1 /* 2 * fs/userfaultfd.c 3 * 4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 5 * Copyright (C) 2008-2009 Red Hat, Inc. 6 * Copyright (C) 2015 Red Hat, Inc. 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2. See 9 * the COPYING file in the top-level directory. 10 * 11 * Some part derived from fs/eventfd.c (anon inode setup) and 12 * mm/ksm.c (mm hashing). 13 */ 14 15 #include <linux/list.h> 16 #include <linux/hashtable.h> 17 #include <linux/sched/signal.h> 18 #include <linux/sched/mm.h> 19 #include <linux/mm.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 34 35 enum userfaultfd_state { 36 UFFD_STATE_WAIT_API, 37 UFFD_STATE_RUNNING, 38 }; 39 40 /* 41 * Start with fault_pending_wqh and fault_wqh so they're more likely 42 * to be in the same cacheline. 43 */ 44 struct userfaultfd_ctx { 45 /* waitqueue head for the pending (i.e. not read) userfaults */ 46 wait_queue_head_t fault_pending_wqh; 47 /* waitqueue head for the userfaults */ 48 wait_queue_head_t fault_wqh; 49 /* waitqueue head for the pseudo fd to wakeup poll/read */ 50 wait_queue_head_t fd_wqh; 51 /* waitqueue head for events */ 52 wait_queue_head_t event_wqh; 53 /* a refile sequence protected by fault_pending_wqh lock */ 54 struct seqcount refile_seq; 55 /* pseudo fd refcounting */ 56 atomic_t refcount; 57 /* userfaultfd syscall flags */ 58 unsigned int flags; 59 /* features requested from the userspace */ 60 unsigned int features; 61 /* state machine */ 62 enum userfaultfd_state state; 63 /* released */ 64 bool released; 65 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 66 struct mm_struct *mm; 67 }; 68 69 struct userfaultfd_fork_ctx { 70 struct userfaultfd_ctx *orig; 71 struct userfaultfd_ctx *new; 72 struct list_head list; 73 }; 74 75 struct userfaultfd_unmap_ctx { 76 struct userfaultfd_ctx *ctx; 77 unsigned long start; 78 unsigned long end; 79 struct list_head list; 80 }; 81 82 struct userfaultfd_wait_queue { 83 struct uffd_msg msg; 84 wait_queue_entry_t wq; 85 struct userfaultfd_ctx *ctx; 86 bool waken; 87 }; 88 89 struct userfaultfd_wake_range { 90 unsigned long start; 91 unsigned long len; 92 }; 93 94 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 95 int wake_flags, void *key) 96 { 97 struct userfaultfd_wake_range *range = key; 98 int ret; 99 struct userfaultfd_wait_queue *uwq; 100 unsigned long start, len; 101 102 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 103 ret = 0; 104 /* len == 0 means wake all */ 105 start = range->start; 106 len = range->len; 107 if (len && (start > uwq->msg.arg.pagefault.address || 108 start + len <= uwq->msg.arg.pagefault.address)) 109 goto out; 110 WRITE_ONCE(uwq->waken, true); 111 /* 112 * The Program-Order guarantees provided by the scheduler 113 * ensure uwq->waken is visible before the task is woken. 114 */ 115 ret = wake_up_state(wq->private, mode); 116 if (ret) { 117 /* 118 * Wake only once, autoremove behavior. 119 * 120 * After the effect of list_del_init is visible to the other 121 * CPUs, the waitqueue may disappear from under us, see the 122 * !list_empty_careful() in handle_userfault(). 123 * 124 * try_to_wake_up() has an implicit smp_mb(), and the 125 * wq->private is read before calling the extern function 126 * "wake_up_state" (which in turns calls try_to_wake_up). 127 */ 128 list_del_init(&wq->entry); 129 } 130 out: 131 return ret; 132 } 133 134 /** 135 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 136 * context. 137 * @ctx: [in] Pointer to the userfaultfd context. 138 */ 139 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 140 { 141 if (!atomic_inc_not_zero(&ctx->refcount)) 142 BUG(); 143 } 144 145 /** 146 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 147 * context. 148 * @ctx: [in] Pointer to userfaultfd context. 149 * 150 * The userfaultfd context reference must have been previously acquired either 151 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 152 */ 153 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 154 { 155 if (atomic_dec_and_test(&ctx->refcount)) { 156 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 157 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 158 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 159 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 160 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 161 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 162 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 163 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 164 mmdrop(ctx->mm); 165 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 166 } 167 } 168 169 static inline void msg_init(struct uffd_msg *msg) 170 { 171 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 172 /* 173 * Must use memset to zero out the paddings or kernel data is 174 * leaked to userland. 175 */ 176 memset(msg, 0, sizeof(struct uffd_msg)); 177 } 178 179 static inline struct uffd_msg userfault_msg(unsigned long address, 180 unsigned int flags, 181 unsigned long reason, 182 unsigned int features) 183 { 184 struct uffd_msg msg; 185 msg_init(&msg); 186 msg.event = UFFD_EVENT_PAGEFAULT; 187 msg.arg.pagefault.address = address; 188 if (flags & FAULT_FLAG_WRITE) 189 /* 190 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 191 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE 192 * was not set in a UFFD_EVENT_PAGEFAULT, it means it 193 * was a read fault, otherwise if set it means it's 194 * a write fault. 195 */ 196 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 197 if (reason & VM_UFFD_WP) 198 /* 199 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 200 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was 201 * not set in a UFFD_EVENT_PAGEFAULT, it means it was 202 * a missing fault, otherwise if set it means it's a 203 * write protect fault. 204 */ 205 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 206 if (features & UFFD_FEATURE_THREAD_ID) 207 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 208 return msg; 209 } 210 211 #ifdef CONFIG_HUGETLB_PAGE 212 /* 213 * Same functionality as userfaultfd_must_wait below with modifications for 214 * hugepmd ranges. 215 */ 216 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 217 struct vm_area_struct *vma, 218 unsigned long address, 219 unsigned long flags, 220 unsigned long reason) 221 { 222 struct mm_struct *mm = ctx->mm; 223 pte_t *pte; 224 bool ret = true; 225 226 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 227 228 pte = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); 229 if (!pte) 230 goto out; 231 232 ret = false; 233 234 /* 235 * Lockless access: we're in a wait_event so it's ok if it 236 * changes under us. 237 */ 238 if (huge_pte_none(*pte)) 239 ret = true; 240 if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP)) 241 ret = true; 242 out: 243 return ret; 244 } 245 #else 246 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 247 struct vm_area_struct *vma, 248 unsigned long address, 249 unsigned long flags, 250 unsigned long reason) 251 { 252 return false; /* should never get here */ 253 } 254 #endif /* CONFIG_HUGETLB_PAGE */ 255 256 /* 257 * Verify the pagetables are still not ok after having reigstered into 258 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 259 * userfault that has already been resolved, if userfaultfd_read and 260 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 261 * threads. 262 */ 263 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 264 unsigned long address, 265 unsigned long flags, 266 unsigned long reason) 267 { 268 struct mm_struct *mm = ctx->mm; 269 pgd_t *pgd; 270 p4d_t *p4d; 271 pud_t *pud; 272 pmd_t *pmd, _pmd; 273 pte_t *pte; 274 bool ret = true; 275 276 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 277 278 pgd = pgd_offset(mm, address); 279 if (!pgd_present(*pgd)) 280 goto out; 281 p4d = p4d_offset(pgd, address); 282 if (!p4d_present(*p4d)) 283 goto out; 284 pud = pud_offset(p4d, address); 285 if (!pud_present(*pud)) 286 goto out; 287 pmd = pmd_offset(pud, address); 288 /* 289 * READ_ONCE must function as a barrier with narrower scope 290 * and it must be equivalent to: 291 * _pmd = *pmd; barrier(); 292 * 293 * This is to deal with the instability (as in 294 * pmd_trans_unstable) of the pmd. 295 */ 296 _pmd = READ_ONCE(*pmd); 297 if (!pmd_present(_pmd)) 298 goto out; 299 300 ret = false; 301 if (pmd_trans_huge(_pmd)) 302 goto out; 303 304 /* 305 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 306 * and use the standard pte_offset_map() instead of parsing _pmd. 307 */ 308 pte = pte_offset_map(pmd, address); 309 /* 310 * Lockless access: we're in a wait_event so it's ok if it 311 * changes under us. 312 */ 313 if (pte_none(*pte)) 314 ret = true; 315 pte_unmap(pte); 316 317 out: 318 return ret; 319 } 320 321 /* 322 * The locking rules involved in returning VM_FAULT_RETRY depending on 323 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 324 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 325 * recommendation in __lock_page_or_retry is not an understatement. 326 * 327 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released 328 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 329 * not set. 330 * 331 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 332 * set, VM_FAULT_RETRY can still be returned if and only if there are 333 * fatal_signal_pending()s, and the mmap_sem must be released before 334 * returning it. 335 */ 336 int handle_userfault(struct vm_fault *vmf, unsigned long reason) 337 { 338 struct mm_struct *mm = vmf->vma->vm_mm; 339 struct userfaultfd_ctx *ctx; 340 struct userfaultfd_wait_queue uwq; 341 int ret; 342 bool must_wait, return_to_userland; 343 long blocking_state; 344 345 ret = VM_FAULT_SIGBUS; 346 347 /* 348 * We don't do userfault handling for the final child pid update. 349 * 350 * We also don't do userfault handling during 351 * coredumping. hugetlbfs has the special 352 * follow_hugetlb_page() to skip missing pages in the 353 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 354 * the no_page_table() helper in follow_page_mask(), but the 355 * shmem_vm_ops->fault method is invoked even during 356 * coredumping without mmap_sem and it ends up here. 357 */ 358 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 359 goto out; 360 361 /* 362 * Coredumping runs without mmap_sem so we can only check that 363 * the mmap_sem is held, if PF_DUMPCORE was not set. 364 */ 365 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem)); 366 367 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 368 if (!ctx) 369 goto out; 370 371 BUG_ON(ctx->mm != mm); 372 373 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); 374 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); 375 376 if (ctx->features & UFFD_FEATURE_SIGBUS) 377 goto out; 378 379 /* 380 * If it's already released don't get it. This avoids to loop 381 * in __get_user_pages if userfaultfd_release waits on the 382 * caller of handle_userfault to release the mmap_sem. 383 */ 384 if (unlikely(ACCESS_ONCE(ctx->released))) { 385 /* 386 * Don't return VM_FAULT_SIGBUS in this case, so a non 387 * cooperative manager can close the uffd after the 388 * last UFFDIO_COPY, without risking to trigger an 389 * involuntary SIGBUS if the process was starting the 390 * userfaultfd while the userfaultfd was still armed 391 * (but after the last UFFDIO_COPY). If the uffd 392 * wasn't already closed when the userfault reached 393 * this point, that would normally be solved by 394 * userfaultfd_must_wait returning 'false'. 395 * 396 * If we were to return VM_FAULT_SIGBUS here, the non 397 * cooperative manager would be instead forced to 398 * always call UFFDIO_UNREGISTER before it can safely 399 * close the uffd. 400 */ 401 ret = VM_FAULT_NOPAGE; 402 goto out; 403 } 404 405 /* 406 * Check that we can return VM_FAULT_RETRY. 407 * 408 * NOTE: it should become possible to return VM_FAULT_RETRY 409 * even if FAULT_FLAG_TRIED is set without leading to gup() 410 * -EBUSY failures, if the userfaultfd is to be extended for 411 * VM_UFFD_WP tracking and we intend to arm the userfault 412 * without first stopping userland access to the memory. For 413 * VM_UFFD_MISSING userfaults this is enough for now. 414 */ 415 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 416 /* 417 * Validate the invariant that nowait must allow retry 418 * to be sure not to return SIGBUS erroneously on 419 * nowait invocations. 420 */ 421 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 422 #ifdef CONFIG_DEBUG_VM 423 if (printk_ratelimit()) { 424 printk(KERN_WARNING 425 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 426 vmf->flags); 427 dump_stack(); 428 } 429 #endif 430 goto out; 431 } 432 433 /* 434 * Handle nowait, not much to do other than tell it to retry 435 * and wait. 436 */ 437 ret = VM_FAULT_RETRY; 438 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 439 goto out; 440 441 /* take the reference before dropping the mmap_sem */ 442 userfaultfd_ctx_get(ctx); 443 444 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 445 uwq.wq.private = current; 446 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason, 447 ctx->features); 448 uwq.ctx = ctx; 449 uwq.waken = false; 450 451 return_to_userland = 452 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) == 453 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE); 454 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE : 455 TASK_KILLABLE; 456 457 spin_lock(&ctx->fault_pending_wqh.lock); 458 /* 459 * After the __add_wait_queue the uwq is visible to userland 460 * through poll/read(). 461 */ 462 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 463 /* 464 * The smp_mb() after __set_current_state prevents the reads 465 * following the spin_unlock to happen before the list_add in 466 * __add_wait_queue. 467 */ 468 set_current_state(blocking_state); 469 spin_unlock(&ctx->fault_pending_wqh.lock); 470 471 if (!is_vm_hugetlb_page(vmf->vma)) 472 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 473 reason); 474 else 475 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, 476 vmf->address, 477 vmf->flags, reason); 478 up_read(&mm->mmap_sem); 479 480 if (likely(must_wait && !ACCESS_ONCE(ctx->released) && 481 (return_to_userland ? !signal_pending(current) : 482 !fatal_signal_pending(current)))) { 483 wake_up_poll(&ctx->fd_wqh, POLLIN); 484 schedule(); 485 ret |= VM_FAULT_MAJOR; 486 487 /* 488 * False wakeups can orginate even from rwsem before 489 * up_read() however userfaults will wait either for a 490 * targeted wakeup on the specific uwq waitqueue from 491 * wake_userfault() or for signals or for uffd 492 * release. 493 */ 494 while (!READ_ONCE(uwq.waken)) { 495 /* 496 * This needs the full smp_store_mb() 497 * guarantee as the state write must be 498 * visible to other CPUs before reading 499 * uwq.waken from other CPUs. 500 */ 501 set_current_state(blocking_state); 502 if (READ_ONCE(uwq.waken) || 503 READ_ONCE(ctx->released) || 504 (return_to_userland ? signal_pending(current) : 505 fatal_signal_pending(current))) 506 break; 507 schedule(); 508 } 509 } 510 511 __set_current_state(TASK_RUNNING); 512 513 if (return_to_userland) { 514 if (signal_pending(current) && 515 !fatal_signal_pending(current)) { 516 /* 517 * If we got a SIGSTOP or SIGCONT and this is 518 * a normal userland page fault, just let 519 * userland return so the signal will be 520 * handled and gdb debugging works. The page 521 * fault code immediately after we return from 522 * this function is going to release the 523 * mmap_sem and it's not depending on it 524 * (unlike gup would if we were not to return 525 * VM_FAULT_RETRY). 526 * 527 * If a fatal signal is pending we still take 528 * the streamlined VM_FAULT_RETRY failure path 529 * and there's no need to retake the mmap_sem 530 * in such case. 531 */ 532 down_read(&mm->mmap_sem); 533 ret = VM_FAULT_NOPAGE; 534 } 535 } 536 537 /* 538 * Here we race with the list_del; list_add in 539 * userfaultfd_ctx_read(), however because we don't ever run 540 * list_del_init() to refile across the two lists, the prev 541 * and next pointers will never point to self. list_add also 542 * would never let any of the two pointers to point to 543 * self. So list_empty_careful won't risk to see both pointers 544 * pointing to self at any time during the list refile. The 545 * only case where list_del_init() is called is the full 546 * removal in the wake function and there we don't re-list_add 547 * and it's fine not to block on the spinlock. The uwq on this 548 * kernel stack can be released after the list_del_init. 549 */ 550 if (!list_empty_careful(&uwq.wq.entry)) { 551 spin_lock(&ctx->fault_pending_wqh.lock); 552 /* 553 * No need of list_del_init(), the uwq on the stack 554 * will be freed shortly anyway. 555 */ 556 list_del(&uwq.wq.entry); 557 spin_unlock(&ctx->fault_pending_wqh.lock); 558 } 559 560 /* 561 * ctx may go away after this if the userfault pseudo fd is 562 * already released. 563 */ 564 userfaultfd_ctx_put(ctx); 565 566 out: 567 return ret; 568 } 569 570 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 571 struct userfaultfd_wait_queue *ewq) 572 { 573 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 574 goto out; 575 576 ewq->ctx = ctx; 577 init_waitqueue_entry(&ewq->wq, current); 578 579 spin_lock(&ctx->event_wqh.lock); 580 /* 581 * After the __add_wait_queue the uwq is visible to userland 582 * through poll/read(). 583 */ 584 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 585 for (;;) { 586 set_current_state(TASK_KILLABLE); 587 if (ewq->msg.event == 0) 588 break; 589 if (ACCESS_ONCE(ctx->released) || 590 fatal_signal_pending(current)) { 591 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 592 if (ewq->msg.event == UFFD_EVENT_FORK) { 593 struct userfaultfd_ctx *new; 594 595 new = (struct userfaultfd_ctx *) 596 (unsigned long) 597 ewq->msg.arg.reserved.reserved1; 598 599 userfaultfd_ctx_put(new); 600 } 601 break; 602 } 603 604 spin_unlock(&ctx->event_wqh.lock); 605 606 wake_up_poll(&ctx->fd_wqh, POLLIN); 607 schedule(); 608 609 spin_lock(&ctx->event_wqh.lock); 610 } 611 __set_current_state(TASK_RUNNING); 612 spin_unlock(&ctx->event_wqh.lock); 613 614 /* 615 * ctx may go away after this if the userfault pseudo fd is 616 * already released. 617 */ 618 out: 619 userfaultfd_ctx_put(ctx); 620 } 621 622 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 623 struct userfaultfd_wait_queue *ewq) 624 { 625 ewq->msg.event = 0; 626 wake_up_locked(&ctx->event_wqh); 627 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 628 } 629 630 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 631 { 632 struct userfaultfd_ctx *ctx = NULL, *octx; 633 struct userfaultfd_fork_ctx *fctx; 634 635 octx = vma->vm_userfaultfd_ctx.ctx; 636 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 637 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 638 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 639 return 0; 640 } 641 642 list_for_each_entry(fctx, fcs, list) 643 if (fctx->orig == octx) { 644 ctx = fctx->new; 645 break; 646 } 647 648 if (!ctx) { 649 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 650 if (!fctx) 651 return -ENOMEM; 652 653 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 654 if (!ctx) { 655 kfree(fctx); 656 return -ENOMEM; 657 } 658 659 atomic_set(&ctx->refcount, 1); 660 ctx->flags = octx->flags; 661 ctx->state = UFFD_STATE_RUNNING; 662 ctx->features = octx->features; 663 ctx->released = false; 664 ctx->mm = vma->vm_mm; 665 atomic_inc(&ctx->mm->mm_count); 666 667 userfaultfd_ctx_get(octx); 668 fctx->orig = octx; 669 fctx->new = ctx; 670 list_add_tail(&fctx->list, fcs); 671 } 672 673 vma->vm_userfaultfd_ctx.ctx = ctx; 674 return 0; 675 } 676 677 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 678 { 679 struct userfaultfd_ctx *ctx = fctx->orig; 680 struct userfaultfd_wait_queue ewq; 681 682 msg_init(&ewq.msg); 683 684 ewq.msg.event = UFFD_EVENT_FORK; 685 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 686 687 userfaultfd_event_wait_completion(ctx, &ewq); 688 } 689 690 void dup_userfaultfd_complete(struct list_head *fcs) 691 { 692 struct userfaultfd_fork_ctx *fctx, *n; 693 694 list_for_each_entry_safe(fctx, n, fcs, list) { 695 dup_fctx(fctx); 696 list_del(&fctx->list); 697 kfree(fctx); 698 } 699 } 700 701 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 702 struct vm_userfaultfd_ctx *vm_ctx) 703 { 704 struct userfaultfd_ctx *ctx; 705 706 ctx = vma->vm_userfaultfd_ctx.ctx; 707 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) { 708 vm_ctx->ctx = ctx; 709 userfaultfd_ctx_get(ctx); 710 } 711 } 712 713 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 714 unsigned long from, unsigned long to, 715 unsigned long len) 716 { 717 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 718 struct userfaultfd_wait_queue ewq; 719 720 if (!ctx) 721 return; 722 723 if (to & ~PAGE_MASK) { 724 userfaultfd_ctx_put(ctx); 725 return; 726 } 727 728 msg_init(&ewq.msg); 729 730 ewq.msg.event = UFFD_EVENT_REMAP; 731 ewq.msg.arg.remap.from = from; 732 ewq.msg.arg.remap.to = to; 733 ewq.msg.arg.remap.len = len; 734 735 userfaultfd_event_wait_completion(ctx, &ewq); 736 } 737 738 bool userfaultfd_remove(struct vm_area_struct *vma, 739 unsigned long start, unsigned long end) 740 { 741 struct mm_struct *mm = vma->vm_mm; 742 struct userfaultfd_ctx *ctx; 743 struct userfaultfd_wait_queue ewq; 744 745 ctx = vma->vm_userfaultfd_ctx.ctx; 746 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 747 return true; 748 749 userfaultfd_ctx_get(ctx); 750 up_read(&mm->mmap_sem); 751 752 msg_init(&ewq.msg); 753 754 ewq.msg.event = UFFD_EVENT_REMOVE; 755 ewq.msg.arg.remove.start = start; 756 ewq.msg.arg.remove.end = end; 757 758 userfaultfd_event_wait_completion(ctx, &ewq); 759 760 return false; 761 } 762 763 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 764 unsigned long start, unsigned long end) 765 { 766 struct userfaultfd_unmap_ctx *unmap_ctx; 767 768 list_for_each_entry(unmap_ctx, unmaps, list) 769 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 770 unmap_ctx->end == end) 771 return true; 772 773 return false; 774 } 775 776 int userfaultfd_unmap_prep(struct vm_area_struct *vma, 777 unsigned long start, unsigned long end, 778 struct list_head *unmaps) 779 { 780 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 781 struct userfaultfd_unmap_ctx *unmap_ctx; 782 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 783 784 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 785 has_unmap_ctx(ctx, unmaps, start, end)) 786 continue; 787 788 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 789 if (!unmap_ctx) 790 return -ENOMEM; 791 792 userfaultfd_ctx_get(ctx); 793 unmap_ctx->ctx = ctx; 794 unmap_ctx->start = start; 795 unmap_ctx->end = end; 796 list_add_tail(&unmap_ctx->list, unmaps); 797 } 798 799 return 0; 800 } 801 802 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 803 { 804 struct userfaultfd_unmap_ctx *ctx, *n; 805 struct userfaultfd_wait_queue ewq; 806 807 list_for_each_entry_safe(ctx, n, uf, list) { 808 msg_init(&ewq.msg); 809 810 ewq.msg.event = UFFD_EVENT_UNMAP; 811 ewq.msg.arg.remove.start = ctx->start; 812 ewq.msg.arg.remove.end = ctx->end; 813 814 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 815 816 list_del(&ctx->list); 817 kfree(ctx); 818 } 819 } 820 821 static int userfaultfd_release(struct inode *inode, struct file *file) 822 { 823 struct userfaultfd_ctx *ctx = file->private_data; 824 struct mm_struct *mm = ctx->mm; 825 struct vm_area_struct *vma, *prev; 826 /* len == 0 means wake all */ 827 struct userfaultfd_wake_range range = { .len = 0, }; 828 unsigned long new_flags; 829 830 ACCESS_ONCE(ctx->released) = true; 831 832 if (!mmget_not_zero(mm)) 833 goto wakeup; 834 835 /* 836 * Flush page faults out of all CPUs. NOTE: all page faults 837 * must be retried without returning VM_FAULT_SIGBUS if 838 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 839 * changes while handle_userfault released the mmap_sem. So 840 * it's critical that released is set to true (above), before 841 * taking the mmap_sem for writing. 842 */ 843 down_write(&mm->mmap_sem); 844 prev = NULL; 845 for (vma = mm->mmap; vma; vma = vma->vm_next) { 846 cond_resched(); 847 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 848 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 849 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 850 prev = vma; 851 continue; 852 } 853 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 854 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 855 new_flags, vma->anon_vma, 856 vma->vm_file, vma->vm_pgoff, 857 vma_policy(vma), 858 NULL_VM_UFFD_CTX); 859 if (prev) 860 vma = prev; 861 else 862 prev = vma; 863 vma->vm_flags = new_flags; 864 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 865 } 866 up_write(&mm->mmap_sem); 867 mmput(mm); 868 wakeup: 869 /* 870 * After no new page faults can wait on this fault_*wqh, flush 871 * the last page faults that may have been already waiting on 872 * the fault_*wqh. 873 */ 874 spin_lock(&ctx->fault_pending_wqh.lock); 875 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 876 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range); 877 spin_unlock(&ctx->fault_pending_wqh.lock); 878 879 /* Flush pending events that may still wait on event_wqh */ 880 wake_up_all(&ctx->event_wqh); 881 882 wake_up_poll(&ctx->fd_wqh, POLLHUP); 883 userfaultfd_ctx_put(ctx); 884 return 0; 885 } 886 887 /* fault_pending_wqh.lock must be hold by the caller */ 888 static inline struct userfaultfd_wait_queue *find_userfault_in( 889 wait_queue_head_t *wqh) 890 { 891 wait_queue_entry_t *wq; 892 struct userfaultfd_wait_queue *uwq; 893 894 VM_BUG_ON(!spin_is_locked(&wqh->lock)); 895 896 uwq = NULL; 897 if (!waitqueue_active(wqh)) 898 goto out; 899 /* walk in reverse to provide FIFO behavior to read userfaults */ 900 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 901 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 902 out: 903 return uwq; 904 } 905 906 static inline struct userfaultfd_wait_queue *find_userfault( 907 struct userfaultfd_ctx *ctx) 908 { 909 return find_userfault_in(&ctx->fault_pending_wqh); 910 } 911 912 static inline struct userfaultfd_wait_queue *find_userfault_evt( 913 struct userfaultfd_ctx *ctx) 914 { 915 return find_userfault_in(&ctx->event_wqh); 916 } 917 918 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait) 919 { 920 struct userfaultfd_ctx *ctx = file->private_data; 921 unsigned int ret; 922 923 poll_wait(file, &ctx->fd_wqh, wait); 924 925 switch (ctx->state) { 926 case UFFD_STATE_WAIT_API: 927 return POLLERR; 928 case UFFD_STATE_RUNNING: 929 /* 930 * poll() never guarantees that read won't block. 931 * userfaults can be waken before they're read(). 932 */ 933 if (unlikely(!(file->f_flags & O_NONBLOCK))) 934 return POLLERR; 935 /* 936 * lockless access to see if there are pending faults 937 * __pollwait last action is the add_wait_queue but 938 * the spin_unlock would allow the waitqueue_active to 939 * pass above the actual list_add inside 940 * add_wait_queue critical section. So use a full 941 * memory barrier to serialize the list_add write of 942 * add_wait_queue() with the waitqueue_active read 943 * below. 944 */ 945 ret = 0; 946 smp_mb(); 947 if (waitqueue_active(&ctx->fault_pending_wqh)) 948 ret = POLLIN; 949 else if (waitqueue_active(&ctx->event_wqh)) 950 ret = POLLIN; 951 952 return ret; 953 default: 954 WARN_ON_ONCE(1); 955 return POLLERR; 956 } 957 } 958 959 static const struct file_operations userfaultfd_fops; 960 961 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, 962 struct userfaultfd_ctx *new, 963 struct uffd_msg *msg) 964 { 965 int fd; 966 struct file *file; 967 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS; 968 969 fd = get_unused_fd_flags(flags); 970 if (fd < 0) 971 return fd; 972 973 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new, 974 O_RDWR | flags); 975 if (IS_ERR(file)) { 976 put_unused_fd(fd); 977 return PTR_ERR(file); 978 } 979 980 fd_install(fd, file); 981 msg->arg.reserved.reserved1 = 0; 982 msg->arg.fork.ufd = fd; 983 984 return 0; 985 } 986 987 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 988 struct uffd_msg *msg) 989 { 990 ssize_t ret; 991 DECLARE_WAITQUEUE(wait, current); 992 struct userfaultfd_wait_queue *uwq; 993 /* 994 * Handling fork event requires sleeping operations, so 995 * we drop the event_wqh lock, then do these ops, then 996 * lock it back and wake up the waiter. While the lock is 997 * dropped the ewq may go away so we keep track of it 998 * carefully. 999 */ 1000 LIST_HEAD(fork_event); 1001 struct userfaultfd_ctx *fork_nctx = NULL; 1002 1003 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1004 spin_lock(&ctx->fd_wqh.lock); 1005 __add_wait_queue(&ctx->fd_wqh, &wait); 1006 for (;;) { 1007 set_current_state(TASK_INTERRUPTIBLE); 1008 spin_lock(&ctx->fault_pending_wqh.lock); 1009 uwq = find_userfault(ctx); 1010 if (uwq) { 1011 /* 1012 * Use a seqcount to repeat the lockless check 1013 * in wake_userfault() to avoid missing 1014 * wakeups because during the refile both 1015 * waitqueue could become empty if this is the 1016 * only userfault. 1017 */ 1018 write_seqcount_begin(&ctx->refile_seq); 1019 1020 /* 1021 * The fault_pending_wqh.lock prevents the uwq 1022 * to disappear from under us. 1023 * 1024 * Refile this userfault from 1025 * fault_pending_wqh to fault_wqh, it's not 1026 * pending anymore after we read it. 1027 * 1028 * Use list_del() by hand (as 1029 * userfaultfd_wake_function also uses 1030 * list_del_init() by hand) to be sure nobody 1031 * changes __remove_wait_queue() to use 1032 * list_del_init() in turn breaking the 1033 * !list_empty_careful() check in 1034 * handle_userfault(). The uwq->wq.head list 1035 * must never be empty at any time during the 1036 * refile, or the waitqueue could disappear 1037 * from under us. The "wait_queue_head_t" 1038 * parameter of __remove_wait_queue() is unused 1039 * anyway. 1040 */ 1041 list_del(&uwq->wq.entry); 1042 __add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1043 1044 write_seqcount_end(&ctx->refile_seq); 1045 1046 /* careful to always initialize msg if ret == 0 */ 1047 *msg = uwq->msg; 1048 spin_unlock(&ctx->fault_pending_wqh.lock); 1049 ret = 0; 1050 break; 1051 } 1052 spin_unlock(&ctx->fault_pending_wqh.lock); 1053 1054 spin_lock(&ctx->event_wqh.lock); 1055 uwq = find_userfault_evt(ctx); 1056 if (uwq) { 1057 *msg = uwq->msg; 1058 1059 if (uwq->msg.event == UFFD_EVENT_FORK) { 1060 fork_nctx = (struct userfaultfd_ctx *) 1061 (unsigned long) 1062 uwq->msg.arg.reserved.reserved1; 1063 list_move(&uwq->wq.entry, &fork_event); 1064 spin_unlock(&ctx->event_wqh.lock); 1065 ret = 0; 1066 break; 1067 } 1068 1069 userfaultfd_event_complete(ctx, uwq); 1070 spin_unlock(&ctx->event_wqh.lock); 1071 ret = 0; 1072 break; 1073 } 1074 spin_unlock(&ctx->event_wqh.lock); 1075 1076 if (signal_pending(current)) { 1077 ret = -ERESTARTSYS; 1078 break; 1079 } 1080 if (no_wait) { 1081 ret = -EAGAIN; 1082 break; 1083 } 1084 spin_unlock(&ctx->fd_wqh.lock); 1085 schedule(); 1086 spin_lock(&ctx->fd_wqh.lock); 1087 } 1088 __remove_wait_queue(&ctx->fd_wqh, &wait); 1089 __set_current_state(TASK_RUNNING); 1090 spin_unlock(&ctx->fd_wqh.lock); 1091 1092 if (!ret && msg->event == UFFD_EVENT_FORK) { 1093 ret = resolve_userfault_fork(ctx, fork_nctx, msg); 1094 1095 if (!ret) { 1096 spin_lock(&ctx->event_wqh.lock); 1097 if (!list_empty(&fork_event)) { 1098 uwq = list_first_entry(&fork_event, 1099 typeof(*uwq), 1100 wq.entry); 1101 list_del(&uwq->wq.entry); 1102 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1103 userfaultfd_event_complete(ctx, uwq); 1104 } 1105 spin_unlock(&ctx->event_wqh.lock); 1106 } 1107 } 1108 1109 return ret; 1110 } 1111 1112 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1113 size_t count, loff_t *ppos) 1114 { 1115 struct userfaultfd_ctx *ctx = file->private_data; 1116 ssize_t _ret, ret = 0; 1117 struct uffd_msg msg; 1118 int no_wait = file->f_flags & O_NONBLOCK; 1119 1120 if (ctx->state == UFFD_STATE_WAIT_API) 1121 return -EINVAL; 1122 1123 for (;;) { 1124 if (count < sizeof(msg)) 1125 return ret ? ret : -EINVAL; 1126 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); 1127 if (_ret < 0) 1128 return ret ? ret : _ret; 1129 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1130 return ret ? ret : -EFAULT; 1131 ret += sizeof(msg); 1132 buf += sizeof(msg); 1133 count -= sizeof(msg); 1134 /* 1135 * Allow to read more than one fault at time but only 1136 * block if waiting for the very first one. 1137 */ 1138 no_wait = O_NONBLOCK; 1139 } 1140 } 1141 1142 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1143 struct userfaultfd_wake_range *range) 1144 { 1145 spin_lock(&ctx->fault_pending_wqh.lock); 1146 /* wake all in the range and autoremove */ 1147 if (waitqueue_active(&ctx->fault_pending_wqh)) 1148 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1149 range); 1150 if (waitqueue_active(&ctx->fault_wqh)) 1151 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range); 1152 spin_unlock(&ctx->fault_pending_wqh.lock); 1153 } 1154 1155 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1156 struct userfaultfd_wake_range *range) 1157 { 1158 unsigned seq; 1159 bool need_wakeup; 1160 1161 /* 1162 * To be sure waitqueue_active() is not reordered by the CPU 1163 * before the pagetable update, use an explicit SMP memory 1164 * barrier here. PT lock release or up_read(mmap_sem) still 1165 * have release semantics that can allow the 1166 * waitqueue_active() to be reordered before the pte update. 1167 */ 1168 smp_mb(); 1169 1170 /* 1171 * Use waitqueue_active because it's very frequent to 1172 * change the address space atomically even if there are no 1173 * userfaults yet. So we take the spinlock only when we're 1174 * sure we've userfaults to wake. 1175 */ 1176 do { 1177 seq = read_seqcount_begin(&ctx->refile_seq); 1178 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1179 waitqueue_active(&ctx->fault_wqh); 1180 cond_resched(); 1181 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1182 if (need_wakeup) 1183 __wake_userfault(ctx, range); 1184 } 1185 1186 static __always_inline int validate_range(struct mm_struct *mm, 1187 __u64 start, __u64 len) 1188 { 1189 __u64 task_size = mm->task_size; 1190 1191 if (start & ~PAGE_MASK) 1192 return -EINVAL; 1193 if (len & ~PAGE_MASK) 1194 return -EINVAL; 1195 if (!len) 1196 return -EINVAL; 1197 if (start < mmap_min_addr) 1198 return -EINVAL; 1199 if (start >= task_size) 1200 return -EINVAL; 1201 if (len > task_size - start) 1202 return -EINVAL; 1203 return 0; 1204 } 1205 1206 static inline bool vma_can_userfault(struct vm_area_struct *vma) 1207 { 1208 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || 1209 vma_is_shmem(vma); 1210 } 1211 1212 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1213 unsigned long arg) 1214 { 1215 struct mm_struct *mm = ctx->mm; 1216 struct vm_area_struct *vma, *prev, *cur; 1217 int ret; 1218 struct uffdio_register uffdio_register; 1219 struct uffdio_register __user *user_uffdio_register; 1220 unsigned long vm_flags, new_flags; 1221 bool found; 1222 bool basic_ioctls; 1223 unsigned long start, end, vma_end; 1224 1225 user_uffdio_register = (struct uffdio_register __user *) arg; 1226 1227 ret = -EFAULT; 1228 if (copy_from_user(&uffdio_register, user_uffdio_register, 1229 sizeof(uffdio_register)-sizeof(__u64))) 1230 goto out; 1231 1232 ret = -EINVAL; 1233 if (!uffdio_register.mode) 1234 goto out; 1235 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| 1236 UFFDIO_REGISTER_MODE_WP)) 1237 goto out; 1238 vm_flags = 0; 1239 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1240 vm_flags |= VM_UFFD_MISSING; 1241 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1242 vm_flags |= VM_UFFD_WP; 1243 /* 1244 * FIXME: remove the below error constraint by 1245 * implementing the wprotect tracking mode. 1246 */ 1247 ret = -EINVAL; 1248 goto out; 1249 } 1250 1251 ret = validate_range(mm, uffdio_register.range.start, 1252 uffdio_register.range.len); 1253 if (ret) 1254 goto out; 1255 1256 start = uffdio_register.range.start; 1257 end = start + uffdio_register.range.len; 1258 1259 ret = -ENOMEM; 1260 if (!mmget_not_zero(mm)) 1261 goto out; 1262 1263 down_write(&mm->mmap_sem); 1264 vma = find_vma_prev(mm, start, &prev); 1265 if (!vma) 1266 goto out_unlock; 1267 1268 /* check that there's at least one vma in the range */ 1269 ret = -EINVAL; 1270 if (vma->vm_start >= end) 1271 goto out_unlock; 1272 1273 /* 1274 * If the first vma contains huge pages, make sure start address 1275 * is aligned to huge page size. 1276 */ 1277 if (is_vm_hugetlb_page(vma)) { 1278 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1279 1280 if (start & (vma_hpagesize - 1)) 1281 goto out_unlock; 1282 } 1283 1284 /* 1285 * Search for not compatible vmas. 1286 */ 1287 found = false; 1288 basic_ioctls = false; 1289 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1290 cond_resched(); 1291 1292 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1293 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1294 1295 /* check not compatible vmas */ 1296 ret = -EINVAL; 1297 if (!vma_can_userfault(cur)) 1298 goto out_unlock; 1299 /* 1300 * If this vma contains ending address, and huge pages 1301 * check alignment. 1302 */ 1303 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1304 end > cur->vm_start) { 1305 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1306 1307 ret = -EINVAL; 1308 1309 if (end & (vma_hpagesize - 1)) 1310 goto out_unlock; 1311 } 1312 1313 /* 1314 * Check that this vma isn't already owned by a 1315 * different userfaultfd. We can't allow more than one 1316 * userfaultfd to own a single vma simultaneously or we 1317 * wouldn't know which one to deliver the userfaults to. 1318 */ 1319 ret = -EBUSY; 1320 if (cur->vm_userfaultfd_ctx.ctx && 1321 cur->vm_userfaultfd_ctx.ctx != ctx) 1322 goto out_unlock; 1323 1324 /* 1325 * Note vmas containing huge pages 1326 */ 1327 if (is_vm_hugetlb_page(cur)) 1328 basic_ioctls = true; 1329 1330 found = true; 1331 } 1332 BUG_ON(!found); 1333 1334 if (vma->vm_start < start) 1335 prev = vma; 1336 1337 ret = 0; 1338 do { 1339 cond_resched(); 1340 1341 BUG_ON(!vma_can_userfault(vma)); 1342 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1343 vma->vm_userfaultfd_ctx.ctx != ctx); 1344 1345 /* 1346 * Nothing to do: this vma is already registered into this 1347 * userfaultfd and with the right tracking mode too. 1348 */ 1349 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1350 (vma->vm_flags & vm_flags) == vm_flags) 1351 goto skip; 1352 1353 if (vma->vm_start > start) 1354 start = vma->vm_start; 1355 vma_end = min(end, vma->vm_end); 1356 1357 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags; 1358 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1359 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1360 vma_policy(vma), 1361 ((struct vm_userfaultfd_ctx){ ctx })); 1362 if (prev) { 1363 vma = prev; 1364 goto next; 1365 } 1366 if (vma->vm_start < start) { 1367 ret = split_vma(mm, vma, start, 1); 1368 if (ret) 1369 break; 1370 } 1371 if (vma->vm_end > end) { 1372 ret = split_vma(mm, vma, end, 0); 1373 if (ret) 1374 break; 1375 } 1376 next: 1377 /* 1378 * In the vma_merge() successful mprotect-like case 8: 1379 * the next vma was merged into the current one and 1380 * the current one has not been updated yet. 1381 */ 1382 vma->vm_flags = new_flags; 1383 vma->vm_userfaultfd_ctx.ctx = ctx; 1384 1385 skip: 1386 prev = vma; 1387 start = vma->vm_end; 1388 vma = vma->vm_next; 1389 } while (vma && vma->vm_start < end); 1390 out_unlock: 1391 up_write(&mm->mmap_sem); 1392 mmput(mm); 1393 if (!ret) { 1394 /* 1395 * Now that we scanned all vmas we can already tell 1396 * userland which ioctls methods are guaranteed to 1397 * succeed on this range. 1398 */ 1399 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1400 UFFD_API_RANGE_IOCTLS, 1401 &user_uffdio_register->ioctls)) 1402 ret = -EFAULT; 1403 } 1404 out: 1405 return ret; 1406 } 1407 1408 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1409 unsigned long arg) 1410 { 1411 struct mm_struct *mm = ctx->mm; 1412 struct vm_area_struct *vma, *prev, *cur; 1413 int ret; 1414 struct uffdio_range uffdio_unregister; 1415 unsigned long new_flags; 1416 bool found; 1417 unsigned long start, end, vma_end; 1418 const void __user *buf = (void __user *)arg; 1419 1420 ret = -EFAULT; 1421 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1422 goto out; 1423 1424 ret = validate_range(mm, uffdio_unregister.start, 1425 uffdio_unregister.len); 1426 if (ret) 1427 goto out; 1428 1429 start = uffdio_unregister.start; 1430 end = start + uffdio_unregister.len; 1431 1432 ret = -ENOMEM; 1433 if (!mmget_not_zero(mm)) 1434 goto out; 1435 1436 down_write(&mm->mmap_sem); 1437 vma = find_vma_prev(mm, start, &prev); 1438 if (!vma) 1439 goto out_unlock; 1440 1441 /* check that there's at least one vma in the range */ 1442 ret = -EINVAL; 1443 if (vma->vm_start >= end) 1444 goto out_unlock; 1445 1446 /* 1447 * If the first vma contains huge pages, make sure start address 1448 * is aligned to huge page size. 1449 */ 1450 if (is_vm_hugetlb_page(vma)) { 1451 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1452 1453 if (start & (vma_hpagesize - 1)) 1454 goto out_unlock; 1455 } 1456 1457 /* 1458 * Search for not compatible vmas. 1459 */ 1460 found = false; 1461 ret = -EINVAL; 1462 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1463 cond_resched(); 1464 1465 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1466 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1467 1468 /* 1469 * Check not compatible vmas, not strictly required 1470 * here as not compatible vmas cannot have an 1471 * userfaultfd_ctx registered on them, but this 1472 * provides for more strict behavior to notice 1473 * unregistration errors. 1474 */ 1475 if (!vma_can_userfault(cur)) 1476 goto out_unlock; 1477 1478 found = true; 1479 } 1480 BUG_ON(!found); 1481 1482 if (vma->vm_start < start) 1483 prev = vma; 1484 1485 ret = 0; 1486 do { 1487 cond_resched(); 1488 1489 BUG_ON(!vma_can_userfault(vma)); 1490 1491 /* 1492 * Nothing to do: this vma is already registered into this 1493 * userfaultfd and with the right tracking mode too. 1494 */ 1495 if (!vma->vm_userfaultfd_ctx.ctx) 1496 goto skip; 1497 1498 if (vma->vm_start > start) 1499 start = vma->vm_start; 1500 vma_end = min(end, vma->vm_end); 1501 1502 if (userfaultfd_missing(vma)) { 1503 /* 1504 * Wake any concurrent pending userfault while 1505 * we unregister, so they will not hang 1506 * permanently and it avoids userland to call 1507 * UFFDIO_WAKE explicitly. 1508 */ 1509 struct userfaultfd_wake_range range; 1510 range.start = start; 1511 range.len = vma_end - start; 1512 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1513 } 1514 1515 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 1516 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1517 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1518 vma_policy(vma), 1519 NULL_VM_UFFD_CTX); 1520 if (prev) { 1521 vma = prev; 1522 goto next; 1523 } 1524 if (vma->vm_start < start) { 1525 ret = split_vma(mm, vma, start, 1); 1526 if (ret) 1527 break; 1528 } 1529 if (vma->vm_end > end) { 1530 ret = split_vma(mm, vma, end, 0); 1531 if (ret) 1532 break; 1533 } 1534 next: 1535 /* 1536 * In the vma_merge() successful mprotect-like case 8: 1537 * the next vma was merged into the current one and 1538 * the current one has not been updated yet. 1539 */ 1540 vma->vm_flags = new_flags; 1541 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1542 1543 skip: 1544 prev = vma; 1545 start = vma->vm_end; 1546 vma = vma->vm_next; 1547 } while (vma && vma->vm_start < end); 1548 out_unlock: 1549 up_write(&mm->mmap_sem); 1550 mmput(mm); 1551 out: 1552 return ret; 1553 } 1554 1555 /* 1556 * userfaultfd_wake may be used in combination with the 1557 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1558 */ 1559 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1560 unsigned long arg) 1561 { 1562 int ret; 1563 struct uffdio_range uffdio_wake; 1564 struct userfaultfd_wake_range range; 1565 const void __user *buf = (void __user *)arg; 1566 1567 ret = -EFAULT; 1568 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1569 goto out; 1570 1571 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1572 if (ret) 1573 goto out; 1574 1575 range.start = uffdio_wake.start; 1576 range.len = uffdio_wake.len; 1577 1578 /* 1579 * len == 0 means wake all and we don't want to wake all here, 1580 * so check it again to be sure. 1581 */ 1582 VM_BUG_ON(!range.len); 1583 1584 wake_userfault(ctx, &range); 1585 ret = 0; 1586 1587 out: 1588 return ret; 1589 } 1590 1591 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1592 unsigned long arg) 1593 { 1594 __s64 ret; 1595 struct uffdio_copy uffdio_copy; 1596 struct uffdio_copy __user *user_uffdio_copy; 1597 struct userfaultfd_wake_range range; 1598 1599 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1600 1601 ret = -EFAULT; 1602 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1603 /* don't copy "copy" last field */ 1604 sizeof(uffdio_copy)-sizeof(__s64))) 1605 goto out; 1606 1607 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1608 if (ret) 1609 goto out; 1610 /* 1611 * double check for wraparound just in case. copy_from_user() 1612 * will later check uffdio_copy.src + uffdio_copy.len to fit 1613 * in the userland range. 1614 */ 1615 ret = -EINVAL; 1616 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1617 goto out; 1618 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) 1619 goto out; 1620 if (mmget_not_zero(ctx->mm)) { 1621 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1622 uffdio_copy.len); 1623 mmput(ctx->mm); 1624 } else { 1625 return -ESRCH; 1626 } 1627 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1628 return -EFAULT; 1629 if (ret < 0) 1630 goto out; 1631 BUG_ON(!ret); 1632 /* len == 0 would wake all */ 1633 range.len = ret; 1634 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1635 range.start = uffdio_copy.dst; 1636 wake_userfault(ctx, &range); 1637 } 1638 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1639 out: 1640 return ret; 1641 } 1642 1643 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1644 unsigned long arg) 1645 { 1646 __s64 ret; 1647 struct uffdio_zeropage uffdio_zeropage; 1648 struct uffdio_zeropage __user *user_uffdio_zeropage; 1649 struct userfaultfd_wake_range range; 1650 1651 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1652 1653 ret = -EFAULT; 1654 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1655 /* don't copy "zeropage" last field */ 1656 sizeof(uffdio_zeropage)-sizeof(__s64))) 1657 goto out; 1658 1659 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1660 uffdio_zeropage.range.len); 1661 if (ret) 1662 goto out; 1663 ret = -EINVAL; 1664 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1665 goto out; 1666 1667 if (mmget_not_zero(ctx->mm)) { 1668 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1669 uffdio_zeropage.range.len); 1670 mmput(ctx->mm); 1671 } else { 1672 return -ESRCH; 1673 } 1674 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1675 return -EFAULT; 1676 if (ret < 0) 1677 goto out; 1678 /* len == 0 would wake all */ 1679 BUG_ON(!ret); 1680 range.len = ret; 1681 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1682 range.start = uffdio_zeropage.range.start; 1683 wake_userfault(ctx, &range); 1684 } 1685 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1686 out: 1687 return ret; 1688 } 1689 1690 static inline unsigned int uffd_ctx_features(__u64 user_features) 1691 { 1692 /* 1693 * For the current set of features the bits just coincide 1694 */ 1695 return (unsigned int)user_features; 1696 } 1697 1698 /* 1699 * userland asks for a certain API version and we return which bits 1700 * and ioctl commands are implemented in this kernel for such API 1701 * version or -EINVAL if unknown. 1702 */ 1703 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1704 unsigned long arg) 1705 { 1706 struct uffdio_api uffdio_api; 1707 void __user *buf = (void __user *)arg; 1708 int ret; 1709 __u64 features; 1710 1711 ret = -EINVAL; 1712 if (ctx->state != UFFD_STATE_WAIT_API) 1713 goto out; 1714 ret = -EFAULT; 1715 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1716 goto out; 1717 features = uffdio_api.features; 1718 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) { 1719 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1720 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1721 goto out; 1722 ret = -EINVAL; 1723 goto out; 1724 } 1725 /* report all available features and ioctls to userland */ 1726 uffdio_api.features = UFFD_API_FEATURES; 1727 uffdio_api.ioctls = UFFD_API_IOCTLS; 1728 ret = -EFAULT; 1729 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1730 goto out; 1731 ctx->state = UFFD_STATE_RUNNING; 1732 /* only enable the requested features for this uffd context */ 1733 ctx->features = uffd_ctx_features(features); 1734 ret = 0; 1735 out: 1736 return ret; 1737 } 1738 1739 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1740 unsigned long arg) 1741 { 1742 int ret = -EINVAL; 1743 struct userfaultfd_ctx *ctx = file->private_data; 1744 1745 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) 1746 return -EINVAL; 1747 1748 switch(cmd) { 1749 case UFFDIO_API: 1750 ret = userfaultfd_api(ctx, arg); 1751 break; 1752 case UFFDIO_REGISTER: 1753 ret = userfaultfd_register(ctx, arg); 1754 break; 1755 case UFFDIO_UNREGISTER: 1756 ret = userfaultfd_unregister(ctx, arg); 1757 break; 1758 case UFFDIO_WAKE: 1759 ret = userfaultfd_wake(ctx, arg); 1760 break; 1761 case UFFDIO_COPY: 1762 ret = userfaultfd_copy(ctx, arg); 1763 break; 1764 case UFFDIO_ZEROPAGE: 1765 ret = userfaultfd_zeropage(ctx, arg); 1766 break; 1767 } 1768 return ret; 1769 } 1770 1771 #ifdef CONFIG_PROC_FS 1772 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 1773 { 1774 struct userfaultfd_ctx *ctx = f->private_data; 1775 wait_queue_entry_t *wq; 1776 struct userfaultfd_wait_queue *uwq; 1777 unsigned long pending = 0, total = 0; 1778 1779 spin_lock(&ctx->fault_pending_wqh.lock); 1780 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 1781 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 1782 pending++; 1783 total++; 1784 } 1785 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 1786 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 1787 total++; 1788 } 1789 spin_unlock(&ctx->fault_pending_wqh.lock); 1790 1791 /* 1792 * If more protocols will be added, there will be all shown 1793 * separated by a space. Like this: 1794 * protocols: aa:... bb:... 1795 */ 1796 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 1797 pending, total, UFFD_API, ctx->features, 1798 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 1799 } 1800 #endif 1801 1802 static const struct file_operations userfaultfd_fops = { 1803 #ifdef CONFIG_PROC_FS 1804 .show_fdinfo = userfaultfd_show_fdinfo, 1805 #endif 1806 .release = userfaultfd_release, 1807 .poll = userfaultfd_poll, 1808 .read = userfaultfd_read, 1809 .unlocked_ioctl = userfaultfd_ioctl, 1810 .compat_ioctl = userfaultfd_ioctl, 1811 .llseek = noop_llseek, 1812 }; 1813 1814 static void init_once_userfaultfd_ctx(void *mem) 1815 { 1816 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 1817 1818 init_waitqueue_head(&ctx->fault_pending_wqh); 1819 init_waitqueue_head(&ctx->fault_wqh); 1820 init_waitqueue_head(&ctx->event_wqh); 1821 init_waitqueue_head(&ctx->fd_wqh); 1822 seqcount_init(&ctx->refile_seq); 1823 } 1824 1825 /** 1826 * userfaultfd_file_create - Creates a userfaultfd file pointer. 1827 * @flags: Flags for the userfaultfd file. 1828 * 1829 * This function creates a userfaultfd file pointer, w/out installing 1830 * it into the fd table. This is useful when the userfaultfd file is 1831 * used during the initialization of data structures that require 1832 * extra setup after the userfaultfd creation. So the userfaultfd 1833 * creation is split into the file pointer creation phase, and the 1834 * file descriptor installation phase. In this way races with 1835 * userspace closing the newly installed file descriptor can be 1836 * avoided. Returns a userfaultfd file pointer, or a proper error 1837 * pointer. 1838 */ 1839 static struct file *userfaultfd_file_create(int flags) 1840 { 1841 struct file *file; 1842 struct userfaultfd_ctx *ctx; 1843 1844 BUG_ON(!current->mm); 1845 1846 /* Check the UFFD_* constants for consistency. */ 1847 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 1848 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 1849 1850 file = ERR_PTR(-EINVAL); 1851 if (flags & ~UFFD_SHARED_FCNTL_FLAGS) 1852 goto out; 1853 1854 file = ERR_PTR(-ENOMEM); 1855 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 1856 if (!ctx) 1857 goto out; 1858 1859 atomic_set(&ctx->refcount, 1); 1860 ctx->flags = flags; 1861 ctx->features = 0; 1862 ctx->state = UFFD_STATE_WAIT_API; 1863 ctx->released = false; 1864 ctx->mm = current->mm; 1865 /* prevent the mm struct to be freed */ 1866 mmgrab(ctx->mm); 1867 1868 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx, 1869 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); 1870 if (IS_ERR(file)) { 1871 mmdrop(ctx->mm); 1872 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 1873 } 1874 out: 1875 return file; 1876 } 1877 1878 SYSCALL_DEFINE1(userfaultfd, int, flags) 1879 { 1880 int fd, error; 1881 struct file *file; 1882 1883 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS); 1884 if (error < 0) 1885 return error; 1886 fd = error; 1887 1888 file = userfaultfd_file_create(flags); 1889 if (IS_ERR(file)) { 1890 error = PTR_ERR(file); 1891 goto err_put_unused_fd; 1892 } 1893 fd_install(fd, file); 1894 1895 return fd; 1896 1897 err_put_unused_fd: 1898 put_unused_fd(fd); 1899 1900 return error; 1901 } 1902 1903 static int __init userfaultfd_init(void) 1904 { 1905 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 1906 sizeof(struct userfaultfd_ctx), 1907 0, 1908 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 1909 init_once_userfaultfd_ctx); 1910 return 0; 1911 } 1912 __initcall(userfaultfd_init); 1913