_EVENT_FORK) { 615 struct userfaultfd_ctx *new; 616 617 new = (struct userfaultfd_ctx *) 618 (unsigned long) 619 ewq->msg.arg.reserved.reserved1; 620 release_new_ctx = new; 621 } 622 break; 623 } 624 625 spin_unlock_irq(&ctx->event_wqh.lock); 626 627 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 628 schedule(); 629 630 spin_lock_irq(&ctx->event_wqh.lock); 631 } 632 __set_current_state(TASK_RUNNING); 633 spin_unlock_irq(&ctx->event_wqh.lock); 634 635 if (release_new_ctx) { 636 struct vm_area_struct *vma; 637 struct mm_struct *mm = release_new_ctx->mm; 638 639 /* the various vma->vm_userfaultfd_ctx still points to it */ 640 mmap_write_lock(mm); 641 /* no task can run (and in turn coredump) yet */ 642 VM_WARN_ON(!mmget_still_valid(mm)); 643 for (vma = mm->mmap; vma; vma = vma->vm_next) 644 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 645 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 646 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 647 } 648 mmap_write_unlock(mm); 649 650 userfaultfd_ctx_put(release_new_ctx); 651 } 652 653 /* 654 * ctx may go away after this if the userfault pseudo fd is 655 * already released. 656 */ 657 out: 658 WRITE_ONCE(ctx->mmap_changing, false); 659 userfaultfd_ctx_put(ctx); 660 } 661 662 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 663 struct userfaultfd_wait_queue *ewq) 664 { 665 ewq->msg.event = 0; 666 wake_up_locked(&ctx->event_wqh); 667 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 668 } 669 670 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 671 { 672 struct userfaultfd_ctx *ctx = NULL, *octx; 673 struct userfaultfd_fork_ctx *fctx; 674 675 octx = vma->vm_userfaultfd_ctx.ctx; 676 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 677 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 678 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 679 return 0; 680 } 681 682 list_for_each_entry(fctx, fcs, list) 683 if (fctx->orig == octx) { 684 ctx = fctx->new; 685 break; 686 } 687 688 if (!ctx) { 689 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 690 if (!fctx) 691 return -ENOMEM; 692 693 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 694 if (!ctx) { 695 kfree(fctx); 696 return -ENOMEM; 697 } 698 699 refcount_set(&ctx->refcount, 1); 700 ctx->flags = octx->flags; 701 ctx->state = UFFD_STATE_RUNNING; 702 ctx->features = octx->features; 703 ctx->released = false; 704 ctx->mmap_changing = false; 705 ctx->mm = vma->vm_mm; 706 mmgrab(ctx->mm); 707 708 userfaultfd_ctx_get(octx); 709 WRITE_ONCE(octx->mmap_changing, true); 710 fctx->orig = octx; 711 fctx->new = ctx; 712 list_add_tail(&fctx->list, fcs); 713 } 714 715 vma->vm_userfaultfd_ctx.ctx = ctx; 716 return 0; 717 } 718 719 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 720 { 721 struct userfaultfd_ctx *ctx = fctx->orig; 722 struct userfaultfd_wait_queue ewq; 723 724 msg_init(&ewq.msg); 725 726 ewq.msg.event = UFFD_EVENT_FORK; 727 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 728 729 userfaultfd_event_wait_completion(ctx, &ewq); 730 } 731 732 void dup_userfaultfd_complete(struct list_head *fcs) 733 { 734 struct userfaultfd_fork_ctx *fctx, *n; 735 736 list_for_each_entry_safe(fctx, n, fcs, list) { 737 dup_fctx(fctx); 738 list_del(&fctx->list); 739 kfree(fctx); 740 } 741 } 742 743 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 744 struct vm_userfaultfd_ctx *vm_ctx) 745 { 746 struct userfaultfd_ctx *ctx; 747 748 ctx = vma->vm_userfaultfd_ctx.ctx; 749 750 if (!ctx) 751 return; 752 753 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 754 vm_ctx->ctx = ctx; 755 userfaultfd_ctx_get(ctx); 756 WRITE_ONCE(ctx->mmap_changing, true); 757 } else { 758 /* Drop uffd context if remap feature not enabled */ 759 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 760 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 761 } 762 } 763 764 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 765 unsigned long from, unsigned long to, 766 unsigned long len) 767 { 768 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 769 struct userfaultfd_wait_queue ewq; 770 771 if (!ctx) 772 return; 773 774 if (to & ~PAGE_MASK) { 775 userfaultfd_ctx_put(ctx); 776 return; 777 } 778 779 msg_init(&ewq.msg); 780 781 ewq.msg.event = UFFD_EVENT_REMAP; 782 ewq.msg.arg.remap.from = from; 783 ewq.msg.arg.remap.to = to; 784 ewq.msg.arg.remap.len = len; 785 786 userfaultfd_event_wait_completion(ctx, &ewq); 787 } 788 789 bool userfaultfd_remove(struct vm_area_struct *vma, 790 unsigned long start, unsigned long end) 791 { 792 struct mm_struct *mm = vma->vm_mm; 793 struct userfaultfd_ctx *ctx; 794 struct userfaultfd_wait_queue ewq; 795 796 ctx = vma->vm_userfaultfd_ctx.ctx; 797 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 798 return true; 799 800 userfaultfd_ctx_get(ctx); 801 WRITE_ONCE(ctx->mmap_changing, true); 802 mmap_read_unlock(mm); 803 804 msg_init(&ewq.msg); 805 806 ewq.msg.event = UFFD_EVENT_REMOVE; 807 ewq.msg.arg.remove.start = start; 808 ewq.msg.arg.remove.end = end; 809 810 userfaultfd_event_wait_completion(ctx, &ewq); 811 812 return false; 813 } 814 815 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 816 unsigned long start, unsigned long end) 817 { 818 struct userfaultfd_unmap_ctx *unmap_ctx; 819 820 list_for_each_entry(unmap_ctx, unmaps, list) 821 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 822 unmap_ctx->end == end) 823 return true; 824 825 return false; 826 } 827 828 int userfaultfd_unmap_prep(struct vm_area_struct *vma, 829 unsigned long start, unsigned long end, 830 struct list_head *unmaps) 831 { 832 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 833 struct userfaultfd_unmap_ctx *unmap_ctx; 834 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 835 836 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 837 has_unmap_ctx(ctx, unmaps, start, end)) 838 continue; 839 840 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 841 if (!unmap_ctx) 842 return -ENOMEM; 843 844 userfaultfd_ctx_get(ctx); 845 WRITE_ONCE(ctx->mmap_changing, true); 846 unmap_ctx->ctx = ctx; 847 unmap_ctx->start = start; 848 unmap_ctx->end = end; 849 list_add_tail(&unmap_ctx->list, unmaps); 850 } 851 852 return 0; 853 } 854 855 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 856 { 857 struct userfaultfd_unmap_ctx *ctx, *n; 858 struct userfaultfd_wait_queue ewq; 859 860 list_for_each_entry_safe(ctx, n, uf, list) { 861 msg_init(&ewq.msg); 862 863 ewq.msg.event = UFFD_EVENT_UNMAP; 864 ewq.msg.arg.remove.start = ctx->start; 865 ewq.msg.arg.remove.end = ctx->end; 866 867 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 868 869 list_del(&ctx->list); 870 kfree(ctx); 871 } 872 } 873 874 static int userfaultfd_release(struct inode *inode, struct file *file) 875 { 876 struct userfaultfd_ctx *ctx = file->private_data; 877 struct mm_struct *mm = ctx->mm; 878 struct vm_area_struct *vma, *prev; 879 /* len == 0 means wake all */ 880 struct userfaultfd_wake_range range = { .len = 0, }; 881 unsigned long new_flags; 882 bool still_valid; 883 884 WRITE_ONCE(ctx->released, true); 885 886 if (!mmget_not_zero(mm)) 887 goto wakeup; 888 889 /* 890 * Flush page faults out of all CPUs. NOTE: all page faults 891 * must be retried without returning VM_FAULT_SIGBUS if 892 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 893 * changes while handle_userfault released the mmap_lock. So 894 * it's critical that released is set to true (above), before 895 * taking the mmap_lock for writing. 896 */ 897 mmap_write_lock(mm); 898 still_valid = mmget_still_valid(mm); 899 prev = NULL; 900 for (vma = mm->mmap; vma; vma = vma->vm_next) { 901 cond_resched(); 902 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 903 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 904 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 905 prev = vma; 906 continue; 907 } 908 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 909 if (still_valid) { 910 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 911 new_flags, vma->anon_vma, 912 vma->vm_file, vma->vm_pgoff, 913 vma_policy(vma), 914 NULL_VM_UFFD_CTX); 915 if (prev) 916 vma = prev; 917 else 918 prev = vma; 919 } 920 vma->vm_flags = new_flags; 921 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 922 } 923 mmap_write_unlock(mm); 924 mmput(mm); 925 wakeup: 926 /* 927 * After no new page faults can wait on this fault_*wqh, flush 928 * the last page faults that may have been already waiting on 929 * the fault_*wqh. 930 */ 931 spin_lock_irq(&ctx->fault_pending_wqh.lock); 932 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 933 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 934 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 935 936 /* Flush pending events that may still wait on event_wqh */ 937 wake_up_all(&ctx->event_wqh); 938 939 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 940 userfaultfd_ctx_put(ctx); 941 return 0; 942 } 943 944 /* fault_pending_wqh.lock must be hold by the caller */ 945 static inline struct userfaultfd_wait_queue *find_userfault_in( 946 wait_queue_head_t *wqh) 947 { 948 wait_queue_entry_t *wq; 949 struct userfaultfd_wait_queue *uwq; 950 951 lockdep_assert_held(&wqh->lock); 952 953 uwq = NULL; 954 if (!waitqueue_active(wqh)) 955 goto out; 956 /* walk in reverse to provide FIFO behavior to read userfaults */ 957 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 958 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 959 out: 960 return uwq; 961 } 962 963 static inline struct userfaultfd_wait_queue *find_userfault( 964 struct userfaultfd_ctx *ctx) 965 { 966 return find_userfault_in(&ctx->fault_pending_wqh); 967 } 968 969 static inline struct userfaultfd_wait_queue *find_userfault_evt( 970 struct userfaultfd_ctx *ctx) 971 { 972 return find_userfault_in(&ctx->event_wqh); 973 } 974 975 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 976 { 977 struct userfaultfd_ctx *ctx = file->private_data; 978 __poll_t ret; 979 980 poll_wait(file, &ctx->fd_wqh, wait); 981 982 switch (ctx->state) { 983 case UFFD_STATE_WAIT_API: 984 return EPOLLERR; 985 case UFFD_STATE_RUNNING: 986 /* 987 * poll() never guarantees that read won't block. 988 * userfaults can be waken before they're read(). 989 */ 990 if (unlikely(!(file->f_flags & O_NONBLOCK))) 991 return EPOLLERR; 992 /* 993 * lockless access to see if there are pending faults 994 * __pollwait last action is the add_wait_queue but 995 * the spin_unlock would allow the waitqueue_active to 996 * pass above the actual list_add inside 997 * add_wait_queue critical section. So use a full 998 * memory barrier to serialize the list_add write of 999 * add_wait_queue() with the waitqueue_active read 1000 * below. 1001 */ 1002 ret = 0; 1003 smp_mb(); 1004 if (waitqueue_active(&ctx->fault_pending_wqh)) 1005 ret = EPOLLIN; 1006 else if (waitqueue_active(&ctx->event_wqh)) 1007 ret = EPOLLIN; 1008 1009 return ret; 1010 default: 1011 WARN_ON_ONCE(1); 1012 return EPOLLERR; 1013 } 1014 } 1015 1016 static const struct file_operations userfaultfd_fops; 1017 1018 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, 1019 struct userfaultfd_ctx *new, 1020 struct uffd_msg *msg) 1021 { 1022 int fd; 1023 1024 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new, 1025 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS)); 1026 if (fd < 0) 1027 return fd; 1028 1029 msg->arg.reserved.reserved1 = 0; 1030 msg->arg.fork.ufd = fd; 1031 return 0; 1032 } 1033 1034 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1035 struct uffd_msg *msg) 1036 { 1037 ssize_t ret; 1038 DECLARE_WAITQUEUE(wait, current); 1039 struct userfaultfd_wait_queue *uwq; 1040 /* 1041 * Handling fork event requires sleeping operations, so 1042 * we drop the event_wqh lock, then do these ops, then 1043 * lock it back and wake up the waiter. While the lock is 1044 * dropped the ewq may go away so we keep track of it 1045 * carefully. 1046 */ 1047 LIST_HEAD(fork_event); 1048 struct userfaultfd_ctx *fork_nctx = NULL; 1049 1050 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1051 spin_lock_irq(&ctx->fd_wqh.lock); 1052 __add_wait_queue(&ctx->fd_wqh, &wait); 1053 for (;;) { 1054 set_current_state(TASK_INTERRUPTIBLE); 1055 spin_lock(&ctx->fault_pending_wqh.lock); 1056 uwq = find_userfault(ctx); 1057 if (uwq) { 1058 /* 1059 * Use a seqcount to repeat the lockless check 1060 * in wake_userfault() to avoid missing 1061 * wakeups because during the refile both 1062 * waitqueue could become empty if this is the 1063 * only userfault. 1064 */ 1065 write_seqcount_begin(&ctx->refile_seq); 1066 1067 /* 1068 * The fault_pending_wqh.lock prevents the uwq 1069 * to disappear from under us. 1070 * 1071 * Refile this userfault from 1072 * fault_pending_wqh to fault_wqh, it's not 1073 * pending anymore after we read it. 1074 * 1075 * Use list_del() by hand (as 1076 * userfaultfd_wake_function also uses 1077 * list_del_init() by hand) to be sure nobody 1078 * changes __remove_wait_queue() to use 1079 * list_del_init() in turn breaking the 1080 * !list_empty_careful() check in 1081 * handle_userfault(). The uwq->wq.head list 1082 * must never be empty at any time during the 1083 * refile, or the waitqueue could disappear 1084 * from under us. The "wait_queue_head_t" 1085 * parameter of __remove_wait_queue() is unused 1086 * anyway. 1087 */ 1088 list_del(&uwq->wq.entry); 1089 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1090 1091 write_seqcount_end(&ctx->refile_seq); 1092 1093 /* careful to always initialize msg if ret == 0 */ 1094 *msg = uwq->msg; 1095 spin_unlock(&ctx->fault_pending_wqh.lock); 1096 ret = 0; 1097 break; 1098 } 1099 spin_unlock(&ctx->fault_pending_wqh.lock); 1100 1101 spin_lock(&ctx->event_wqh.lock); 1102 uwq = find_userfault_evt(ctx); 1103 if (uwq) { 1104 *msg = uwq->msg; 1105 1106 if (uwq->msg.event == UFFD_EVENT_FORK) { 1107 fork_nctx = (struct userfaultfd_ctx *) 1108 (unsigned long) 1109 uwq->msg.arg.reserved.reserved1; 1110 list_move(&uwq->wq.entry, &fork_event); 1111 /* 1112 * fork_nctx can be freed as soon as 1113 * we drop the lock, unless we take a 1114 * reference on it. 1115 */ 1116 userfaultfd_ctx_get(fork_nctx); 1117 spin_unlock(&ctx->event_wqh.lock); 1118 ret = 0; 1119 break; 1120 } 1121 1122 userfaultfd_event_complete(ctx, uwq); 1123 spin_unlock(&ctx->event_wqh.lock); 1124 ret = 0; 1125 break; 1126 } 1127 spin_unlock(&ctx->event_wqh.lock); 1128 1129 if (signal_pending(current)) { 1130 ret = -ERESTARTSYS; 1131 break; 1132 } 1133 if (no_wait) { 1134 ret = -EAGAIN; 1135 break; 1136 } 1137 spin_unlock_irq(&ctx->fd_wqh.lock); 1138 schedule(); 1139 spin_lock_irq(&ctx->fd_wqh.lock); 1140 } 1141 __remove_wait_queue(&ctx->fd_wqh, &wait); 1142 __set_current_state(TASK_RUNNING); 1143 spin_unlock_irq(&ctx->fd_wqh.lock); 1144 1145 if (!ret && msg->event == UFFD_EVENT_FORK) { 1146 ret = resolve_userfault_fork(ctx, fork_nctx, msg); 1147 spin_lock_irq(&ctx->event_wqh.lock); 1148 if (!list_empty(&fork_event)) { 1149 /* 1150 * The fork thread didn't abort, so we can 1151 * drop the temporary refcount. 1152 */ 1153 userfaultfd_ctx_put(fork_nctx); 1154 1155 uwq = list_first_entry(&fork_event, 1156 typeof(*uwq), 1157 wq.entry); 1158 /* 1159 * If fork_event list wasn't empty and in turn 1160 * the event wasn't already released by fork 1161 * (the event is allocated on fork kernel 1162 * stack), put the event back to its place in 1163 * the event_wq. fork_event head will be freed 1164 * as soon as we return so the event cannot 1165 * stay queued there no matter the current 1166 * "ret" value. 1167 */ 1168 list_del(&uwq->wq.entry); 1169 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1170 1171 /* 1172 * Leave the event in the waitqueue and report 1173 * error to userland if we failed to resolve 1174 * the userfault fork. 1175 */ 1176 if (likely(!ret)) 1177 userfaultfd_event_complete(ctx, uwq); 1178 } else { 1179 /* 1180 * Here the fork thread aborted and the 1181 * refcount from the fork thread on fork_nctx 1182 * has already been released. We still hold 1183 * the reference we took before releasing the 1184 * lock above. If resolve_userfault_fork 1185 * failed we've to drop it because the 1186 * fork_nctx has to be freed in such case. If 1187 * it succeeded we'll hold it because the new 1188 * uffd references it. 1189 */ 1190 if (ret) 1191 userfaultfd_ctx_put(fork_nctx); 1192 } 1193 spin_unlock_irq(&ctx->event_wqh.lock); 1194 } 1195 1196 return ret; 1197 } 1198 1199 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1200 size_t count, loff_t *ppos) 1201 { 1202 struct userfaultfd_ctx *ctx = file->private_data; 1203 ssize_t _ret, ret = 0; 1204 struct uffd_msg msg; 1205 int no_wait = file->f_flags & O_NONBLOCK; 1206 1207 if (ctx->state == UFFD_STATE_WAIT_API) 1208 return -EINVAL; 1209 1210 for (;;) { 1211 if (count < sizeof(msg)) 1212 return ret ? ret : -EINVAL; 1213 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); 1214 if (_ret < 0) 1215 return ret ? ret : _ret; 1216 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1217 return ret ? ret : -EFAULT; 1218 ret += sizeof(msg); 1219 buf += sizeof(msg); 1220 count -= sizeof(msg); 1221 /* 1222 * Allow to read more than one fault at time but only 1223 * block if waiting for the very first one. 1224 */ 1225 no_wait = O_NONBLOCK; 1226 } 1227 } 1228 1229 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1230 struct userfaultfd_wake_range *range) 1231 { 1232 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1233 /* wake all in the range and autoremove */ 1234 if (waitqueue_active(&ctx->fault_pending_wqh)) 1235 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1236 range); 1237 if (waitqueue_active(&ctx->fault_wqh)) 1238 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1239 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1240 } 1241 1242 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1243 struct userfaultfd_wake_range *range) 1244 { 1245 unsigned seq; 1246 bool need_wakeup; 1247 1248 /* 1249 * To be sure waitqueue_active() is not reordered by the CPU 1250 * before the pagetable update, use an explicit SMP memory 1251 * barrier here. PT lock release or mmap_read_unlock(mm) still 1252 * have release semantics that can allow the 1253 * waitqueue_active() to be reordered before the pte update. 1254 */ 1255 smp_mb(); 1256 1257 /* 1258 * Use waitqueue_active because it's very frequent to 1259 * change the address space atomically even if there are no 1260 * userfaults yet. So we take the spinlock only when we're 1261 * sure we've userfaults to wake. 1262 */ 1263 do { 1264 seq = read_seqcount_begin(&ctx->refile_seq); 1265 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1266 waitqueue_active(&ctx->fault_wqh); 1267 cond_resched(); 1268 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1269 if (need_wakeup) 1270 __wake_userfault(ctx, range); 1271 } 1272 1273 static __always_inline int validate_range(struct mm_struct *mm, 1274 __u64 *start, __u64 len) 1275 { 1276 __u64 task_size = mm->task_size; 1277 1278 *start = untagged_addr(*start); 1279 1280 if (*start & ~PAGE_MASK) 1281 return -EINVAL; 1282 if (len & ~PAGE_MASK) 1283 return -EINVAL; 1284 if (!len) 1285 return -EINVAL; 1286 if (*start < mmap_min_addr) 1287 return -EINVAL; 1288 if (*start >= task_size) 1289 return -EINVAL; 1290 if (len > task_size - *start) 1291 return -EINVAL; 1292 return 0; 1293 } 1294 1295 static inline bool vma_can_userfault(struct vm_area_struct *vma, 1296 unsigned long vm_flags) 1297 { 1298 /* FIXME: add WP support to hugetlbfs and shmem */ 1299 return vma_is_anonymous(vma) || 1300 ((is_vm_hugetlb_page(vma) || vma_is_shmem(vma)) && 1301 !(vm_flags & VM_UFFD_WP)); 1302 } 1303 1304 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1305 unsigned long arg) 1306 { 1307 struct mm_struct *mm = ctx->mm; 1308 struct vm_area_struct *vma, *prev, *cur; 1309 int ret; 1310 struct uffdio_register uffdio_register; 1311 struct uffdio_register __user *user_uffdio_register; 1312 unsigned long vm_flags, new_flags; 1313 bool found; 1314 bool basic_ioctls; 1315 unsigned long start, end, vma_end; 1316 1317 user_uffdio_register = (struct uffdio_register __user *) arg; 1318 1319 ret = -EFAULT; 1320 if (copy_from_user(&uffdio_register, user_uffdio_register, 1321 sizeof(uffdio_register)-sizeof(__u64))) 1322 goto out; 1323 1324 ret = -EINVAL; 1325 if (!uffdio_register.mode) 1326 goto out; 1327 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| 1328 UFFDIO_REGISTER_MODE_WP)) 1329 goto out; 1330 vm_flags = 0; 1331 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1332 vm_flags |= VM_UFFD_MISSING; 1333 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) 1334 vm_flags |= VM_UFFD_WP; 1335 1336 ret = validate_range(mm, &uffdio_register.range.start, 1337 uffdio_register.range.len); 1338 if (ret) 1339 goto out; 1340 1341 start = uffdio_register.range.start; 1342 end = start + uffdio_register.range.len; 1343 1344 ret = -ENOMEM; 1345 if (!mmget_not_zero(mm)) 1346 goto out; 1347 1348 mmap_write_lock(mm); 1349 if (!mmget_still_valid(mm)) 1350 goto out_unlock; 1351 vma = find_vma_prev(mm, start, &prev); 1352 if (!vma) 1353 goto out_unlock; 1354 1355 /* check that there's at least one vma in the range */ 1356 ret = -EINVAL; 1357 if (vma->vm_start >= end) 1358 goto out_unlock; 1359 1360 /* 1361 * If the first vma contains huge pages, make sure start address 1362 * is aligned to huge page size. 1363 */ 1364 if (is_vm_hugetlb_page(vma)) { 1365 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1366 1367 if (start & (vma_hpagesize - 1)) 1368 goto out_unlock; 1369 } 1370 1371 /* 1372 * Search for not compatible vmas. 1373 */ 1374 found = false; 1375 basic_ioctls = false; 1376 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1377 cond_resched(); 1378 1379 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1380 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1381 1382 /* check not compatible vmas */ 1383 ret = -EINVAL; 1384 if (!vma_can_userfault(cur, vm_flags)) 1385 goto out_unlock; 1386 1387 /* 1388 * UFFDIO_COPY will fill file holes even without 1389 * PROT_WRITE. This check enforces that if this is a 1390 * MAP_SHARED, the process has write permission to the backing 1391 * file. If VM_MAYWRITE is set it also enforces that on a 1392 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1393 * F_WRITE_SEAL can be taken until the vma is destroyed. 1394 */ 1395 ret = -EPERM; 1396 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1397 goto out_unlock; 1398 1399 /* 1400 * If this vma contains ending address, and huge pages 1401 * check alignment. 1402 */ 1403 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1404 end > cur->vm_start) { 1405 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1406 1407 ret = -EINVAL; 1408 1409 if (end & (vma_hpagesize - 1)) 1410 goto out_unlock; 1411 } 1412 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) 1413 goto out_unlock; 1414 1415 /* 1416 * Check that this vma isn't already owned by a 1417 * different userfaultfd. We can't allow more than one 1418 * userfaultfd to own a single vma simultaneously or we 1419 * wouldn't know which one to deliver the userfaults to. 1420 */ 1421 ret = -EBUSY; 1422 if (cur->vm_userfaultfd_ctx.ctx && 1423 cur->vm_userfaultfd_ctx.ctx != ctx) 1424 goto out_unlock; 1425 1426 /* 1427 * Note vmas containing huge pages 1428 */ 1429 if (is_vm_hugetlb_page(cur)) 1430 basic_ioctls = true; 1431 1432 found = true; 1433 } 1434 BUG_ON(!found); 1435 1436 if (vma->vm_start < start) 1437 prev = vma; 1438 1439 ret = 0; 1440 do { 1441 cond_resched(); 1442 1443 BUG_ON(!vma_can_userfault(vma, vm_flags)); 1444 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1445 vma->vm_userfaultfd_ctx.ctx != ctx); 1446 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1447 1448 /* 1449 * Nothing to do: this vma is already registered into this 1450 * userfaultfd and with the right tracking mode too. 1451 */ 1452 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1453 (vma->vm_flags & vm_flags) == vm_flags) 1454 goto skip; 1455 1456 if (vma->vm_start > start) 1457 start = vma->vm_start; 1458 vma_end = min(end, vma->vm_end); 1459 1460 new_flags = (vma->vm_flags & 1461 ~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags; 1462 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1463 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1464 vma_policy(vma), 1465 ((struct vm_userfaultfd_ctx){ ctx })); 1466 if (prev) { 1467 vma = prev; 1468 goto next; 1469 } 1470 if (vma->vm_start < start) { 1471 ret = split_vma(mm, vma, start, 1); 1472 if (ret) 1473 break; 1474 } 1475 if (vma->vm_end > end) { 1476 ret = split_vma(mm, vma, end, 0); 1477 if (ret) 1478 break; 1479 } 1480 next: 1481 /* 1482 * In the vma_merge() successful mprotect-like case 8: 1483 * the next vma was merged into the current one and 1484 * the current one has not been updated yet. 1485 */ 1486 vma->vm_flags = new_flags; 1487 vma->vm_userfaultfd_ctx.ctx = ctx; 1488 1489 skip: 1490 prev = vma; 1491 start = vma->vm_end; 1492 vma = vma->vm_next; 1493 } while (vma && vma->vm_start < end); 1494 out_unlock: 1495 mmap_write_unlock(mm); 1496 mmput(mm); 1497 if (!ret) { 1498 __u64 ioctls_out; 1499 1500 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1501 UFFD_API_RANGE_IOCTLS; 1502 1503 /* 1504 * Declare the WP ioctl only if the WP mode is 1505 * specified and all checks passed with the range 1506 */ 1507 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) 1508 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); 1509 1510 /* 1511 * Now that we scanned all vmas we can already tell 1512 * userland which ioctls methods are guaranteed to 1513 * succeed on this range. 1514 */ 1515 if (put_user(ioctls_out, &user_uffdio_register->ioctls)) 1516 ret = -EFAULT; 1517 } 1518 out: 1519 return ret; 1520 } 1521 1522 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1523 unsigned long arg) 1524 { 1525 struct mm_struct *mm = ctx->mm; 1526 struct vm_area_struct *vma, *prev, *cur; 1527 int ret; 1528 struct uffdio_range uffdio_unregister; 1529 unsigned long new_flags; 1530 bool found; 1531 unsigned long start, end, vma_end; 1532 const void __user *buf = (void __user *)arg; 1533 1534 ret = -EFAULT; 1535 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1536 goto out; 1537 1538 ret = validate_range(mm, &uffdio_unregister.start, 1539 uffdio_unregister.len); 1540 if (ret) 1541 goto out; 1542 1543 start = uffdio_unregister.start; 1544 end = start + uffdio_unregister.len; 1545 1546 ret = -ENOMEM; 1547 if (!mmget_not_zero(mm)) 1548 goto out; 1549 1550 mmap_write_lock(mm); 1551 if (!mmget_still_valid(mm)) 1552 goto out_unlock; 1553 vma = find_vma_prev(mm, start, &prev); 1554 if (!vma) 1555 goto out_unlock; 1556 1557 /* check that there's at least one vma in the range */ 1558 ret = -EINVAL; 1559 if (vma->vm_start >= end) 1560 goto out_unlock; 1561 1562 /* 1563 * If the first vma contains huge pages, make sure start address 1564 * is aligned to huge page size. 1565 */ 1566 if (is_vm_hugetlb_page(vma)) { 1567 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1568 1569 if (start & (vma_hpagesize - 1)) 1570 goto out_unlock; 1571 } 1572 1573 /* 1574 * Search for not compatible vmas. 1575 */ 1576 found = false; 1577 ret = -EINVAL; 1578 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1579 cond_resched(); 1580 1581 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1582 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1583 1584 /* 1585 * Check not compatible vmas, not strictly required 1586 * here as not compatible vmas cannot have an 1587 * userfaultfd_ctx registered on them, but this 1588 * provides for more strict behavior to notice 1589 * unregistration errors. 1590 */ 1591 if (!vma_can_userfault(cur, cur->vm_flags)) 1592 goto out_unlock; 1593 1594 found = true; 1595 } 1596 BUG_ON(!found); 1597 1598 if (vma->vm_start < start) 1599 prev = vma; 1600 1601 ret = 0; 1602 do { 1603 cond_resched(); 1604 1605 BUG_ON(!vma_can_userfault(vma, vma->vm_flags)); 1606 1607 /* 1608 * Nothing to do: this vma is already registered into this 1609 * userfaultfd and with the right tracking mode too. 1610 */ 1611 if (!vma->vm_userfaultfd_ctx.ctx) 1612 goto skip; 1613 1614 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1615 1616 if (vma->vm_start > start) 1617 start = vma->vm_start; 1618 vma_end = min(end, vma->vm_end); 1619 1620 if (userfaultfd_missing(vma)) { 1621 /* 1622 * Wake any concurrent pending userfault while 1623 * we unregister, so they will not hang 1624 * permanently and it avoids userland to call 1625 * UFFDIO_WAKE explicitly. 1626 */ 1627 struct userfaultfd_wake_range range; 1628 range.start = start; 1629 range.len = vma_end - start; 1630 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1631 } 1632 1633 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 1634 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1635 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1636 vma_policy(vma), 1637 NULL_VM_UFFD_CTX); 1638 if (prev) { 1639 vma = prev; 1640 goto next; 1641 } 1642 if (vma->vm_start < start) { 1643 ret = split_vma(mm, vma, start, 1); 1644 if (ret) 1645 break; 1646 } 1647 if (vma->vm_end > end) { 1648 ret = split_vma(mm, vma, end, 0); 1649 if (ret) 1650 break; 1651 } 1652 next: 1653 /* 1654 * In the vma_merge() successful mprotect-like case 8: 1655 * the next vma was merged into the current one and 1656 * the current one has not been updated yet. 1657 */ 1658 vma->vm_flags = new_flags; 1659 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1660 1661 skip: 1662 prev = vma; 1663 start = vma->vm_end; 1664 vma = vma->vm_next; 1665 } while (vma && vma->vm_start < end); 1666 out_unlock: 1667 mmap_write_unlock(mm); 1668 mmput(mm); 1669 out: 1670 return ret; 1671 } 1672 1673 /* 1674 * userfaultfd_wake may be used in combination with the 1675 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1676 */ 1677 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1678 unsigned long arg) 1679 { 1680 int ret; 1681 struct uffdio_range uffdio_wake; 1682 struct userfaultfd_wake_range range; 1683 const void __user *buf = (void __user *)arg; 1684 1685 ret = -EFAULT; 1686 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1687 goto out; 1688 1689 ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len); 1690 if (ret) 1691 goto out; 1692 1693 range.start = uffdio_wake.start; 1694 range.len = uffdio_wake.len; 1695 1696 /* 1697 * len == 0 means wake all and we don't want to wake all here, 1698 * so check it again to be sure. 1699 */ 1700 VM_BUG_ON(!range.len); 1701 1702 wake_userfault(ctx, &range); 1703 ret = 0; 1704 1705 out: 1706 return ret; 1707 } 1708 1709 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1710 unsigned long arg) 1711 { 1712 __s64 ret; 1713 struct uffdio_copy uffdio_copy; 1714 struct uffdio_copy __user *user_uffdio_copy; 1715 struct userfaultfd_wake_range range; 1716 1717 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1718 1719 ret = -EAGAIN; 1720 if (READ_ONCE(ctx->mmap_changing)) 1721 goto out; 1722 1723 ret = -EFAULT; 1724 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1725 /* don't copy "copy" last field */ 1726 sizeof(uffdio_copy)-sizeof(__s64))) 1727 goto out; 1728 1729 ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len); 1730 if (ret) 1731 goto out; 1732 /* 1733 * double check for wraparound just in case. copy_from_user() 1734 * will later check uffdio_copy.src + uffdio_copy.len to fit 1735 * in the userland range. 1736 */ 1737 ret = -EINVAL; 1738 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1739 goto out; 1740 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) 1741 goto out; 1742 if (mmget_not_zero(ctx->mm)) { 1743 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1744 uffdio_copy.len, &ctx->mmap_changing, 1745 uffdio_copy.mode); 1746 mmput(ctx->mm); 1747 } else { 1748 return -ESRCH; 1749 } 1750 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1751 return -EFAULT; 1752 if (ret < 0) 1753 goto out; 1754 BUG_ON(!ret); 1755 /* len == 0 would wake all */ 1756 range.len = ret; 1757 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1758 range.start = uffdio_copy.dst; 1759 wake_userfault(ctx, &range); 1760 } 1761 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1762 out: 1763 return ret; 1764 } 1765 1766 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1767 unsigned long arg) 1768 { 1769 __s64 ret; 1770 struct uffdio_zeropage uffdio_zeropage; 1771 struct uffdio_zeropage __user *user_uffdio_zeropage; 1772 struct userfaultfd_wake_range range; 1773 1774 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1775 1776 ret = -EAGAIN; 1777 if (READ_ONCE(ctx->mmap_changing)) 1778 goto out; 1779 1780 ret = -EFAULT; 1781 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1782 /* don't copy "zeropage" last field */ 1783 sizeof(uffdio_zeropage)-sizeof(__s64))) 1784 goto out; 1785 1786 ret = validate_range(ctx->mm, &uffdio_zeropage.range.start, 1787 uffdio_zeropage.range.len); 1788 if (ret) 1789 goto out; 1790 ret = -EINVAL; 1791 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1792 goto out; 1793 1794 if (mmget_not_zero(ctx->mm)) { 1795 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1796 uffdio_zeropage.range.len, 1797 &ctx->mmap_changing); 1798 mmput(ctx->mm); 1799 } else { 1800 return -ESRCH; 1801 } 1802 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1803 return -EFAULT; 1804 if (ret < 0) 1805 goto out; 1806 /* len == 0 would wake all */ 1807 BUG_ON(!ret); 1808 range.len = ret; 1809 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1810 range.start = uffdio_zeropage.range.start; 1811 wake_userfault(ctx, &range); 1812 } 1813 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1814 out: 1815 return ret; 1816 } 1817 1818 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, 1819 unsigned long arg) 1820 { 1821 int ret; 1822 struct uffdio_writeprotect uffdio_wp; 1823 struct uffdio_writeprotect __user *user_uffdio_wp; 1824 struct userfaultfd_wake_range range; 1825 bool mode_wp, mode_dontwake; 1826 1827 if (READ_ONCE(ctx->mmap_changing)) 1828 return -EAGAIN; 1829 1830 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; 1831 1832 if (copy_from_user(&uffdio_wp, user_uffdio_wp, 1833 sizeof(struct uffdio_writeprotect))) 1834 return -EFAULT; 1835 1836 ret = validate_range(ctx->mm, &uffdio_wp.range.start, 1837 uffdio_wp.range.len); 1838 if (ret) 1839 return ret; 1840 1841 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | 1842 UFFDIO_WRITEPROTECT_MODE_WP)) 1843 return -EINVAL; 1844 1845 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; 1846 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; 1847 1848 if (mode_wp && mode_dontwake) 1849 return -EINVAL; 1850 1851 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start, 1852 uffdio_wp.range.len, mode_wp, 1853 &ctx->mmap_changing); 1854 if (ret) 1855 return ret; 1856 1857 if (!mode_wp && !mode_dontwake) { 1858 range.start = uffdio_wp.range.start; 1859 range.len = uffdio_wp.range.len; 1860 wake_userfault(ctx, &range); 1861 } 1862 return ret; 1863 } 1864 1865 static inline unsigned int uffd_ctx_features(__u64 user_features) 1866 { 1867 /* 1868 * For the current set of features the bits just coincide 1869 */ 1870 return (unsigned int)user_features; 1871 } 1872 1873 /* 1874 * userland asks for a certain API version and we return which bits 1875 * and ioctl commands are implemented in this kernel for such API 1876 * version or -EINVAL if unknown. 1877 */ 1878 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1879 unsigned long arg) 1880 { 1881 struct uffdio_api uffdio_api; 1882 void __user *buf = (void __user *)arg; 1883 int ret; 1884 __u64 features; 1885 1886 ret = -EINVAL; 1887 if (ctx->state != UFFD_STATE_WAIT_API) 1888 goto out; 1889 ret = -EFAULT; 1890 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1891 goto out; 1892 features = uffdio_api.features; 1893 ret = -EINVAL; 1894 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) 1895 goto err_out; 1896 ret = -EPERM; 1897 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) 1898 goto err_out; 1899 /* report all available features and ioctls to userland */ 1900 uffdio_api.features = UFFD_API_FEATURES; 1901 uffdio_api.ioctls = UFFD_API_IOCTLS; 1902 ret = -EFAULT; 1903 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1904 goto out; 1905 ctx->state = UFFD_STATE_RUNNING; 1906 /* only enable the requested features for this uffd context */ 1907 ctx->features = uffd_ctx_features(features); 1908 ret = 0; 1909 out: 1910 return ret; 1911 err_out: 1912 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1913 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1914 ret = -EFAULT; 1915 goto out; 1916 } 1917 1918 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1919 unsigned long arg) 1920 { 1921 int ret = -EINVAL; 1922 struct userfaultfd_ctx *ctx = file->private_data; 1923 1924 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) 1925 return -EINVAL; 1926 1927 switch(cmd) { 1928 case UFFDIO_API: 1929 ret = userfaultfd_api(ctx, arg); 1930 break; 1931 case UFFDIO_REGISTER: 1932 ret = userfaultfd_register(ctx, arg); 1933 break; 1934 case UFFDIO_UNREGISTER: 1935 ret = userfaultfd_unregister(ctx, arg); 1936 break; 1937 case UFFDIO_WAKE: 1938 ret = userfaultfd_wake(ctx, arg); 1939 break; 1940 case UFFDIO_COPY: 1941 ret = userfaultfd_copy(ctx, arg); 1942 break; 1943 case UFFDIO_ZEROPAGE: 1944 ret = userfaultfd_zeropage(ctx, arg); 1945 break; 1946 case UFFDIO_WRITEPROTECT: 1947 ret = userfaultfd_writeprotect(ctx, arg); 1948 break; 1949 } 1950 return ret; 1951 } 1952 1953 #ifdef CONFIG_PROC_FS 1954 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 1955 { 1956 struct userfaultfd_ctx *ctx = f->private_data; 1957 wait_queue_entry_t *wq; 1958 unsigned long pending = 0, total = 0; 1959 1960 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1961 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 1962 pending++; 1963 total++; 1964 } 1965 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 1966 total++; 1967 } 1968 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1969 1970 /* 1971 * If more protocols will be added, there will be all shown 1972 * separated by a space. Like this: 1973 * protocols: aa:... bb:... 1974 */ 1975 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 1976 pending, total, UFFD_API, ctx->features, 1977 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 1978 } 1979 #endif 1980 1981 static const struct file_operations userfaultfd_fops = { 1982 #ifdef CONFIG_PROC_FS 1983 .show_fdinfo = userfaultfd_show_fdinfo, 1984 #endif 1985 .release = userfaultfd_release, 1986 .poll = userfaultfd_poll, 1987 .read = userfaultfd_read, 1988 .unlocked_ioctl = userfaultfd_ioctl, 1989 .compat_ioctl = compat_ptr_ioctl, 1990 .llseek = noop_llseek, 1991 }; 1992 1993 static void init_once_userfaultfd_ctx(void *mem) 1994 { 1995 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 1996 1997 init_waitqueue_head(&ctx->fault_pending_wqh); 1998 init_waitqueue_head(&ctx->fault_wqh); 1999 init_waitqueue_head(&ctx->event_wqh); 2000 init_waitqueue_head(&ctx->fd_wqh); 2001 seqcount_init(&ctx->refile_seq); 2002 } 2003 2004 SYSCALL_DEFINE1(userfaultfd, int, flags) 2005 { 2006 struct userfaultfd_ctx *ctx; 2007 int fd; 2008 2009 if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE)) 2010 return -EPERM; 2011 2012 BUG_ON(!current->mm); 2013 2014 /* Check the UFFD_* constants for consistency. */ 2015 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 2016 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 2017 2018 if (flags & ~UFFD_SHARED_FCNTL_FLAGS) 2019 return -EINVAL; 2020 2021 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 2022 if (!ctx) 2023 return -ENOMEM; 2024 2025 refcount_set(&ctx->refcount, 1); 2026 ctx->flags = flags; 2027 ctx->features = 0; 2028 ctx->state = UFFD_STATE_WAIT_API; 2029 ctx->released = false; 2030 ctx->mmap_changing = false; 2031 ctx->mm = current->mm; 2032 /* prevent the mm struct to be freed */ 2033 mmgrab(ctx->mm); 2034 2035 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx, 2036 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); 2037 if (fd < 0) { 2038 mmdrop(ctx->mm); 2039 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 2040 } 2041 return fd; 2042 } 2043 2044 static int __init userfaultfd_init(void) 2045 { 2046 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 2047 sizeof(struct userfaultfd_ctx), 2048 0, 2049 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2050 init_once_userfaultfd_ctx); 2051 return 0; 2052 } 2053 __initcall(userfaultfd_init); 2054