1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/userfaultfd.c 4 * 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 8 * 9 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 11 */ 12 13 #include <linux/list.h> 14 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/seq_file.h> 21 #include <linux/file.h> 22 #include <linux/bug.h> 23 #include <linux/anon_inodes.h> 24 #include <linux/syscalls.h> 25 #include <linux/userfaultfd_k.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ioctl.h> 28 #include <linux/security.h> 29 #include <linux/hugetlb.h> 30 31 int sysctl_unprivileged_userfaultfd __read_mostly = 1; 32 33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 34 35 enum userfaultfd_state { 36 UFFD_STATE_WAIT_API, 37 UFFD_STATE_RUNNING, 38 }; 39 40 /* 41 * Start with fault_pending_wqh and fault_wqh so they're more likely 42 * to be in the same cacheline. 43 * 44 * Locking order: 45 * fd_wqh.lock 46 * fault_pending_wqh.lock 47 * fault_wqh.lock 48 * event_wqh.lock 49 * 50 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, 51 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's 52 * also taken in IRQ context. 53 */ 54 struct userfaultfd_ctx { 55 /* waitqueue head for the pending (i.e. not read) userfaults */ 56 wait_queue_head_t fault_pending_wqh; 57 /* waitqueue head for the userfaults */ 58 wait_queue_head_t fault_wqh; 59 /* waitqueue head for the pseudo fd to wakeup poll/read */ 60 wait_queue_head_t fd_wqh; 61 /* waitqueue head for events */ 62 wait_queue_head_t event_wqh; 63 /* a refile sequence protected by fault_pending_wqh lock */ 64 struct seqcount refile_seq; 65 /* pseudo fd refcounting */ 66 refcount_t refcount; 67 /* userfaultfd syscall flags */ 68 unsigned int flags; 69 /* features requested from the userspace */ 70 unsigned int features; 71 /* state machine */ 72 enum userfaultfd_state state; 73 /* released */ 74 bool released; 75 /* memory mappings are changing because of non-cooperative event */ 76 bool mmap_changing; 77 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 78 struct mm_struct *mm; 79 }; 80 81 struct userfaultfd_fork_ctx { 82 struct userfaultfd_ctx *orig; 83 struct userfaultfd_ctx *new; 84 struct list_head list; 85 }; 86 87 struct userfaultfd_unmap_ctx { 88 struct userfaultfd_ctx *ctx; 89 unsigned long start; 90 unsigned long end; 91 struct list_head list; 92 }; 93 94 struct userfaultfd_wait_queue { 95 struct uffd_msg msg; 96 wait_queue_entry_t wq; 97 struct userfaultfd_ctx *ctx; 98 bool waken; 99 }; 100 101 struct userfaultfd_wake_range { 102 unsigned long start; 103 unsigned long len; 104 }; 105 106 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 107 int wake_flags, void *key) 108 { 109 struct userfaultfd_wake_range *range = key; 110 int ret; 111 struct userfaultfd_wait_queue *uwq; 112 unsigned long start, len; 113 114 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 115 ret = 0; 116 /* len == 0 means wake all */ 117 start = range->start; 118 len = range->len; 119 if (len && (start > uwq->msg.arg.pagefault.address || 120 start + len <= uwq->msg.arg.pagefault.address)) 121 goto out; 122 WRITE_ONCE(uwq->waken, true); 123 /* 124 * The Program-Order guarantees provided by the scheduler 125 * ensure uwq->waken is visible before the task is woken. 126 */ 127 ret = wake_up_state(wq->private, mode); 128 if (ret) { 129 /* 130 * Wake only once, autoremove behavior. 131 * 132 * After the effect of list_del_init is visible to the other 133 * CPUs, the waitqueue may disappear from under us, see the 134 * !list_empty_careful() in handle_userfault(). 135 * 136 * try_to_wake_up() has an implicit smp_mb(), and the 137 * wq->private is read before calling the extern function 138 * "wake_up_state" (which in turns calls try_to_wake_up). 139 */ 140 list_del_init(&wq->entry); 141 } 142 out: 143 return ret; 144 } 145 146 /** 147 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 148 * context. 149 * @ctx: [in] Pointer to the userfaultfd context. 150 */ 151 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 152 { 153 refcount_inc(&ctx->refcount); 154 } 155 156 /** 157 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 158 * context. 159 * @ctx: [in] Pointer to userfaultfd context. 160 * 161 * The userfaultfd context reference must have been previously acquired either 162 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 163 */ 164 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 165 { 166 if (refcount_dec_and_test(&ctx->refcount)) { 167 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 168 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 169 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 170 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 171 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 172 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 173 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 174 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 175 mmdrop(ctx->mm); 176 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 177 } 178 } 179 180 static inline void msg_init(struct uffd_msg *msg) 181 { 182 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 183 /* 184 * Must use memset to zero out the paddings or kernel data is 185 * leaked to userland. 186 */ 187 memset(msg, 0, sizeof(struct uffd_msg)); 188 } 189 190 static inline struct uffd_msg userfault_msg(unsigned long address, 191 unsigned int flags, 192 unsigned long reason, 193 unsigned int features) 194 { 195 struct uffd_msg msg; 196 msg_init(&msg); 197 msg.event = UFFD_EVENT_PAGEFAULT; 198 msg.arg.pagefault.address = address; 199 if (flags & FAULT_FLAG_WRITE) 200 /* 201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE 203 * was not set in a UFFD_EVENT_PAGEFAULT, it means it 204 * was a read fault, otherwise if set it means it's 205 * a write fault. 206 */ 207 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 208 if (reason & VM_UFFD_WP) 209 /* 210 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 211 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was 212 * not set in a UFFD_EVENT_PAGEFAULT, it means it was 213 * a missing fault, otherwise if set it means it's a 214 * write protect fault. 215 */ 216 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 217 if (features & UFFD_FEATURE_THREAD_ID) 218 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 219 return msg; 220 } 221 222 #ifdef CONFIG_HUGETLB_PAGE 223 /* 224 * Same functionality as userfaultfd_must_wait below with modifications for 225 * hugepmd ranges. 226 */ 227 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 228 struct vm_area_struct *vma, 229 unsigned long address, 230 unsigned long flags, 231 unsigned long reason) 232 { 233 struct mm_struct *mm = ctx->mm; 234 pte_t *ptep, pte; 235 bool ret = true; 236 237 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 238 239 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); 240 241 if (!ptep) 242 goto out; 243 244 ret = false; 245 pte = huge_ptep_get(ptep); 246 247 /* 248 * Lockless access: we're in a wait_event so it's ok if it 249 * changes under us. 250 */ 251 if (huge_pte_none(pte)) 252 ret = true; 253 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 254 ret = true; 255 out: 256 return ret; 257 } 258 #else 259 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 260 struct vm_area_struct *vma, 261 unsigned long address, 262 unsigned long flags, 263 unsigned long reason) 264 { 265 return false; /* should never get here */ 266 } 267 #endif /* CONFIG_HUGETLB_PAGE */ 268 269 /* 270 * Verify the pagetables are still not ok after having reigstered into 271 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 272 * userfault that has already been resolved, if userfaultfd_read and 273 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 274 * threads. 275 */ 276 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 277 unsigned long address, 278 unsigned long flags, 279 unsigned long reason) 280 { 281 struct mm_struct *mm = ctx->mm; 282 pgd_t *pgd; 283 p4d_t *p4d; 284 pud_t *pud; 285 pmd_t *pmd, _pmd; 286 pte_t *pte; 287 bool ret = true; 288 289 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 290 291 pgd = pgd_offset(mm, address); 292 if (!pgd_present(*pgd)) 293 goto out; 294 p4d = p4d_offset(pgd, address); 295 if (!p4d_present(*p4d)) 296 goto out; 297 pud = pud_offset(p4d, address); 298 if (!pud_present(*pud)) 299 goto out; 300 pmd = pmd_offset(pud, address); 301 /* 302 * READ_ONCE must function as a barrier with narrower scope 303 * and it must be equivalent to: 304 * _pmd = *pmd; barrier(); 305 * 306 * This is to deal with the instability (as in 307 * pmd_trans_unstable) of the pmd. 308 */ 309 _pmd = READ_ONCE(*pmd); 310 if (pmd_none(_pmd)) 311 goto out; 312 313 ret = false; 314 if (!pmd_present(_pmd)) 315 goto out; 316 317 if (pmd_trans_huge(_pmd)) 318 goto out; 319 320 /* 321 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 322 * and use the standard pte_offset_map() instead of parsing _pmd. 323 */ 324 pte = pte_offset_map(pmd, address); 325 /* 326 * Lockless access: we're in a wait_event so it's ok if it 327 * changes under us. 328 */ 329 if (pte_none(*pte)) 330 ret = true; 331 pte_unmap(pte); 332 333 out: 334 return ret; 335 } 336 337 /* 338 * The locking rules involved in returning VM_FAULT_RETRY depending on 339 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 340 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 341 * recommendation in __lock_page_or_retry is not an understatement. 342 * 343 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released 344 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 345 * not set. 346 * 347 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 348 * set, VM_FAULT_RETRY can still be returned if and only if there are 349 * fatal_signal_pending()s, and the mmap_sem must be released before 350 * returning it. 351 */ 352 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 353 { 354 struct mm_struct *mm = vmf->vma->vm_mm; 355 struct userfaultfd_ctx *ctx; 356 struct userfaultfd_wait_queue uwq; 357 vm_fault_t ret = VM_FAULT_SIGBUS; 358 bool must_wait, return_to_userland; 359 long blocking_state; 360 361 /* 362 * We don't do userfault handling for the final child pid update. 363 * 364 * We also don't do userfault handling during 365 * coredumping. hugetlbfs has the special 366 * follow_hugetlb_page() to skip missing pages in the 367 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 368 * the no_page_table() helper in follow_page_mask(), but the 369 * shmem_vm_ops->fault method is invoked even during 370 * coredumping without mmap_sem and it ends up here. 371 */ 372 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 373 goto out; 374 375 /* 376 * Coredumping runs without mmap_sem so we can only check that 377 * the mmap_sem is held, if PF_DUMPCORE was not set. 378 */ 379 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem)); 380 381 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 382 if (!ctx) 383 goto out; 384 385 BUG_ON(ctx->mm != mm); 386 387 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); 388 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); 389 390 if (ctx->features & UFFD_FEATURE_SIGBUS) 391 goto out; 392 393 /* 394 * If it's already released don't get it. This avoids to loop 395 * in __get_user_pages if userfaultfd_release waits on the 396 * caller of handle_userfault to release the mmap_sem. 397 */ 398 if (unlikely(READ_ONCE(ctx->released))) { 399 /* 400 * Don't return VM_FAULT_SIGBUS in this case, so a non 401 * cooperative manager can close the uffd after the 402 * last UFFDIO_COPY, without risking to trigger an 403 * involuntary SIGBUS if the process was starting the 404 * userfaultfd while the userfaultfd was still armed 405 * (but after the last UFFDIO_COPY). If the uffd 406 * wasn't already closed when the userfault reached 407 * this point, that would normally be solved by 408 * userfaultfd_must_wait returning 'false'. 409 * 410 * If we were to return VM_FAULT_SIGBUS here, the non 411 * cooperative manager would be instead forced to 412 * always call UFFDIO_UNREGISTER before it can safely 413 * close the uffd. 414 */ 415 ret = VM_FAULT_NOPAGE; 416 goto out; 417 } 418 419 /* 420 * Check that we can return VM_FAULT_RETRY. 421 * 422 * NOTE: it should become possible to return VM_FAULT_RETRY 423 * even if FAULT_FLAG_TRIED is set without leading to gup() 424 * -EBUSY failures, if the userfaultfd is to be extended for 425 * VM_UFFD_WP tracking and we intend to arm the userfault 426 * without first stopping userland access to the memory. For 427 * VM_UFFD_MISSING userfaults this is enough for now. 428 */ 429 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 430 /* 431 * Validate the invariant that nowait must allow retry 432 * to be sure not to return SIGBUS erroneously on 433 * nowait invocations. 434 */ 435 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 436 #ifdef CONFIG_DEBUG_VM 437 if (printk_ratelimit()) { 438 printk(KERN_WARNING 439 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 440 vmf->flags); 441 dump_stack(); 442 } 443 #endif 444 goto out; 445 } 446 447 /* 448 * Handle nowait, not much to do other than tell it to retry 449 * and wait. 450 */ 451 ret = VM_FAULT_RETRY; 452 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 453 goto out; 454 455 /* take the reference before dropping the mmap_sem */ 456 userfaultfd_ctx_get(ctx); 457 458 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 459 uwq.wq.private = current; 460 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason, 461 ctx->features); 462 uwq.ctx = ctx; 463 uwq.waken = false; 464 465 return_to_userland = 466 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) == 467 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE); 468 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE : 469 TASK_KILLABLE; 470 471 spin_lock_irq(&ctx->fault_pending_wqh.lock); 472 /* 473 * After the __add_wait_queue the uwq is visible to userland 474 * through poll/read(). 475 */ 476 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 477 /* 478 * The smp_mb() after __set_current_state prevents the reads 479 * following the spin_unlock to happen before the list_add in 480 * __add_wait_queue. 481 */ 482 set_current_state(blocking_state); 483 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 484 485 if (!is_vm_hugetlb_page(vmf->vma)) 486 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 487 reason); 488 else 489 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, 490 vmf->address, 491 vmf->flags, reason); 492 up_read(&mm->mmap_sem); 493 494 if (likely(must_wait && !READ_ONCE(ctx->released) && 495 (return_to_userland ? !signal_pending(current) : 496 !fatal_signal_pending(current)))) { 497 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 498 schedule(); 499 ret |= VM_FAULT_MAJOR; 500 501 /* 502 * False wakeups can orginate even from rwsem before 503 * up_read() however userfaults will wait either for a 504 * targeted wakeup on the specific uwq waitqueue from 505 * wake_userfault() or for signals or for uffd 506 * release. 507 */ 508 while (!READ_ONCE(uwq.waken)) { 509 /* 510 * This needs the full smp_store_mb() 511 * guarantee as the state write must be 512 * visible to other CPUs before reading 513 * uwq.waken from other CPUs. 514 */ 515 set_current_state(blocking_state); 516 if (READ_ONCE(uwq.waken) || 517 READ_ONCE(ctx->released) || 518 (return_to_userland ? signal_pending(current) : 519 fatal_signal_pending(current))) 520 break; 521 schedule(); 522 } 523 } 524 525 __set_current_state(TASK_RUNNING); 526 527 if (return_to_userland) { 528 if (signal_pending(current) && 529 !fatal_signal_pending(current)) { 530 /* 531 * If we got a SIGSTOP or SIGCONT and this is 532 * a normal userland page fault, just let 533 * userland return so the signal will be 534 * handled and gdb debugging works. The page 535 * fault code immediately after we return from 536 * this function is going to release the 537 * mmap_sem and it's not depending on it 538 * (unlike gup would if we were not to return 539 * VM_FAULT_RETRY). 540 * 541 * If a fatal signal is pending we still take 542 * the streamlined VM_FAULT_RETRY failure path 543 * and there's no need to retake the mmap_sem 544 * in such case. 545 */ 546 down_read(&mm->mmap_sem); 547 ret = VM_FAULT_NOPAGE; 548 } 549 } 550 551 /* 552 * Here we race with the list_del; list_add in 553 * userfaultfd_ctx_read(), however because we don't ever run 554 * list_del_init() to refile across the two lists, the prev 555 * and next pointers will never point to self. list_add also 556 * would never let any of the two pointers to point to 557 * self. So list_empty_careful won't risk to see both pointers 558 * pointing to self at any time during the list refile. The 559 * only case where list_del_init() is called is the full 560 * removal in the wake function and there we don't re-list_add 561 * and it's fine not to block on the spinlock. The uwq on this 562 * kernel stack can be released after the list_del_init. 563 */ 564 if (!list_empty_careful(&uwq.wq.entry)) { 565 spin_lock_irq(&ctx->fault_pending_wqh.lock); 566 /* 567 * No need of list_del_init(), the uwq on the stack 568 * will be freed shortly anyway. 569 */ 570 list_del(&uwq.wq.entry); 571 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 572 } 573 574 /* 575 * ctx may go away after this if the userfault pseudo fd is 576 * already released. 577 */ 578 userfaultfd_ctx_put(ctx); 579 580 out: 581 return ret; 582 } 583 584 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 585 struct userfaultfd_wait_queue *ewq) 586 { 587 struct userfaultfd_ctx *release_new_ctx; 588 589 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 590 goto out; 591 592 ewq->ctx = ctx; 593 init_waitqueue_entry(&ewq->wq, current); 594 release_new_ctx = NULL; 595 596 spin_lock_irq(&ctx->event_wqh.lock); 597 /* 598 * After the __add_wait_queue the uwq is visible to userland 599 * through poll/read(). 600 */ 601 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 602 for (;;) { 603 set_current_state(TASK_KILLABLE); 604 if (ewq->msg.event == 0) 605 break; 606 if (READ_ONCE(ctx->released) || 607 fatal_signal_pending(current)) { 608 /* 609 * &ewq->wq may be queued in fork_event, but 610 * __remove_wait_queue ignores the head 611 * parameter. It would be a problem if it 612 * didn't. 613 */ 614 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 615 if (ewq->msg.event == UFFD_EVENT_FORK) { 616 struct userfaultfd_ctx *new; 617 618 new = (struct userfaultfd_ctx *) 619 (unsigned long) 620 ewq->msg.arg.reserved.reserved1; 621 release_new_ctx = new; 622 } 623 break; 624 } 625 626 spin_unlock_irq(&ctx->event_wqh.lock); 627 628 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 629 schedule(); 630 631 spin_lock_irq(&ctx->event_wqh.lock); 632 } 633 __set_current_state(TASK_RUNNING); 634 spin_unlock_irq(&ctx->event_wqh.lock); 635 636 if (release_new_ctx) { 637 struct vm_area_struct *vma; 638 struct mm_struct *mm = release_new_ctx->mm; 639 640 /* the various vma->vm_userfaultfd_ctx still points to it */ 641 down_write(&mm->mmap_sem); 642 /* no task can run (and in turn coredump) yet */ 643 VM_WARN_ON(!mmget_still_valid(mm)); 644 for (vma = mm->mmap; vma; vma = vma->vm_next) 645 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 646 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 647 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 648 } 649 up_write(&mm->mmap_sem); 650 651 userfaultfd_ctx_put(release_new_ctx); 652 } 653 654 /* 655 * ctx may go away after this if the userfault pseudo fd is 656 * already released. 657 */ 658 out: 659 WRITE_ONCE(ctx->mmap_changing, false); 660 userfaultfd_ctx_put(ctx); 661 } 662 663 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 664 struct userfaultfd_wait_queue *ewq) 665 { 666 ewq->msg.event = 0; 667 wake_up_locked(&ctx->event_wqh); 668 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 669 } 670 671 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 672 { 673 struct userfaultfd_ctx *ctx = NULL, *octx; 674 struct userfaultfd_fork_ctx *fctx; 675 676 octx = vma->vm_userfaultfd_ctx.ctx; 677 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 678 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 679 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 680 return 0; 681 } 682 683 list_for_each_entry(fctx, fcs, list) 684 if (fctx->orig == octx) { 685 ctx = fctx->new; 686 break; 687 } 688 689 if (!ctx) { 690 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 691 if (!fctx) 692 return -ENOMEM; 693 694 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 695 if (!ctx) { 696 kfree(fctx); 697 return -ENOMEM; 698 } 699 700 refcount_set(&ctx->refcount, 1); 701 ctx->flags = octx->flags; 702 ctx->state = UFFD_STATE_RUNNING; 703 ctx->features = octx->features; 704 ctx->released = false; 705 ctx->mmap_changing = false; 706 ctx->mm = vma->vm_mm; 707 mmgrab(ctx->mm); 708 709 userfaultfd_ctx_get(octx); 710 WRITE_ONCE(octx->mmap_changing, true); 711 fctx->orig = octx; 712 fctx->new = ctx; 713 list_add_tail(&fctx->list, fcs); 714 } 715 716 vma->vm_userfaultfd_ctx.ctx = ctx; 717 return 0; 718 } 719 720 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 721 { 722 struct userfaultfd_ctx *ctx = fctx->orig; 723 struct userfaultfd_wait_queue ewq; 724 725 msg_init(&ewq.msg); 726 727 ewq.msg.event = UFFD_EVENT_FORK; 728 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 729 730 userfaultfd_event_wait_completion(ctx, &ewq); 731 } 732 733 void dup_userfaultfd_complete(struct list_head *fcs) 734 { 735 struct userfaultfd_fork_ctx *fctx, *n; 736 737 list_for_each_entry_safe(fctx, n, fcs, list) { 738 dup_fctx(fctx); 739 list_del(&fctx->list); 740 kfree(fctx); 741 } 742 } 743 744 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 745 struct vm_userfaultfd_ctx *vm_ctx) 746 { 747 struct userfaultfd_ctx *ctx; 748 749 ctx = vma->vm_userfaultfd_ctx.ctx; 750 751 if (!ctx) 752 return; 753 754 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 755 vm_ctx->ctx = ctx; 756 userfaultfd_ctx_get(ctx); 757 WRITE_ONCE(ctx->mmap_changing, true); 758 } else { 759 /* Drop uffd context if remap feature not enabled */ 760 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 761 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 762 } 763 } 764 765 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 766 unsigned long from, unsigned long to, 767 unsigned long len) 768 { 769 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 770 struct userfaultfd_wait_queue ewq; 771 772 if (!ctx) 773 return; 774 775 if (to & ~PAGE_MASK) { 776 userfaultfd_ctx_put(ctx); 777 return; 778 } 779 780 msg_init(&ewq.msg); 781 782 ewq.msg.event = UFFD_EVENT_REMAP; 783 ewq.msg.arg.remap.from = from; 784 ewq.msg.arg.remap.to = to; 785 ewq.msg.arg.remap.len = len; 786 787 userfaultfd_event_wait_completion(ctx, &ewq); 788 } 789 790 bool userfaultfd_remove(struct vm_area_struct *vma, 791 unsigned long start, unsigned long end) 792 { 793 struct mm_struct *mm = vma->vm_mm; 794 struct userfaultfd_ctx *ctx; 795 struct userfaultfd_wait_queue ewq; 796 797 ctx = vma->vm_userfaultfd_ctx.ctx; 798 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 799 return true; 800 801 userfaultfd_ctx_get(ctx); 802 WRITE_ONCE(ctx->mmap_changing, true); 803 up_read(&mm->mmap_sem); 804 805 msg_init(&ewq.msg); 806 807 ewq.msg.event = UFFD_EVENT_REMOVE; 808 ewq.msg.arg.remove.start = start; 809 ewq.msg.arg.remove.end = end; 810 811 userfaultfd_event_wait_completion(ctx, &ewq); 812 813 return false; 814 } 815 816 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 817 unsigned long start, unsigned long end) 818 { 819 struct userfaultfd_unmap_ctx *unmap_ctx; 820 821 list_for_each_entry(unmap_ctx, unmaps, list) 822 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 823 unmap_ctx->end == end) 824 return true; 825 826 return false; 827 } 828 829 int userfaultfd_unmap_prep(struct vm_area_struct *vma, 830 unsigned long start, unsigned long end, 831 struct list_head *unmaps) 832 { 833 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 834 struct userfaultfd_unmap_ctx *unmap_ctx; 835 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 836 837 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 838 has_unmap_ctx(ctx, unmaps, start, end)) 839 continue; 840 841 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 842 if (!unmap_ctx) 843 return -ENOMEM; 844 845 userfaultfd_ctx_get(ctx); 846 WRITE_ONCE(ctx->mmap_changing, true); 847 unmap_ctx->ctx = ctx; 848 unmap_ctx->start = start; 849 unmap_ctx->end = end; 850 list_add_tail(&unmap_ctx->list, unmaps); 851 } 852 853 return 0; 854 } 855 856 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 857 { 858 struct userfaultfd_unmap_ctx *ctx, *n; 859 struct userfaultfd_wait_queue ewq; 860 861 list_for_each_entry_safe(ctx, n, uf, list) { 862 msg_init(&ewq.msg); 863 864 ewq.msg.event = UFFD_EVENT_UNMAP; 865 ewq.msg.arg.remove.start = ctx->start; 866 ewq.msg.arg.remove.end = ctx->end; 867 868 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 869 870 list_del(&ctx->list); 871 kfree(ctx); 872 } 873 } 874 875 static int userfaultfd_release(struct inode *inode, struct file *file) 876 { 877 struct userfaultfd_ctx *ctx = file->private_data; 878 struct mm_struct *mm = ctx->mm; 879 struct vm_area_struct *vma, *prev; 880 /* len == 0 means wake all */ 881 struct userfaultfd_wake_range range = { .len = 0, }; 882 unsigned long new_flags; 883 bool still_valid; 884 885 WRITE_ONCE(ctx->released, true); 886 887 if (!mmget_not_zero(mm)) 888 goto wakeup; 889 890 /* 891 * Flush page faults out of all CPUs. NOTE: all page faults 892 * must be retried without returning VM_FAULT_SIGBUS if 893 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 894 * changes while handle_userfault released the mmap_sem. So 895 * it's critical that released is set to true (above), before 896 * taking the mmap_sem for writing. 897 */ 898 down_write(&mm->mmap_sem); 899 still_valid = mmget_still_valid(mm); 900 prev = NULL; 901 for (vma = mm->mmap; vma; vma = vma->vm_next) { 902 cond_resched(); 903 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 904 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 905 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 906 prev = vma; 907 continue; 908 } 909 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 910 if (still_valid) { 911 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 912 new_flags, vma->anon_vma, 913 vma->vm_file, vma->vm_pgoff, 914 vma_policy(vma), 915 NULL_VM_UFFD_CTX); 916 if (prev) 917 vma = prev; 918 else 919 prev = vma; 920 } 921 vma->vm_flags = new_flags; 922 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 923 } 924 up_write(&mm->mmap_sem); 925 mmput(mm); 926 wakeup: 927 /* 928 * After no new page faults can wait on this fault_*wqh, flush 929 * the last page faults that may have been already waiting on 930 * the fault_*wqh. 931 */ 932 spin_lock_irq(&ctx->fault_pending_wqh.lock); 933 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 934 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 935 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 936 937 /* Flush pending events that may still wait on event_wqh */ 938 wake_up_all(&ctx->event_wqh); 939 940 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 941 userfaultfd_ctx_put(ctx); 942 return 0; 943 } 944 945 /* fault_pending_wqh.lock must be hold by the caller */ 946 static inline struct userfaultfd_wait_queue *find_userfault_in( 947 wait_queue_head_t *wqh) 948 { 949 wait_queue_entry_t *wq; 950 struct userfaultfd_wait_queue *uwq; 951 952 lockdep_assert_held(&wqh->lock); 953 954 uwq = NULL; 955 if (!waitqueue_active(wqh)) 956 goto out; 957 /* walk in reverse to provide FIFO behavior to read userfaults */ 958 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 959 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 960 out: 961 return uwq; 962 } 963 964 static inline struct userfaultfd_wait_queue *find_userfault( 965 struct userfaultfd_ctx *ctx) 966 { 967 return find_userfault_in(&ctx->fault_pending_wqh); 968 } 969 970 static inline struct userfaultfd_wait_queue *find_userfault_evt( 971 struct userfaultfd_ctx *ctx) 972 { 973 return find_userfault_in(&ctx->event_wqh); 974 } 975 976 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 977 { 978 struct userfaultfd_ctx *ctx = file->private_data; 979 __poll_t ret; 980 981 poll_wait(file, &ctx->fd_wqh, wait); 982 983 switch (ctx->state) { 984 case UFFD_STATE_WAIT_API: 985 return EPOLLERR; 986 case UFFD_STATE_RUNNING: 987 /* 988 * poll() never guarantees that read won't block. 989 * userfaults can be waken before they're read(). 990 */ 991 if (unlikely(!(file->f_flags & O_NONBLOCK))) 992 return EPOLLERR; 993 /* 994 * lockless access to see if there are pending faults 995 * __pollwait last action is the add_wait_queue but 996 * the spin_unlock would allow the waitqueue_active to 997 * pass above the actual list_add inside 998 * add_wait_queue critical section. So use a full 999 * memory barrier to serialize the list_add write of 1000 * add_wait_queue() with the waitqueue_active read 1001 * below. 1002 */ 1003 ret = 0; 1004 smp_mb(); 1005 if (waitqueue_active(&ctx->fault_pending_wqh)) 1006 ret = EPOLLIN; 1007 else if (waitqueue_active(&ctx->event_wqh)) 1008 ret = EPOLLIN; 1009 1010 return ret; 1011 default: 1012 WARN_ON_ONCE(1); 1013 return EPOLLERR; 1014 } 1015 } 1016 1017 static const struct file_operations userfaultfd_fops; 1018 1019 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, 1020 struct userfaultfd_ctx *new, 1021 struct uffd_msg *msg) 1022 { 1023 int fd; 1024 1025 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new, 1026 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS)); 1027 if (fd < 0) 1028 return fd; 1029 1030 msg->arg.reserved.reserved1 = 0; 1031 msg->arg.fork.ufd = fd; 1032 return 0; 1033 } 1034 1035 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1036 struct uffd_msg *msg) 1037 { 1038 ssize_t ret; 1039 DECLARE_WAITQUEUE(wait, current); 1040 struct userfaultfd_wait_queue *uwq; 1041 /* 1042 * Handling fork event requires sleeping operations, so 1043 * we drop the event_wqh lock, then do these ops, then 1044 * lock it back and wake up the waiter. While the lock is 1045 * dropped the ewq may go away so we keep track of it 1046 * carefully. 1047 */ 1048 LIST_HEAD(fork_event); 1049 struct userfaultfd_ctx *fork_nctx = NULL; 1050 1051 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1052 spin_lock_irq(&ctx->fd_wqh.lock); 1053 __add_wait_queue(&ctx->fd_wqh, &wait); 1054 for (;;) { 1055 set_current_state(TASK_INTERRUPTIBLE); 1056 spin_lock(&ctx->fault_pending_wqh.lock); 1057 uwq = find_userfault(ctx); 1058 if (uwq) { 1059 /* 1060 * Use a seqcount to repeat the lockless check 1061 * in wake_userfault() to avoid missing 1062 * wakeups because during the refile both 1063 * waitqueue could become empty if this is the 1064 * only userfault. 1065 */ 1066 write_seqcount_begin(&ctx->refile_seq); 1067 1068 /* 1069 * The fault_pending_wqh.lock prevents the uwq 1070 * to disappear from under us. 1071 * 1072 * Refile this userfault from 1073 * fault_pending_wqh to fault_wqh, it's not 1074 * pending anymore after we read it. 1075 * 1076 * Use list_del() by hand (as 1077 * userfaultfd_wake_function also uses 1078 * list_del_init() by hand) to be sure nobody 1079 * changes __remove_wait_queue() to use 1080 * list_del_init() in turn breaking the 1081 * !list_empty_careful() check in 1082 * handle_userfault(). The uwq->wq.head list 1083 * must never be empty at any time during the 1084 * refile, or the waitqueue could disappear 1085 * from under us. The "wait_queue_head_t" 1086 * parameter of __remove_wait_queue() is unused 1087 * anyway. 1088 */ 1089 list_del(&uwq->wq.entry); 1090 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1091 1092 write_seqcount_end(&ctx->refile_seq); 1093 1094 /* careful to always initialize msg if ret == 0 */ 1095 *msg = uwq->msg; 1096 spin_unlock(&ctx->fault_pending_wqh.lock); 1097 ret = 0; 1098 break; 1099 } 1100 spin_unlock(&ctx->fault_pending_wqh.lock); 1101 1102 spin_lock(&ctx->event_wqh.lock); 1103 uwq = find_userfault_evt(ctx); 1104 if (uwq) { 1105 *msg = uwq->msg; 1106 1107 if (uwq->msg.event == UFFD_EVENT_FORK) { 1108 fork_nctx = (struct userfaultfd_ctx *) 1109 (unsigned long) 1110 uwq->msg.arg.reserved.reserved1; 1111 list_move(&uwq->wq.entry, &fork_event); 1112 /* 1113 * fork_nctx can be freed as soon as 1114 * we drop the lock, unless we take a 1115 * reference on it. 1116 */ 1117 userfaultfd_ctx_get(fork_nctx); 1118 spin_unlock(&ctx->event_wqh.lock); 1119 ret = 0; 1120 break; 1121 } 1122 1123 userfaultfd_event_complete(ctx, uwq); 1124 spin_unlock(&ctx->event_wqh.lock); 1125 ret = 0; 1126 break; 1127 } 1128 spin_unlock(&ctx->event_wqh.lock); 1129 1130 if (signal_pending(current)) { 1131 ret = -ERESTARTSYS; 1132 break; 1133 } 1134 if (no_wait) { 1135 ret = -EAGAIN; 1136 break; 1137 } 1138 spin_unlock_irq(&ctx->fd_wqh.lock); 1139 schedule(); 1140 spin_lock_irq(&ctx->fd_wqh.lock); 1141 } 1142 __remove_wait_queue(&ctx->fd_wqh, &wait); 1143 __set_current_state(TASK_RUNNING); 1144 spin_unlock_irq(&ctx->fd_wqh.lock); 1145 1146 if (!ret && msg->event == UFFD_EVENT_FORK) { 1147 ret = resolve_userfault_fork(ctx, fork_nctx, msg); 1148 spin_lock_irq(&ctx->event_wqh.lock); 1149 if (!list_empty(&fork_event)) { 1150 /* 1151 * The fork thread didn't abort, so we can 1152 * drop the temporary refcount. 1153 */ 1154 userfaultfd_ctx_put(fork_nctx); 1155 1156 uwq = list_first_entry(&fork_event, 1157 typeof(*uwq), 1158 wq.entry); 1159 /* 1160 * If fork_event list wasn't empty and in turn 1161 * the event wasn't already released by fork 1162 * (the event is allocated on fork kernel 1163 * stack), put the event back to its place in 1164 * the event_wq. fork_event head will be freed 1165 * as soon as we return so the event cannot 1166 * stay queued there no matter the current 1167 * "ret" value. 1168 */ 1169 list_del(&uwq->wq.entry); 1170 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1171 1172 /* 1173 * Leave the event in the waitqueue and report 1174 * error to userland if we failed to resolve 1175 * the userfault fork. 1176 */ 1177 if (likely(!ret)) 1178 userfaultfd_event_complete(ctx, uwq); 1179 } else { 1180 /* 1181 * Here the fork thread aborted and the 1182 * refcount from the fork thread on fork_nctx 1183 * has already been released. We still hold 1184 * the reference we took before releasing the 1185 * lock above. If resolve_userfault_fork 1186 * failed we've to drop it because the 1187 * fork_nctx has to be freed in such case. If 1188 * it succeeded we'll hold it because the new 1189 * uffd references it. 1190 */ 1191 if (ret) 1192 userfaultfd_ctx_put(fork_nctx); 1193 } 1194 spin_unlock_irq(&ctx->event_wqh.lock); 1195 } 1196 1197 return ret; 1198 } 1199 1200 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1201 size_t count, loff_t *ppos) 1202 { 1203 struct userfaultfd_ctx *ctx = file->private_data; 1204 ssize_t _ret, ret = 0; 1205 struct uffd_msg msg; 1206 int no_wait = file->f_flags & O_NONBLOCK; 1207 1208 if (ctx->state == UFFD_STATE_WAIT_API) 1209 return -EINVAL; 1210 1211 for (;;) { 1212 if (count < sizeof(msg)) 1213 return ret ? ret : -EINVAL; 1214 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); 1215 if (_ret < 0) 1216 return ret ? ret : _ret; 1217 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1218 return ret ? ret : -EFAULT; 1219 ret += sizeof(msg); 1220 buf += sizeof(msg); 1221 count -= sizeof(msg); 1222 /* 1223 * Allow to read more than one fault at time but only 1224 * block if waiting for the very first one. 1225 */ 1226 no_wait = O_NONBLOCK; 1227 } 1228 } 1229 1230 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1231 struct userfaultfd_wake_range *range) 1232 { 1233 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1234 /* wake all in the range and autoremove */ 1235 if (waitqueue_active(&ctx->fault_pending_wqh)) 1236 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1237 range); 1238 if (waitqueue_active(&ctx->fault_wqh)) 1239 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1240 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1241 } 1242 1243 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1244 struct userfaultfd_wake_range *range) 1245 { 1246 unsigned seq; 1247 bool need_wakeup; 1248 1249 /* 1250 * To be sure waitqueue_active() is not reordered by the CPU 1251 * before the pagetable update, use an explicit SMP memory 1252 * barrier here. PT lock release or up_read(mmap_sem) still 1253 * have release semantics that can allow the 1254 * waitqueue_active() to be reordered before the pte update. 1255 */ 1256 smp_mb(); 1257 1258 /* 1259 * Use waitqueue_active because it's very frequent to 1260 * change the address space atomically even if there are no 1261 * userfaults yet. So we take the spinlock only when we're 1262 * sure we've userfaults to wake. 1263 */ 1264 do { 1265 seq = read_seqcount_begin(&ctx->refile_seq); 1266 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1267 waitqueue_active(&ctx->fault_wqh); 1268 cond_resched(); 1269 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1270 if (need_wakeup) 1271 __wake_userfault(ctx, range); 1272 } 1273 1274 static __always_inline int validate_range(struct mm_struct *mm, 1275 __u64 *start, __u64 len) 1276 { 1277 __u64 task_size = mm->task_size; 1278 1279 *start = untagged_addr(*start); 1280 1281 if (*start & ~PAGE_MASK) 1282 return -EINVAL; 1283 if (len & ~PAGE_MASK) 1284 return -EINVAL; 1285 if (!len) 1286 return -EINVAL; 1287 if (*start < mmap_min_addr) 1288 return -EINVAL; 1289 if (*start >= task_size) 1290 return -EINVAL; 1291 if (len > task_size - *start) 1292 return -EINVAL; 1293 return 0; 1294 } 1295 1296 static inline bool vma_can_userfault(struct vm_area_struct *vma) 1297 { 1298 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || 1299 vma_is_shmem(vma); 1300 } 1301 1302 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1303 unsigned long arg) 1304 { 1305 struct mm_struct *mm = ctx->mm; 1306 struct vm_area_struct *vma, *prev, *cur; 1307 int ret; 1308 struct uffdio_register uffdio_register; 1309 struct uffdio_register __user *user_uffdio_register; 1310 unsigned long vm_flags, new_flags; 1311 bool found; 1312 bool basic_ioctls; 1313 unsigned long start, end, vma_end; 1314 1315 user_uffdio_register = (struct uffdio_register __user *) arg; 1316 1317 ret = -EFAULT; 1318 if (copy_from_user(&uffdio_register, user_uffdio_register, 1319 sizeof(uffdio_register)-sizeof(__u64))) 1320 goto out; 1321 1322 ret = -EINVAL; 1323 if (!uffdio_register.mode) 1324 goto out; 1325 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| 1326 UFFDIO_REGISTER_MODE_WP)) 1327 goto out; 1328 vm_flags = 0; 1329 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1330 vm_flags |= VM_UFFD_MISSING; 1331 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1332 vm_flags |= VM_UFFD_WP; 1333 /* 1334 * FIXME: remove the below error constraint by 1335 * implementing the wprotect tracking mode. 1336 */ 1337 ret = -EINVAL; 1338 goto out; 1339 } 1340 1341 ret = validate_range(mm, &uffdio_register.range.start, 1342 uffdio_register.range.len); 1343 if (ret) 1344 goto out; 1345 1346 start = uffdio_register.range.start; 1347 end = start + uffdio_register.range.len; 1348 1349 ret = -ENOMEM; 1350 if (!mmget_not_zero(mm)) 1351 goto out; 1352 1353 down_write(&mm->mmap_sem); 1354 if (!mmget_still_valid(mm)) 1355 goto out_unlock; 1356 vma = find_vma_prev(mm, start, &prev); 1357 if (!vma) 1358 goto out_unlock; 1359 1360 /* check that there's at least one vma in the range */ 1361 ret = -EINVAL; 1362 if (vma->vm_start >= end) 1363 goto out_unlock; 1364 1365 /* 1366 * If the first vma contains huge pages, make sure start address 1367 * is aligned to huge page size. 1368 */ 1369 if (is_vm_hugetlb_page(vma)) { 1370 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1371 1372 if (start & (vma_hpagesize - 1)) 1373 goto out_unlock; 1374 } 1375 1376 /* 1377 * Search for not compatible vmas. 1378 */ 1379 found = false; 1380 basic_ioctls = false; 1381 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1382 cond_resched(); 1383 1384 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1385 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1386 1387 /* check not compatible vmas */ 1388 ret = -EINVAL; 1389 if (!vma_can_userfault(cur)) 1390 goto out_unlock; 1391 1392 /* 1393 * UFFDIO_COPY will fill file holes even without 1394 * PROT_WRITE. This check enforces that if this is a 1395 * MAP_SHARED, the process has write permission to the backing 1396 * file. If VM_MAYWRITE is set it also enforces that on a 1397 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1398 * F_WRITE_SEAL can be taken until the vma is destroyed. 1399 */ 1400 ret = -EPERM; 1401 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1402 goto out_unlock; 1403 1404 /* 1405 * If this vma contains ending address, and huge pages 1406 * check alignment. 1407 */ 1408 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1409 end > cur->vm_start) { 1410 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1411 1412 ret = -EINVAL; 1413 1414 if (end & (vma_hpagesize - 1)) 1415 goto out_unlock; 1416 } 1417 1418 /* 1419 * Check that this vma isn't already owned by a 1420 * different userfaultfd. We can't allow more than one 1421 * userfaultfd to own a single vma simultaneously or we 1422 * wouldn't know which one to deliver the userfaults to. 1423 */ 1424 ret = -EBUSY; 1425 if (cur->vm_userfaultfd_ctx.ctx && 1426 cur->vm_userfaultfd_ctx.ctx != ctx) 1427 goto out_unlock; 1428 1429 /* 1430 * Note vmas containing huge pages 1431 */ 1432 if (is_vm_hugetlb_page(cur)) 1433 basic_ioctls = true; 1434 1435 found = true; 1436 } 1437 BUG_ON(!found); 1438 1439 if (vma->vm_start < start) 1440 prev = vma; 1441 1442 ret = 0; 1443 do { 1444 cond_resched(); 1445 1446 BUG_ON(!vma_can_userfault(vma)); 1447 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1448 vma->vm_userfaultfd_ctx.ctx != ctx); 1449 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1450 1451 /* 1452 * Nothing to do: this vma is already registered into this 1453 * userfaultfd and with the right tracking mode too. 1454 */ 1455 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1456 (vma->vm_flags & vm_flags) == vm_flags) 1457 goto skip; 1458 1459 if (vma->vm_start > start) 1460 start = vma->vm_start; 1461 vma_end = min(end, vma->vm_end); 1462 1463 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags; 1464 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1465 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1466 vma_policy(vma), 1467 ((struct vm_userfaultfd_ctx){ ctx })); 1468 if (prev) { 1469 vma = prev; 1470 goto next; 1471 } 1472 if (vma->vm_start < start) { 1473 ret = split_vma(mm, vma, start, 1); 1474 if (ret) 1475 break; 1476 } 1477 if (vma->vm_end > end) { 1478 ret = split_vma(mm, vma, end, 0); 1479 if (ret) 1480 break; 1481 } 1482 next: 1483 /* 1484 * In the vma_merge() successful mprotect-like case 8: 1485 * the next vma was merged into the current one and 1486 * the current one has not been updated yet. 1487 */ 1488 vma->vm_flags = new_flags; 1489 vma->vm_userfaultfd_ctx.ctx = ctx; 1490 1491 skip: 1492 prev = vma; 1493 start = vma->vm_end; 1494 vma = vma->vm_next; 1495 } while (vma && vma->vm_start < end); 1496 out_unlock: 1497 up_write(&mm->mmap_sem); 1498 mmput(mm); 1499 if (!ret) { 1500 /* 1501 * Now that we scanned all vmas we can already tell 1502 * userland which ioctls methods are guaranteed to 1503 * succeed on this range. 1504 */ 1505 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1506 UFFD_API_RANGE_IOCTLS, 1507 &user_uffdio_register->ioctls)) 1508 ret = -EFAULT; 1509 } 1510 out: 1511 return ret; 1512 } 1513 1514 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1515 unsigned long arg) 1516 { 1517 struct mm_struct *mm = ctx->mm; 1518 struct vm_area_struct *vma, *prev, *cur; 1519 int ret; 1520 struct uffdio_range uffdio_unregister; 1521 unsigned long new_flags; 1522 bool found; 1523 unsigned long start, end, vma_end; 1524 const void __user *buf = (void __user *)arg; 1525 1526 ret = -EFAULT; 1527 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1528 goto out; 1529 1530 ret = validate_range(mm, &uffdio_unregister.start, 1531 uffdio_unregister.len); 1532 if (ret) 1533 goto out; 1534 1535 start = uffdio_unregister.start; 1536 end = start + uffdio_unregister.len; 1537 1538 ret = -ENOMEM; 1539 if (!mmget_not_zero(mm)) 1540 goto out; 1541 1542 down_write(&mm->mmap_sem); 1543 if (!mmget_still_valid(mm)) 1544 goto out_unlock; 1545 vma = find_vma_prev(mm, start, &prev); 1546 if (!vma) 1547 goto out_unlock; 1548 1549 /* check that there's at least one vma in the range */ 1550 ret = -EINVAL; 1551 if (vma->vm_start >= end) 1552 goto out_unlock; 1553 1554 /* 1555 * If the first vma contains huge pages, make sure start address 1556 * is aligned to huge page size. 1557 */ 1558 if (is_vm_hugetlb_page(vma)) { 1559 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1560 1561 if (start & (vma_hpagesize - 1)) 1562 goto out_unlock; 1563 } 1564 1565 /* 1566 * Search for not compatible vmas. 1567 */ 1568 found = false; 1569 ret = -EINVAL; 1570 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1571 cond_resched(); 1572 1573 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1574 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1575 1576 /* 1577 * Check not compatible vmas, not strictly required 1578 * here as not compatible vmas cannot have an 1579 * userfaultfd_ctx registered on them, but this 1580 * provides for more strict behavior to notice 1581 * unregistration errors. 1582 */ 1583 if (!vma_can_userfault(cur)) 1584 goto out_unlock; 1585 1586 found = true; 1587 } 1588 BUG_ON(!found); 1589 1590 if (vma->vm_start < start) 1591 prev = vma; 1592 1593 ret = 0; 1594 do { 1595 cond_resched(); 1596 1597 BUG_ON(!vma_can_userfault(vma)); 1598 1599 /* 1600 * Nothing to do: this vma is already registered into this 1601 * userfaultfd and with the right tracking mode too. 1602 */ 1603 if (!vma->vm_userfaultfd_ctx.ctx) 1604 goto skip; 1605 1606 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1607 1608 if (vma->vm_start > start) 1609 start = vma->vm_start; 1610 vma_end = min(end, vma->vm_end); 1611 1612 if (userfaultfd_missing(vma)) { 1613 /* 1614 * Wake any concurrent pending userfault while 1615 * we unregister, so they will not hang 1616 * permanently and it avoids userland to call 1617 * UFFDIO_WAKE explicitly. 1618 */ 1619 struct userfaultfd_wake_range range; 1620 range.start = start; 1621 range.len = vma_end - start; 1622 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1623 } 1624 1625 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 1626 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1627 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1628 vma_policy(vma), 1629 NULL_VM_UFFD_CTX); 1630 if (prev) { 1631 vma = prev; 1632 goto next; 1633 } 1634 if (vma->vm_start < start) { 1635 ret = split_vma(mm, vma, start, 1); 1636 if (ret) 1637 break; 1638 } 1639 if (vma->vm_end > end) { 1640 ret = split_vma(mm, vma, end, 0); 1641 if (ret) 1642 break; 1643 } 1644 next: 1645 /* 1646 * In the vma_merge() successful mprotect-like case 8: 1647 * the next vma was merged into the current one and 1648 * the current one has not been updated yet. 1649 */ 1650 vma->vm_flags = new_flags; 1651 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1652 1653 skip: 1654 prev = vma; 1655 start = vma->vm_end; 1656 vma = vma->vm_next; 1657 } while (vma && vma->vm_start < end); 1658 out_unlock: 1659 up_write(&mm->mmap_sem); 1660 mmput(mm); 1661 out: 1662 return ret; 1663 } 1664 1665 /* 1666 * userfaultfd_wake may be used in combination with the 1667 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1668 */ 1669 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1670 unsigned long arg) 1671 { 1672 int ret; 1673 struct uffdio_range uffdio_wake; 1674 struct userfaultfd_wake_range range; 1675 const void __user *buf = (void __user *)arg; 1676 1677 ret = -EFAULT; 1678 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1679 goto out; 1680 1681 ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len); 1682 if (ret) 1683 goto out; 1684 1685 range.start = uffdio_wake.start; 1686 range.len = uffdio_wake.len; 1687 1688 /* 1689 * len == 0 means wake all and we don't want to wake all here, 1690 * so check it again to be sure. 1691 */ 1692 VM_BUG_ON(!range.len); 1693 1694 wake_userfault(ctx, &range); 1695 ret = 0; 1696 1697 out: 1698 return ret; 1699 } 1700 1701 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1702 unsigned long arg) 1703 { 1704 __s64 ret; 1705 struct uffdio_copy uffdio_copy; 1706 struct uffdio_copy __user *user_uffdio_copy; 1707 struct userfaultfd_wake_range range; 1708 1709 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1710 1711 ret = -EAGAIN; 1712 if (READ_ONCE(ctx->mmap_changing)) 1713 goto out; 1714 1715 ret = -EFAULT; 1716 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1717 /* don't copy "copy" last field */ 1718 sizeof(uffdio_copy)-sizeof(__s64))) 1719 goto out; 1720 1721 ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len); 1722 if (ret) 1723 goto out; 1724 /* 1725 * double check for wraparound just in case. copy_from_user() 1726 * will later check uffdio_copy.src + uffdio_copy.len to fit 1727 * in the userland range. 1728 */ 1729 ret = -EINVAL; 1730 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1731 goto out; 1732 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) 1733 goto out; 1734 if (mmget_not_zero(ctx->mm)) { 1735 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1736 uffdio_copy.len, &ctx->mmap_changing); 1737 mmput(ctx->mm); 1738 } else { 1739 return -ESRCH; 1740 } 1741 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1742 return -EFAULT; 1743 if (ret < 0) 1744 goto out; 1745 BUG_ON(!ret); 1746 /* len == 0 would wake all */ 1747 range.len = ret; 1748 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1749 range.start = uffdio_copy.dst; 1750 wake_userfault(ctx, &range); 1751 } 1752 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1753 out: 1754 return ret; 1755 } 1756 1757 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1758 unsigned long arg) 1759 { 1760 __s64 ret; 1761 struct uffdio_zeropage uffdio_zeropage; 1762 struct uffdio_zeropage __user *user_uffdio_zeropage; 1763 struct userfaultfd_wake_range range; 1764 1765 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1766 1767 ret = -EAGAIN; 1768 if (READ_ONCE(ctx->mmap_changing)) 1769 goto out; 1770 1771 ret = -EFAULT; 1772 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1773 /* don't copy "zeropage" last field */ 1774 sizeof(uffdio_zeropage)-sizeof(__s64))) 1775 goto out; 1776 1777 ret = validate_range(ctx->mm, &uffdio_zeropage.range.start, 1778 uffdio_zeropage.range.len); 1779 if (ret) 1780 goto out; 1781 ret = -EINVAL; 1782 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1783 goto out; 1784 1785 if (mmget_not_zero(ctx->mm)) { 1786 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1787 uffdio_zeropage.range.len, 1788 &ctx->mmap_changing); 1789 mmput(ctx->mm); 1790 } else { 1791 return -ESRCH; 1792 } 1793 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1794 return -EFAULT; 1795 if (ret < 0) 1796 goto out; 1797 /* len == 0 would wake all */ 1798 BUG_ON(!ret); 1799 range.len = ret; 1800 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1801 range.start = uffdio_zeropage.range.start; 1802 wake_userfault(ctx, &range); 1803 } 1804 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1805 out: 1806 return ret; 1807 } 1808 1809 static inline unsigned int uffd_ctx_features(__u64 user_features) 1810 { 1811 /* 1812 * For the current set of features the bits just coincide 1813 */ 1814 return (unsigned int)user_features; 1815 } 1816 1817 /* 1818 * userland asks for a certain API version and we return which bits 1819 * and ioctl commands are implemented in this kernel for such API 1820 * version or -EINVAL if unknown. 1821 */ 1822 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1823 unsigned long arg) 1824 { 1825 struct uffdio_api uffdio_api; 1826 void __user *buf = (void __user *)arg; 1827 int ret; 1828 __u64 features; 1829 1830 ret = -EINVAL; 1831 if (ctx->state != UFFD_STATE_WAIT_API) 1832 goto out; 1833 ret = -EFAULT; 1834 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1835 goto out; 1836 features = uffdio_api.features; 1837 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) { 1838 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1839 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1840 goto out; 1841 ret = -EINVAL; 1842 goto out; 1843 } 1844 /* report all available features and ioctls to userland */ 1845 uffdio_api.features = UFFD_API_FEATURES; 1846 uffdio_api.ioctls = UFFD_API_IOCTLS; 1847 ret = -EFAULT; 1848 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1849 goto out; 1850 ctx->state = UFFD_STATE_RUNNING; 1851 /* only enable the requested features for this uffd context */ 1852 ctx->features = uffd_ctx_features(features); 1853 ret = 0; 1854 out: 1855 return ret; 1856 } 1857 1858 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1859 unsigned long arg) 1860 { 1861 int ret = -EINVAL; 1862 struct userfaultfd_ctx *ctx = file->private_data; 1863 1864 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) 1865 return -EINVAL; 1866 1867 switch(cmd) { 1868 case UFFDIO_API: 1869 ret = userfaultfd_api(ctx, arg); 1870 break; 1871 case UFFDIO_REGISTER: 1872 ret = userfaultfd_register(ctx, arg); 1873 break; 1874 case UFFDIO_UNREGISTER: 1875 ret = userfaultfd_unregister(ctx, arg); 1876 break; 1877 case UFFDIO_WAKE: 1878 ret = userfaultfd_wake(ctx, arg); 1879 break; 1880 case UFFDIO_COPY: 1881 ret = userfaultfd_copy(ctx, arg); 1882 break; 1883 case UFFDIO_ZEROPAGE: 1884 ret = userfaultfd_zeropage(ctx, arg); 1885 break; 1886 } 1887 return ret; 1888 } 1889 1890 #ifdef CONFIG_PROC_FS 1891 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 1892 { 1893 struct userfaultfd_ctx *ctx = f->private_data; 1894 wait_queue_entry_t *wq; 1895 unsigned long pending = 0, total = 0; 1896 1897 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1898 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 1899 pending++; 1900 total++; 1901 } 1902 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 1903 total++; 1904 } 1905 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1906 1907 /* 1908 * If more protocols will be added, there will be all shown 1909 * separated by a space. Like this: 1910 * protocols: aa:... bb:... 1911 */ 1912 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 1913 pending, total, UFFD_API, ctx->features, 1914 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 1915 } 1916 #endif 1917 1918 static const struct file_operations userfaultfd_fops = { 1919 #ifdef CONFIG_PROC_FS 1920 .show_fdinfo = userfaultfd_show_fdinfo, 1921 #endif 1922 .release = userfaultfd_release, 1923 .poll = userfaultfd_poll, 1924 .read = userfaultfd_read, 1925 .unlocked_ioctl = userfaultfd_ioctl, 1926 .compat_ioctl = userfaultfd_ioctl, 1927 .llseek = noop_llseek, 1928 }; 1929 1930 static void init_once_userfaultfd_ctx(void *mem) 1931 { 1932 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 1933 1934 init_waitqueue_head(&ctx->fault_pending_wqh); 1935 init_waitqueue_head(&ctx->fault_wqh); 1936 init_waitqueue_head(&ctx->event_wqh); 1937 init_waitqueue_head(&ctx->fd_wqh); 1938 seqcount_init(&ctx->refile_seq); 1939 } 1940 1941 SYSCALL_DEFINE1(userfaultfd, int, flags) 1942 { 1943 struct userfaultfd_ctx *ctx; 1944 int fd; 1945 1946 if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE)) 1947 return -EPERM; 1948 1949 BUG_ON(!current->mm); 1950 1951 /* Check the UFFD_* constants for consistency. */ 1952 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 1953 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 1954 1955 if (flags & ~UFFD_SHARED_FCNTL_FLAGS) 1956 return -EINVAL; 1957 1958 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 1959 if (!ctx) 1960 return -ENOMEM; 1961 1962 refcount_set(&ctx->refcount, 1); 1963 ctx->flags = flags; 1964 ctx->features = 0; 1965 ctx->state = UFFD_STATE_WAIT_API; 1966 ctx->released = false; 1967 ctx->mmap_changing = false; 1968 ctx->mm = current->mm; 1969 /* prevent the mm struct to be freed */ 1970 mmgrab(ctx->mm); 1971 1972 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx, 1973 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); 1974 if (fd < 0) { 1975 mmdrop(ctx->mm); 1976 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 1977 } 1978 return fd; 1979 } 1980 1981 static int __init userfaultfd_init(void) 1982 { 1983 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 1984 sizeof(struct userfaultfd_ctx), 1985 0, 1986 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 1987 init_once_userfaultfd_ctx); 1988 return 0; 1989 } 1990 __initcall(userfaultfd_init); 1991