1 /* 2 * fs/userfaultfd.c 3 * 4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 5 * Copyright (C) 2008-2009 Red Hat, Inc. 6 * Copyright (C) 2015 Red Hat, Inc. 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2. See 9 * the COPYING file in the top-level directory. 10 * 11 * Some part derived from fs/eventfd.c (anon inode setup) and 12 * mm/ksm.c (mm hashing). 13 */ 14 15 #include <linux/list.h> 16 #include <linux/hashtable.h> 17 #include <linux/sched.h> 18 #include <linux/mm.h> 19 #include <linux/poll.h> 20 #include <linux/slab.h> 21 #include <linux/seq_file.h> 22 #include <linux/file.h> 23 #include <linux/bug.h> 24 #include <linux/anon_inodes.h> 25 #include <linux/syscalls.h> 26 #include <linux/userfaultfd_k.h> 27 #include <linux/mempolicy.h> 28 #include <linux/ioctl.h> 29 #include <linux/security.h> 30 #include <linux/hugetlb.h> 31 32 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 33 34 enum userfaultfd_state { 35 UFFD_STATE_WAIT_API, 36 UFFD_STATE_RUNNING, 37 }; 38 39 /* 40 * Start with fault_pending_wqh and fault_wqh so they're more likely 41 * to be in the same cacheline. 42 */ 43 struct userfaultfd_ctx { 44 /* waitqueue head for the pending (i.e. not read) userfaults */ 45 wait_queue_head_t fault_pending_wqh; 46 /* waitqueue head for the userfaults */ 47 wait_queue_head_t fault_wqh; 48 /* waitqueue head for the pseudo fd to wakeup poll/read */ 49 wait_queue_head_t fd_wqh; 50 /* waitqueue head for events */ 51 wait_queue_head_t event_wqh; 52 /* a refile sequence protected by fault_pending_wqh lock */ 53 struct seqcount refile_seq; 54 /* pseudo fd refcounting */ 55 atomic_t refcount; 56 /* userfaultfd syscall flags */ 57 unsigned int flags; 58 /* features requested from the userspace */ 59 unsigned int features; 60 /* state machine */ 61 enum userfaultfd_state state; 62 /* released */ 63 bool released; 64 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 65 struct mm_struct *mm; 66 }; 67 68 struct userfaultfd_fork_ctx { 69 struct userfaultfd_ctx *orig; 70 struct userfaultfd_ctx *new; 71 struct list_head list; 72 }; 73 74 struct userfaultfd_unmap_ctx { 75 struct userfaultfd_ctx *ctx; 76 unsigned long start; 77 unsigned long end; 78 struct list_head list; 79 }; 80 81 struct userfaultfd_wait_queue { 82 struct uffd_msg msg; 83 wait_queue_t wq; 84 struct userfaultfd_ctx *ctx; 85 bool waken; 86 }; 87 88 struct userfaultfd_wake_range { 89 unsigned long start; 90 unsigned long len; 91 }; 92 93 static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode, 94 int wake_flags, void *key) 95 { 96 struct userfaultfd_wake_range *range = key; 97 int ret; 98 struct userfaultfd_wait_queue *uwq; 99 unsigned long start, len; 100 101 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 102 ret = 0; 103 /* len == 0 means wake all */ 104 start = range->start; 105 len = range->len; 106 if (len && (start > uwq->msg.arg.pagefault.address || 107 start + len <= uwq->msg.arg.pagefault.address)) 108 goto out; 109 WRITE_ONCE(uwq->waken, true); 110 /* 111 * The implicit smp_mb__before_spinlock in try_to_wake_up() 112 * renders uwq->waken visible to other CPUs before the task is 113 * waken. 114 */ 115 ret = wake_up_state(wq->private, mode); 116 if (ret) 117 /* 118 * Wake only once, autoremove behavior. 119 * 120 * After the effect of list_del_init is visible to the 121 * other CPUs, the waitqueue may disappear from under 122 * us, see the !list_empty_careful() in 123 * handle_userfault(). try_to_wake_up() has an 124 * implicit smp_mb__before_spinlock, and the 125 * wq->private is read before calling the extern 126 * function "wake_up_state" (which in turns calls 127 * try_to_wake_up). While the spin_lock;spin_unlock; 128 * wouldn't be enough, the smp_mb__before_spinlock is 129 * enough to avoid an explicit smp_mb() here. 130 */ 131 list_del_init(&wq->task_list); 132 out: 133 return ret; 134 } 135 136 /** 137 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 138 * context. 139 * @ctx: [in] Pointer to the userfaultfd context. 140 * 141 * Returns: In case of success, returns not zero. 142 */ 143 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 144 { 145 if (!atomic_inc_not_zero(&ctx->refcount)) 146 BUG(); 147 } 148 149 /** 150 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 151 * context. 152 * @ctx: [in] Pointer to userfaultfd context. 153 * 154 * The userfaultfd context reference must have been previously acquired either 155 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 156 */ 157 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 158 { 159 if (atomic_dec_and_test(&ctx->refcount)) { 160 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 161 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 162 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 163 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 164 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 165 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 166 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 167 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 168 mmdrop(ctx->mm); 169 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 170 } 171 } 172 173 static inline void msg_init(struct uffd_msg *msg) 174 { 175 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 176 /* 177 * Must use memset to zero out the paddings or kernel data is 178 * leaked to userland. 179 */ 180 memset(msg, 0, sizeof(struct uffd_msg)); 181 } 182 183 static inline struct uffd_msg userfault_msg(unsigned long address, 184 unsigned int flags, 185 unsigned long reason) 186 { 187 struct uffd_msg msg; 188 msg_init(&msg); 189 msg.event = UFFD_EVENT_PAGEFAULT; 190 msg.arg.pagefault.address = address; 191 if (flags & FAULT_FLAG_WRITE) 192 /* 193 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 194 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE 195 * was not set in a UFFD_EVENT_PAGEFAULT, it means it 196 * was a read fault, otherwise if set it means it's 197 * a write fault. 198 */ 199 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 200 if (reason & VM_UFFD_WP) 201 /* 202 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 203 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was 204 * not set in a UFFD_EVENT_PAGEFAULT, it means it was 205 * a missing fault, otherwise if set it means it's a 206 * write protect fault. 207 */ 208 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 209 return msg; 210 } 211 212 #ifdef CONFIG_HUGETLB_PAGE 213 /* 214 * Same functionality as userfaultfd_must_wait below with modifications for 215 * hugepmd ranges. 216 */ 217 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 218 unsigned long address, 219 unsigned long flags, 220 unsigned long reason) 221 { 222 struct mm_struct *mm = ctx->mm; 223 pte_t *pte; 224 bool ret = true; 225 226 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 227 228 pte = huge_pte_offset(mm, address); 229 if (!pte) 230 goto out; 231 232 ret = false; 233 234 /* 235 * Lockless access: we're in a wait_event so it's ok if it 236 * changes under us. 237 */ 238 if (huge_pte_none(*pte)) 239 ret = true; 240 if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP)) 241 ret = true; 242 out: 243 return ret; 244 } 245 #else 246 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 247 unsigned long address, 248 unsigned long flags, 249 unsigned long reason) 250 { 251 return false; /* should never get here */ 252 } 253 #endif /* CONFIG_HUGETLB_PAGE */ 254 255 /* 256 * Verify the pagetables are still not ok after having reigstered into 257 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 258 * userfault that has already been resolved, if userfaultfd_read and 259 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 260 * threads. 261 */ 262 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 263 unsigned long address, 264 unsigned long flags, 265 unsigned long reason) 266 { 267 struct mm_struct *mm = ctx->mm; 268 pgd_t *pgd; 269 pud_t *pud; 270 pmd_t *pmd, _pmd; 271 pte_t *pte; 272 bool ret = true; 273 274 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 275 276 pgd = pgd_offset(mm, address); 277 if (!pgd_present(*pgd)) 278 goto out; 279 pud = pud_offset(pgd, address); 280 if (!pud_present(*pud)) 281 goto out; 282 pmd = pmd_offset(pud, address); 283 /* 284 * READ_ONCE must function as a barrier with narrower scope 285 * and it must be equivalent to: 286 * _pmd = *pmd; barrier(); 287 * 288 * This is to deal with the instability (as in 289 * pmd_trans_unstable) of the pmd. 290 */ 291 _pmd = READ_ONCE(*pmd); 292 if (!pmd_present(_pmd)) 293 goto out; 294 295 ret = false; 296 if (pmd_trans_huge(_pmd)) 297 goto out; 298 299 /* 300 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 301 * and use the standard pte_offset_map() instead of parsing _pmd. 302 */ 303 pte = pte_offset_map(pmd, address); 304 /* 305 * Lockless access: we're in a wait_event so it's ok if it 306 * changes under us. 307 */ 308 if (pte_none(*pte)) 309 ret = true; 310 pte_unmap(pte); 311 312 out: 313 return ret; 314 } 315 316 /* 317 * The locking rules involved in returning VM_FAULT_RETRY depending on 318 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 319 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 320 * recommendation in __lock_page_or_retry is not an understatement. 321 * 322 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released 323 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 324 * not set. 325 * 326 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 327 * set, VM_FAULT_RETRY can still be returned if and only if there are 328 * fatal_signal_pending()s, and the mmap_sem must be released before 329 * returning it. 330 */ 331 int handle_userfault(struct vm_fault *vmf, unsigned long reason) 332 { 333 struct mm_struct *mm = vmf->vma->vm_mm; 334 struct userfaultfd_ctx *ctx; 335 struct userfaultfd_wait_queue uwq; 336 int ret; 337 bool must_wait, return_to_userland; 338 long blocking_state; 339 340 BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 341 342 ret = VM_FAULT_SIGBUS; 343 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 344 if (!ctx) 345 goto out; 346 347 BUG_ON(ctx->mm != mm); 348 349 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); 350 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); 351 352 /* 353 * If it's already released don't get it. This avoids to loop 354 * in __get_user_pages if userfaultfd_release waits on the 355 * caller of handle_userfault to release the mmap_sem. 356 */ 357 if (unlikely(ACCESS_ONCE(ctx->released))) 358 goto out; 359 360 /* 361 * We don't do userfault handling for the final child pid update. 362 */ 363 if (current->flags & PF_EXITING) 364 goto out; 365 366 /* 367 * Check that we can return VM_FAULT_RETRY. 368 * 369 * NOTE: it should become possible to return VM_FAULT_RETRY 370 * even if FAULT_FLAG_TRIED is set without leading to gup() 371 * -EBUSY failures, if the userfaultfd is to be extended for 372 * VM_UFFD_WP tracking and we intend to arm the userfault 373 * without first stopping userland access to the memory. For 374 * VM_UFFD_MISSING userfaults this is enough for now. 375 */ 376 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 377 /* 378 * Validate the invariant that nowait must allow retry 379 * to be sure not to return SIGBUS erroneously on 380 * nowait invocations. 381 */ 382 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 383 #ifdef CONFIG_DEBUG_VM 384 if (printk_ratelimit()) { 385 printk(KERN_WARNING 386 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 387 vmf->flags); 388 dump_stack(); 389 } 390 #endif 391 goto out; 392 } 393 394 /* 395 * Handle nowait, not much to do other than tell it to retry 396 * and wait. 397 */ 398 ret = VM_FAULT_RETRY; 399 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 400 goto out; 401 402 /* take the reference before dropping the mmap_sem */ 403 userfaultfd_ctx_get(ctx); 404 405 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 406 uwq.wq.private = current; 407 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason); 408 uwq.ctx = ctx; 409 uwq.waken = false; 410 411 return_to_userland = 412 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) == 413 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE); 414 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE : 415 TASK_KILLABLE; 416 417 spin_lock(&ctx->fault_pending_wqh.lock); 418 /* 419 * After the __add_wait_queue the uwq is visible to userland 420 * through poll/read(). 421 */ 422 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 423 /* 424 * The smp_mb() after __set_current_state prevents the reads 425 * following the spin_unlock to happen before the list_add in 426 * __add_wait_queue. 427 */ 428 set_current_state(blocking_state); 429 spin_unlock(&ctx->fault_pending_wqh.lock); 430 431 if (!is_vm_hugetlb_page(vmf->vma)) 432 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 433 reason); 434 else 435 must_wait = userfaultfd_huge_must_wait(ctx, vmf->address, 436 vmf->flags, reason); 437 up_read(&mm->mmap_sem); 438 439 if (likely(must_wait && !ACCESS_ONCE(ctx->released) && 440 (return_to_userland ? !signal_pending(current) : 441 !fatal_signal_pending(current)))) { 442 wake_up_poll(&ctx->fd_wqh, POLLIN); 443 schedule(); 444 ret |= VM_FAULT_MAJOR; 445 446 /* 447 * False wakeups can orginate even from rwsem before 448 * up_read() however userfaults will wait either for a 449 * targeted wakeup on the specific uwq waitqueue from 450 * wake_userfault() or for signals or for uffd 451 * release. 452 */ 453 while (!READ_ONCE(uwq.waken)) { 454 /* 455 * This needs the full smp_store_mb() 456 * guarantee as the state write must be 457 * visible to other CPUs before reading 458 * uwq.waken from other CPUs. 459 */ 460 set_current_state(blocking_state); 461 if (READ_ONCE(uwq.waken) || 462 READ_ONCE(ctx->released) || 463 (return_to_userland ? signal_pending(current) : 464 fatal_signal_pending(current))) 465 break; 466 schedule(); 467 } 468 } 469 470 __set_current_state(TASK_RUNNING); 471 472 if (return_to_userland) { 473 if (signal_pending(current) && 474 !fatal_signal_pending(current)) { 475 /* 476 * If we got a SIGSTOP or SIGCONT and this is 477 * a normal userland page fault, just let 478 * userland return so the signal will be 479 * handled and gdb debugging works. The page 480 * fault code immediately after we return from 481 * this function is going to release the 482 * mmap_sem and it's not depending on it 483 * (unlike gup would if we were not to return 484 * VM_FAULT_RETRY). 485 * 486 * If a fatal signal is pending we still take 487 * the streamlined VM_FAULT_RETRY failure path 488 * and there's no need to retake the mmap_sem 489 * in such case. 490 */ 491 down_read(&mm->mmap_sem); 492 ret = 0; 493 } 494 } 495 496 /* 497 * Here we race with the list_del; list_add in 498 * userfaultfd_ctx_read(), however because we don't ever run 499 * list_del_init() to refile across the two lists, the prev 500 * and next pointers will never point to self. list_add also 501 * would never let any of the two pointers to point to 502 * self. So list_empty_careful won't risk to see both pointers 503 * pointing to self at any time during the list refile. The 504 * only case where list_del_init() is called is the full 505 * removal in the wake function and there we don't re-list_add 506 * and it's fine not to block on the spinlock. The uwq on this 507 * kernel stack can be released after the list_del_init. 508 */ 509 if (!list_empty_careful(&uwq.wq.task_list)) { 510 spin_lock(&ctx->fault_pending_wqh.lock); 511 /* 512 * No need of list_del_init(), the uwq on the stack 513 * will be freed shortly anyway. 514 */ 515 list_del(&uwq.wq.task_list); 516 spin_unlock(&ctx->fault_pending_wqh.lock); 517 } 518 519 /* 520 * ctx may go away after this if the userfault pseudo fd is 521 * already released. 522 */ 523 userfaultfd_ctx_put(ctx); 524 525 out: 526 return ret; 527 } 528 529 static int userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 530 struct userfaultfd_wait_queue *ewq) 531 { 532 int ret = 0; 533 534 ewq->ctx = ctx; 535 init_waitqueue_entry(&ewq->wq, current); 536 537 spin_lock(&ctx->event_wqh.lock); 538 /* 539 * After the __add_wait_queue the uwq is visible to userland 540 * through poll/read(). 541 */ 542 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 543 for (;;) { 544 set_current_state(TASK_KILLABLE); 545 if (ewq->msg.event == 0) 546 break; 547 if (ACCESS_ONCE(ctx->released) || 548 fatal_signal_pending(current)) { 549 ret = -1; 550 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 551 break; 552 } 553 554 spin_unlock(&ctx->event_wqh.lock); 555 556 wake_up_poll(&ctx->fd_wqh, POLLIN); 557 schedule(); 558 559 spin_lock(&ctx->event_wqh.lock); 560 } 561 __set_current_state(TASK_RUNNING); 562 spin_unlock(&ctx->event_wqh.lock); 563 564 /* 565 * ctx may go away after this if the userfault pseudo fd is 566 * already released. 567 */ 568 569 userfaultfd_ctx_put(ctx); 570 return ret; 571 } 572 573 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 574 struct userfaultfd_wait_queue *ewq) 575 { 576 ewq->msg.event = 0; 577 wake_up_locked(&ctx->event_wqh); 578 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 579 } 580 581 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 582 { 583 struct userfaultfd_ctx *ctx = NULL, *octx; 584 struct userfaultfd_fork_ctx *fctx; 585 586 octx = vma->vm_userfaultfd_ctx.ctx; 587 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 588 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 589 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 590 return 0; 591 } 592 593 list_for_each_entry(fctx, fcs, list) 594 if (fctx->orig == octx) { 595 ctx = fctx->new; 596 break; 597 } 598 599 if (!ctx) { 600 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 601 if (!fctx) 602 return -ENOMEM; 603 604 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 605 if (!ctx) { 606 kfree(fctx); 607 return -ENOMEM; 608 } 609 610 atomic_set(&ctx->refcount, 1); 611 ctx->flags = octx->flags; 612 ctx->state = UFFD_STATE_RUNNING; 613 ctx->features = octx->features; 614 ctx->released = false; 615 ctx->mm = vma->vm_mm; 616 atomic_inc(&ctx->mm->mm_count); 617 618 userfaultfd_ctx_get(octx); 619 fctx->orig = octx; 620 fctx->new = ctx; 621 list_add_tail(&fctx->list, fcs); 622 } 623 624 vma->vm_userfaultfd_ctx.ctx = ctx; 625 return 0; 626 } 627 628 static int dup_fctx(struct userfaultfd_fork_ctx *fctx) 629 { 630 struct userfaultfd_ctx *ctx = fctx->orig; 631 struct userfaultfd_wait_queue ewq; 632 633 msg_init(&ewq.msg); 634 635 ewq.msg.event = UFFD_EVENT_FORK; 636 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 637 638 return userfaultfd_event_wait_completion(ctx, &ewq); 639 } 640 641 void dup_userfaultfd_complete(struct list_head *fcs) 642 { 643 int ret = 0; 644 struct userfaultfd_fork_ctx *fctx, *n; 645 646 list_for_each_entry_safe(fctx, n, fcs, list) { 647 if (!ret) 648 ret = dup_fctx(fctx); 649 list_del(&fctx->list); 650 kfree(fctx); 651 } 652 } 653 654 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 655 struct vm_userfaultfd_ctx *vm_ctx) 656 { 657 struct userfaultfd_ctx *ctx; 658 659 ctx = vma->vm_userfaultfd_ctx.ctx; 660 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) { 661 vm_ctx->ctx = ctx; 662 userfaultfd_ctx_get(ctx); 663 } 664 } 665 666 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 667 unsigned long from, unsigned long to, 668 unsigned long len) 669 { 670 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 671 struct userfaultfd_wait_queue ewq; 672 673 if (!ctx) 674 return; 675 676 if (to & ~PAGE_MASK) { 677 userfaultfd_ctx_put(ctx); 678 return; 679 } 680 681 msg_init(&ewq.msg); 682 683 ewq.msg.event = UFFD_EVENT_REMAP; 684 ewq.msg.arg.remap.from = from; 685 ewq.msg.arg.remap.to = to; 686 ewq.msg.arg.remap.len = len; 687 688 userfaultfd_event_wait_completion(ctx, &ewq); 689 } 690 691 void userfaultfd_remove(struct vm_area_struct *vma, 692 struct vm_area_struct **prev, 693 unsigned long start, unsigned long end) 694 { 695 struct mm_struct *mm = vma->vm_mm; 696 struct userfaultfd_ctx *ctx; 697 struct userfaultfd_wait_queue ewq; 698 699 ctx = vma->vm_userfaultfd_ctx.ctx; 700 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 701 return; 702 703 userfaultfd_ctx_get(ctx); 704 up_read(&mm->mmap_sem); 705 706 *prev = NULL; /* We wait for ACK w/o the mmap semaphore */ 707 708 msg_init(&ewq.msg); 709 710 ewq.msg.event = UFFD_EVENT_REMOVE; 711 ewq.msg.arg.remove.start = start; 712 ewq.msg.arg.remove.end = end; 713 714 userfaultfd_event_wait_completion(ctx, &ewq); 715 716 down_read(&mm->mmap_sem); 717 } 718 719 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 720 unsigned long start, unsigned long end) 721 { 722 struct userfaultfd_unmap_ctx *unmap_ctx; 723 724 list_for_each_entry(unmap_ctx, unmaps, list) 725 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 726 unmap_ctx->end == end) 727 return true; 728 729 return false; 730 } 731 732 int userfaultfd_unmap_prep(struct vm_area_struct *vma, 733 unsigned long start, unsigned long end, 734 struct list_head *unmaps) 735 { 736 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 737 struct userfaultfd_unmap_ctx *unmap_ctx; 738 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 739 740 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 741 has_unmap_ctx(ctx, unmaps, start, end)) 742 continue; 743 744 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 745 if (!unmap_ctx) 746 return -ENOMEM; 747 748 userfaultfd_ctx_get(ctx); 749 unmap_ctx->ctx = ctx; 750 unmap_ctx->start = start; 751 unmap_ctx->end = end; 752 list_add_tail(&unmap_ctx->list, unmaps); 753 } 754 755 return 0; 756 } 757 758 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 759 { 760 struct userfaultfd_unmap_ctx *ctx, *n; 761 struct userfaultfd_wait_queue ewq; 762 763 list_for_each_entry_safe(ctx, n, uf, list) { 764 msg_init(&ewq.msg); 765 766 ewq.msg.event = UFFD_EVENT_UNMAP; 767 ewq.msg.arg.remove.start = ctx->start; 768 ewq.msg.arg.remove.end = ctx->end; 769 770 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 771 772 list_del(&ctx->list); 773 kfree(ctx); 774 } 775 } 776 777 void userfaultfd_exit(struct mm_struct *mm) 778 { 779 struct vm_area_struct *vma = mm->mmap; 780 781 /* 782 * We can do the vma walk without locking because the caller 783 * (exit_mm) knows it now has exclusive access 784 */ 785 while (vma) { 786 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 787 788 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_EXIT)) { 789 struct userfaultfd_wait_queue ewq; 790 791 userfaultfd_ctx_get(ctx); 792 793 msg_init(&ewq.msg); 794 ewq.msg.event = UFFD_EVENT_EXIT; 795 796 userfaultfd_event_wait_completion(ctx, &ewq); 797 798 ctx->features &= ~UFFD_FEATURE_EVENT_EXIT; 799 } 800 801 vma = vma->vm_next; 802 } 803 } 804 805 static int userfaultfd_release(struct inode *inode, struct file *file) 806 { 807 struct userfaultfd_ctx *ctx = file->private_data; 808 struct mm_struct *mm = ctx->mm; 809 struct vm_area_struct *vma, *prev; 810 /* len == 0 means wake all */ 811 struct userfaultfd_wake_range range = { .len = 0, }; 812 unsigned long new_flags; 813 814 ACCESS_ONCE(ctx->released) = true; 815 816 if (!mmget_not_zero(mm)) 817 goto wakeup; 818 819 /* 820 * Flush page faults out of all CPUs. NOTE: all page faults 821 * must be retried without returning VM_FAULT_SIGBUS if 822 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 823 * changes while handle_userfault released the mmap_sem. So 824 * it's critical that released is set to true (above), before 825 * taking the mmap_sem for writing. 826 */ 827 down_write(&mm->mmap_sem); 828 prev = NULL; 829 for (vma = mm->mmap; vma; vma = vma->vm_next) { 830 cond_resched(); 831 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 832 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 833 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 834 prev = vma; 835 continue; 836 } 837 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 838 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 839 new_flags, vma->anon_vma, 840 vma->vm_file, vma->vm_pgoff, 841 vma_policy(vma), 842 NULL_VM_UFFD_CTX); 843 if (prev) 844 vma = prev; 845 else 846 prev = vma; 847 vma->vm_flags = new_flags; 848 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 849 } 850 up_write(&mm->mmap_sem); 851 mmput(mm); 852 wakeup: 853 /* 854 * After no new page faults can wait on this fault_*wqh, flush 855 * the last page faults that may have been already waiting on 856 * the fault_*wqh. 857 */ 858 spin_lock(&ctx->fault_pending_wqh.lock); 859 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 860 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range); 861 spin_unlock(&ctx->fault_pending_wqh.lock); 862 863 wake_up_poll(&ctx->fd_wqh, POLLHUP); 864 userfaultfd_ctx_put(ctx); 865 return 0; 866 } 867 868 /* fault_pending_wqh.lock must be hold by the caller */ 869 static inline struct userfaultfd_wait_queue *find_userfault_in( 870 wait_queue_head_t *wqh) 871 { 872 wait_queue_t *wq; 873 struct userfaultfd_wait_queue *uwq; 874 875 VM_BUG_ON(!spin_is_locked(&wqh->lock)); 876 877 uwq = NULL; 878 if (!waitqueue_active(wqh)) 879 goto out; 880 /* walk in reverse to provide FIFO behavior to read userfaults */ 881 wq = list_last_entry(&wqh->task_list, typeof(*wq), task_list); 882 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 883 out: 884 return uwq; 885 } 886 887 static inline struct userfaultfd_wait_queue *find_userfault( 888 struct userfaultfd_ctx *ctx) 889 { 890 return find_userfault_in(&ctx->fault_pending_wqh); 891 } 892 893 static inline struct userfaultfd_wait_queue *find_userfault_evt( 894 struct userfaultfd_ctx *ctx) 895 { 896 return find_userfault_in(&ctx->event_wqh); 897 } 898 899 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait) 900 { 901 struct userfaultfd_ctx *ctx = file->private_data; 902 unsigned int ret; 903 904 poll_wait(file, &ctx->fd_wqh, wait); 905 906 switch (ctx->state) { 907 case UFFD_STATE_WAIT_API: 908 return POLLERR; 909 case UFFD_STATE_RUNNING: 910 /* 911 * poll() never guarantees that read won't block. 912 * userfaults can be waken before they're read(). 913 */ 914 if (unlikely(!(file->f_flags & O_NONBLOCK))) 915 return POLLERR; 916 /* 917 * lockless access to see if there are pending faults 918 * __pollwait last action is the add_wait_queue but 919 * the spin_unlock would allow the waitqueue_active to 920 * pass above the actual list_add inside 921 * add_wait_queue critical section. So use a full 922 * memory barrier to serialize the list_add write of 923 * add_wait_queue() with the waitqueue_active read 924 * below. 925 */ 926 ret = 0; 927 smp_mb(); 928 if (waitqueue_active(&ctx->fault_pending_wqh)) 929 ret = POLLIN; 930 else if (waitqueue_active(&ctx->event_wqh)) 931 ret = POLLIN; 932 933 return ret; 934 default: 935 WARN_ON_ONCE(1); 936 return POLLERR; 937 } 938 } 939 940 static const struct file_operations userfaultfd_fops; 941 942 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, 943 struct userfaultfd_ctx *new, 944 struct uffd_msg *msg) 945 { 946 int fd; 947 struct file *file; 948 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS; 949 950 fd = get_unused_fd_flags(flags); 951 if (fd < 0) 952 return fd; 953 954 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new, 955 O_RDWR | flags); 956 if (IS_ERR(file)) { 957 put_unused_fd(fd); 958 return PTR_ERR(file); 959 } 960 961 fd_install(fd, file); 962 msg->arg.reserved.reserved1 = 0; 963 msg->arg.fork.ufd = fd; 964 965 return 0; 966 } 967 968 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 969 struct uffd_msg *msg) 970 { 971 ssize_t ret; 972 DECLARE_WAITQUEUE(wait, current); 973 struct userfaultfd_wait_queue *uwq; 974 /* 975 * Handling fork event requires sleeping operations, so 976 * we drop the event_wqh lock, then do these ops, then 977 * lock it back and wake up the waiter. While the lock is 978 * dropped the ewq may go away so we keep track of it 979 * carefully. 980 */ 981 LIST_HEAD(fork_event); 982 struct userfaultfd_ctx *fork_nctx = NULL; 983 984 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 985 spin_lock(&ctx->fd_wqh.lock); 986 __add_wait_queue(&ctx->fd_wqh, &wait); 987 for (;;) { 988 set_current_state(TASK_INTERRUPTIBLE); 989 spin_lock(&ctx->fault_pending_wqh.lock); 990 uwq = find_userfault(ctx); 991 if (uwq) { 992 /* 993 * Use a seqcount to repeat the lockless check 994 * in wake_userfault() to avoid missing 995 * wakeups because during the refile both 996 * waitqueue could become empty if this is the 997 * only userfault. 998 */ 999 write_seqcount_begin(&ctx->refile_seq); 1000 1001 /* 1002 * The fault_pending_wqh.lock prevents the uwq 1003 * to disappear from under us. 1004 * 1005 * Refile this userfault from 1006 * fault_pending_wqh to fault_wqh, it's not 1007 * pending anymore after we read it. 1008 * 1009 * Use list_del() by hand (as 1010 * userfaultfd_wake_function also uses 1011 * list_del_init() by hand) to be sure nobody 1012 * changes __remove_wait_queue() to use 1013 * list_del_init() in turn breaking the 1014 * !list_empty_careful() check in 1015 * handle_userfault(). The uwq->wq.task_list 1016 * must never be empty at any time during the 1017 * refile, or the waitqueue could disappear 1018 * from under us. The "wait_queue_head_t" 1019 * parameter of __remove_wait_queue() is unused 1020 * anyway. 1021 */ 1022 list_del(&uwq->wq.task_list); 1023 __add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1024 1025 write_seqcount_end(&ctx->refile_seq); 1026 1027 /* careful to always initialize msg if ret == 0 */ 1028 *msg = uwq->msg; 1029 spin_unlock(&ctx->fault_pending_wqh.lock); 1030 ret = 0; 1031 break; 1032 } 1033 spin_unlock(&ctx->fault_pending_wqh.lock); 1034 1035 spin_lock(&ctx->event_wqh.lock); 1036 uwq = find_userfault_evt(ctx); 1037 if (uwq) { 1038 *msg = uwq->msg; 1039 1040 if (uwq->msg.event == UFFD_EVENT_FORK) { 1041 fork_nctx = (struct userfaultfd_ctx *) 1042 (unsigned long) 1043 uwq->msg.arg.reserved.reserved1; 1044 list_move(&uwq->wq.task_list, &fork_event); 1045 spin_unlock(&ctx->event_wqh.lock); 1046 ret = 0; 1047 break; 1048 } 1049 1050 userfaultfd_event_complete(ctx, uwq); 1051 spin_unlock(&ctx->event_wqh.lock); 1052 ret = 0; 1053 break; 1054 } 1055 spin_unlock(&ctx->event_wqh.lock); 1056 1057 if (signal_pending(current)) { 1058 ret = -ERESTARTSYS; 1059 break; 1060 } 1061 if (no_wait) { 1062 ret = -EAGAIN; 1063 break; 1064 } 1065 spin_unlock(&ctx->fd_wqh.lock); 1066 schedule(); 1067 spin_lock(&ctx->fd_wqh.lock); 1068 } 1069 __remove_wait_queue(&ctx->fd_wqh, &wait); 1070 __set_current_state(TASK_RUNNING); 1071 spin_unlock(&ctx->fd_wqh.lock); 1072 1073 if (!ret && msg->event == UFFD_EVENT_FORK) { 1074 ret = resolve_userfault_fork(ctx, fork_nctx, msg); 1075 1076 if (!ret) { 1077 spin_lock(&ctx->event_wqh.lock); 1078 if (!list_empty(&fork_event)) { 1079 uwq = list_first_entry(&fork_event, 1080 typeof(*uwq), 1081 wq.task_list); 1082 list_del(&uwq->wq.task_list); 1083 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1084 userfaultfd_event_complete(ctx, uwq); 1085 } 1086 spin_unlock(&ctx->event_wqh.lock); 1087 } 1088 } 1089 1090 return ret; 1091 } 1092 1093 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1094 size_t count, loff_t *ppos) 1095 { 1096 struct userfaultfd_ctx *ctx = file->private_data; 1097 ssize_t _ret, ret = 0; 1098 struct uffd_msg msg; 1099 int no_wait = file->f_flags & O_NONBLOCK; 1100 1101 if (ctx->state == UFFD_STATE_WAIT_API) 1102 return -EINVAL; 1103 1104 for (;;) { 1105 if (count < sizeof(msg)) 1106 return ret ? ret : -EINVAL; 1107 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); 1108 if (_ret < 0) 1109 return ret ? ret : _ret; 1110 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1111 return ret ? ret : -EFAULT; 1112 ret += sizeof(msg); 1113 buf += sizeof(msg); 1114 count -= sizeof(msg); 1115 /* 1116 * Allow to read more than one fault at time but only 1117 * block if waiting for the very first one. 1118 */ 1119 no_wait = O_NONBLOCK; 1120 } 1121 } 1122 1123 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1124 struct userfaultfd_wake_range *range) 1125 { 1126 unsigned long start, end; 1127 1128 start = range->start; 1129 end = range->start + range->len; 1130 1131 spin_lock(&ctx->fault_pending_wqh.lock); 1132 /* wake all in the range and autoremove */ 1133 if (waitqueue_active(&ctx->fault_pending_wqh)) 1134 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1135 range); 1136 if (waitqueue_active(&ctx->fault_wqh)) 1137 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range); 1138 spin_unlock(&ctx->fault_pending_wqh.lock); 1139 } 1140 1141 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1142 struct userfaultfd_wake_range *range) 1143 { 1144 unsigned seq; 1145 bool need_wakeup; 1146 1147 /* 1148 * To be sure waitqueue_active() is not reordered by the CPU 1149 * before the pagetable update, use an explicit SMP memory 1150 * barrier here. PT lock release or up_read(mmap_sem) still 1151 * have release semantics that can allow the 1152 * waitqueue_active() to be reordered before the pte update. 1153 */ 1154 smp_mb(); 1155 1156 /* 1157 * Use waitqueue_active because it's very frequent to 1158 * change the address space atomically even if there are no 1159 * userfaults yet. So we take the spinlock only when we're 1160 * sure we've userfaults to wake. 1161 */ 1162 do { 1163 seq = read_seqcount_begin(&ctx->refile_seq); 1164 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1165 waitqueue_active(&ctx->fault_wqh); 1166 cond_resched(); 1167 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1168 if (need_wakeup) 1169 __wake_userfault(ctx, range); 1170 } 1171 1172 static __always_inline int validate_range(struct mm_struct *mm, 1173 __u64 start, __u64 len) 1174 { 1175 __u64 task_size = mm->task_size; 1176 1177 if (start & ~PAGE_MASK) 1178 return -EINVAL; 1179 if (len & ~PAGE_MASK) 1180 return -EINVAL; 1181 if (!len) 1182 return -EINVAL; 1183 if (start < mmap_min_addr) 1184 return -EINVAL; 1185 if (start >= task_size) 1186 return -EINVAL; 1187 if (len > task_size - start) 1188 return -EINVAL; 1189 return 0; 1190 } 1191 1192 static inline bool vma_can_userfault(struct vm_area_struct *vma) 1193 { 1194 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || 1195 vma_is_shmem(vma); 1196 } 1197 1198 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1199 unsigned long arg) 1200 { 1201 struct mm_struct *mm = ctx->mm; 1202 struct vm_area_struct *vma, *prev, *cur; 1203 int ret; 1204 struct uffdio_register uffdio_register; 1205 struct uffdio_register __user *user_uffdio_register; 1206 unsigned long vm_flags, new_flags; 1207 bool found; 1208 bool non_anon_pages; 1209 unsigned long start, end, vma_end; 1210 1211 user_uffdio_register = (struct uffdio_register __user *) arg; 1212 1213 ret = -EFAULT; 1214 if (copy_from_user(&uffdio_register, user_uffdio_register, 1215 sizeof(uffdio_register)-sizeof(__u64))) 1216 goto out; 1217 1218 ret = -EINVAL; 1219 if (!uffdio_register.mode) 1220 goto out; 1221 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| 1222 UFFDIO_REGISTER_MODE_WP)) 1223 goto out; 1224 vm_flags = 0; 1225 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1226 vm_flags |= VM_UFFD_MISSING; 1227 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1228 vm_flags |= VM_UFFD_WP; 1229 /* 1230 * FIXME: remove the below error constraint by 1231 * implementing the wprotect tracking mode. 1232 */ 1233 ret = -EINVAL; 1234 goto out; 1235 } 1236 1237 ret = validate_range(mm, uffdio_register.range.start, 1238 uffdio_register.range.len); 1239 if (ret) 1240 goto out; 1241 1242 start = uffdio_register.range.start; 1243 end = start + uffdio_register.range.len; 1244 1245 ret = -ENOMEM; 1246 if (!mmget_not_zero(mm)) 1247 goto out; 1248 1249 down_write(&mm->mmap_sem); 1250 vma = find_vma_prev(mm, start, &prev); 1251 if (!vma) 1252 goto out_unlock; 1253 1254 /* check that there's at least one vma in the range */ 1255 ret = -EINVAL; 1256 if (vma->vm_start >= end) 1257 goto out_unlock; 1258 1259 /* 1260 * If the first vma contains huge pages, make sure start address 1261 * is aligned to huge page size. 1262 */ 1263 if (is_vm_hugetlb_page(vma)) { 1264 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1265 1266 if (start & (vma_hpagesize - 1)) 1267 goto out_unlock; 1268 } 1269 1270 /* 1271 * Search for not compatible vmas. 1272 */ 1273 found = false; 1274 non_anon_pages = false; 1275 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1276 cond_resched(); 1277 1278 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1279 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1280 1281 /* check not compatible vmas */ 1282 ret = -EINVAL; 1283 if (!vma_can_userfault(cur)) 1284 goto out_unlock; 1285 /* 1286 * If this vma contains ending address, and huge pages 1287 * check alignment. 1288 */ 1289 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1290 end > cur->vm_start) { 1291 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1292 1293 ret = -EINVAL; 1294 1295 if (end & (vma_hpagesize - 1)) 1296 goto out_unlock; 1297 } 1298 1299 /* 1300 * Check that this vma isn't already owned by a 1301 * different userfaultfd. We can't allow more than one 1302 * userfaultfd to own a single vma simultaneously or we 1303 * wouldn't know which one to deliver the userfaults to. 1304 */ 1305 ret = -EBUSY; 1306 if (cur->vm_userfaultfd_ctx.ctx && 1307 cur->vm_userfaultfd_ctx.ctx != ctx) 1308 goto out_unlock; 1309 1310 /* 1311 * Note vmas containing huge pages 1312 */ 1313 if (is_vm_hugetlb_page(cur) || vma_is_shmem(cur)) 1314 non_anon_pages = true; 1315 1316 found = true; 1317 } 1318 BUG_ON(!found); 1319 1320 if (vma->vm_start < start) 1321 prev = vma; 1322 1323 ret = 0; 1324 do { 1325 cond_resched(); 1326 1327 BUG_ON(!vma_can_userfault(vma)); 1328 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1329 vma->vm_userfaultfd_ctx.ctx != ctx); 1330 1331 /* 1332 * Nothing to do: this vma is already registered into this 1333 * userfaultfd and with the right tracking mode too. 1334 */ 1335 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1336 (vma->vm_flags & vm_flags) == vm_flags) 1337 goto skip; 1338 1339 if (vma->vm_start > start) 1340 start = vma->vm_start; 1341 vma_end = min(end, vma->vm_end); 1342 1343 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags; 1344 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1345 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1346 vma_policy(vma), 1347 ((struct vm_userfaultfd_ctx){ ctx })); 1348 if (prev) { 1349 vma = prev; 1350 goto next; 1351 } 1352 if (vma->vm_start < start) { 1353 ret = split_vma(mm, vma, start, 1); 1354 if (ret) 1355 break; 1356 } 1357 if (vma->vm_end > end) { 1358 ret = split_vma(mm, vma, end, 0); 1359 if (ret) 1360 break; 1361 } 1362 next: 1363 /* 1364 * In the vma_merge() successful mprotect-like case 8: 1365 * the next vma was merged into the current one and 1366 * the current one has not been updated yet. 1367 */ 1368 vma->vm_flags = new_flags; 1369 vma->vm_userfaultfd_ctx.ctx = ctx; 1370 1371 skip: 1372 prev = vma; 1373 start = vma->vm_end; 1374 vma = vma->vm_next; 1375 } while (vma && vma->vm_start < end); 1376 out_unlock: 1377 up_write(&mm->mmap_sem); 1378 mmput(mm); 1379 if (!ret) { 1380 /* 1381 * Now that we scanned all vmas we can already tell 1382 * userland which ioctls methods are guaranteed to 1383 * succeed on this range. 1384 */ 1385 if (put_user(non_anon_pages ? UFFD_API_RANGE_IOCTLS_BASIC : 1386 UFFD_API_RANGE_IOCTLS, 1387 &user_uffdio_register->ioctls)) 1388 ret = -EFAULT; 1389 } 1390 out: 1391 return ret; 1392 } 1393 1394 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1395 unsigned long arg) 1396 { 1397 struct mm_struct *mm = ctx->mm; 1398 struct vm_area_struct *vma, *prev, *cur; 1399 int ret; 1400 struct uffdio_range uffdio_unregister; 1401 unsigned long new_flags; 1402 bool found; 1403 unsigned long start, end, vma_end; 1404 const void __user *buf = (void __user *)arg; 1405 1406 ret = -EFAULT; 1407 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1408 goto out; 1409 1410 ret = validate_range(mm, uffdio_unregister.start, 1411 uffdio_unregister.len); 1412 if (ret) 1413 goto out; 1414 1415 start = uffdio_unregister.start; 1416 end = start + uffdio_unregister.len; 1417 1418 ret = -ENOMEM; 1419 if (!mmget_not_zero(mm)) 1420 goto out; 1421 1422 down_write(&mm->mmap_sem); 1423 vma = find_vma_prev(mm, start, &prev); 1424 if (!vma) 1425 goto out_unlock; 1426 1427 /* check that there's at least one vma in the range */ 1428 ret = -EINVAL; 1429 if (vma->vm_start >= end) 1430 goto out_unlock; 1431 1432 /* 1433 * If the first vma contains huge pages, make sure start address 1434 * is aligned to huge page size. 1435 */ 1436 if (is_vm_hugetlb_page(vma)) { 1437 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1438 1439 if (start & (vma_hpagesize - 1)) 1440 goto out_unlock; 1441 } 1442 1443 /* 1444 * Search for not compatible vmas. 1445 */ 1446 found = false; 1447 ret = -EINVAL; 1448 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1449 cond_resched(); 1450 1451 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1452 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1453 1454 /* 1455 * Check not compatible vmas, not strictly required 1456 * here as not compatible vmas cannot have an 1457 * userfaultfd_ctx registered on them, but this 1458 * provides for more strict behavior to notice 1459 * unregistration errors. 1460 */ 1461 if (!vma_can_userfault(cur)) 1462 goto out_unlock; 1463 1464 found = true; 1465 } 1466 BUG_ON(!found); 1467 1468 if (vma->vm_start < start) 1469 prev = vma; 1470 1471 ret = 0; 1472 do { 1473 cond_resched(); 1474 1475 BUG_ON(!vma_can_userfault(vma)); 1476 1477 /* 1478 * Nothing to do: this vma is already registered into this 1479 * userfaultfd and with the right tracking mode too. 1480 */ 1481 if (!vma->vm_userfaultfd_ctx.ctx) 1482 goto skip; 1483 1484 if (vma->vm_start > start) 1485 start = vma->vm_start; 1486 vma_end = min(end, vma->vm_end); 1487 1488 if (userfaultfd_missing(vma)) { 1489 /* 1490 * Wake any concurrent pending userfault while 1491 * we unregister, so they will not hang 1492 * permanently and it avoids userland to call 1493 * UFFDIO_WAKE explicitly. 1494 */ 1495 struct userfaultfd_wake_range range; 1496 range.start = start; 1497 range.len = vma_end - start; 1498 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1499 } 1500 1501 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 1502 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1503 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1504 vma_policy(vma), 1505 NULL_VM_UFFD_CTX); 1506 if (prev) { 1507 vma = prev; 1508 goto next; 1509 } 1510 if (vma->vm_start < start) { 1511 ret = split_vma(mm, vma, start, 1); 1512 if (ret) 1513 break; 1514 } 1515 if (vma->vm_end > end) { 1516 ret = split_vma(mm, vma, end, 0); 1517 if (ret) 1518 break; 1519 } 1520 next: 1521 /* 1522 * In the vma_merge() successful mprotect-like case 8: 1523 * the next vma was merged into the current one and 1524 * the current one has not been updated yet. 1525 */ 1526 vma->vm_flags = new_flags; 1527 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1528 1529 skip: 1530 prev = vma; 1531 start = vma->vm_end; 1532 vma = vma->vm_next; 1533 } while (vma && vma->vm_start < end); 1534 out_unlock: 1535 up_write(&mm->mmap_sem); 1536 mmput(mm); 1537 out: 1538 return ret; 1539 } 1540 1541 /* 1542 * userfaultfd_wake may be used in combination with the 1543 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1544 */ 1545 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1546 unsigned long arg) 1547 { 1548 int ret; 1549 struct uffdio_range uffdio_wake; 1550 struct userfaultfd_wake_range range; 1551 const void __user *buf = (void __user *)arg; 1552 1553 ret = -EFAULT; 1554 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1555 goto out; 1556 1557 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1558 if (ret) 1559 goto out; 1560 1561 range.start = uffdio_wake.start; 1562 range.len = uffdio_wake.len; 1563 1564 /* 1565 * len == 0 means wake all and we don't want to wake all here, 1566 * so check it again to be sure. 1567 */ 1568 VM_BUG_ON(!range.len); 1569 1570 wake_userfault(ctx, &range); 1571 ret = 0; 1572 1573 out: 1574 return ret; 1575 } 1576 1577 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1578 unsigned long arg) 1579 { 1580 __s64 ret; 1581 struct uffdio_copy uffdio_copy; 1582 struct uffdio_copy __user *user_uffdio_copy; 1583 struct userfaultfd_wake_range range; 1584 1585 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1586 1587 ret = -EFAULT; 1588 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1589 /* don't copy "copy" last field */ 1590 sizeof(uffdio_copy)-sizeof(__s64))) 1591 goto out; 1592 1593 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1594 if (ret) 1595 goto out; 1596 /* 1597 * double check for wraparound just in case. copy_from_user() 1598 * will later check uffdio_copy.src + uffdio_copy.len to fit 1599 * in the userland range. 1600 */ 1601 ret = -EINVAL; 1602 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1603 goto out; 1604 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) 1605 goto out; 1606 if (mmget_not_zero(ctx->mm)) { 1607 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1608 uffdio_copy.len); 1609 mmput(ctx->mm); 1610 } else { 1611 return -ENOSPC; 1612 } 1613 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1614 return -EFAULT; 1615 if (ret < 0) 1616 goto out; 1617 BUG_ON(!ret); 1618 /* len == 0 would wake all */ 1619 range.len = ret; 1620 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1621 range.start = uffdio_copy.dst; 1622 wake_userfault(ctx, &range); 1623 } 1624 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1625 out: 1626 return ret; 1627 } 1628 1629 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1630 unsigned long arg) 1631 { 1632 __s64 ret; 1633 struct uffdio_zeropage uffdio_zeropage; 1634 struct uffdio_zeropage __user *user_uffdio_zeropage; 1635 struct userfaultfd_wake_range range; 1636 1637 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1638 1639 ret = -EFAULT; 1640 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1641 /* don't copy "zeropage" last field */ 1642 sizeof(uffdio_zeropage)-sizeof(__s64))) 1643 goto out; 1644 1645 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1646 uffdio_zeropage.range.len); 1647 if (ret) 1648 goto out; 1649 ret = -EINVAL; 1650 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1651 goto out; 1652 1653 if (mmget_not_zero(ctx->mm)) { 1654 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1655 uffdio_zeropage.range.len); 1656 mmput(ctx->mm); 1657 } 1658 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1659 return -EFAULT; 1660 if (ret < 0) 1661 goto out; 1662 /* len == 0 would wake all */ 1663 BUG_ON(!ret); 1664 range.len = ret; 1665 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1666 range.start = uffdio_zeropage.range.start; 1667 wake_userfault(ctx, &range); 1668 } 1669 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1670 out: 1671 return ret; 1672 } 1673 1674 static inline unsigned int uffd_ctx_features(__u64 user_features) 1675 { 1676 /* 1677 * For the current set of features the bits just coincide 1678 */ 1679 return (unsigned int)user_features; 1680 } 1681 1682 /* 1683 * userland asks for a certain API version and we return which bits 1684 * and ioctl commands are implemented in this kernel for such API 1685 * version or -EINVAL if unknown. 1686 */ 1687 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1688 unsigned long arg) 1689 { 1690 struct uffdio_api uffdio_api; 1691 void __user *buf = (void __user *)arg; 1692 int ret; 1693 __u64 features; 1694 1695 ret = -EINVAL; 1696 if (ctx->state != UFFD_STATE_WAIT_API) 1697 goto out; 1698 ret = -EFAULT; 1699 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1700 goto out; 1701 features = uffdio_api.features; 1702 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) { 1703 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1704 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1705 goto out; 1706 ret = -EINVAL; 1707 goto out; 1708 } 1709 /* report all available features and ioctls to userland */ 1710 uffdio_api.features = UFFD_API_FEATURES; 1711 uffdio_api.ioctls = UFFD_API_IOCTLS; 1712 ret = -EFAULT; 1713 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1714 goto out; 1715 ctx->state = UFFD_STATE_RUNNING; 1716 /* only enable the requested features for this uffd context */ 1717 ctx->features = uffd_ctx_features(features); 1718 ret = 0; 1719 out: 1720 return ret; 1721 } 1722 1723 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1724 unsigned long arg) 1725 { 1726 int ret = -EINVAL; 1727 struct userfaultfd_ctx *ctx = file->private_data; 1728 1729 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) 1730 return -EINVAL; 1731 1732 switch(cmd) { 1733 case UFFDIO_API: 1734 ret = userfaultfd_api(ctx, arg); 1735 break; 1736 case UFFDIO_REGISTER: 1737 ret = userfaultfd_register(ctx, arg); 1738 break; 1739 case UFFDIO_UNREGISTER: 1740 ret = userfaultfd_unregister(ctx, arg); 1741 break; 1742 case UFFDIO_WAKE: 1743 ret = userfaultfd_wake(ctx, arg); 1744 break; 1745 case UFFDIO_COPY: 1746 ret = userfaultfd_copy(ctx, arg); 1747 break; 1748 case UFFDIO_ZEROPAGE: 1749 ret = userfaultfd_zeropage(ctx, arg); 1750 break; 1751 } 1752 return ret; 1753 } 1754 1755 #ifdef CONFIG_PROC_FS 1756 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 1757 { 1758 struct userfaultfd_ctx *ctx = f->private_data; 1759 wait_queue_t *wq; 1760 struct userfaultfd_wait_queue *uwq; 1761 unsigned long pending = 0, total = 0; 1762 1763 spin_lock(&ctx->fault_pending_wqh.lock); 1764 list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) { 1765 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 1766 pending++; 1767 total++; 1768 } 1769 list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) { 1770 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 1771 total++; 1772 } 1773 spin_unlock(&ctx->fault_pending_wqh.lock); 1774 1775 /* 1776 * If more protocols will be added, there will be all shown 1777 * separated by a space. Like this: 1778 * protocols: aa:... bb:... 1779 */ 1780 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 1781 pending, total, UFFD_API, UFFD_API_FEATURES, 1782 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 1783 } 1784 #endif 1785 1786 static const struct file_operations userfaultfd_fops = { 1787 #ifdef CONFIG_PROC_FS 1788 .show_fdinfo = userfaultfd_show_fdinfo, 1789 #endif 1790 .release = userfaultfd_release, 1791 .poll = userfaultfd_poll, 1792 .read = userfaultfd_read, 1793 .unlocked_ioctl = userfaultfd_ioctl, 1794 .compat_ioctl = userfaultfd_ioctl, 1795 .llseek = noop_llseek, 1796 }; 1797 1798 static void init_once_userfaultfd_ctx(void *mem) 1799 { 1800 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 1801 1802 init_waitqueue_head(&ctx->fault_pending_wqh); 1803 init_waitqueue_head(&ctx->fault_wqh); 1804 init_waitqueue_head(&ctx->event_wqh); 1805 init_waitqueue_head(&ctx->fd_wqh); 1806 seqcount_init(&ctx->refile_seq); 1807 } 1808 1809 /** 1810 * userfaultfd_file_create - Creates an userfaultfd file pointer. 1811 * @flags: Flags for the userfaultfd file. 1812 * 1813 * This function creates an userfaultfd file pointer, w/out installing 1814 * it into the fd table. This is useful when the userfaultfd file is 1815 * used during the initialization of data structures that require 1816 * extra setup after the userfaultfd creation. So the userfaultfd 1817 * creation is split into the file pointer creation phase, and the 1818 * file descriptor installation phase. In this way races with 1819 * userspace closing the newly installed file descriptor can be 1820 * avoided. Returns an userfaultfd file pointer, or a proper error 1821 * pointer. 1822 */ 1823 static struct file *userfaultfd_file_create(int flags) 1824 { 1825 struct file *file; 1826 struct userfaultfd_ctx *ctx; 1827 1828 BUG_ON(!current->mm); 1829 1830 /* Check the UFFD_* constants for consistency. */ 1831 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 1832 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 1833 1834 file = ERR_PTR(-EINVAL); 1835 if (flags & ~UFFD_SHARED_FCNTL_FLAGS) 1836 goto out; 1837 1838 file = ERR_PTR(-ENOMEM); 1839 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 1840 if (!ctx) 1841 goto out; 1842 1843 atomic_set(&ctx->refcount, 1); 1844 ctx->flags = flags; 1845 ctx->features = 0; 1846 ctx->state = UFFD_STATE_WAIT_API; 1847 ctx->released = false; 1848 ctx->mm = current->mm; 1849 /* prevent the mm struct to be freed */ 1850 atomic_inc(&ctx->mm->mm_count); 1851 1852 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx, 1853 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); 1854 if (IS_ERR(file)) { 1855 mmdrop(ctx->mm); 1856 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 1857 } 1858 out: 1859 return file; 1860 } 1861 1862 SYSCALL_DEFINE1(userfaultfd, int, flags) 1863 { 1864 int fd, error; 1865 struct file *file; 1866 1867 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS); 1868 if (error < 0) 1869 return error; 1870 fd = error; 1871 1872 file = userfaultfd_file_create(flags); 1873 if (IS_ERR(file)) { 1874 error = PTR_ERR(file); 1875 goto err_put_unused_fd; 1876 } 1877 fd_install(fd, file); 1878 1879 return fd; 1880 1881 err_put_unused_fd: 1882 put_unused_fd(fd); 1883 1884 return error; 1885 } 1886 1887 static int __init userfaultfd_init(void) 1888 { 1889 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 1890 sizeof(struct userfaultfd_ctx), 1891 0, 1892 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 1893 init_once_userfaultfd_ctx); 1894 return 0; 1895 } 1896 __initcall(userfaultfd_init); 1897