xref: /openbmc/linux/fs/userfaultfd.c (revision 75020f2d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12 
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/poll.h>
20 #include <linux/slab.h>
21 #include <linux/seq_file.h>
22 #include <linux/file.h>
23 #include <linux/bug.h>
24 #include <linux/anon_inodes.h>
25 #include <linux/syscalls.h>
26 #include <linux/userfaultfd_k.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ioctl.h>
29 #include <linux/security.h>
30 #include <linux/hugetlb.h>
31 
32 int sysctl_unprivileged_userfaultfd __read_mostly;
33 
34 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
35 
36 enum userfaultfd_state {
37 	UFFD_STATE_WAIT_API,
38 	UFFD_STATE_RUNNING,
39 };
40 
41 /*
42  * Start with fault_pending_wqh and fault_wqh so they're more likely
43  * to be in the same cacheline.
44  *
45  * Locking order:
46  *	fd_wqh.lock
47  *		fault_pending_wqh.lock
48  *			fault_wqh.lock
49  *		event_wqh.lock
50  *
51  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
52  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
53  * also taken in IRQ context.
54  */
55 struct userfaultfd_ctx {
56 	/* waitqueue head for the pending (i.e. not read) userfaults */
57 	wait_queue_head_t fault_pending_wqh;
58 	/* waitqueue head for the userfaults */
59 	wait_queue_head_t fault_wqh;
60 	/* waitqueue head for the pseudo fd to wakeup poll/read */
61 	wait_queue_head_t fd_wqh;
62 	/* waitqueue head for events */
63 	wait_queue_head_t event_wqh;
64 	/* a refile sequence protected by fault_pending_wqh lock */
65 	seqcount_spinlock_t refile_seq;
66 	/* pseudo fd refcounting */
67 	refcount_t refcount;
68 	/* userfaultfd syscall flags */
69 	unsigned int flags;
70 	/* features requested from the userspace */
71 	unsigned int features;
72 	/* state machine */
73 	enum userfaultfd_state state;
74 	/* released */
75 	bool released;
76 	/* memory mappings are changing because of non-cooperative event */
77 	bool mmap_changing;
78 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
79 	struct mm_struct *mm;
80 };
81 
82 struct userfaultfd_fork_ctx {
83 	struct userfaultfd_ctx *orig;
84 	struct userfaultfd_ctx *new;
85 	struct list_head list;
86 };
87 
88 struct userfaultfd_unmap_ctx {
89 	struct userfaultfd_ctx *ctx;
90 	unsigned long start;
91 	unsigned long end;
92 	struct list_head list;
93 };
94 
95 struct userfaultfd_wait_queue {
96 	struct uffd_msg msg;
97 	wait_queue_entry_t wq;
98 	struct userfaultfd_ctx *ctx;
99 	bool waken;
100 };
101 
102 struct userfaultfd_wake_range {
103 	unsigned long start;
104 	unsigned long len;
105 };
106 
107 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
108 				     int wake_flags, void *key)
109 {
110 	struct userfaultfd_wake_range *range = key;
111 	int ret;
112 	struct userfaultfd_wait_queue *uwq;
113 	unsigned long start, len;
114 
115 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
116 	ret = 0;
117 	/* len == 0 means wake all */
118 	start = range->start;
119 	len = range->len;
120 	if (len && (start > uwq->msg.arg.pagefault.address ||
121 		    start + len <= uwq->msg.arg.pagefault.address))
122 		goto out;
123 	WRITE_ONCE(uwq->waken, true);
124 	/*
125 	 * The Program-Order guarantees provided by the scheduler
126 	 * ensure uwq->waken is visible before the task is woken.
127 	 */
128 	ret = wake_up_state(wq->private, mode);
129 	if (ret) {
130 		/*
131 		 * Wake only once, autoremove behavior.
132 		 *
133 		 * After the effect of list_del_init is visible to the other
134 		 * CPUs, the waitqueue may disappear from under us, see the
135 		 * !list_empty_careful() in handle_userfault().
136 		 *
137 		 * try_to_wake_up() has an implicit smp_mb(), and the
138 		 * wq->private is read before calling the extern function
139 		 * "wake_up_state" (which in turns calls try_to_wake_up).
140 		 */
141 		list_del_init(&wq->entry);
142 	}
143 out:
144 	return ret;
145 }
146 
147 /**
148  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
149  * context.
150  * @ctx: [in] Pointer to the userfaultfd context.
151  */
152 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
153 {
154 	refcount_inc(&ctx->refcount);
155 }
156 
157 /**
158  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
159  * context.
160  * @ctx: [in] Pointer to userfaultfd context.
161  *
162  * The userfaultfd context reference must have been previously acquired either
163  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
164  */
165 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
166 {
167 	if (refcount_dec_and_test(&ctx->refcount)) {
168 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
169 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
170 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
171 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
172 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
173 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
174 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
175 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
176 		mmdrop(ctx->mm);
177 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
178 	}
179 }
180 
181 static inline void msg_init(struct uffd_msg *msg)
182 {
183 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
184 	/*
185 	 * Must use memset to zero out the paddings or kernel data is
186 	 * leaked to userland.
187 	 */
188 	memset(msg, 0, sizeof(struct uffd_msg));
189 }
190 
191 static inline struct uffd_msg userfault_msg(unsigned long address,
192 					    unsigned int flags,
193 					    unsigned long reason,
194 					    unsigned int features)
195 {
196 	struct uffd_msg msg;
197 	msg_init(&msg);
198 	msg.event = UFFD_EVENT_PAGEFAULT;
199 	msg.arg.pagefault.address = address;
200 	/*
201 	 * These flags indicate why the userfault occurred:
202 	 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
203 	 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
204 	 * - Neither of these flags being set indicates a MISSING fault.
205 	 *
206 	 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
207 	 * fault. Otherwise, it was a read fault.
208 	 */
209 	if (flags & FAULT_FLAG_WRITE)
210 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
211 	if (reason & VM_UFFD_WP)
212 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
213 	if (reason & VM_UFFD_MINOR)
214 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
215 	if (features & UFFD_FEATURE_THREAD_ID)
216 		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
217 	return msg;
218 }
219 
220 #ifdef CONFIG_HUGETLB_PAGE
221 /*
222  * Same functionality as userfaultfd_must_wait below with modifications for
223  * hugepmd ranges.
224  */
225 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
226 					 struct vm_area_struct *vma,
227 					 unsigned long address,
228 					 unsigned long flags,
229 					 unsigned long reason)
230 {
231 	struct mm_struct *mm = ctx->mm;
232 	pte_t *ptep, pte;
233 	bool ret = true;
234 
235 	mmap_assert_locked(mm);
236 
237 	ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
238 
239 	if (!ptep)
240 		goto out;
241 
242 	ret = false;
243 	pte = huge_ptep_get(ptep);
244 
245 	/*
246 	 * Lockless access: we're in a wait_event so it's ok if it
247 	 * changes under us.
248 	 */
249 	if (huge_pte_none(pte))
250 		ret = true;
251 	if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
252 		ret = true;
253 out:
254 	return ret;
255 }
256 #else
257 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
258 					 struct vm_area_struct *vma,
259 					 unsigned long address,
260 					 unsigned long flags,
261 					 unsigned long reason)
262 {
263 	return false;	/* should never get here */
264 }
265 #endif /* CONFIG_HUGETLB_PAGE */
266 
267 /*
268  * Verify the pagetables are still not ok after having reigstered into
269  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
270  * userfault that has already been resolved, if userfaultfd_read and
271  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
272  * threads.
273  */
274 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
275 					 unsigned long address,
276 					 unsigned long flags,
277 					 unsigned long reason)
278 {
279 	struct mm_struct *mm = ctx->mm;
280 	pgd_t *pgd;
281 	p4d_t *p4d;
282 	pud_t *pud;
283 	pmd_t *pmd, _pmd;
284 	pte_t *pte;
285 	bool ret = true;
286 
287 	mmap_assert_locked(mm);
288 
289 	pgd = pgd_offset(mm, address);
290 	if (!pgd_present(*pgd))
291 		goto out;
292 	p4d = p4d_offset(pgd, address);
293 	if (!p4d_present(*p4d))
294 		goto out;
295 	pud = pud_offset(p4d, address);
296 	if (!pud_present(*pud))
297 		goto out;
298 	pmd = pmd_offset(pud, address);
299 	/*
300 	 * READ_ONCE must function as a barrier with narrower scope
301 	 * and it must be equivalent to:
302 	 *	_pmd = *pmd; barrier();
303 	 *
304 	 * This is to deal with the instability (as in
305 	 * pmd_trans_unstable) of the pmd.
306 	 */
307 	_pmd = READ_ONCE(*pmd);
308 	if (pmd_none(_pmd))
309 		goto out;
310 
311 	ret = false;
312 	if (!pmd_present(_pmd))
313 		goto out;
314 
315 	if (pmd_trans_huge(_pmd)) {
316 		if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
317 			ret = true;
318 		goto out;
319 	}
320 
321 	/*
322 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
323 	 * and use the standard pte_offset_map() instead of parsing _pmd.
324 	 */
325 	pte = pte_offset_map(pmd, address);
326 	/*
327 	 * Lockless access: we're in a wait_event so it's ok if it
328 	 * changes under us.
329 	 */
330 	if (pte_none(*pte))
331 		ret = true;
332 	if (!pte_write(*pte) && (reason & VM_UFFD_WP))
333 		ret = true;
334 	pte_unmap(pte);
335 
336 out:
337 	return ret;
338 }
339 
340 static inline long userfaultfd_get_blocking_state(unsigned int flags)
341 {
342 	if (flags & FAULT_FLAG_INTERRUPTIBLE)
343 		return TASK_INTERRUPTIBLE;
344 
345 	if (flags & FAULT_FLAG_KILLABLE)
346 		return TASK_KILLABLE;
347 
348 	return TASK_UNINTERRUPTIBLE;
349 }
350 
351 /*
352  * The locking rules involved in returning VM_FAULT_RETRY depending on
353  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
354  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
355  * recommendation in __lock_page_or_retry is not an understatement.
356  *
357  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
358  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
359  * not set.
360  *
361  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
362  * set, VM_FAULT_RETRY can still be returned if and only if there are
363  * fatal_signal_pending()s, and the mmap_lock must be released before
364  * returning it.
365  */
366 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
367 {
368 	struct mm_struct *mm = vmf->vma->vm_mm;
369 	struct userfaultfd_ctx *ctx;
370 	struct userfaultfd_wait_queue uwq;
371 	vm_fault_t ret = VM_FAULT_SIGBUS;
372 	bool must_wait;
373 	long blocking_state;
374 
375 	/*
376 	 * We don't do userfault handling for the final child pid update.
377 	 *
378 	 * We also don't do userfault handling during
379 	 * coredumping. hugetlbfs has the special
380 	 * follow_hugetlb_page() to skip missing pages in the
381 	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
382 	 * the no_page_table() helper in follow_page_mask(), but the
383 	 * shmem_vm_ops->fault method is invoked even during
384 	 * coredumping without mmap_lock and it ends up here.
385 	 */
386 	if (current->flags & (PF_EXITING|PF_DUMPCORE))
387 		goto out;
388 
389 	/*
390 	 * Coredumping runs without mmap_lock so we can only check that
391 	 * the mmap_lock is held, if PF_DUMPCORE was not set.
392 	 */
393 	mmap_assert_locked(mm);
394 
395 	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
396 	if (!ctx)
397 		goto out;
398 
399 	BUG_ON(ctx->mm != mm);
400 
401 	/* Any unrecognized flag is a bug. */
402 	VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
403 	/* 0 or > 1 flags set is a bug; we expect exactly 1. */
404 	VM_BUG_ON(!reason || (reason & (reason - 1)));
405 
406 	if (ctx->features & UFFD_FEATURE_SIGBUS)
407 		goto out;
408 	if ((vmf->flags & FAULT_FLAG_USER) == 0 &&
409 	    ctx->flags & UFFD_USER_MODE_ONLY) {
410 		printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
411 			"sysctl knob to 1 if kernel faults must be handled "
412 			"without obtaining CAP_SYS_PTRACE capability\n");
413 		goto out;
414 	}
415 
416 	/*
417 	 * If it's already released don't get it. This avoids to loop
418 	 * in __get_user_pages if userfaultfd_release waits on the
419 	 * caller of handle_userfault to release the mmap_lock.
420 	 */
421 	if (unlikely(READ_ONCE(ctx->released))) {
422 		/*
423 		 * Don't return VM_FAULT_SIGBUS in this case, so a non
424 		 * cooperative manager can close the uffd after the
425 		 * last UFFDIO_COPY, without risking to trigger an
426 		 * involuntary SIGBUS if the process was starting the
427 		 * userfaultfd while the userfaultfd was still armed
428 		 * (but after the last UFFDIO_COPY). If the uffd
429 		 * wasn't already closed when the userfault reached
430 		 * this point, that would normally be solved by
431 		 * userfaultfd_must_wait returning 'false'.
432 		 *
433 		 * If we were to return VM_FAULT_SIGBUS here, the non
434 		 * cooperative manager would be instead forced to
435 		 * always call UFFDIO_UNREGISTER before it can safely
436 		 * close the uffd.
437 		 */
438 		ret = VM_FAULT_NOPAGE;
439 		goto out;
440 	}
441 
442 	/*
443 	 * Check that we can return VM_FAULT_RETRY.
444 	 *
445 	 * NOTE: it should become possible to return VM_FAULT_RETRY
446 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
447 	 * -EBUSY failures, if the userfaultfd is to be extended for
448 	 * VM_UFFD_WP tracking and we intend to arm the userfault
449 	 * without first stopping userland access to the memory. For
450 	 * VM_UFFD_MISSING userfaults this is enough for now.
451 	 */
452 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
453 		/*
454 		 * Validate the invariant that nowait must allow retry
455 		 * to be sure not to return SIGBUS erroneously on
456 		 * nowait invocations.
457 		 */
458 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
459 #ifdef CONFIG_DEBUG_VM
460 		if (printk_ratelimit()) {
461 			printk(KERN_WARNING
462 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
463 			       vmf->flags);
464 			dump_stack();
465 		}
466 #endif
467 		goto out;
468 	}
469 
470 	/*
471 	 * Handle nowait, not much to do other than tell it to retry
472 	 * and wait.
473 	 */
474 	ret = VM_FAULT_RETRY;
475 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
476 		goto out;
477 
478 	/* take the reference before dropping the mmap_lock */
479 	userfaultfd_ctx_get(ctx);
480 
481 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
482 	uwq.wq.private = current;
483 	uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
484 			ctx->features);
485 	uwq.ctx = ctx;
486 	uwq.waken = false;
487 
488 	blocking_state = userfaultfd_get_blocking_state(vmf->flags);
489 
490 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
491 	/*
492 	 * After the __add_wait_queue the uwq is visible to userland
493 	 * through poll/read().
494 	 */
495 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
496 	/*
497 	 * The smp_mb() after __set_current_state prevents the reads
498 	 * following the spin_unlock to happen before the list_add in
499 	 * __add_wait_queue.
500 	 */
501 	set_current_state(blocking_state);
502 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
503 
504 	if (!is_vm_hugetlb_page(vmf->vma))
505 		must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
506 						  reason);
507 	else
508 		must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
509 						       vmf->address,
510 						       vmf->flags, reason);
511 	mmap_read_unlock(mm);
512 
513 	if (likely(must_wait && !READ_ONCE(ctx->released))) {
514 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
515 		schedule();
516 	}
517 
518 	__set_current_state(TASK_RUNNING);
519 
520 	/*
521 	 * Here we race with the list_del; list_add in
522 	 * userfaultfd_ctx_read(), however because we don't ever run
523 	 * list_del_init() to refile across the two lists, the prev
524 	 * and next pointers will never point to self. list_add also
525 	 * would never let any of the two pointers to point to
526 	 * self. So list_empty_careful won't risk to see both pointers
527 	 * pointing to self at any time during the list refile. The
528 	 * only case where list_del_init() is called is the full
529 	 * removal in the wake function and there we don't re-list_add
530 	 * and it's fine not to block on the spinlock. The uwq on this
531 	 * kernel stack can be released after the list_del_init.
532 	 */
533 	if (!list_empty_careful(&uwq.wq.entry)) {
534 		spin_lock_irq(&ctx->fault_pending_wqh.lock);
535 		/*
536 		 * No need of list_del_init(), the uwq on the stack
537 		 * will be freed shortly anyway.
538 		 */
539 		list_del(&uwq.wq.entry);
540 		spin_unlock_irq(&ctx->fault_pending_wqh.lock);
541 	}
542 
543 	/*
544 	 * ctx may go away after this if the userfault pseudo fd is
545 	 * already released.
546 	 */
547 	userfaultfd_ctx_put(ctx);
548 
549 out:
550 	return ret;
551 }
552 
553 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
554 					      struct userfaultfd_wait_queue *ewq)
555 {
556 	struct userfaultfd_ctx *release_new_ctx;
557 
558 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
559 		goto out;
560 
561 	ewq->ctx = ctx;
562 	init_waitqueue_entry(&ewq->wq, current);
563 	release_new_ctx = NULL;
564 
565 	spin_lock_irq(&ctx->event_wqh.lock);
566 	/*
567 	 * After the __add_wait_queue the uwq is visible to userland
568 	 * through poll/read().
569 	 */
570 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
571 	for (;;) {
572 		set_current_state(TASK_KILLABLE);
573 		if (ewq->msg.event == 0)
574 			break;
575 		if (READ_ONCE(ctx->released) ||
576 		    fatal_signal_pending(current)) {
577 			/*
578 			 * &ewq->wq may be queued in fork_event, but
579 			 * __remove_wait_queue ignores the head
580 			 * parameter. It would be a problem if it
581 			 * didn't.
582 			 */
583 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
584 			if (ewq->msg.event == UFFD_EVENT_FORK) {
585 				struct userfaultfd_ctx *new;
586 
587 				new = (struct userfaultfd_ctx *)
588 					(unsigned long)
589 					ewq->msg.arg.reserved.reserved1;
590 				release_new_ctx = new;
591 			}
592 			break;
593 		}
594 
595 		spin_unlock_irq(&ctx->event_wqh.lock);
596 
597 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
598 		schedule();
599 
600 		spin_lock_irq(&ctx->event_wqh.lock);
601 	}
602 	__set_current_state(TASK_RUNNING);
603 	spin_unlock_irq(&ctx->event_wqh.lock);
604 
605 	if (release_new_ctx) {
606 		struct vm_area_struct *vma;
607 		struct mm_struct *mm = release_new_ctx->mm;
608 
609 		/* the various vma->vm_userfaultfd_ctx still points to it */
610 		mmap_write_lock(mm);
611 		for (vma = mm->mmap; vma; vma = vma->vm_next)
612 			if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
613 				vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
614 				vma->vm_flags &= ~__VM_UFFD_FLAGS;
615 			}
616 		mmap_write_unlock(mm);
617 
618 		userfaultfd_ctx_put(release_new_ctx);
619 	}
620 
621 	/*
622 	 * ctx may go away after this if the userfault pseudo fd is
623 	 * already released.
624 	 */
625 out:
626 	WRITE_ONCE(ctx->mmap_changing, false);
627 	userfaultfd_ctx_put(ctx);
628 }
629 
630 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
631 				       struct userfaultfd_wait_queue *ewq)
632 {
633 	ewq->msg.event = 0;
634 	wake_up_locked(&ctx->event_wqh);
635 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
636 }
637 
638 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
639 {
640 	struct userfaultfd_ctx *ctx = NULL, *octx;
641 	struct userfaultfd_fork_ctx *fctx;
642 
643 	octx = vma->vm_userfaultfd_ctx.ctx;
644 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
645 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
646 		vma->vm_flags &= ~__VM_UFFD_FLAGS;
647 		return 0;
648 	}
649 
650 	list_for_each_entry(fctx, fcs, list)
651 		if (fctx->orig == octx) {
652 			ctx = fctx->new;
653 			break;
654 		}
655 
656 	if (!ctx) {
657 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
658 		if (!fctx)
659 			return -ENOMEM;
660 
661 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
662 		if (!ctx) {
663 			kfree(fctx);
664 			return -ENOMEM;
665 		}
666 
667 		refcount_set(&ctx->refcount, 1);
668 		ctx->flags = octx->flags;
669 		ctx->state = UFFD_STATE_RUNNING;
670 		ctx->features = octx->features;
671 		ctx->released = false;
672 		ctx->mmap_changing = false;
673 		ctx->mm = vma->vm_mm;
674 		mmgrab(ctx->mm);
675 
676 		userfaultfd_ctx_get(octx);
677 		WRITE_ONCE(octx->mmap_changing, true);
678 		fctx->orig = octx;
679 		fctx->new = ctx;
680 		list_add_tail(&fctx->list, fcs);
681 	}
682 
683 	vma->vm_userfaultfd_ctx.ctx = ctx;
684 	return 0;
685 }
686 
687 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
688 {
689 	struct userfaultfd_ctx *ctx = fctx->orig;
690 	struct userfaultfd_wait_queue ewq;
691 
692 	msg_init(&ewq.msg);
693 
694 	ewq.msg.event = UFFD_EVENT_FORK;
695 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
696 
697 	userfaultfd_event_wait_completion(ctx, &ewq);
698 }
699 
700 void dup_userfaultfd_complete(struct list_head *fcs)
701 {
702 	struct userfaultfd_fork_ctx *fctx, *n;
703 
704 	list_for_each_entry_safe(fctx, n, fcs, list) {
705 		dup_fctx(fctx);
706 		list_del(&fctx->list);
707 		kfree(fctx);
708 	}
709 }
710 
711 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
712 			     struct vm_userfaultfd_ctx *vm_ctx)
713 {
714 	struct userfaultfd_ctx *ctx;
715 
716 	ctx = vma->vm_userfaultfd_ctx.ctx;
717 
718 	if (!ctx)
719 		return;
720 
721 	if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
722 		vm_ctx->ctx = ctx;
723 		userfaultfd_ctx_get(ctx);
724 		WRITE_ONCE(ctx->mmap_changing, true);
725 	} else {
726 		/* Drop uffd context if remap feature not enabled */
727 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
728 		vma->vm_flags &= ~__VM_UFFD_FLAGS;
729 	}
730 }
731 
732 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
733 				 unsigned long from, unsigned long to,
734 				 unsigned long len)
735 {
736 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
737 	struct userfaultfd_wait_queue ewq;
738 
739 	if (!ctx)
740 		return;
741 
742 	if (to & ~PAGE_MASK) {
743 		userfaultfd_ctx_put(ctx);
744 		return;
745 	}
746 
747 	msg_init(&ewq.msg);
748 
749 	ewq.msg.event = UFFD_EVENT_REMAP;
750 	ewq.msg.arg.remap.from = from;
751 	ewq.msg.arg.remap.to = to;
752 	ewq.msg.arg.remap.len = len;
753 
754 	userfaultfd_event_wait_completion(ctx, &ewq);
755 }
756 
757 bool userfaultfd_remove(struct vm_area_struct *vma,
758 			unsigned long start, unsigned long end)
759 {
760 	struct mm_struct *mm = vma->vm_mm;
761 	struct userfaultfd_ctx *ctx;
762 	struct userfaultfd_wait_queue ewq;
763 
764 	ctx = vma->vm_userfaultfd_ctx.ctx;
765 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
766 		return true;
767 
768 	userfaultfd_ctx_get(ctx);
769 	WRITE_ONCE(ctx->mmap_changing, true);
770 	mmap_read_unlock(mm);
771 
772 	msg_init(&ewq.msg);
773 
774 	ewq.msg.event = UFFD_EVENT_REMOVE;
775 	ewq.msg.arg.remove.start = start;
776 	ewq.msg.arg.remove.end = end;
777 
778 	userfaultfd_event_wait_completion(ctx, &ewq);
779 
780 	return false;
781 }
782 
783 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
784 			  unsigned long start, unsigned long end)
785 {
786 	struct userfaultfd_unmap_ctx *unmap_ctx;
787 
788 	list_for_each_entry(unmap_ctx, unmaps, list)
789 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
790 		    unmap_ctx->end == end)
791 			return true;
792 
793 	return false;
794 }
795 
796 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
797 			   unsigned long start, unsigned long end,
798 			   struct list_head *unmaps)
799 {
800 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
801 		struct userfaultfd_unmap_ctx *unmap_ctx;
802 		struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
803 
804 		if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
805 		    has_unmap_ctx(ctx, unmaps, start, end))
806 			continue;
807 
808 		unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
809 		if (!unmap_ctx)
810 			return -ENOMEM;
811 
812 		userfaultfd_ctx_get(ctx);
813 		WRITE_ONCE(ctx->mmap_changing, true);
814 		unmap_ctx->ctx = ctx;
815 		unmap_ctx->start = start;
816 		unmap_ctx->end = end;
817 		list_add_tail(&unmap_ctx->list, unmaps);
818 	}
819 
820 	return 0;
821 }
822 
823 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
824 {
825 	struct userfaultfd_unmap_ctx *ctx, *n;
826 	struct userfaultfd_wait_queue ewq;
827 
828 	list_for_each_entry_safe(ctx, n, uf, list) {
829 		msg_init(&ewq.msg);
830 
831 		ewq.msg.event = UFFD_EVENT_UNMAP;
832 		ewq.msg.arg.remove.start = ctx->start;
833 		ewq.msg.arg.remove.end = ctx->end;
834 
835 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
836 
837 		list_del(&ctx->list);
838 		kfree(ctx);
839 	}
840 }
841 
842 static int userfaultfd_release(struct inode *inode, struct file *file)
843 {
844 	struct userfaultfd_ctx *ctx = file->private_data;
845 	struct mm_struct *mm = ctx->mm;
846 	struct vm_area_struct *vma, *prev;
847 	/* len == 0 means wake all */
848 	struct userfaultfd_wake_range range = { .len = 0, };
849 	unsigned long new_flags;
850 
851 	WRITE_ONCE(ctx->released, true);
852 
853 	if (!mmget_not_zero(mm))
854 		goto wakeup;
855 
856 	/*
857 	 * Flush page faults out of all CPUs. NOTE: all page faults
858 	 * must be retried without returning VM_FAULT_SIGBUS if
859 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
860 	 * changes while handle_userfault released the mmap_lock. So
861 	 * it's critical that released is set to true (above), before
862 	 * taking the mmap_lock for writing.
863 	 */
864 	mmap_write_lock(mm);
865 	prev = NULL;
866 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
867 		cond_resched();
868 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
869 		       !!(vma->vm_flags & __VM_UFFD_FLAGS));
870 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
871 			prev = vma;
872 			continue;
873 		}
874 		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
875 		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
876 				 new_flags, vma->anon_vma,
877 				 vma->vm_file, vma->vm_pgoff,
878 				 vma_policy(vma),
879 				 NULL_VM_UFFD_CTX);
880 		if (prev)
881 			vma = prev;
882 		else
883 			prev = vma;
884 		vma->vm_flags = new_flags;
885 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
886 	}
887 	mmap_write_unlock(mm);
888 	mmput(mm);
889 wakeup:
890 	/*
891 	 * After no new page faults can wait on this fault_*wqh, flush
892 	 * the last page faults that may have been already waiting on
893 	 * the fault_*wqh.
894 	 */
895 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
896 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
897 	__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
898 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
899 
900 	/* Flush pending events that may still wait on event_wqh */
901 	wake_up_all(&ctx->event_wqh);
902 
903 	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
904 	userfaultfd_ctx_put(ctx);
905 	return 0;
906 }
907 
908 /* fault_pending_wqh.lock must be hold by the caller */
909 static inline struct userfaultfd_wait_queue *find_userfault_in(
910 		wait_queue_head_t *wqh)
911 {
912 	wait_queue_entry_t *wq;
913 	struct userfaultfd_wait_queue *uwq;
914 
915 	lockdep_assert_held(&wqh->lock);
916 
917 	uwq = NULL;
918 	if (!waitqueue_active(wqh))
919 		goto out;
920 	/* walk in reverse to provide FIFO behavior to read userfaults */
921 	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
922 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
923 out:
924 	return uwq;
925 }
926 
927 static inline struct userfaultfd_wait_queue *find_userfault(
928 		struct userfaultfd_ctx *ctx)
929 {
930 	return find_userfault_in(&ctx->fault_pending_wqh);
931 }
932 
933 static inline struct userfaultfd_wait_queue *find_userfault_evt(
934 		struct userfaultfd_ctx *ctx)
935 {
936 	return find_userfault_in(&ctx->event_wqh);
937 }
938 
939 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
940 {
941 	struct userfaultfd_ctx *ctx = file->private_data;
942 	__poll_t ret;
943 
944 	poll_wait(file, &ctx->fd_wqh, wait);
945 
946 	switch (ctx->state) {
947 	case UFFD_STATE_WAIT_API:
948 		return EPOLLERR;
949 	case UFFD_STATE_RUNNING:
950 		/*
951 		 * poll() never guarantees that read won't block.
952 		 * userfaults can be waken before they're read().
953 		 */
954 		if (unlikely(!(file->f_flags & O_NONBLOCK)))
955 			return EPOLLERR;
956 		/*
957 		 * lockless access to see if there are pending faults
958 		 * __pollwait last action is the add_wait_queue but
959 		 * the spin_unlock would allow the waitqueue_active to
960 		 * pass above the actual list_add inside
961 		 * add_wait_queue critical section. So use a full
962 		 * memory barrier to serialize the list_add write of
963 		 * add_wait_queue() with the waitqueue_active read
964 		 * below.
965 		 */
966 		ret = 0;
967 		smp_mb();
968 		if (waitqueue_active(&ctx->fault_pending_wqh))
969 			ret = EPOLLIN;
970 		else if (waitqueue_active(&ctx->event_wqh))
971 			ret = EPOLLIN;
972 
973 		return ret;
974 	default:
975 		WARN_ON_ONCE(1);
976 		return EPOLLERR;
977 	}
978 }
979 
980 static const struct file_operations userfaultfd_fops;
981 
982 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
983 				  struct inode *inode,
984 				  struct uffd_msg *msg)
985 {
986 	int fd;
987 
988 	fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
989 			O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
990 	if (fd < 0)
991 		return fd;
992 
993 	msg->arg.reserved.reserved1 = 0;
994 	msg->arg.fork.ufd = fd;
995 	return 0;
996 }
997 
998 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
999 				    struct uffd_msg *msg, struct inode *inode)
1000 {
1001 	ssize_t ret;
1002 	DECLARE_WAITQUEUE(wait, current);
1003 	struct userfaultfd_wait_queue *uwq;
1004 	/*
1005 	 * Handling fork event requires sleeping operations, so
1006 	 * we drop the event_wqh lock, then do these ops, then
1007 	 * lock it back and wake up the waiter. While the lock is
1008 	 * dropped the ewq may go away so we keep track of it
1009 	 * carefully.
1010 	 */
1011 	LIST_HEAD(fork_event);
1012 	struct userfaultfd_ctx *fork_nctx = NULL;
1013 
1014 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1015 	spin_lock_irq(&ctx->fd_wqh.lock);
1016 	__add_wait_queue(&ctx->fd_wqh, &wait);
1017 	for (;;) {
1018 		set_current_state(TASK_INTERRUPTIBLE);
1019 		spin_lock(&ctx->fault_pending_wqh.lock);
1020 		uwq = find_userfault(ctx);
1021 		if (uwq) {
1022 			/*
1023 			 * Use a seqcount to repeat the lockless check
1024 			 * in wake_userfault() to avoid missing
1025 			 * wakeups because during the refile both
1026 			 * waitqueue could become empty if this is the
1027 			 * only userfault.
1028 			 */
1029 			write_seqcount_begin(&ctx->refile_seq);
1030 
1031 			/*
1032 			 * The fault_pending_wqh.lock prevents the uwq
1033 			 * to disappear from under us.
1034 			 *
1035 			 * Refile this userfault from
1036 			 * fault_pending_wqh to fault_wqh, it's not
1037 			 * pending anymore after we read it.
1038 			 *
1039 			 * Use list_del() by hand (as
1040 			 * userfaultfd_wake_function also uses
1041 			 * list_del_init() by hand) to be sure nobody
1042 			 * changes __remove_wait_queue() to use
1043 			 * list_del_init() in turn breaking the
1044 			 * !list_empty_careful() check in
1045 			 * handle_userfault(). The uwq->wq.head list
1046 			 * must never be empty at any time during the
1047 			 * refile, or the waitqueue could disappear
1048 			 * from under us. The "wait_queue_head_t"
1049 			 * parameter of __remove_wait_queue() is unused
1050 			 * anyway.
1051 			 */
1052 			list_del(&uwq->wq.entry);
1053 			add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1054 
1055 			write_seqcount_end(&ctx->refile_seq);
1056 
1057 			/* careful to always initialize msg if ret == 0 */
1058 			*msg = uwq->msg;
1059 			spin_unlock(&ctx->fault_pending_wqh.lock);
1060 			ret = 0;
1061 			break;
1062 		}
1063 		spin_unlock(&ctx->fault_pending_wqh.lock);
1064 
1065 		spin_lock(&ctx->event_wqh.lock);
1066 		uwq = find_userfault_evt(ctx);
1067 		if (uwq) {
1068 			*msg = uwq->msg;
1069 
1070 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1071 				fork_nctx = (struct userfaultfd_ctx *)
1072 					(unsigned long)
1073 					uwq->msg.arg.reserved.reserved1;
1074 				list_move(&uwq->wq.entry, &fork_event);
1075 				/*
1076 				 * fork_nctx can be freed as soon as
1077 				 * we drop the lock, unless we take a
1078 				 * reference on it.
1079 				 */
1080 				userfaultfd_ctx_get(fork_nctx);
1081 				spin_unlock(&ctx->event_wqh.lock);
1082 				ret = 0;
1083 				break;
1084 			}
1085 
1086 			userfaultfd_event_complete(ctx, uwq);
1087 			spin_unlock(&ctx->event_wqh.lock);
1088 			ret = 0;
1089 			break;
1090 		}
1091 		spin_unlock(&ctx->event_wqh.lock);
1092 
1093 		if (signal_pending(current)) {
1094 			ret = -ERESTARTSYS;
1095 			break;
1096 		}
1097 		if (no_wait) {
1098 			ret = -EAGAIN;
1099 			break;
1100 		}
1101 		spin_unlock_irq(&ctx->fd_wqh.lock);
1102 		schedule();
1103 		spin_lock_irq(&ctx->fd_wqh.lock);
1104 	}
1105 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1106 	__set_current_state(TASK_RUNNING);
1107 	spin_unlock_irq(&ctx->fd_wqh.lock);
1108 
1109 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1110 		ret = resolve_userfault_fork(fork_nctx, inode, msg);
1111 		spin_lock_irq(&ctx->event_wqh.lock);
1112 		if (!list_empty(&fork_event)) {
1113 			/*
1114 			 * The fork thread didn't abort, so we can
1115 			 * drop the temporary refcount.
1116 			 */
1117 			userfaultfd_ctx_put(fork_nctx);
1118 
1119 			uwq = list_first_entry(&fork_event,
1120 					       typeof(*uwq),
1121 					       wq.entry);
1122 			/*
1123 			 * If fork_event list wasn't empty and in turn
1124 			 * the event wasn't already released by fork
1125 			 * (the event is allocated on fork kernel
1126 			 * stack), put the event back to its place in
1127 			 * the event_wq. fork_event head will be freed
1128 			 * as soon as we return so the event cannot
1129 			 * stay queued there no matter the current
1130 			 * "ret" value.
1131 			 */
1132 			list_del(&uwq->wq.entry);
1133 			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1134 
1135 			/*
1136 			 * Leave the event in the waitqueue and report
1137 			 * error to userland if we failed to resolve
1138 			 * the userfault fork.
1139 			 */
1140 			if (likely(!ret))
1141 				userfaultfd_event_complete(ctx, uwq);
1142 		} else {
1143 			/*
1144 			 * Here the fork thread aborted and the
1145 			 * refcount from the fork thread on fork_nctx
1146 			 * has already been released. We still hold
1147 			 * the reference we took before releasing the
1148 			 * lock above. If resolve_userfault_fork
1149 			 * failed we've to drop it because the
1150 			 * fork_nctx has to be freed in such case. If
1151 			 * it succeeded we'll hold it because the new
1152 			 * uffd references it.
1153 			 */
1154 			if (ret)
1155 				userfaultfd_ctx_put(fork_nctx);
1156 		}
1157 		spin_unlock_irq(&ctx->event_wqh.lock);
1158 	}
1159 
1160 	return ret;
1161 }
1162 
1163 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1164 				size_t count, loff_t *ppos)
1165 {
1166 	struct userfaultfd_ctx *ctx = file->private_data;
1167 	ssize_t _ret, ret = 0;
1168 	struct uffd_msg msg;
1169 	int no_wait = file->f_flags & O_NONBLOCK;
1170 	struct inode *inode = file_inode(file);
1171 
1172 	if (ctx->state == UFFD_STATE_WAIT_API)
1173 		return -EINVAL;
1174 
1175 	for (;;) {
1176 		if (count < sizeof(msg))
1177 			return ret ? ret : -EINVAL;
1178 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1179 		if (_ret < 0)
1180 			return ret ? ret : _ret;
1181 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1182 			return ret ? ret : -EFAULT;
1183 		ret += sizeof(msg);
1184 		buf += sizeof(msg);
1185 		count -= sizeof(msg);
1186 		/*
1187 		 * Allow to read more than one fault at time but only
1188 		 * block if waiting for the very first one.
1189 		 */
1190 		no_wait = O_NONBLOCK;
1191 	}
1192 }
1193 
1194 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1195 			     struct userfaultfd_wake_range *range)
1196 {
1197 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
1198 	/* wake all in the range and autoremove */
1199 	if (waitqueue_active(&ctx->fault_pending_wqh))
1200 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1201 				     range);
1202 	if (waitqueue_active(&ctx->fault_wqh))
1203 		__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1204 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1205 }
1206 
1207 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1208 					   struct userfaultfd_wake_range *range)
1209 {
1210 	unsigned seq;
1211 	bool need_wakeup;
1212 
1213 	/*
1214 	 * To be sure waitqueue_active() is not reordered by the CPU
1215 	 * before the pagetable update, use an explicit SMP memory
1216 	 * barrier here. PT lock release or mmap_read_unlock(mm) still
1217 	 * have release semantics that can allow the
1218 	 * waitqueue_active() to be reordered before the pte update.
1219 	 */
1220 	smp_mb();
1221 
1222 	/*
1223 	 * Use waitqueue_active because it's very frequent to
1224 	 * change the address space atomically even if there are no
1225 	 * userfaults yet. So we take the spinlock only when we're
1226 	 * sure we've userfaults to wake.
1227 	 */
1228 	do {
1229 		seq = read_seqcount_begin(&ctx->refile_seq);
1230 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1231 			waitqueue_active(&ctx->fault_wqh);
1232 		cond_resched();
1233 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1234 	if (need_wakeup)
1235 		__wake_userfault(ctx, range);
1236 }
1237 
1238 static __always_inline int validate_range(struct mm_struct *mm,
1239 					  __u64 *start, __u64 len)
1240 {
1241 	__u64 task_size = mm->task_size;
1242 
1243 	*start = untagged_addr(*start);
1244 
1245 	if (*start & ~PAGE_MASK)
1246 		return -EINVAL;
1247 	if (len & ~PAGE_MASK)
1248 		return -EINVAL;
1249 	if (!len)
1250 		return -EINVAL;
1251 	if (*start < mmap_min_addr)
1252 		return -EINVAL;
1253 	if (*start >= task_size)
1254 		return -EINVAL;
1255 	if (len > task_size - *start)
1256 		return -EINVAL;
1257 	return 0;
1258 }
1259 
1260 static inline bool vma_can_userfault(struct vm_area_struct *vma,
1261 				     unsigned long vm_flags)
1262 {
1263 	/* FIXME: add WP support to hugetlbfs and shmem */
1264 	if (vm_flags & VM_UFFD_WP) {
1265 		if (is_vm_hugetlb_page(vma) || vma_is_shmem(vma))
1266 			return false;
1267 	}
1268 
1269 	if (vm_flags & VM_UFFD_MINOR) {
1270 		/* FIXME: Add minor fault interception for shmem. */
1271 		if (!is_vm_hugetlb_page(vma))
1272 			return false;
1273 	}
1274 
1275 	return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1276 	       vma_is_shmem(vma);
1277 }
1278 
1279 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1280 				unsigned long arg)
1281 {
1282 	struct mm_struct *mm = ctx->mm;
1283 	struct vm_area_struct *vma, *prev, *cur;
1284 	int ret;
1285 	struct uffdio_register uffdio_register;
1286 	struct uffdio_register __user *user_uffdio_register;
1287 	unsigned long vm_flags, new_flags;
1288 	bool found;
1289 	bool basic_ioctls;
1290 	unsigned long start, end, vma_end;
1291 
1292 	user_uffdio_register = (struct uffdio_register __user *) arg;
1293 
1294 	ret = -EFAULT;
1295 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1296 			   sizeof(uffdio_register)-sizeof(__u64)))
1297 		goto out;
1298 
1299 	ret = -EINVAL;
1300 	if (!uffdio_register.mode)
1301 		goto out;
1302 	if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1303 		goto out;
1304 	vm_flags = 0;
1305 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1306 		vm_flags |= VM_UFFD_MISSING;
1307 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)
1308 		vm_flags |= VM_UFFD_WP;
1309 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1310 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1311 		goto out;
1312 #endif
1313 		vm_flags |= VM_UFFD_MINOR;
1314 	}
1315 
1316 	ret = validate_range(mm, &uffdio_register.range.start,
1317 			     uffdio_register.range.len);
1318 	if (ret)
1319 		goto out;
1320 
1321 	start = uffdio_register.range.start;
1322 	end = start + uffdio_register.range.len;
1323 
1324 	ret = -ENOMEM;
1325 	if (!mmget_not_zero(mm))
1326 		goto out;
1327 
1328 	mmap_write_lock(mm);
1329 	vma = find_vma_prev(mm, start, &prev);
1330 	if (!vma)
1331 		goto out_unlock;
1332 
1333 	/* check that there's at least one vma in the range */
1334 	ret = -EINVAL;
1335 	if (vma->vm_start >= end)
1336 		goto out_unlock;
1337 
1338 	/*
1339 	 * If the first vma contains huge pages, make sure start address
1340 	 * is aligned to huge page size.
1341 	 */
1342 	if (is_vm_hugetlb_page(vma)) {
1343 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1344 
1345 		if (start & (vma_hpagesize - 1))
1346 			goto out_unlock;
1347 	}
1348 
1349 	/*
1350 	 * Search for not compatible vmas.
1351 	 */
1352 	found = false;
1353 	basic_ioctls = false;
1354 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1355 		cond_resched();
1356 
1357 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1358 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1359 
1360 		/* check not compatible vmas */
1361 		ret = -EINVAL;
1362 		if (!vma_can_userfault(cur, vm_flags))
1363 			goto out_unlock;
1364 
1365 		/*
1366 		 * UFFDIO_COPY will fill file holes even without
1367 		 * PROT_WRITE. This check enforces that if this is a
1368 		 * MAP_SHARED, the process has write permission to the backing
1369 		 * file. If VM_MAYWRITE is set it also enforces that on a
1370 		 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1371 		 * F_WRITE_SEAL can be taken until the vma is destroyed.
1372 		 */
1373 		ret = -EPERM;
1374 		if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1375 			goto out_unlock;
1376 
1377 		/*
1378 		 * If this vma contains ending address, and huge pages
1379 		 * check alignment.
1380 		 */
1381 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1382 		    end > cur->vm_start) {
1383 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1384 
1385 			ret = -EINVAL;
1386 
1387 			if (end & (vma_hpagesize - 1))
1388 				goto out_unlock;
1389 		}
1390 		if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1391 			goto out_unlock;
1392 
1393 		/*
1394 		 * Check that this vma isn't already owned by a
1395 		 * different userfaultfd. We can't allow more than one
1396 		 * userfaultfd to own a single vma simultaneously or we
1397 		 * wouldn't know which one to deliver the userfaults to.
1398 		 */
1399 		ret = -EBUSY;
1400 		if (cur->vm_userfaultfd_ctx.ctx &&
1401 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1402 			goto out_unlock;
1403 
1404 		/*
1405 		 * Note vmas containing huge pages
1406 		 */
1407 		if (is_vm_hugetlb_page(cur))
1408 			basic_ioctls = true;
1409 
1410 		found = true;
1411 	}
1412 	BUG_ON(!found);
1413 
1414 	if (vma->vm_start < start)
1415 		prev = vma;
1416 
1417 	ret = 0;
1418 	do {
1419 		cond_resched();
1420 
1421 		BUG_ON(!vma_can_userfault(vma, vm_flags));
1422 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1423 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1424 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1425 
1426 		/*
1427 		 * Nothing to do: this vma is already registered into this
1428 		 * userfaultfd and with the right tracking mode too.
1429 		 */
1430 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1431 		    (vma->vm_flags & vm_flags) == vm_flags)
1432 			goto skip;
1433 
1434 		if (vma->vm_start > start)
1435 			start = vma->vm_start;
1436 		vma_end = min(end, vma->vm_end);
1437 
1438 		new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1439 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1440 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1441 				 vma_policy(vma),
1442 				 ((struct vm_userfaultfd_ctx){ ctx }));
1443 		if (prev) {
1444 			vma = prev;
1445 			goto next;
1446 		}
1447 		if (vma->vm_start < start) {
1448 			ret = split_vma(mm, vma, start, 1);
1449 			if (ret)
1450 				break;
1451 		}
1452 		if (vma->vm_end > end) {
1453 			ret = split_vma(mm, vma, end, 0);
1454 			if (ret)
1455 				break;
1456 		}
1457 	next:
1458 		/*
1459 		 * In the vma_merge() successful mprotect-like case 8:
1460 		 * the next vma was merged into the current one and
1461 		 * the current one has not been updated yet.
1462 		 */
1463 		vma->vm_flags = new_flags;
1464 		vma->vm_userfaultfd_ctx.ctx = ctx;
1465 
1466 		if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1467 			hugetlb_unshare_all_pmds(vma);
1468 
1469 	skip:
1470 		prev = vma;
1471 		start = vma->vm_end;
1472 		vma = vma->vm_next;
1473 	} while (vma && vma->vm_start < end);
1474 out_unlock:
1475 	mmap_write_unlock(mm);
1476 	mmput(mm);
1477 	if (!ret) {
1478 		__u64 ioctls_out;
1479 
1480 		ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1481 		    UFFD_API_RANGE_IOCTLS;
1482 
1483 		/*
1484 		 * Declare the WP ioctl only if the WP mode is
1485 		 * specified and all checks passed with the range
1486 		 */
1487 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1488 			ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1489 
1490 		/* CONTINUE ioctl is only supported for MINOR ranges. */
1491 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1492 			ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1493 
1494 		/*
1495 		 * Now that we scanned all vmas we can already tell
1496 		 * userland which ioctls methods are guaranteed to
1497 		 * succeed on this range.
1498 		 */
1499 		if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1500 			ret = -EFAULT;
1501 	}
1502 out:
1503 	return ret;
1504 }
1505 
1506 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1507 				  unsigned long arg)
1508 {
1509 	struct mm_struct *mm = ctx->mm;
1510 	struct vm_area_struct *vma, *prev, *cur;
1511 	int ret;
1512 	struct uffdio_range uffdio_unregister;
1513 	unsigned long new_flags;
1514 	bool found;
1515 	unsigned long start, end, vma_end;
1516 	const void __user *buf = (void __user *)arg;
1517 
1518 	ret = -EFAULT;
1519 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1520 		goto out;
1521 
1522 	ret = validate_range(mm, &uffdio_unregister.start,
1523 			     uffdio_unregister.len);
1524 	if (ret)
1525 		goto out;
1526 
1527 	start = uffdio_unregister.start;
1528 	end = start + uffdio_unregister.len;
1529 
1530 	ret = -ENOMEM;
1531 	if (!mmget_not_zero(mm))
1532 		goto out;
1533 
1534 	mmap_write_lock(mm);
1535 	vma = find_vma_prev(mm, start, &prev);
1536 	if (!vma)
1537 		goto out_unlock;
1538 
1539 	/* check that there's at least one vma in the range */
1540 	ret = -EINVAL;
1541 	if (vma->vm_start >= end)
1542 		goto out_unlock;
1543 
1544 	/*
1545 	 * If the first vma contains huge pages, make sure start address
1546 	 * is aligned to huge page size.
1547 	 */
1548 	if (is_vm_hugetlb_page(vma)) {
1549 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1550 
1551 		if (start & (vma_hpagesize - 1))
1552 			goto out_unlock;
1553 	}
1554 
1555 	/*
1556 	 * Search for not compatible vmas.
1557 	 */
1558 	found = false;
1559 	ret = -EINVAL;
1560 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1561 		cond_resched();
1562 
1563 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1564 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1565 
1566 		/*
1567 		 * Check not compatible vmas, not strictly required
1568 		 * here as not compatible vmas cannot have an
1569 		 * userfaultfd_ctx registered on them, but this
1570 		 * provides for more strict behavior to notice
1571 		 * unregistration errors.
1572 		 */
1573 		if (!vma_can_userfault(cur, cur->vm_flags))
1574 			goto out_unlock;
1575 
1576 		found = true;
1577 	}
1578 	BUG_ON(!found);
1579 
1580 	if (vma->vm_start < start)
1581 		prev = vma;
1582 
1583 	ret = 0;
1584 	do {
1585 		cond_resched();
1586 
1587 		BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1588 
1589 		/*
1590 		 * Nothing to do: this vma is already registered into this
1591 		 * userfaultfd and with the right tracking mode too.
1592 		 */
1593 		if (!vma->vm_userfaultfd_ctx.ctx)
1594 			goto skip;
1595 
1596 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1597 
1598 		if (vma->vm_start > start)
1599 			start = vma->vm_start;
1600 		vma_end = min(end, vma->vm_end);
1601 
1602 		if (userfaultfd_missing(vma)) {
1603 			/*
1604 			 * Wake any concurrent pending userfault while
1605 			 * we unregister, so they will not hang
1606 			 * permanently and it avoids userland to call
1607 			 * UFFDIO_WAKE explicitly.
1608 			 */
1609 			struct userfaultfd_wake_range range;
1610 			range.start = start;
1611 			range.len = vma_end - start;
1612 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1613 		}
1614 
1615 		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1616 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1617 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1618 				 vma_policy(vma),
1619 				 NULL_VM_UFFD_CTX);
1620 		if (prev) {
1621 			vma = prev;
1622 			goto next;
1623 		}
1624 		if (vma->vm_start < start) {
1625 			ret = split_vma(mm, vma, start, 1);
1626 			if (ret)
1627 				break;
1628 		}
1629 		if (vma->vm_end > end) {
1630 			ret = split_vma(mm, vma, end, 0);
1631 			if (ret)
1632 				break;
1633 		}
1634 	next:
1635 		/*
1636 		 * In the vma_merge() successful mprotect-like case 8:
1637 		 * the next vma was merged into the current one and
1638 		 * the current one has not been updated yet.
1639 		 */
1640 		vma->vm_flags = new_flags;
1641 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1642 
1643 	skip:
1644 		prev = vma;
1645 		start = vma->vm_end;
1646 		vma = vma->vm_next;
1647 	} while (vma && vma->vm_start < end);
1648 out_unlock:
1649 	mmap_write_unlock(mm);
1650 	mmput(mm);
1651 out:
1652 	return ret;
1653 }
1654 
1655 /*
1656  * userfaultfd_wake may be used in combination with the
1657  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1658  */
1659 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1660 			    unsigned long arg)
1661 {
1662 	int ret;
1663 	struct uffdio_range uffdio_wake;
1664 	struct userfaultfd_wake_range range;
1665 	const void __user *buf = (void __user *)arg;
1666 
1667 	ret = -EFAULT;
1668 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1669 		goto out;
1670 
1671 	ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len);
1672 	if (ret)
1673 		goto out;
1674 
1675 	range.start = uffdio_wake.start;
1676 	range.len = uffdio_wake.len;
1677 
1678 	/*
1679 	 * len == 0 means wake all and we don't want to wake all here,
1680 	 * so check it again to be sure.
1681 	 */
1682 	VM_BUG_ON(!range.len);
1683 
1684 	wake_userfault(ctx, &range);
1685 	ret = 0;
1686 
1687 out:
1688 	return ret;
1689 }
1690 
1691 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1692 			    unsigned long arg)
1693 {
1694 	__s64 ret;
1695 	struct uffdio_copy uffdio_copy;
1696 	struct uffdio_copy __user *user_uffdio_copy;
1697 	struct userfaultfd_wake_range range;
1698 
1699 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1700 
1701 	ret = -EAGAIN;
1702 	if (READ_ONCE(ctx->mmap_changing))
1703 		goto out;
1704 
1705 	ret = -EFAULT;
1706 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1707 			   /* don't copy "copy" last field */
1708 			   sizeof(uffdio_copy)-sizeof(__s64)))
1709 		goto out;
1710 
1711 	ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len);
1712 	if (ret)
1713 		goto out;
1714 	/*
1715 	 * double check for wraparound just in case. copy_from_user()
1716 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1717 	 * in the userland range.
1718 	 */
1719 	ret = -EINVAL;
1720 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1721 		goto out;
1722 	if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1723 		goto out;
1724 	if (mmget_not_zero(ctx->mm)) {
1725 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1726 				   uffdio_copy.len, &ctx->mmap_changing,
1727 				   uffdio_copy.mode);
1728 		mmput(ctx->mm);
1729 	} else {
1730 		return -ESRCH;
1731 	}
1732 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1733 		return -EFAULT;
1734 	if (ret < 0)
1735 		goto out;
1736 	BUG_ON(!ret);
1737 	/* len == 0 would wake all */
1738 	range.len = ret;
1739 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1740 		range.start = uffdio_copy.dst;
1741 		wake_userfault(ctx, &range);
1742 	}
1743 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1744 out:
1745 	return ret;
1746 }
1747 
1748 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1749 				unsigned long arg)
1750 {
1751 	__s64 ret;
1752 	struct uffdio_zeropage uffdio_zeropage;
1753 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1754 	struct userfaultfd_wake_range range;
1755 
1756 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1757 
1758 	ret = -EAGAIN;
1759 	if (READ_ONCE(ctx->mmap_changing))
1760 		goto out;
1761 
1762 	ret = -EFAULT;
1763 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1764 			   /* don't copy "zeropage" last field */
1765 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1766 		goto out;
1767 
1768 	ret = validate_range(ctx->mm, &uffdio_zeropage.range.start,
1769 			     uffdio_zeropage.range.len);
1770 	if (ret)
1771 		goto out;
1772 	ret = -EINVAL;
1773 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1774 		goto out;
1775 
1776 	if (mmget_not_zero(ctx->mm)) {
1777 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1778 				     uffdio_zeropage.range.len,
1779 				     &ctx->mmap_changing);
1780 		mmput(ctx->mm);
1781 	} else {
1782 		return -ESRCH;
1783 	}
1784 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1785 		return -EFAULT;
1786 	if (ret < 0)
1787 		goto out;
1788 	/* len == 0 would wake all */
1789 	BUG_ON(!ret);
1790 	range.len = ret;
1791 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1792 		range.start = uffdio_zeropage.range.start;
1793 		wake_userfault(ctx, &range);
1794 	}
1795 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1796 out:
1797 	return ret;
1798 }
1799 
1800 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1801 				    unsigned long arg)
1802 {
1803 	int ret;
1804 	struct uffdio_writeprotect uffdio_wp;
1805 	struct uffdio_writeprotect __user *user_uffdio_wp;
1806 	struct userfaultfd_wake_range range;
1807 	bool mode_wp, mode_dontwake;
1808 
1809 	if (READ_ONCE(ctx->mmap_changing))
1810 		return -EAGAIN;
1811 
1812 	user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1813 
1814 	if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1815 			   sizeof(struct uffdio_writeprotect)))
1816 		return -EFAULT;
1817 
1818 	ret = validate_range(ctx->mm, &uffdio_wp.range.start,
1819 			     uffdio_wp.range.len);
1820 	if (ret)
1821 		return ret;
1822 
1823 	if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1824 			       UFFDIO_WRITEPROTECT_MODE_WP))
1825 		return -EINVAL;
1826 
1827 	mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1828 	mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1829 
1830 	if (mode_wp && mode_dontwake)
1831 		return -EINVAL;
1832 
1833 	ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1834 				  uffdio_wp.range.len, mode_wp,
1835 				  &ctx->mmap_changing);
1836 	if (ret)
1837 		return ret;
1838 
1839 	if (!mode_wp && !mode_dontwake) {
1840 		range.start = uffdio_wp.range.start;
1841 		range.len = uffdio_wp.range.len;
1842 		wake_userfault(ctx, &range);
1843 	}
1844 	return ret;
1845 }
1846 
1847 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1848 {
1849 	__s64 ret;
1850 	struct uffdio_continue uffdio_continue;
1851 	struct uffdio_continue __user *user_uffdio_continue;
1852 	struct userfaultfd_wake_range range;
1853 
1854 	user_uffdio_continue = (struct uffdio_continue __user *)arg;
1855 
1856 	ret = -EAGAIN;
1857 	if (READ_ONCE(ctx->mmap_changing))
1858 		goto out;
1859 
1860 	ret = -EFAULT;
1861 	if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1862 			   /* don't copy the output fields */
1863 			   sizeof(uffdio_continue) - (sizeof(__s64))))
1864 		goto out;
1865 
1866 	ret = validate_range(ctx->mm, &uffdio_continue.range.start,
1867 			     uffdio_continue.range.len);
1868 	if (ret)
1869 		goto out;
1870 
1871 	ret = -EINVAL;
1872 	/* double check for wraparound just in case. */
1873 	if (uffdio_continue.range.start + uffdio_continue.range.len <=
1874 	    uffdio_continue.range.start) {
1875 		goto out;
1876 	}
1877 	if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE)
1878 		goto out;
1879 
1880 	if (mmget_not_zero(ctx->mm)) {
1881 		ret = mcopy_continue(ctx->mm, uffdio_continue.range.start,
1882 				     uffdio_continue.range.len,
1883 				     &ctx->mmap_changing);
1884 		mmput(ctx->mm);
1885 	} else {
1886 		return -ESRCH;
1887 	}
1888 
1889 	if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1890 		return -EFAULT;
1891 	if (ret < 0)
1892 		goto out;
1893 
1894 	/* len == 0 would wake all */
1895 	BUG_ON(!ret);
1896 	range.len = ret;
1897 	if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1898 		range.start = uffdio_continue.range.start;
1899 		wake_userfault(ctx, &range);
1900 	}
1901 	ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1902 
1903 out:
1904 	return ret;
1905 }
1906 
1907 static inline unsigned int uffd_ctx_features(__u64 user_features)
1908 {
1909 	/*
1910 	 * For the current set of features the bits just coincide
1911 	 */
1912 	return (unsigned int)user_features;
1913 }
1914 
1915 /*
1916  * userland asks for a certain API version and we return which bits
1917  * and ioctl commands are implemented in this kernel for such API
1918  * version or -EINVAL if unknown.
1919  */
1920 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1921 			   unsigned long arg)
1922 {
1923 	struct uffdio_api uffdio_api;
1924 	void __user *buf = (void __user *)arg;
1925 	int ret;
1926 	__u64 features;
1927 
1928 	ret = -EINVAL;
1929 	if (ctx->state != UFFD_STATE_WAIT_API)
1930 		goto out;
1931 	ret = -EFAULT;
1932 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1933 		goto out;
1934 	features = uffdio_api.features;
1935 	ret = -EINVAL;
1936 	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1937 		goto err_out;
1938 	ret = -EPERM;
1939 	if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1940 		goto err_out;
1941 	/* report all available features and ioctls to userland */
1942 	uffdio_api.features = UFFD_API_FEATURES;
1943 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1944 	uffdio_api.features &= ~UFFD_FEATURE_MINOR_HUGETLBFS;
1945 #endif
1946 	uffdio_api.ioctls = UFFD_API_IOCTLS;
1947 	ret = -EFAULT;
1948 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1949 		goto out;
1950 	ctx->state = UFFD_STATE_RUNNING;
1951 	/* only enable the requested features for this uffd context */
1952 	ctx->features = uffd_ctx_features(features);
1953 	ret = 0;
1954 out:
1955 	return ret;
1956 err_out:
1957 	memset(&uffdio_api, 0, sizeof(uffdio_api));
1958 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1959 		ret = -EFAULT;
1960 	goto out;
1961 }
1962 
1963 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1964 			      unsigned long arg)
1965 {
1966 	int ret = -EINVAL;
1967 	struct userfaultfd_ctx *ctx = file->private_data;
1968 
1969 	if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1970 		return -EINVAL;
1971 
1972 	switch(cmd) {
1973 	case UFFDIO_API:
1974 		ret = userfaultfd_api(ctx, arg);
1975 		break;
1976 	case UFFDIO_REGISTER:
1977 		ret = userfaultfd_register(ctx, arg);
1978 		break;
1979 	case UFFDIO_UNREGISTER:
1980 		ret = userfaultfd_unregister(ctx, arg);
1981 		break;
1982 	case UFFDIO_WAKE:
1983 		ret = userfaultfd_wake(ctx, arg);
1984 		break;
1985 	case UFFDIO_COPY:
1986 		ret = userfaultfd_copy(ctx, arg);
1987 		break;
1988 	case UFFDIO_ZEROPAGE:
1989 		ret = userfaultfd_zeropage(ctx, arg);
1990 		break;
1991 	case UFFDIO_WRITEPROTECT:
1992 		ret = userfaultfd_writeprotect(ctx, arg);
1993 		break;
1994 	case UFFDIO_CONTINUE:
1995 		ret = userfaultfd_continue(ctx, arg);
1996 		break;
1997 	}
1998 	return ret;
1999 }
2000 
2001 #ifdef CONFIG_PROC_FS
2002 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2003 {
2004 	struct userfaultfd_ctx *ctx = f->private_data;
2005 	wait_queue_entry_t *wq;
2006 	unsigned long pending = 0, total = 0;
2007 
2008 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
2009 	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2010 		pending++;
2011 		total++;
2012 	}
2013 	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2014 		total++;
2015 	}
2016 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2017 
2018 	/*
2019 	 * If more protocols will be added, there will be all shown
2020 	 * separated by a space. Like this:
2021 	 *	protocols: aa:... bb:...
2022 	 */
2023 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2024 		   pending, total, UFFD_API, ctx->features,
2025 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2026 }
2027 #endif
2028 
2029 static const struct file_operations userfaultfd_fops = {
2030 #ifdef CONFIG_PROC_FS
2031 	.show_fdinfo	= userfaultfd_show_fdinfo,
2032 #endif
2033 	.release	= userfaultfd_release,
2034 	.poll		= userfaultfd_poll,
2035 	.read		= userfaultfd_read,
2036 	.unlocked_ioctl = userfaultfd_ioctl,
2037 	.compat_ioctl	= compat_ptr_ioctl,
2038 	.llseek		= noop_llseek,
2039 };
2040 
2041 static void init_once_userfaultfd_ctx(void *mem)
2042 {
2043 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2044 
2045 	init_waitqueue_head(&ctx->fault_pending_wqh);
2046 	init_waitqueue_head(&ctx->fault_wqh);
2047 	init_waitqueue_head(&ctx->event_wqh);
2048 	init_waitqueue_head(&ctx->fd_wqh);
2049 	seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2050 }
2051 
2052 SYSCALL_DEFINE1(userfaultfd, int, flags)
2053 {
2054 	struct userfaultfd_ctx *ctx;
2055 	int fd;
2056 
2057 	if (!sysctl_unprivileged_userfaultfd &&
2058 	    (flags & UFFD_USER_MODE_ONLY) == 0 &&
2059 	    !capable(CAP_SYS_PTRACE)) {
2060 		printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
2061 			"sysctl knob to 1 if kernel faults must be handled "
2062 			"without obtaining CAP_SYS_PTRACE capability\n");
2063 		return -EPERM;
2064 	}
2065 
2066 	BUG_ON(!current->mm);
2067 
2068 	/* Check the UFFD_* constants for consistency.  */
2069 	BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2070 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2071 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2072 
2073 	if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2074 		return -EINVAL;
2075 
2076 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2077 	if (!ctx)
2078 		return -ENOMEM;
2079 
2080 	refcount_set(&ctx->refcount, 1);
2081 	ctx->flags = flags;
2082 	ctx->features = 0;
2083 	ctx->state = UFFD_STATE_WAIT_API;
2084 	ctx->released = false;
2085 	ctx->mmap_changing = false;
2086 	ctx->mm = current->mm;
2087 	/* prevent the mm struct to be freed */
2088 	mmgrab(ctx->mm);
2089 
2090 	fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2091 			O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2092 	if (fd < 0) {
2093 		mmdrop(ctx->mm);
2094 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2095 	}
2096 	return fd;
2097 }
2098 
2099 static int __init userfaultfd_init(void)
2100 {
2101 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2102 						sizeof(struct userfaultfd_ctx),
2103 						0,
2104 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2105 						init_once_userfaultfd_ctx);
2106 	return 0;
2107 }
2108 __initcall(userfaultfd_init);
2109