1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/userfaultfd.c 4 * 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 8 * 9 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 11 */ 12 13 #include <linux/list.h> 14 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/mmu_notifier.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 #include <linux/swapops.h> 33 #include <linux/miscdevice.h> 34 35 static int sysctl_unprivileged_userfaultfd __read_mostly; 36 37 #ifdef CONFIG_SYSCTL 38 static struct ctl_table vm_userfaultfd_table[] = { 39 { 40 .procname = "unprivileged_userfaultfd", 41 .data = &sysctl_unprivileged_userfaultfd, 42 .maxlen = sizeof(sysctl_unprivileged_userfaultfd), 43 .mode = 0644, 44 .proc_handler = proc_dointvec_minmax, 45 .extra1 = SYSCTL_ZERO, 46 .extra2 = SYSCTL_ONE, 47 }, 48 { } 49 }; 50 #endif 51 52 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 53 54 /* 55 * Start with fault_pending_wqh and fault_wqh so they're more likely 56 * to be in the same cacheline. 57 * 58 * Locking order: 59 * fd_wqh.lock 60 * fault_pending_wqh.lock 61 * fault_wqh.lock 62 * event_wqh.lock 63 * 64 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, 65 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's 66 * also taken in IRQ context. 67 */ 68 struct userfaultfd_ctx { 69 /* waitqueue head for the pending (i.e. not read) userfaults */ 70 wait_queue_head_t fault_pending_wqh; 71 /* waitqueue head for the userfaults */ 72 wait_queue_head_t fault_wqh; 73 /* waitqueue head for the pseudo fd to wakeup poll/read */ 74 wait_queue_head_t fd_wqh; 75 /* waitqueue head for events */ 76 wait_queue_head_t event_wqh; 77 /* a refile sequence protected by fault_pending_wqh lock */ 78 seqcount_spinlock_t refile_seq; 79 /* pseudo fd refcounting */ 80 refcount_t refcount; 81 /* userfaultfd syscall flags */ 82 unsigned int flags; 83 /* features requested from the userspace */ 84 unsigned int features; 85 /* released */ 86 bool released; 87 /* memory mappings are changing because of non-cooperative event */ 88 atomic_t mmap_changing; 89 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 90 struct mm_struct *mm; 91 }; 92 93 struct userfaultfd_fork_ctx { 94 struct userfaultfd_ctx *orig; 95 struct userfaultfd_ctx *new; 96 struct list_head list; 97 }; 98 99 struct userfaultfd_unmap_ctx { 100 struct userfaultfd_ctx *ctx; 101 unsigned long start; 102 unsigned long end; 103 struct list_head list; 104 }; 105 106 struct userfaultfd_wait_queue { 107 struct uffd_msg msg; 108 wait_queue_entry_t wq; 109 struct userfaultfd_ctx *ctx; 110 bool waken; 111 }; 112 113 struct userfaultfd_wake_range { 114 unsigned long start; 115 unsigned long len; 116 }; 117 118 /* internal indication that UFFD_API ioctl was successfully executed */ 119 #define UFFD_FEATURE_INITIALIZED (1u << 31) 120 121 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx) 122 { 123 return ctx->features & UFFD_FEATURE_INITIALIZED; 124 } 125 126 /* 127 * Whether WP_UNPOPULATED is enabled on the uffd context. It is only 128 * meaningful when userfaultfd_wp()==true on the vma and when it's 129 * anonymous. 130 */ 131 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma) 132 { 133 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 134 135 if (!ctx) 136 return false; 137 138 return ctx->features & UFFD_FEATURE_WP_UNPOPULATED; 139 } 140 141 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma, 142 vm_flags_t flags) 143 { 144 const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP; 145 146 vm_flags_reset(vma, flags); 147 /* 148 * For shared mappings, we want to enable writenotify while 149 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply 150 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes. 151 */ 152 if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed) 153 vma_set_page_prot(vma); 154 } 155 156 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 157 int wake_flags, void *key) 158 { 159 struct userfaultfd_wake_range *range = key; 160 int ret; 161 struct userfaultfd_wait_queue *uwq; 162 unsigned long start, len; 163 164 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 165 ret = 0; 166 /* len == 0 means wake all */ 167 start = range->start; 168 len = range->len; 169 if (len && (start > uwq->msg.arg.pagefault.address || 170 start + len <= uwq->msg.arg.pagefault.address)) 171 goto out; 172 WRITE_ONCE(uwq->waken, true); 173 /* 174 * The Program-Order guarantees provided by the scheduler 175 * ensure uwq->waken is visible before the task is woken. 176 */ 177 ret = wake_up_state(wq->private, mode); 178 if (ret) { 179 /* 180 * Wake only once, autoremove behavior. 181 * 182 * After the effect of list_del_init is visible to the other 183 * CPUs, the waitqueue may disappear from under us, see the 184 * !list_empty_careful() in handle_userfault(). 185 * 186 * try_to_wake_up() has an implicit smp_mb(), and the 187 * wq->private is read before calling the extern function 188 * "wake_up_state" (which in turns calls try_to_wake_up). 189 */ 190 list_del_init(&wq->entry); 191 } 192 out: 193 return ret; 194 } 195 196 /** 197 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 198 * context. 199 * @ctx: [in] Pointer to the userfaultfd context. 200 */ 201 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 202 { 203 refcount_inc(&ctx->refcount); 204 } 205 206 /** 207 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 208 * context. 209 * @ctx: [in] Pointer to userfaultfd context. 210 * 211 * The userfaultfd context reference must have been previously acquired either 212 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 213 */ 214 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 215 { 216 if (refcount_dec_and_test(&ctx->refcount)) { 217 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 218 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 219 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 220 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 221 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 222 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 223 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 224 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 225 mmdrop(ctx->mm); 226 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 227 } 228 } 229 230 static inline void msg_init(struct uffd_msg *msg) 231 { 232 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 233 /* 234 * Must use memset to zero out the paddings or kernel data is 235 * leaked to userland. 236 */ 237 memset(msg, 0, sizeof(struct uffd_msg)); 238 } 239 240 static inline struct uffd_msg userfault_msg(unsigned long address, 241 unsigned long real_address, 242 unsigned int flags, 243 unsigned long reason, 244 unsigned int features) 245 { 246 struct uffd_msg msg; 247 248 msg_init(&msg); 249 msg.event = UFFD_EVENT_PAGEFAULT; 250 251 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ? 252 real_address : address; 253 254 /* 255 * These flags indicate why the userfault occurred: 256 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault. 257 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault. 258 * - Neither of these flags being set indicates a MISSING fault. 259 * 260 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write 261 * fault. Otherwise, it was a read fault. 262 */ 263 if (flags & FAULT_FLAG_WRITE) 264 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 265 if (reason & VM_UFFD_WP) 266 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 267 if (reason & VM_UFFD_MINOR) 268 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR; 269 if (features & UFFD_FEATURE_THREAD_ID) 270 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 271 return msg; 272 } 273 274 #ifdef CONFIG_HUGETLB_PAGE 275 /* 276 * Same functionality as userfaultfd_must_wait below with modifications for 277 * hugepmd ranges. 278 */ 279 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 280 struct vm_area_struct *vma, 281 unsigned long address, 282 unsigned long flags, 283 unsigned long reason) 284 { 285 pte_t *ptep, pte; 286 bool ret = true; 287 288 mmap_assert_locked(ctx->mm); 289 290 ptep = hugetlb_walk(vma, address, vma_mmu_pagesize(vma)); 291 if (!ptep) 292 goto out; 293 294 ret = false; 295 pte = huge_ptep_get(ptep); 296 297 /* 298 * Lockless access: we're in a wait_event so it's ok if it 299 * changes under us. PTE markers should be handled the same as none 300 * ptes here. 301 */ 302 if (huge_pte_none_mostly(pte)) 303 ret = true; 304 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 305 ret = true; 306 out: 307 return ret; 308 } 309 #else 310 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 311 struct vm_area_struct *vma, 312 unsigned long address, 313 unsigned long flags, 314 unsigned long reason) 315 { 316 return false; /* should never get here */ 317 } 318 #endif /* CONFIG_HUGETLB_PAGE */ 319 320 /* 321 * Verify the pagetables are still not ok after having reigstered into 322 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 323 * userfault that has already been resolved, if userfaultfd_read and 324 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 325 * threads. 326 */ 327 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 328 unsigned long address, 329 unsigned long flags, 330 unsigned long reason) 331 { 332 struct mm_struct *mm = ctx->mm; 333 pgd_t *pgd; 334 p4d_t *p4d; 335 pud_t *pud; 336 pmd_t *pmd, _pmd; 337 pte_t *pte; 338 bool ret = true; 339 340 mmap_assert_locked(mm); 341 342 pgd = pgd_offset(mm, address); 343 if (!pgd_present(*pgd)) 344 goto out; 345 p4d = p4d_offset(pgd, address); 346 if (!p4d_present(*p4d)) 347 goto out; 348 pud = pud_offset(p4d, address); 349 if (!pud_present(*pud)) 350 goto out; 351 pmd = pmd_offset(pud, address); 352 /* 353 * READ_ONCE must function as a barrier with narrower scope 354 * and it must be equivalent to: 355 * _pmd = *pmd; barrier(); 356 * 357 * This is to deal with the instability (as in 358 * pmd_trans_unstable) of the pmd. 359 */ 360 _pmd = READ_ONCE(*pmd); 361 if (pmd_none(_pmd)) 362 goto out; 363 364 ret = false; 365 if (!pmd_present(_pmd)) 366 goto out; 367 368 if (pmd_trans_huge(_pmd)) { 369 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) 370 ret = true; 371 goto out; 372 } 373 374 /* 375 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 376 * and use the standard pte_offset_map() instead of parsing _pmd. 377 */ 378 pte = pte_offset_map(pmd, address); 379 /* 380 * Lockless access: we're in a wait_event so it's ok if it 381 * changes under us. PTE markers should be handled the same as none 382 * ptes here. 383 */ 384 if (pte_none_mostly(*pte)) 385 ret = true; 386 if (!pte_write(*pte) && (reason & VM_UFFD_WP)) 387 ret = true; 388 pte_unmap(pte); 389 390 out: 391 return ret; 392 } 393 394 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags) 395 { 396 if (flags & FAULT_FLAG_INTERRUPTIBLE) 397 return TASK_INTERRUPTIBLE; 398 399 if (flags & FAULT_FLAG_KILLABLE) 400 return TASK_KILLABLE; 401 402 return TASK_UNINTERRUPTIBLE; 403 } 404 405 /* 406 * The locking rules involved in returning VM_FAULT_RETRY depending on 407 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 408 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 409 * recommendation in __lock_page_or_retry is not an understatement. 410 * 411 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released 412 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 413 * not set. 414 * 415 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 416 * set, VM_FAULT_RETRY can still be returned if and only if there are 417 * fatal_signal_pending()s, and the mmap_lock must be released before 418 * returning it. 419 */ 420 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 421 { 422 struct vm_area_struct *vma = vmf->vma; 423 struct mm_struct *mm = vma->vm_mm; 424 struct userfaultfd_ctx *ctx; 425 struct userfaultfd_wait_queue uwq; 426 vm_fault_t ret = VM_FAULT_SIGBUS; 427 bool must_wait; 428 unsigned int blocking_state; 429 430 /* 431 * We don't do userfault handling for the final child pid update. 432 * 433 * We also don't do userfault handling during 434 * coredumping. hugetlbfs has the special 435 * follow_hugetlb_page() to skip missing pages in the 436 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 437 * the no_page_table() helper in follow_page_mask(), but the 438 * shmem_vm_ops->fault method is invoked even during 439 * coredumping without mmap_lock and it ends up here. 440 */ 441 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 442 goto out; 443 444 /* 445 * Coredumping runs without mmap_lock so we can only check that 446 * the mmap_lock is held, if PF_DUMPCORE was not set. 447 */ 448 mmap_assert_locked(mm); 449 450 ctx = vma->vm_userfaultfd_ctx.ctx; 451 if (!ctx) 452 goto out; 453 454 BUG_ON(ctx->mm != mm); 455 456 /* Any unrecognized flag is a bug. */ 457 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS); 458 /* 0 or > 1 flags set is a bug; we expect exactly 1. */ 459 VM_BUG_ON(!reason || (reason & (reason - 1))); 460 461 if (ctx->features & UFFD_FEATURE_SIGBUS) 462 goto out; 463 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY)) 464 goto out; 465 466 /* 467 * If it's already released don't get it. This avoids to loop 468 * in __get_user_pages if userfaultfd_release waits on the 469 * caller of handle_userfault to release the mmap_lock. 470 */ 471 if (unlikely(READ_ONCE(ctx->released))) { 472 /* 473 * Don't return VM_FAULT_SIGBUS in this case, so a non 474 * cooperative manager can close the uffd after the 475 * last UFFDIO_COPY, without risking to trigger an 476 * involuntary SIGBUS if the process was starting the 477 * userfaultfd while the userfaultfd was still armed 478 * (but after the last UFFDIO_COPY). If the uffd 479 * wasn't already closed when the userfault reached 480 * this point, that would normally be solved by 481 * userfaultfd_must_wait returning 'false'. 482 * 483 * If we were to return VM_FAULT_SIGBUS here, the non 484 * cooperative manager would be instead forced to 485 * always call UFFDIO_UNREGISTER before it can safely 486 * close the uffd. 487 */ 488 ret = VM_FAULT_NOPAGE; 489 goto out; 490 } 491 492 /* 493 * Check that we can return VM_FAULT_RETRY. 494 * 495 * NOTE: it should become possible to return VM_FAULT_RETRY 496 * even if FAULT_FLAG_TRIED is set without leading to gup() 497 * -EBUSY failures, if the userfaultfd is to be extended for 498 * VM_UFFD_WP tracking and we intend to arm the userfault 499 * without first stopping userland access to the memory. For 500 * VM_UFFD_MISSING userfaults this is enough for now. 501 */ 502 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 503 /* 504 * Validate the invariant that nowait must allow retry 505 * to be sure not to return SIGBUS erroneously on 506 * nowait invocations. 507 */ 508 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 509 #ifdef CONFIG_DEBUG_VM 510 if (printk_ratelimit()) { 511 printk(KERN_WARNING 512 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 513 vmf->flags); 514 dump_stack(); 515 } 516 #endif 517 goto out; 518 } 519 520 /* 521 * Handle nowait, not much to do other than tell it to retry 522 * and wait. 523 */ 524 ret = VM_FAULT_RETRY; 525 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 526 goto out; 527 528 /* take the reference before dropping the mmap_lock */ 529 userfaultfd_ctx_get(ctx); 530 531 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 532 uwq.wq.private = current; 533 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags, 534 reason, ctx->features); 535 uwq.ctx = ctx; 536 uwq.waken = false; 537 538 blocking_state = userfaultfd_get_blocking_state(vmf->flags); 539 540 /* 541 * Take the vma lock now, in order to safely call 542 * userfaultfd_huge_must_wait() later. Since acquiring the 543 * (sleepable) vma lock can modify the current task state, that 544 * must be before explicitly calling set_current_state(). 545 */ 546 if (is_vm_hugetlb_page(vma)) 547 hugetlb_vma_lock_read(vma); 548 549 spin_lock_irq(&ctx->fault_pending_wqh.lock); 550 /* 551 * After the __add_wait_queue the uwq is visible to userland 552 * through poll/read(). 553 */ 554 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 555 /* 556 * The smp_mb() after __set_current_state prevents the reads 557 * following the spin_unlock to happen before the list_add in 558 * __add_wait_queue. 559 */ 560 set_current_state(blocking_state); 561 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 562 563 if (!is_vm_hugetlb_page(vma)) 564 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 565 reason); 566 else 567 must_wait = userfaultfd_huge_must_wait(ctx, vma, 568 vmf->address, 569 vmf->flags, reason); 570 if (is_vm_hugetlb_page(vma)) 571 hugetlb_vma_unlock_read(vma); 572 mmap_read_unlock(mm); 573 574 if (likely(must_wait && !READ_ONCE(ctx->released))) { 575 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 576 schedule(); 577 } 578 579 __set_current_state(TASK_RUNNING); 580 581 /* 582 * Here we race with the list_del; list_add in 583 * userfaultfd_ctx_read(), however because we don't ever run 584 * list_del_init() to refile across the two lists, the prev 585 * and next pointers will never point to self. list_add also 586 * would never let any of the two pointers to point to 587 * self. So list_empty_careful won't risk to see both pointers 588 * pointing to self at any time during the list refile. The 589 * only case where list_del_init() is called is the full 590 * removal in the wake function and there we don't re-list_add 591 * and it's fine not to block on the spinlock. The uwq on this 592 * kernel stack can be released after the list_del_init. 593 */ 594 if (!list_empty_careful(&uwq.wq.entry)) { 595 spin_lock_irq(&ctx->fault_pending_wqh.lock); 596 /* 597 * No need of list_del_init(), the uwq on the stack 598 * will be freed shortly anyway. 599 */ 600 list_del(&uwq.wq.entry); 601 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 602 } 603 604 /* 605 * ctx may go away after this if the userfault pseudo fd is 606 * already released. 607 */ 608 userfaultfd_ctx_put(ctx); 609 610 out: 611 return ret; 612 } 613 614 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 615 struct userfaultfd_wait_queue *ewq) 616 { 617 struct userfaultfd_ctx *release_new_ctx; 618 619 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 620 goto out; 621 622 ewq->ctx = ctx; 623 init_waitqueue_entry(&ewq->wq, current); 624 release_new_ctx = NULL; 625 626 spin_lock_irq(&ctx->event_wqh.lock); 627 /* 628 * After the __add_wait_queue the uwq is visible to userland 629 * through poll/read(). 630 */ 631 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 632 for (;;) { 633 set_current_state(TASK_KILLABLE); 634 if (ewq->msg.event == 0) 635 break; 636 if (READ_ONCE(ctx->released) || 637 fatal_signal_pending(current)) { 638 /* 639 * &ewq->wq may be queued in fork_event, but 640 * __remove_wait_queue ignores the head 641 * parameter. It would be a problem if it 642 * didn't. 643 */ 644 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 645 if (ewq->msg.event == UFFD_EVENT_FORK) { 646 struct userfaultfd_ctx *new; 647 648 new = (struct userfaultfd_ctx *) 649 (unsigned long) 650 ewq->msg.arg.reserved.reserved1; 651 release_new_ctx = new; 652 } 653 break; 654 } 655 656 spin_unlock_irq(&ctx->event_wqh.lock); 657 658 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 659 schedule(); 660 661 spin_lock_irq(&ctx->event_wqh.lock); 662 } 663 __set_current_state(TASK_RUNNING); 664 spin_unlock_irq(&ctx->event_wqh.lock); 665 666 if (release_new_ctx) { 667 struct vm_area_struct *vma; 668 struct mm_struct *mm = release_new_ctx->mm; 669 VMA_ITERATOR(vmi, mm, 0); 670 671 /* the various vma->vm_userfaultfd_ctx still points to it */ 672 mmap_write_lock(mm); 673 for_each_vma(vmi, vma) { 674 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 675 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 676 userfaultfd_set_vm_flags(vma, 677 vma->vm_flags & ~__VM_UFFD_FLAGS); 678 } 679 } 680 mmap_write_unlock(mm); 681 682 userfaultfd_ctx_put(release_new_ctx); 683 } 684 685 /* 686 * ctx may go away after this if the userfault pseudo fd is 687 * already released. 688 */ 689 out: 690 atomic_dec(&ctx->mmap_changing); 691 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0); 692 userfaultfd_ctx_put(ctx); 693 } 694 695 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 696 struct userfaultfd_wait_queue *ewq) 697 { 698 ewq->msg.event = 0; 699 wake_up_locked(&ctx->event_wqh); 700 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 701 } 702 703 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 704 { 705 struct userfaultfd_ctx *ctx = NULL, *octx; 706 struct userfaultfd_fork_ctx *fctx; 707 708 octx = vma->vm_userfaultfd_ctx.ctx; 709 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 710 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 711 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS); 712 return 0; 713 } 714 715 list_for_each_entry(fctx, fcs, list) 716 if (fctx->orig == octx) { 717 ctx = fctx->new; 718 break; 719 } 720 721 if (!ctx) { 722 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 723 if (!fctx) 724 return -ENOMEM; 725 726 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 727 if (!ctx) { 728 kfree(fctx); 729 return -ENOMEM; 730 } 731 732 refcount_set(&ctx->refcount, 1); 733 ctx->flags = octx->flags; 734 ctx->features = octx->features; 735 ctx->released = false; 736 atomic_set(&ctx->mmap_changing, 0); 737 ctx->mm = vma->vm_mm; 738 mmgrab(ctx->mm); 739 740 userfaultfd_ctx_get(octx); 741 atomic_inc(&octx->mmap_changing); 742 fctx->orig = octx; 743 fctx->new = ctx; 744 list_add_tail(&fctx->list, fcs); 745 } 746 747 vma->vm_userfaultfd_ctx.ctx = ctx; 748 return 0; 749 } 750 751 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 752 { 753 struct userfaultfd_ctx *ctx = fctx->orig; 754 struct userfaultfd_wait_queue ewq; 755 756 msg_init(&ewq.msg); 757 758 ewq.msg.event = UFFD_EVENT_FORK; 759 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 760 761 userfaultfd_event_wait_completion(ctx, &ewq); 762 } 763 764 void dup_userfaultfd_complete(struct list_head *fcs) 765 { 766 struct userfaultfd_fork_ctx *fctx, *n; 767 768 list_for_each_entry_safe(fctx, n, fcs, list) { 769 dup_fctx(fctx); 770 list_del(&fctx->list); 771 kfree(fctx); 772 } 773 } 774 775 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 776 struct vm_userfaultfd_ctx *vm_ctx) 777 { 778 struct userfaultfd_ctx *ctx; 779 780 ctx = vma->vm_userfaultfd_ctx.ctx; 781 782 if (!ctx) 783 return; 784 785 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 786 vm_ctx->ctx = ctx; 787 userfaultfd_ctx_get(ctx); 788 atomic_inc(&ctx->mmap_changing); 789 } else { 790 /* Drop uffd context if remap feature not enabled */ 791 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 792 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS); 793 } 794 } 795 796 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 797 unsigned long from, unsigned long to, 798 unsigned long len) 799 { 800 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 801 struct userfaultfd_wait_queue ewq; 802 803 if (!ctx) 804 return; 805 806 if (to & ~PAGE_MASK) { 807 userfaultfd_ctx_put(ctx); 808 return; 809 } 810 811 msg_init(&ewq.msg); 812 813 ewq.msg.event = UFFD_EVENT_REMAP; 814 ewq.msg.arg.remap.from = from; 815 ewq.msg.arg.remap.to = to; 816 ewq.msg.arg.remap.len = len; 817 818 userfaultfd_event_wait_completion(ctx, &ewq); 819 } 820 821 bool userfaultfd_remove(struct vm_area_struct *vma, 822 unsigned long start, unsigned long end) 823 { 824 struct mm_struct *mm = vma->vm_mm; 825 struct userfaultfd_ctx *ctx; 826 struct userfaultfd_wait_queue ewq; 827 828 ctx = vma->vm_userfaultfd_ctx.ctx; 829 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 830 return true; 831 832 userfaultfd_ctx_get(ctx); 833 atomic_inc(&ctx->mmap_changing); 834 mmap_read_unlock(mm); 835 836 msg_init(&ewq.msg); 837 838 ewq.msg.event = UFFD_EVENT_REMOVE; 839 ewq.msg.arg.remove.start = start; 840 ewq.msg.arg.remove.end = end; 841 842 userfaultfd_event_wait_completion(ctx, &ewq); 843 844 return false; 845 } 846 847 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 848 unsigned long start, unsigned long end) 849 { 850 struct userfaultfd_unmap_ctx *unmap_ctx; 851 852 list_for_each_entry(unmap_ctx, unmaps, list) 853 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 854 unmap_ctx->end == end) 855 return true; 856 857 return false; 858 } 859 860 int userfaultfd_unmap_prep(struct mm_struct *mm, unsigned long start, 861 unsigned long end, struct list_head *unmaps) 862 { 863 VMA_ITERATOR(vmi, mm, start); 864 struct vm_area_struct *vma; 865 866 for_each_vma_range(vmi, vma, end) { 867 struct userfaultfd_unmap_ctx *unmap_ctx; 868 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 869 870 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 871 has_unmap_ctx(ctx, unmaps, start, end)) 872 continue; 873 874 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 875 if (!unmap_ctx) 876 return -ENOMEM; 877 878 userfaultfd_ctx_get(ctx); 879 atomic_inc(&ctx->mmap_changing); 880 unmap_ctx->ctx = ctx; 881 unmap_ctx->start = start; 882 unmap_ctx->end = end; 883 list_add_tail(&unmap_ctx->list, unmaps); 884 } 885 886 return 0; 887 } 888 889 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 890 { 891 struct userfaultfd_unmap_ctx *ctx, *n; 892 struct userfaultfd_wait_queue ewq; 893 894 list_for_each_entry_safe(ctx, n, uf, list) { 895 msg_init(&ewq.msg); 896 897 ewq.msg.event = UFFD_EVENT_UNMAP; 898 ewq.msg.arg.remove.start = ctx->start; 899 ewq.msg.arg.remove.end = ctx->end; 900 901 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 902 903 list_del(&ctx->list); 904 kfree(ctx); 905 } 906 } 907 908 static int userfaultfd_release(struct inode *inode, struct file *file) 909 { 910 struct userfaultfd_ctx *ctx = file->private_data; 911 struct mm_struct *mm = ctx->mm; 912 struct vm_area_struct *vma, *prev; 913 /* len == 0 means wake all */ 914 struct userfaultfd_wake_range range = { .len = 0, }; 915 unsigned long new_flags; 916 VMA_ITERATOR(vmi, mm, 0); 917 918 WRITE_ONCE(ctx->released, true); 919 920 if (!mmget_not_zero(mm)) 921 goto wakeup; 922 923 /* 924 * Flush page faults out of all CPUs. NOTE: all page faults 925 * must be retried without returning VM_FAULT_SIGBUS if 926 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 927 * changes while handle_userfault released the mmap_lock. So 928 * it's critical that released is set to true (above), before 929 * taking the mmap_lock for writing. 930 */ 931 mmap_write_lock(mm); 932 prev = NULL; 933 for_each_vma(vmi, vma) { 934 cond_resched(); 935 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 936 !!(vma->vm_flags & __VM_UFFD_FLAGS)); 937 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 938 prev = vma; 939 continue; 940 } 941 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 942 prev = vma_merge(&vmi, mm, prev, vma->vm_start, vma->vm_end, 943 new_flags, vma->anon_vma, 944 vma->vm_file, vma->vm_pgoff, 945 vma_policy(vma), 946 NULL_VM_UFFD_CTX, anon_vma_name(vma)); 947 if (prev) { 948 vma = prev; 949 } else { 950 prev = vma; 951 } 952 953 userfaultfd_set_vm_flags(vma, new_flags); 954 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 955 } 956 mmap_write_unlock(mm); 957 mmput(mm); 958 wakeup: 959 /* 960 * After no new page faults can wait on this fault_*wqh, flush 961 * the last page faults that may have been already waiting on 962 * the fault_*wqh. 963 */ 964 spin_lock_irq(&ctx->fault_pending_wqh.lock); 965 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 966 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 967 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 968 969 /* Flush pending events that may still wait on event_wqh */ 970 wake_up_all(&ctx->event_wqh); 971 972 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 973 userfaultfd_ctx_put(ctx); 974 return 0; 975 } 976 977 /* fault_pending_wqh.lock must be hold by the caller */ 978 static inline struct userfaultfd_wait_queue *find_userfault_in( 979 wait_queue_head_t *wqh) 980 { 981 wait_queue_entry_t *wq; 982 struct userfaultfd_wait_queue *uwq; 983 984 lockdep_assert_held(&wqh->lock); 985 986 uwq = NULL; 987 if (!waitqueue_active(wqh)) 988 goto out; 989 /* walk in reverse to provide FIFO behavior to read userfaults */ 990 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 991 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 992 out: 993 return uwq; 994 } 995 996 static inline struct userfaultfd_wait_queue *find_userfault( 997 struct userfaultfd_ctx *ctx) 998 { 999 return find_userfault_in(&ctx->fault_pending_wqh); 1000 } 1001 1002 static inline struct userfaultfd_wait_queue *find_userfault_evt( 1003 struct userfaultfd_ctx *ctx) 1004 { 1005 return find_userfault_in(&ctx->event_wqh); 1006 } 1007 1008 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 1009 { 1010 struct userfaultfd_ctx *ctx = file->private_data; 1011 __poll_t ret; 1012 1013 poll_wait(file, &ctx->fd_wqh, wait); 1014 1015 if (!userfaultfd_is_initialized(ctx)) 1016 return EPOLLERR; 1017 1018 /* 1019 * poll() never guarantees that read won't block. 1020 * userfaults can be waken before they're read(). 1021 */ 1022 if (unlikely(!(file->f_flags & O_NONBLOCK))) 1023 return EPOLLERR; 1024 /* 1025 * lockless access to see if there are pending faults 1026 * __pollwait last action is the add_wait_queue but 1027 * the spin_unlock would allow the waitqueue_active to 1028 * pass above the actual list_add inside 1029 * add_wait_queue critical section. So use a full 1030 * memory barrier to serialize the list_add write of 1031 * add_wait_queue() with the waitqueue_active read 1032 * below. 1033 */ 1034 ret = 0; 1035 smp_mb(); 1036 if (waitqueue_active(&ctx->fault_pending_wqh)) 1037 ret = EPOLLIN; 1038 else if (waitqueue_active(&ctx->event_wqh)) 1039 ret = EPOLLIN; 1040 1041 return ret; 1042 } 1043 1044 static const struct file_operations userfaultfd_fops; 1045 1046 static int resolve_userfault_fork(struct userfaultfd_ctx *new, 1047 struct inode *inode, 1048 struct uffd_msg *msg) 1049 { 1050 int fd; 1051 1052 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new, 1053 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode); 1054 if (fd < 0) 1055 return fd; 1056 1057 msg->arg.reserved.reserved1 = 0; 1058 msg->arg.fork.ufd = fd; 1059 return 0; 1060 } 1061 1062 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1063 struct uffd_msg *msg, struct inode *inode) 1064 { 1065 ssize_t ret; 1066 DECLARE_WAITQUEUE(wait, current); 1067 struct userfaultfd_wait_queue *uwq; 1068 /* 1069 * Handling fork event requires sleeping operations, so 1070 * we drop the event_wqh lock, then do these ops, then 1071 * lock it back and wake up the waiter. While the lock is 1072 * dropped the ewq may go away so we keep track of it 1073 * carefully. 1074 */ 1075 LIST_HEAD(fork_event); 1076 struct userfaultfd_ctx *fork_nctx = NULL; 1077 1078 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1079 spin_lock_irq(&ctx->fd_wqh.lock); 1080 __add_wait_queue(&ctx->fd_wqh, &wait); 1081 for (;;) { 1082 set_current_state(TASK_INTERRUPTIBLE); 1083 spin_lock(&ctx->fault_pending_wqh.lock); 1084 uwq = find_userfault(ctx); 1085 if (uwq) { 1086 /* 1087 * Use a seqcount to repeat the lockless check 1088 * in wake_userfault() to avoid missing 1089 * wakeups because during the refile both 1090 * waitqueue could become empty if this is the 1091 * only userfault. 1092 */ 1093 write_seqcount_begin(&ctx->refile_seq); 1094 1095 /* 1096 * The fault_pending_wqh.lock prevents the uwq 1097 * to disappear from under us. 1098 * 1099 * Refile this userfault from 1100 * fault_pending_wqh to fault_wqh, it's not 1101 * pending anymore after we read it. 1102 * 1103 * Use list_del() by hand (as 1104 * userfaultfd_wake_function also uses 1105 * list_del_init() by hand) to be sure nobody 1106 * changes __remove_wait_queue() to use 1107 * list_del_init() in turn breaking the 1108 * !list_empty_careful() check in 1109 * handle_userfault(). The uwq->wq.head list 1110 * must never be empty at any time during the 1111 * refile, or the waitqueue could disappear 1112 * from under us. The "wait_queue_head_t" 1113 * parameter of __remove_wait_queue() is unused 1114 * anyway. 1115 */ 1116 list_del(&uwq->wq.entry); 1117 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1118 1119 write_seqcount_end(&ctx->refile_seq); 1120 1121 /* careful to always initialize msg if ret == 0 */ 1122 *msg = uwq->msg; 1123 spin_unlock(&ctx->fault_pending_wqh.lock); 1124 ret = 0; 1125 break; 1126 } 1127 spin_unlock(&ctx->fault_pending_wqh.lock); 1128 1129 spin_lock(&ctx->event_wqh.lock); 1130 uwq = find_userfault_evt(ctx); 1131 if (uwq) { 1132 *msg = uwq->msg; 1133 1134 if (uwq->msg.event == UFFD_EVENT_FORK) { 1135 fork_nctx = (struct userfaultfd_ctx *) 1136 (unsigned long) 1137 uwq->msg.arg.reserved.reserved1; 1138 list_move(&uwq->wq.entry, &fork_event); 1139 /* 1140 * fork_nctx can be freed as soon as 1141 * we drop the lock, unless we take a 1142 * reference on it. 1143 */ 1144 userfaultfd_ctx_get(fork_nctx); 1145 spin_unlock(&ctx->event_wqh.lock); 1146 ret = 0; 1147 break; 1148 } 1149 1150 userfaultfd_event_complete(ctx, uwq); 1151 spin_unlock(&ctx->event_wqh.lock); 1152 ret = 0; 1153 break; 1154 } 1155 spin_unlock(&ctx->event_wqh.lock); 1156 1157 if (signal_pending(current)) { 1158 ret = -ERESTARTSYS; 1159 break; 1160 } 1161 if (no_wait) { 1162 ret = -EAGAIN; 1163 break; 1164 } 1165 spin_unlock_irq(&ctx->fd_wqh.lock); 1166 schedule(); 1167 spin_lock_irq(&ctx->fd_wqh.lock); 1168 } 1169 __remove_wait_queue(&ctx->fd_wqh, &wait); 1170 __set_current_state(TASK_RUNNING); 1171 spin_unlock_irq(&ctx->fd_wqh.lock); 1172 1173 if (!ret && msg->event == UFFD_EVENT_FORK) { 1174 ret = resolve_userfault_fork(fork_nctx, inode, msg); 1175 spin_lock_irq(&ctx->event_wqh.lock); 1176 if (!list_empty(&fork_event)) { 1177 /* 1178 * The fork thread didn't abort, so we can 1179 * drop the temporary refcount. 1180 */ 1181 userfaultfd_ctx_put(fork_nctx); 1182 1183 uwq = list_first_entry(&fork_event, 1184 typeof(*uwq), 1185 wq.entry); 1186 /* 1187 * If fork_event list wasn't empty and in turn 1188 * the event wasn't already released by fork 1189 * (the event is allocated on fork kernel 1190 * stack), put the event back to its place in 1191 * the event_wq. fork_event head will be freed 1192 * as soon as we return so the event cannot 1193 * stay queued there no matter the current 1194 * "ret" value. 1195 */ 1196 list_del(&uwq->wq.entry); 1197 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1198 1199 /* 1200 * Leave the event in the waitqueue and report 1201 * error to userland if we failed to resolve 1202 * the userfault fork. 1203 */ 1204 if (likely(!ret)) 1205 userfaultfd_event_complete(ctx, uwq); 1206 } else { 1207 /* 1208 * Here the fork thread aborted and the 1209 * refcount from the fork thread on fork_nctx 1210 * has already been released. We still hold 1211 * the reference we took before releasing the 1212 * lock above. If resolve_userfault_fork 1213 * failed we've to drop it because the 1214 * fork_nctx has to be freed in such case. If 1215 * it succeeded we'll hold it because the new 1216 * uffd references it. 1217 */ 1218 if (ret) 1219 userfaultfd_ctx_put(fork_nctx); 1220 } 1221 spin_unlock_irq(&ctx->event_wqh.lock); 1222 } 1223 1224 return ret; 1225 } 1226 1227 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1228 size_t count, loff_t *ppos) 1229 { 1230 struct userfaultfd_ctx *ctx = file->private_data; 1231 ssize_t _ret, ret = 0; 1232 struct uffd_msg msg; 1233 int no_wait = file->f_flags & O_NONBLOCK; 1234 struct inode *inode = file_inode(file); 1235 1236 if (!userfaultfd_is_initialized(ctx)) 1237 return -EINVAL; 1238 1239 for (;;) { 1240 if (count < sizeof(msg)) 1241 return ret ? ret : -EINVAL; 1242 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode); 1243 if (_ret < 0) 1244 return ret ? ret : _ret; 1245 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1246 return ret ? ret : -EFAULT; 1247 ret += sizeof(msg); 1248 buf += sizeof(msg); 1249 count -= sizeof(msg); 1250 /* 1251 * Allow to read more than one fault at time but only 1252 * block if waiting for the very first one. 1253 */ 1254 no_wait = O_NONBLOCK; 1255 } 1256 } 1257 1258 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1259 struct userfaultfd_wake_range *range) 1260 { 1261 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1262 /* wake all in the range and autoremove */ 1263 if (waitqueue_active(&ctx->fault_pending_wqh)) 1264 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1265 range); 1266 if (waitqueue_active(&ctx->fault_wqh)) 1267 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1268 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1269 } 1270 1271 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1272 struct userfaultfd_wake_range *range) 1273 { 1274 unsigned seq; 1275 bool need_wakeup; 1276 1277 /* 1278 * To be sure waitqueue_active() is not reordered by the CPU 1279 * before the pagetable update, use an explicit SMP memory 1280 * barrier here. PT lock release or mmap_read_unlock(mm) still 1281 * have release semantics that can allow the 1282 * waitqueue_active() to be reordered before the pte update. 1283 */ 1284 smp_mb(); 1285 1286 /* 1287 * Use waitqueue_active because it's very frequent to 1288 * change the address space atomically even if there are no 1289 * userfaults yet. So we take the spinlock only when we're 1290 * sure we've userfaults to wake. 1291 */ 1292 do { 1293 seq = read_seqcount_begin(&ctx->refile_seq); 1294 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1295 waitqueue_active(&ctx->fault_wqh); 1296 cond_resched(); 1297 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1298 if (need_wakeup) 1299 __wake_userfault(ctx, range); 1300 } 1301 1302 static __always_inline int validate_range(struct mm_struct *mm, 1303 __u64 start, __u64 len) 1304 { 1305 __u64 task_size = mm->task_size; 1306 1307 if (start & ~PAGE_MASK) 1308 return -EINVAL; 1309 if (len & ~PAGE_MASK) 1310 return -EINVAL; 1311 if (!len) 1312 return -EINVAL; 1313 if (start < mmap_min_addr) 1314 return -EINVAL; 1315 if (start >= task_size) 1316 return -EINVAL; 1317 if (len > task_size - start) 1318 return -EINVAL; 1319 return 0; 1320 } 1321 1322 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1323 unsigned long arg) 1324 { 1325 struct mm_struct *mm = ctx->mm; 1326 struct vm_area_struct *vma, *prev, *cur; 1327 int ret; 1328 struct uffdio_register uffdio_register; 1329 struct uffdio_register __user *user_uffdio_register; 1330 unsigned long vm_flags, new_flags; 1331 bool found; 1332 bool basic_ioctls; 1333 unsigned long start, end, vma_end; 1334 struct vma_iterator vmi; 1335 1336 user_uffdio_register = (struct uffdio_register __user *) arg; 1337 1338 ret = -EFAULT; 1339 if (copy_from_user(&uffdio_register, user_uffdio_register, 1340 sizeof(uffdio_register)-sizeof(__u64))) 1341 goto out; 1342 1343 ret = -EINVAL; 1344 if (!uffdio_register.mode) 1345 goto out; 1346 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES) 1347 goto out; 1348 vm_flags = 0; 1349 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1350 vm_flags |= VM_UFFD_MISSING; 1351 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1352 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1353 goto out; 1354 #endif 1355 vm_flags |= VM_UFFD_WP; 1356 } 1357 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) { 1358 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1359 goto out; 1360 #endif 1361 vm_flags |= VM_UFFD_MINOR; 1362 } 1363 1364 ret = validate_range(mm, uffdio_register.range.start, 1365 uffdio_register.range.len); 1366 if (ret) 1367 goto out; 1368 1369 start = uffdio_register.range.start; 1370 end = start + uffdio_register.range.len; 1371 1372 ret = -ENOMEM; 1373 if (!mmget_not_zero(mm)) 1374 goto out; 1375 1376 ret = -EINVAL; 1377 mmap_write_lock(mm); 1378 vma_iter_init(&vmi, mm, start); 1379 vma = vma_find(&vmi, end); 1380 if (!vma) 1381 goto out_unlock; 1382 1383 /* 1384 * If the first vma contains huge pages, make sure start address 1385 * is aligned to huge page size. 1386 */ 1387 if (is_vm_hugetlb_page(vma)) { 1388 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1389 1390 if (start & (vma_hpagesize - 1)) 1391 goto out_unlock; 1392 } 1393 1394 /* 1395 * Search for not compatible vmas. 1396 */ 1397 found = false; 1398 basic_ioctls = false; 1399 cur = vma; 1400 do { 1401 cond_resched(); 1402 1403 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1404 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1405 1406 /* check not compatible vmas */ 1407 ret = -EINVAL; 1408 if (!vma_can_userfault(cur, vm_flags)) 1409 goto out_unlock; 1410 1411 /* 1412 * UFFDIO_COPY will fill file holes even without 1413 * PROT_WRITE. This check enforces that if this is a 1414 * MAP_SHARED, the process has write permission to the backing 1415 * file. If VM_MAYWRITE is set it also enforces that on a 1416 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1417 * F_WRITE_SEAL can be taken until the vma is destroyed. 1418 */ 1419 ret = -EPERM; 1420 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1421 goto out_unlock; 1422 1423 /* 1424 * If this vma contains ending address, and huge pages 1425 * check alignment. 1426 */ 1427 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1428 end > cur->vm_start) { 1429 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1430 1431 ret = -EINVAL; 1432 1433 if (end & (vma_hpagesize - 1)) 1434 goto out_unlock; 1435 } 1436 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) 1437 goto out_unlock; 1438 1439 /* 1440 * Check that this vma isn't already owned by a 1441 * different userfaultfd. We can't allow more than one 1442 * userfaultfd to own a single vma simultaneously or we 1443 * wouldn't know which one to deliver the userfaults to. 1444 */ 1445 ret = -EBUSY; 1446 if (cur->vm_userfaultfd_ctx.ctx && 1447 cur->vm_userfaultfd_ctx.ctx != ctx) 1448 goto out_unlock; 1449 1450 /* 1451 * Note vmas containing huge pages 1452 */ 1453 if (is_vm_hugetlb_page(cur)) 1454 basic_ioctls = true; 1455 1456 found = true; 1457 } for_each_vma_range(vmi, cur, end); 1458 BUG_ON(!found); 1459 1460 vma_iter_set(&vmi, start); 1461 prev = vma_prev(&vmi); 1462 1463 ret = 0; 1464 for_each_vma_range(vmi, vma, end) { 1465 cond_resched(); 1466 1467 BUG_ON(!vma_can_userfault(vma, vm_flags)); 1468 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1469 vma->vm_userfaultfd_ctx.ctx != ctx); 1470 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1471 1472 /* 1473 * Nothing to do: this vma is already registered into this 1474 * userfaultfd and with the right tracking mode too. 1475 */ 1476 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1477 (vma->vm_flags & vm_flags) == vm_flags) 1478 goto skip; 1479 1480 if (vma->vm_start > start) 1481 start = vma->vm_start; 1482 vma_end = min(end, vma->vm_end); 1483 1484 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags; 1485 prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags, 1486 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1487 vma_policy(vma), 1488 ((struct vm_userfaultfd_ctx){ ctx }), 1489 anon_vma_name(vma)); 1490 if (prev) { 1491 /* vma_merge() invalidated the mas */ 1492 vma = prev; 1493 goto next; 1494 } 1495 if (vma->vm_start < start) { 1496 ret = split_vma(&vmi, vma, start, 1); 1497 if (ret) 1498 break; 1499 } 1500 if (vma->vm_end > end) { 1501 ret = split_vma(&vmi, vma, end, 0); 1502 if (ret) 1503 break; 1504 } 1505 next: 1506 /* 1507 * In the vma_merge() successful mprotect-like case 8: 1508 * the next vma was merged into the current one and 1509 * the current one has not been updated yet. 1510 */ 1511 userfaultfd_set_vm_flags(vma, new_flags); 1512 vma->vm_userfaultfd_ctx.ctx = ctx; 1513 1514 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma)) 1515 hugetlb_unshare_all_pmds(vma); 1516 1517 skip: 1518 prev = vma; 1519 start = vma->vm_end; 1520 } 1521 1522 out_unlock: 1523 mmap_write_unlock(mm); 1524 mmput(mm); 1525 if (!ret) { 1526 __u64 ioctls_out; 1527 1528 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1529 UFFD_API_RANGE_IOCTLS; 1530 1531 /* 1532 * Declare the WP ioctl only if the WP mode is 1533 * specified and all checks passed with the range 1534 */ 1535 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) 1536 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); 1537 1538 /* CONTINUE ioctl is only supported for MINOR ranges. */ 1539 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR)) 1540 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE); 1541 1542 /* 1543 * Now that we scanned all vmas we can already tell 1544 * userland which ioctls methods are guaranteed to 1545 * succeed on this range. 1546 */ 1547 if (put_user(ioctls_out, &user_uffdio_register->ioctls)) 1548 ret = -EFAULT; 1549 } 1550 out: 1551 return ret; 1552 } 1553 1554 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1555 unsigned long arg) 1556 { 1557 struct mm_struct *mm = ctx->mm; 1558 struct vm_area_struct *vma, *prev, *cur; 1559 int ret; 1560 struct uffdio_range uffdio_unregister; 1561 unsigned long new_flags; 1562 bool found; 1563 unsigned long start, end, vma_end; 1564 const void __user *buf = (void __user *)arg; 1565 struct vma_iterator vmi; 1566 1567 ret = -EFAULT; 1568 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1569 goto out; 1570 1571 ret = validate_range(mm, uffdio_unregister.start, 1572 uffdio_unregister.len); 1573 if (ret) 1574 goto out; 1575 1576 start = uffdio_unregister.start; 1577 end = start + uffdio_unregister.len; 1578 1579 ret = -ENOMEM; 1580 if (!mmget_not_zero(mm)) 1581 goto out; 1582 1583 mmap_write_lock(mm); 1584 ret = -EINVAL; 1585 vma_iter_init(&vmi, mm, start); 1586 vma = vma_find(&vmi, end); 1587 if (!vma) 1588 goto out_unlock; 1589 1590 /* 1591 * If the first vma contains huge pages, make sure start address 1592 * is aligned to huge page size. 1593 */ 1594 if (is_vm_hugetlb_page(vma)) { 1595 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1596 1597 if (start & (vma_hpagesize - 1)) 1598 goto out_unlock; 1599 } 1600 1601 /* 1602 * Search for not compatible vmas. 1603 */ 1604 found = false; 1605 cur = vma; 1606 do { 1607 cond_resched(); 1608 1609 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1610 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1611 1612 /* 1613 * Check not compatible vmas, not strictly required 1614 * here as not compatible vmas cannot have an 1615 * userfaultfd_ctx registered on them, but this 1616 * provides for more strict behavior to notice 1617 * unregistration errors. 1618 */ 1619 if (!vma_can_userfault(cur, cur->vm_flags)) 1620 goto out_unlock; 1621 1622 found = true; 1623 } for_each_vma_range(vmi, cur, end); 1624 BUG_ON(!found); 1625 1626 vma_iter_set(&vmi, start); 1627 prev = vma_prev(&vmi); 1628 ret = 0; 1629 for_each_vma_range(vmi, vma, end) { 1630 cond_resched(); 1631 1632 BUG_ON(!vma_can_userfault(vma, vma->vm_flags)); 1633 1634 /* 1635 * Nothing to do: this vma is already registered into this 1636 * userfaultfd and with the right tracking mode too. 1637 */ 1638 if (!vma->vm_userfaultfd_ctx.ctx) 1639 goto skip; 1640 1641 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1642 1643 if (vma->vm_start > start) 1644 start = vma->vm_start; 1645 vma_end = min(end, vma->vm_end); 1646 1647 if (userfaultfd_missing(vma)) { 1648 /* 1649 * Wake any concurrent pending userfault while 1650 * we unregister, so they will not hang 1651 * permanently and it avoids userland to call 1652 * UFFDIO_WAKE explicitly. 1653 */ 1654 struct userfaultfd_wake_range range; 1655 range.start = start; 1656 range.len = vma_end - start; 1657 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1658 } 1659 1660 /* Reset ptes for the whole vma range if wr-protected */ 1661 if (userfaultfd_wp(vma)) 1662 uffd_wp_range(vma, start, vma_end - start, false); 1663 1664 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 1665 prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags, 1666 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1667 vma_policy(vma), 1668 NULL_VM_UFFD_CTX, anon_vma_name(vma)); 1669 if (prev) { 1670 vma = prev; 1671 goto next; 1672 } 1673 if (vma->vm_start < start) { 1674 ret = split_vma(&vmi, vma, start, 1); 1675 if (ret) 1676 break; 1677 } 1678 if (vma->vm_end > end) { 1679 ret = split_vma(&vmi, vma, end, 0); 1680 if (ret) 1681 break; 1682 } 1683 next: 1684 /* 1685 * In the vma_merge() successful mprotect-like case 8: 1686 * the next vma was merged into the current one and 1687 * the current one has not been updated yet. 1688 */ 1689 userfaultfd_set_vm_flags(vma, new_flags); 1690 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1691 1692 skip: 1693 prev = vma; 1694 start = vma->vm_end; 1695 } 1696 1697 out_unlock: 1698 mmap_write_unlock(mm); 1699 mmput(mm); 1700 out: 1701 return ret; 1702 } 1703 1704 /* 1705 * userfaultfd_wake may be used in combination with the 1706 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1707 */ 1708 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1709 unsigned long arg) 1710 { 1711 int ret; 1712 struct uffdio_range uffdio_wake; 1713 struct userfaultfd_wake_range range; 1714 const void __user *buf = (void __user *)arg; 1715 1716 ret = -EFAULT; 1717 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1718 goto out; 1719 1720 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1721 if (ret) 1722 goto out; 1723 1724 range.start = uffdio_wake.start; 1725 range.len = uffdio_wake.len; 1726 1727 /* 1728 * len == 0 means wake all and we don't want to wake all here, 1729 * so check it again to be sure. 1730 */ 1731 VM_BUG_ON(!range.len); 1732 1733 wake_userfault(ctx, &range); 1734 ret = 0; 1735 1736 out: 1737 return ret; 1738 } 1739 1740 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1741 unsigned long arg) 1742 { 1743 __s64 ret; 1744 struct uffdio_copy uffdio_copy; 1745 struct uffdio_copy __user *user_uffdio_copy; 1746 struct userfaultfd_wake_range range; 1747 uffd_flags_t flags = 0; 1748 1749 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1750 1751 ret = -EAGAIN; 1752 if (atomic_read(&ctx->mmap_changing)) 1753 goto out; 1754 1755 ret = -EFAULT; 1756 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1757 /* don't copy "copy" last field */ 1758 sizeof(uffdio_copy)-sizeof(__s64))) 1759 goto out; 1760 1761 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1762 if (ret) 1763 goto out; 1764 /* 1765 * double check for wraparound just in case. copy_from_user() 1766 * will later check uffdio_copy.src + uffdio_copy.len to fit 1767 * in the userland range. 1768 */ 1769 ret = -EINVAL; 1770 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1771 goto out; 1772 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) 1773 goto out; 1774 if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP) 1775 flags |= MFILL_ATOMIC_WP; 1776 if (mmget_not_zero(ctx->mm)) { 1777 ret = mfill_atomic_copy(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1778 uffdio_copy.len, &ctx->mmap_changing, 1779 flags); 1780 mmput(ctx->mm); 1781 } else { 1782 return -ESRCH; 1783 } 1784 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1785 return -EFAULT; 1786 if (ret < 0) 1787 goto out; 1788 BUG_ON(!ret); 1789 /* len == 0 would wake all */ 1790 range.len = ret; 1791 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1792 range.start = uffdio_copy.dst; 1793 wake_userfault(ctx, &range); 1794 } 1795 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1796 out: 1797 return ret; 1798 } 1799 1800 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1801 unsigned long arg) 1802 { 1803 __s64 ret; 1804 struct uffdio_zeropage uffdio_zeropage; 1805 struct uffdio_zeropage __user *user_uffdio_zeropage; 1806 struct userfaultfd_wake_range range; 1807 1808 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1809 1810 ret = -EAGAIN; 1811 if (atomic_read(&ctx->mmap_changing)) 1812 goto out; 1813 1814 ret = -EFAULT; 1815 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1816 /* don't copy "zeropage" last field */ 1817 sizeof(uffdio_zeropage)-sizeof(__s64))) 1818 goto out; 1819 1820 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1821 uffdio_zeropage.range.len); 1822 if (ret) 1823 goto out; 1824 ret = -EINVAL; 1825 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1826 goto out; 1827 1828 if (mmget_not_zero(ctx->mm)) { 1829 ret = mfill_atomic_zeropage(ctx->mm, uffdio_zeropage.range.start, 1830 uffdio_zeropage.range.len, 1831 &ctx->mmap_changing); 1832 mmput(ctx->mm); 1833 } else { 1834 return -ESRCH; 1835 } 1836 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1837 return -EFAULT; 1838 if (ret < 0) 1839 goto out; 1840 /* len == 0 would wake all */ 1841 BUG_ON(!ret); 1842 range.len = ret; 1843 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1844 range.start = uffdio_zeropage.range.start; 1845 wake_userfault(ctx, &range); 1846 } 1847 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1848 out: 1849 return ret; 1850 } 1851 1852 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, 1853 unsigned long arg) 1854 { 1855 int ret; 1856 struct uffdio_writeprotect uffdio_wp; 1857 struct uffdio_writeprotect __user *user_uffdio_wp; 1858 struct userfaultfd_wake_range range; 1859 bool mode_wp, mode_dontwake; 1860 1861 if (atomic_read(&ctx->mmap_changing)) 1862 return -EAGAIN; 1863 1864 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; 1865 1866 if (copy_from_user(&uffdio_wp, user_uffdio_wp, 1867 sizeof(struct uffdio_writeprotect))) 1868 return -EFAULT; 1869 1870 ret = validate_range(ctx->mm, uffdio_wp.range.start, 1871 uffdio_wp.range.len); 1872 if (ret) 1873 return ret; 1874 1875 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | 1876 UFFDIO_WRITEPROTECT_MODE_WP)) 1877 return -EINVAL; 1878 1879 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; 1880 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; 1881 1882 if (mode_wp && mode_dontwake) 1883 return -EINVAL; 1884 1885 if (mmget_not_zero(ctx->mm)) { 1886 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start, 1887 uffdio_wp.range.len, mode_wp, 1888 &ctx->mmap_changing); 1889 mmput(ctx->mm); 1890 } else { 1891 return -ESRCH; 1892 } 1893 1894 if (ret) 1895 return ret; 1896 1897 if (!mode_wp && !mode_dontwake) { 1898 range.start = uffdio_wp.range.start; 1899 range.len = uffdio_wp.range.len; 1900 wake_userfault(ctx, &range); 1901 } 1902 return ret; 1903 } 1904 1905 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg) 1906 { 1907 __s64 ret; 1908 struct uffdio_continue uffdio_continue; 1909 struct uffdio_continue __user *user_uffdio_continue; 1910 struct userfaultfd_wake_range range; 1911 uffd_flags_t flags = 0; 1912 1913 user_uffdio_continue = (struct uffdio_continue __user *)arg; 1914 1915 ret = -EAGAIN; 1916 if (atomic_read(&ctx->mmap_changing)) 1917 goto out; 1918 1919 ret = -EFAULT; 1920 if (copy_from_user(&uffdio_continue, user_uffdio_continue, 1921 /* don't copy the output fields */ 1922 sizeof(uffdio_continue) - (sizeof(__s64)))) 1923 goto out; 1924 1925 ret = validate_range(ctx->mm, uffdio_continue.range.start, 1926 uffdio_continue.range.len); 1927 if (ret) 1928 goto out; 1929 1930 ret = -EINVAL; 1931 /* double check for wraparound just in case. */ 1932 if (uffdio_continue.range.start + uffdio_continue.range.len <= 1933 uffdio_continue.range.start) { 1934 goto out; 1935 } 1936 if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE | 1937 UFFDIO_CONTINUE_MODE_WP)) 1938 goto out; 1939 if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP) 1940 flags |= MFILL_ATOMIC_WP; 1941 1942 if (mmget_not_zero(ctx->mm)) { 1943 ret = mfill_atomic_continue(ctx->mm, uffdio_continue.range.start, 1944 uffdio_continue.range.len, 1945 &ctx->mmap_changing, flags); 1946 mmput(ctx->mm); 1947 } else { 1948 return -ESRCH; 1949 } 1950 1951 if (unlikely(put_user(ret, &user_uffdio_continue->mapped))) 1952 return -EFAULT; 1953 if (ret < 0) 1954 goto out; 1955 1956 /* len == 0 would wake all */ 1957 BUG_ON(!ret); 1958 range.len = ret; 1959 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) { 1960 range.start = uffdio_continue.range.start; 1961 wake_userfault(ctx, &range); 1962 } 1963 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN; 1964 1965 out: 1966 return ret; 1967 } 1968 1969 static inline unsigned int uffd_ctx_features(__u64 user_features) 1970 { 1971 /* 1972 * For the current set of features the bits just coincide. Set 1973 * UFFD_FEATURE_INITIALIZED to mark the features as enabled. 1974 */ 1975 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED; 1976 } 1977 1978 /* 1979 * userland asks for a certain API version and we return which bits 1980 * and ioctl commands are implemented in this kernel for such API 1981 * version or -EINVAL if unknown. 1982 */ 1983 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1984 unsigned long arg) 1985 { 1986 struct uffdio_api uffdio_api; 1987 void __user *buf = (void __user *)arg; 1988 unsigned int ctx_features; 1989 int ret; 1990 __u64 features; 1991 1992 ret = -EFAULT; 1993 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1994 goto out; 1995 features = uffdio_api.features; 1996 ret = -EINVAL; 1997 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) 1998 goto err_out; 1999 ret = -EPERM; 2000 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) 2001 goto err_out; 2002 /* report all available features and ioctls to userland */ 2003 uffdio_api.features = UFFD_API_FEATURES; 2004 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 2005 uffdio_api.features &= 2006 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM); 2007 #endif 2008 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 2009 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP; 2010 #endif 2011 #ifndef CONFIG_PTE_MARKER_UFFD_WP 2012 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM; 2013 uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED; 2014 #endif 2015 uffdio_api.ioctls = UFFD_API_IOCTLS; 2016 ret = -EFAULT; 2017 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2018 goto out; 2019 2020 /* only enable the requested features for this uffd context */ 2021 ctx_features = uffd_ctx_features(features); 2022 ret = -EINVAL; 2023 if (cmpxchg(&ctx->features, 0, ctx_features) != 0) 2024 goto err_out; 2025 2026 ret = 0; 2027 out: 2028 return ret; 2029 err_out: 2030 memset(&uffdio_api, 0, sizeof(uffdio_api)); 2031 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2032 ret = -EFAULT; 2033 goto out; 2034 } 2035 2036 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 2037 unsigned long arg) 2038 { 2039 int ret = -EINVAL; 2040 struct userfaultfd_ctx *ctx = file->private_data; 2041 2042 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx)) 2043 return -EINVAL; 2044 2045 switch(cmd) { 2046 case UFFDIO_API: 2047 ret = userfaultfd_api(ctx, arg); 2048 break; 2049 case UFFDIO_REGISTER: 2050 ret = userfaultfd_register(ctx, arg); 2051 break; 2052 case UFFDIO_UNREGISTER: 2053 ret = userfaultfd_unregister(ctx, arg); 2054 break; 2055 case UFFDIO_WAKE: 2056 ret = userfaultfd_wake(ctx, arg); 2057 break; 2058 case UFFDIO_COPY: 2059 ret = userfaultfd_copy(ctx, arg); 2060 break; 2061 case UFFDIO_ZEROPAGE: 2062 ret = userfaultfd_zeropage(ctx, arg); 2063 break; 2064 case UFFDIO_WRITEPROTECT: 2065 ret = userfaultfd_writeprotect(ctx, arg); 2066 break; 2067 case UFFDIO_CONTINUE: 2068 ret = userfaultfd_continue(ctx, arg); 2069 break; 2070 } 2071 return ret; 2072 } 2073 2074 #ifdef CONFIG_PROC_FS 2075 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 2076 { 2077 struct userfaultfd_ctx *ctx = f->private_data; 2078 wait_queue_entry_t *wq; 2079 unsigned long pending = 0, total = 0; 2080 2081 spin_lock_irq(&ctx->fault_pending_wqh.lock); 2082 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 2083 pending++; 2084 total++; 2085 } 2086 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 2087 total++; 2088 } 2089 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 2090 2091 /* 2092 * If more protocols will be added, there will be all shown 2093 * separated by a space. Like this: 2094 * protocols: aa:... bb:... 2095 */ 2096 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 2097 pending, total, UFFD_API, ctx->features, 2098 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 2099 } 2100 #endif 2101 2102 static const struct file_operations userfaultfd_fops = { 2103 #ifdef CONFIG_PROC_FS 2104 .show_fdinfo = userfaultfd_show_fdinfo, 2105 #endif 2106 .release = userfaultfd_release, 2107 .poll = userfaultfd_poll, 2108 .read = userfaultfd_read, 2109 .unlocked_ioctl = userfaultfd_ioctl, 2110 .compat_ioctl = compat_ptr_ioctl, 2111 .llseek = noop_llseek, 2112 }; 2113 2114 static void init_once_userfaultfd_ctx(void *mem) 2115 { 2116 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 2117 2118 init_waitqueue_head(&ctx->fault_pending_wqh); 2119 init_waitqueue_head(&ctx->fault_wqh); 2120 init_waitqueue_head(&ctx->event_wqh); 2121 init_waitqueue_head(&ctx->fd_wqh); 2122 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); 2123 } 2124 2125 static int new_userfaultfd(int flags) 2126 { 2127 struct userfaultfd_ctx *ctx; 2128 int fd; 2129 2130 BUG_ON(!current->mm); 2131 2132 /* Check the UFFD_* constants for consistency. */ 2133 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS); 2134 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 2135 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 2136 2137 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY)) 2138 return -EINVAL; 2139 2140 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 2141 if (!ctx) 2142 return -ENOMEM; 2143 2144 refcount_set(&ctx->refcount, 1); 2145 ctx->flags = flags; 2146 ctx->features = 0; 2147 ctx->released = false; 2148 atomic_set(&ctx->mmap_changing, 0); 2149 ctx->mm = current->mm; 2150 /* prevent the mm struct to be freed */ 2151 mmgrab(ctx->mm); 2152 2153 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx, 2154 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL); 2155 if (fd < 0) { 2156 mmdrop(ctx->mm); 2157 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 2158 } 2159 return fd; 2160 } 2161 2162 static inline bool userfaultfd_syscall_allowed(int flags) 2163 { 2164 /* Userspace-only page faults are always allowed */ 2165 if (flags & UFFD_USER_MODE_ONLY) 2166 return true; 2167 2168 /* 2169 * The user is requesting a userfaultfd which can handle kernel faults. 2170 * Privileged users are always allowed to do this. 2171 */ 2172 if (capable(CAP_SYS_PTRACE)) 2173 return true; 2174 2175 /* Otherwise, access to kernel fault handling is sysctl controlled. */ 2176 return sysctl_unprivileged_userfaultfd; 2177 } 2178 2179 SYSCALL_DEFINE1(userfaultfd, int, flags) 2180 { 2181 if (!userfaultfd_syscall_allowed(flags)) 2182 return -EPERM; 2183 2184 return new_userfaultfd(flags); 2185 } 2186 2187 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags) 2188 { 2189 if (cmd != USERFAULTFD_IOC_NEW) 2190 return -EINVAL; 2191 2192 return new_userfaultfd(flags); 2193 } 2194 2195 static const struct file_operations userfaultfd_dev_fops = { 2196 .unlocked_ioctl = userfaultfd_dev_ioctl, 2197 .compat_ioctl = userfaultfd_dev_ioctl, 2198 .owner = THIS_MODULE, 2199 .llseek = noop_llseek, 2200 }; 2201 2202 static struct miscdevice userfaultfd_misc = { 2203 .minor = MISC_DYNAMIC_MINOR, 2204 .name = "userfaultfd", 2205 .fops = &userfaultfd_dev_fops 2206 }; 2207 2208 static int __init userfaultfd_init(void) 2209 { 2210 int ret; 2211 2212 ret = misc_register(&userfaultfd_misc); 2213 if (ret) 2214 return ret; 2215 2216 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 2217 sizeof(struct userfaultfd_ctx), 2218 0, 2219 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2220 init_once_userfaultfd_ctx); 2221 #ifdef CONFIG_SYSCTL 2222 register_sysctl_init("vm", vm_userfaultfd_table); 2223 #endif 2224 return 0; 2225 } 2226 __initcall(userfaultfd_init); 2227