xref: /openbmc/linux/fs/userfaultfd.c (revision 711aab1d)
1 /*
2  *  fs/userfaultfd.c
3  *
4  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
5  *  Copyright (C) 2008-2009 Red Hat, Inc.
6  *  Copyright (C) 2015  Red Hat, Inc.
7  *
8  *  This work is licensed under the terms of the GNU GPL, version 2. See
9  *  the COPYING file in the top-level directory.
10  *
11  *  Some part derived from fs/eventfd.c (anon inode setup) and
12  *  mm/ksm.c (mm hashing).
13  */
14 
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34 
35 enum userfaultfd_state {
36 	UFFD_STATE_WAIT_API,
37 	UFFD_STATE_RUNNING,
38 };
39 
40 /*
41  * Start with fault_pending_wqh and fault_wqh so they're more likely
42  * to be in the same cacheline.
43  */
44 struct userfaultfd_ctx {
45 	/* waitqueue head for the pending (i.e. not read) userfaults */
46 	wait_queue_head_t fault_pending_wqh;
47 	/* waitqueue head for the userfaults */
48 	wait_queue_head_t fault_wqh;
49 	/* waitqueue head for the pseudo fd to wakeup poll/read */
50 	wait_queue_head_t fd_wqh;
51 	/* waitqueue head for events */
52 	wait_queue_head_t event_wqh;
53 	/* a refile sequence protected by fault_pending_wqh lock */
54 	struct seqcount refile_seq;
55 	/* pseudo fd refcounting */
56 	atomic_t refcount;
57 	/* userfaultfd syscall flags */
58 	unsigned int flags;
59 	/* features requested from the userspace */
60 	unsigned int features;
61 	/* state machine */
62 	enum userfaultfd_state state;
63 	/* released */
64 	bool released;
65 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
66 	struct mm_struct *mm;
67 };
68 
69 struct userfaultfd_fork_ctx {
70 	struct userfaultfd_ctx *orig;
71 	struct userfaultfd_ctx *new;
72 	struct list_head list;
73 };
74 
75 struct userfaultfd_unmap_ctx {
76 	struct userfaultfd_ctx *ctx;
77 	unsigned long start;
78 	unsigned long end;
79 	struct list_head list;
80 };
81 
82 struct userfaultfd_wait_queue {
83 	struct uffd_msg msg;
84 	wait_queue_entry_t wq;
85 	struct userfaultfd_ctx *ctx;
86 	bool waken;
87 };
88 
89 struct userfaultfd_wake_range {
90 	unsigned long start;
91 	unsigned long len;
92 };
93 
94 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
95 				     int wake_flags, void *key)
96 {
97 	struct userfaultfd_wake_range *range = key;
98 	int ret;
99 	struct userfaultfd_wait_queue *uwq;
100 	unsigned long start, len;
101 
102 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
103 	ret = 0;
104 	/* len == 0 means wake all */
105 	start = range->start;
106 	len = range->len;
107 	if (len && (start > uwq->msg.arg.pagefault.address ||
108 		    start + len <= uwq->msg.arg.pagefault.address))
109 		goto out;
110 	WRITE_ONCE(uwq->waken, true);
111 	/*
112 	 * The Program-Order guarantees provided by the scheduler
113 	 * ensure uwq->waken is visible before the task is woken.
114 	 */
115 	ret = wake_up_state(wq->private, mode);
116 	if (ret) {
117 		/*
118 		 * Wake only once, autoremove behavior.
119 		 *
120 		 * After the effect of list_del_init is visible to the other
121 		 * CPUs, the waitqueue may disappear from under us, see the
122 		 * !list_empty_careful() in handle_userfault().
123 		 *
124 		 * try_to_wake_up() has an implicit smp_mb(), and the
125 		 * wq->private is read before calling the extern function
126 		 * "wake_up_state" (which in turns calls try_to_wake_up).
127 		 */
128 		list_del_init(&wq->entry);
129 	}
130 out:
131 	return ret;
132 }
133 
134 /**
135  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
136  * context.
137  * @ctx: [in] Pointer to the userfaultfd context.
138  */
139 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
140 {
141 	if (!atomic_inc_not_zero(&ctx->refcount))
142 		BUG();
143 }
144 
145 /**
146  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
147  * context.
148  * @ctx: [in] Pointer to userfaultfd context.
149  *
150  * The userfaultfd context reference must have been previously acquired either
151  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
152  */
153 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
154 {
155 	if (atomic_dec_and_test(&ctx->refcount)) {
156 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
157 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
158 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
159 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
160 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
161 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
162 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
163 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
164 		mmdrop(ctx->mm);
165 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
166 	}
167 }
168 
169 static inline void msg_init(struct uffd_msg *msg)
170 {
171 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
172 	/*
173 	 * Must use memset to zero out the paddings or kernel data is
174 	 * leaked to userland.
175 	 */
176 	memset(msg, 0, sizeof(struct uffd_msg));
177 }
178 
179 static inline struct uffd_msg userfault_msg(unsigned long address,
180 					    unsigned int flags,
181 					    unsigned long reason,
182 					    unsigned int features)
183 {
184 	struct uffd_msg msg;
185 	msg_init(&msg);
186 	msg.event = UFFD_EVENT_PAGEFAULT;
187 	msg.arg.pagefault.address = address;
188 	if (flags & FAULT_FLAG_WRITE)
189 		/*
190 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
191 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
192 		 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
193 		 * was a read fault, otherwise if set it means it's
194 		 * a write fault.
195 		 */
196 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
197 	if (reason & VM_UFFD_WP)
198 		/*
199 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
200 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
201 		 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
202 		 * a missing fault, otherwise if set it means it's a
203 		 * write protect fault.
204 		 */
205 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
206 	if (features & UFFD_FEATURE_THREAD_ID)
207 		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
208 	return msg;
209 }
210 
211 #ifdef CONFIG_HUGETLB_PAGE
212 /*
213  * Same functionality as userfaultfd_must_wait below with modifications for
214  * hugepmd ranges.
215  */
216 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
217 					 struct vm_area_struct *vma,
218 					 unsigned long address,
219 					 unsigned long flags,
220 					 unsigned long reason)
221 {
222 	struct mm_struct *mm = ctx->mm;
223 	pte_t *pte;
224 	bool ret = true;
225 
226 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
227 
228 	pte = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
229 	if (!pte)
230 		goto out;
231 
232 	ret = false;
233 
234 	/*
235 	 * Lockless access: we're in a wait_event so it's ok if it
236 	 * changes under us.
237 	 */
238 	if (huge_pte_none(*pte))
239 		ret = true;
240 	if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP))
241 		ret = true;
242 out:
243 	return ret;
244 }
245 #else
246 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
247 					 struct vm_area_struct *vma,
248 					 unsigned long address,
249 					 unsigned long flags,
250 					 unsigned long reason)
251 {
252 	return false;	/* should never get here */
253 }
254 #endif /* CONFIG_HUGETLB_PAGE */
255 
256 /*
257  * Verify the pagetables are still not ok after having reigstered into
258  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
259  * userfault that has already been resolved, if userfaultfd_read and
260  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
261  * threads.
262  */
263 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
264 					 unsigned long address,
265 					 unsigned long flags,
266 					 unsigned long reason)
267 {
268 	struct mm_struct *mm = ctx->mm;
269 	pgd_t *pgd;
270 	p4d_t *p4d;
271 	pud_t *pud;
272 	pmd_t *pmd, _pmd;
273 	pte_t *pte;
274 	bool ret = true;
275 
276 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
277 
278 	pgd = pgd_offset(mm, address);
279 	if (!pgd_present(*pgd))
280 		goto out;
281 	p4d = p4d_offset(pgd, address);
282 	if (!p4d_present(*p4d))
283 		goto out;
284 	pud = pud_offset(p4d, address);
285 	if (!pud_present(*pud))
286 		goto out;
287 	pmd = pmd_offset(pud, address);
288 	/*
289 	 * READ_ONCE must function as a barrier with narrower scope
290 	 * and it must be equivalent to:
291 	 *	_pmd = *pmd; barrier();
292 	 *
293 	 * This is to deal with the instability (as in
294 	 * pmd_trans_unstable) of the pmd.
295 	 */
296 	_pmd = READ_ONCE(*pmd);
297 	if (!pmd_present(_pmd))
298 		goto out;
299 
300 	ret = false;
301 	if (pmd_trans_huge(_pmd))
302 		goto out;
303 
304 	/*
305 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
306 	 * and use the standard pte_offset_map() instead of parsing _pmd.
307 	 */
308 	pte = pte_offset_map(pmd, address);
309 	/*
310 	 * Lockless access: we're in a wait_event so it's ok if it
311 	 * changes under us.
312 	 */
313 	if (pte_none(*pte))
314 		ret = true;
315 	pte_unmap(pte);
316 
317 out:
318 	return ret;
319 }
320 
321 /*
322  * The locking rules involved in returning VM_FAULT_RETRY depending on
323  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
324  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
325  * recommendation in __lock_page_or_retry is not an understatement.
326  *
327  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
328  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
329  * not set.
330  *
331  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
332  * set, VM_FAULT_RETRY can still be returned if and only if there are
333  * fatal_signal_pending()s, and the mmap_sem must be released before
334  * returning it.
335  */
336 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
337 {
338 	struct mm_struct *mm = vmf->vma->vm_mm;
339 	struct userfaultfd_ctx *ctx;
340 	struct userfaultfd_wait_queue uwq;
341 	int ret;
342 	bool must_wait, return_to_userland;
343 	long blocking_state;
344 
345 	ret = VM_FAULT_SIGBUS;
346 
347 	/*
348 	 * We don't do userfault handling for the final child pid update.
349 	 *
350 	 * We also don't do userfault handling during
351 	 * coredumping. hugetlbfs has the special
352 	 * follow_hugetlb_page() to skip missing pages in the
353 	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
354 	 * the no_page_table() helper in follow_page_mask(), but the
355 	 * shmem_vm_ops->fault method is invoked even during
356 	 * coredumping without mmap_sem and it ends up here.
357 	 */
358 	if (current->flags & (PF_EXITING|PF_DUMPCORE))
359 		goto out;
360 
361 	/*
362 	 * Coredumping runs without mmap_sem so we can only check that
363 	 * the mmap_sem is held, if PF_DUMPCORE was not set.
364 	 */
365 	WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
366 
367 	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
368 	if (!ctx)
369 		goto out;
370 
371 	BUG_ON(ctx->mm != mm);
372 
373 	VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
374 	VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
375 
376 	if (ctx->features & UFFD_FEATURE_SIGBUS)
377 		goto out;
378 
379 	/*
380 	 * If it's already released don't get it. This avoids to loop
381 	 * in __get_user_pages if userfaultfd_release waits on the
382 	 * caller of handle_userfault to release the mmap_sem.
383 	 */
384 	if (unlikely(ACCESS_ONCE(ctx->released))) {
385 		/*
386 		 * Don't return VM_FAULT_SIGBUS in this case, so a non
387 		 * cooperative manager can close the uffd after the
388 		 * last UFFDIO_COPY, without risking to trigger an
389 		 * involuntary SIGBUS if the process was starting the
390 		 * userfaultfd while the userfaultfd was still armed
391 		 * (but after the last UFFDIO_COPY). If the uffd
392 		 * wasn't already closed when the userfault reached
393 		 * this point, that would normally be solved by
394 		 * userfaultfd_must_wait returning 'false'.
395 		 *
396 		 * If we were to return VM_FAULT_SIGBUS here, the non
397 		 * cooperative manager would be instead forced to
398 		 * always call UFFDIO_UNREGISTER before it can safely
399 		 * close the uffd.
400 		 */
401 		ret = VM_FAULT_NOPAGE;
402 		goto out;
403 	}
404 
405 	/*
406 	 * Check that we can return VM_FAULT_RETRY.
407 	 *
408 	 * NOTE: it should become possible to return VM_FAULT_RETRY
409 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
410 	 * -EBUSY failures, if the userfaultfd is to be extended for
411 	 * VM_UFFD_WP tracking and we intend to arm the userfault
412 	 * without first stopping userland access to the memory. For
413 	 * VM_UFFD_MISSING userfaults this is enough for now.
414 	 */
415 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
416 		/*
417 		 * Validate the invariant that nowait must allow retry
418 		 * to be sure not to return SIGBUS erroneously on
419 		 * nowait invocations.
420 		 */
421 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
422 #ifdef CONFIG_DEBUG_VM
423 		if (printk_ratelimit()) {
424 			printk(KERN_WARNING
425 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
426 			       vmf->flags);
427 			dump_stack();
428 		}
429 #endif
430 		goto out;
431 	}
432 
433 	/*
434 	 * Handle nowait, not much to do other than tell it to retry
435 	 * and wait.
436 	 */
437 	ret = VM_FAULT_RETRY;
438 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
439 		goto out;
440 
441 	/* take the reference before dropping the mmap_sem */
442 	userfaultfd_ctx_get(ctx);
443 
444 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
445 	uwq.wq.private = current;
446 	uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
447 			ctx->features);
448 	uwq.ctx = ctx;
449 	uwq.waken = false;
450 
451 	return_to_userland =
452 		(vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
453 		(FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
454 	blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
455 			 TASK_KILLABLE;
456 
457 	spin_lock(&ctx->fault_pending_wqh.lock);
458 	/*
459 	 * After the __add_wait_queue the uwq is visible to userland
460 	 * through poll/read().
461 	 */
462 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
463 	/*
464 	 * The smp_mb() after __set_current_state prevents the reads
465 	 * following the spin_unlock to happen before the list_add in
466 	 * __add_wait_queue.
467 	 */
468 	set_current_state(blocking_state);
469 	spin_unlock(&ctx->fault_pending_wqh.lock);
470 
471 	if (!is_vm_hugetlb_page(vmf->vma))
472 		must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
473 						  reason);
474 	else
475 		must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
476 						       vmf->address,
477 						       vmf->flags, reason);
478 	up_read(&mm->mmap_sem);
479 
480 	if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
481 		   (return_to_userland ? !signal_pending(current) :
482 		    !fatal_signal_pending(current)))) {
483 		wake_up_poll(&ctx->fd_wqh, POLLIN);
484 		schedule();
485 		ret |= VM_FAULT_MAJOR;
486 
487 		/*
488 		 * False wakeups can orginate even from rwsem before
489 		 * up_read() however userfaults will wait either for a
490 		 * targeted wakeup on the specific uwq waitqueue from
491 		 * wake_userfault() or for signals or for uffd
492 		 * release.
493 		 */
494 		while (!READ_ONCE(uwq.waken)) {
495 			/*
496 			 * This needs the full smp_store_mb()
497 			 * guarantee as the state write must be
498 			 * visible to other CPUs before reading
499 			 * uwq.waken from other CPUs.
500 			 */
501 			set_current_state(blocking_state);
502 			if (READ_ONCE(uwq.waken) ||
503 			    READ_ONCE(ctx->released) ||
504 			    (return_to_userland ? signal_pending(current) :
505 			     fatal_signal_pending(current)))
506 				break;
507 			schedule();
508 		}
509 	}
510 
511 	__set_current_state(TASK_RUNNING);
512 
513 	if (return_to_userland) {
514 		if (signal_pending(current) &&
515 		    !fatal_signal_pending(current)) {
516 			/*
517 			 * If we got a SIGSTOP or SIGCONT and this is
518 			 * a normal userland page fault, just let
519 			 * userland return so the signal will be
520 			 * handled and gdb debugging works.  The page
521 			 * fault code immediately after we return from
522 			 * this function is going to release the
523 			 * mmap_sem and it's not depending on it
524 			 * (unlike gup would if we were not to return
525 			 * VM_FAULT_RETRY).
526 			 *
527 			 * If a fatal signal is pending we still take
528 			 * the streamlined VM_FAULT_RETRY failure path
529 			 * and there's no need to retake the mmap_sem
530 			 * in such case.
531 			 */
532 			down_read(&mm->mmap_sem);
533 			ret = VM_FAULT_NOPAGE;
534 		}
535 	}
536 
537 	/*
538 	 * Here we race with the list_del; list_add in
539 	 * userfaultfd_ctx_read(), however because we don't ever run
540 	 * list_del_init() to refile across the two lists, the prev
541 	 * and next pointers will never point to self. list_add also
542 	 * would never let any of the two pointers to point to
543 	 * self. So list_empty_careful won't risk to see both pointers
544 	 * pointing to self at any time during the list refile. The
545 	 * only case where list_del_init() is called is the full
546 	 * removal in the wake function and there we don't re-list_add
547 	 * and it's fine not to block on the spinlock. The uwq on this
548 	 * kernel stack can be released after the list_del_init.
549 	 */
550 	if (!list_empty_careful(&uwq.wq.entry)) {
551 		spin_lock(&ctx->fault_pending_wqh.lock);
552 		/*
553 		 * No need of list_del_init(), the uwq on the stack
554 		 * will be freed shortly anyway.
555 		 */
556 		list_del(&uwq.wq.entry);
557 		spin_unlock(&ctx->fault_pending_wqh.lock);
558 	}
559 
560 	/*
561 	 * ctx may go away after this if the userfault pseudo fd is
562 	 * already released.
563 	 */
564 	userfaultfd_ctx_put(ctx);
565 
566 out:
567 	return ret;
568 }
569 
570 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
571 					      struct userfaultfd_wait_queue *ewq)
572 {
573 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
574 		goto out;
575 
576 	ewq->ctx = ctx;
577 	init_waitqueue_entry(&ewq->wq, current);
578 
579 	spin_lock(&ctx->event_wqh.lock);
580 	/*
581 	 * After the __add_wait_queue the uwq is visible to userland
582 	 * through poll/read().
583 	 */
584 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
585 	for (;;) {
586 		set_current_state(TASK_KILLABLE);
587 		if (ewq->msg.event == 0)
588 			break;
589 		if (ACCESS_ONCE(ctx->released) ||
590 		    fatal_signal_pending(current)) {
591 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
592 			if (ewq->msg.event == UFFD_EVENT_FORK) {
593 				struct userfaultfd_ctx *new;
594 
595 				new = (struct userfaultfd_ctx *)
596 					(unsigned long)
597 					ewq->msg.arg.reserved.reserved1;
598 
599 				userfaultfd_ctx_put(new);
600 			}
601 			break;
602 		}
603 
604 		spin_unlock(&ctx->event_wqh.lock);
605 
606 		wake_up_poll(&ctx->fd_wqh, POLLIN);
607 		schedule();
608 
609 		spin_lock(&ctx->event_wqh.lock);
610 	}
611 	__set_current_state(TASK_RUNNING);
612 	spin_unlock(&ctx->event_wqh.lock);
613 
614 	/*
615 	 * ctx may go away after this if the userfault pseudo fd is
616 	 * already released.
617 	 */
618 out:
619 	userfaultfd_ctx_put(ctx);
620 }
621 
622 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
623 				       struct userfaultfd_wait_queue *ewq)
624 {
625 	ewq->msg.event = 0;
626 	wake_up_locked(&ctx->event_wqh);
627 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
628 }
629 
630 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
631 {
632 	struct userfaultfd_ctx *ctx = NULL, *octx;
633 	struct userfaultfd_fork_ctx *fctx;
634 
635 	octx = vma->vm_userfaultfd_ctx.ctx;
636 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
637 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
638 		vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
639 		return 0;
640 	}
641 
642 	list_for_each_entry(fctx, fcs, list)
643 		if (fctx->orig == octx) {
644 			ctx = fctx->new;
645 			break;
646 		}
647 
648 	if (!ctx) {
649 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
650 		if (!fctx)
651 			return -ENOMEM;
652 
653 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
654 		if (!ctx) {
655 			kfree(fctx);
656 			return -ENOMEM;
657 		}
658 
659 		atomic_set(&ctx->refcount, 1);
660 		ctx->flags = octx->flags;
661 		ctx->state = UFFD_STATE_RUNNING;
662 		ctx->features = octx->features;
663 		ctx->released = false;
664 		ctx->mm = vma->vm_mm;
665 		atomic_inc(&ctx->mm->mm_count);
666 
667 		userfaultfd_ctx_get(octx);
668 		fctx->orig = octx;
669 		fctx->new = ctx;
670 		list_add_tail(&fctx->list, fcs);
671 	}
672 
673 	vma->vm_userfaultfd_ctx.ctx = ctx;
674 	return 0;
675 }
676 
677 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
678 {
679 	struct userfaultfd_ctx *ctx = fctx->orig;
680 	struct userfaultfd_wait_queue ewq;
681 
682 	msg_init(&ewq.msg);
683 
684 	ewq.msg.event = UFFD_EVENT_FORK;
685 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
686 
687 	userfaultfd_event_wait_completion(ctx, &ewq);
688 }
689 
690 void dup_userfaultfd_complete(struct list_head *fcs)
691 {
692 	struct userfaultfd_fork_ctx *fctx, *n;
693 
694 	list_for_each_entry_safe(fctx, n, fcs, list) {
695 		dup_fctx(fctx);
696 		list_del(&fctx->list);
697 		kfree(fctx);
698 	}
699 }
700 
701 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
702 			     struct vm_userfaultfd_ctx *vm_ctx)
703 {
704 	struct userfaultfd_ctx *ctx;
705 
706 	ctx = vma->vm_userfaultfd_ctx.ctx;
707 	if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
708 		vm_ctx->ctx = ctx;
709 		userfaultfd_ctx_get(ctx);
710 	}
711 }
712 
713 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
714 				 unsigned long from, unsigned long to,
715 				 unsigned long len)
716 {
717 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
718 	struct userfaultfd_wait_queue ewq;
719 
720 	if (!ctx)
721 		return;
722 
723 	if (to & ~PAGE_MASK) {
724 		userfaultfd_ctx_put(ctx);
725 		return;
726 	}
727 
728 	msg_init(&ewq.msg);
729 
730 	ewq.msg.event = UFFD_EVENT_REMAP;
731 	ewq.msg.arg.remap.from = from;
732 	ewq.msg.arg.remap.to = to;
733 	ewq.msg.arg.remap.len = len;
734 
735 	userfaultfd_event_wait_completion(ctx, &ewq);
736 }
737 
738 bool userfaultfd_remove(struct vm_area_struct *vma,
739 			unsigned long start, unsigned long end)
740 {
741 	struct mm_struct *mm = vma->vm_mm;
742 	struct userfaultfd_ctx *ctx;
743 	struct userfaultfd_wait_queue ewq;
744 
745 	ctx = vma->vm_userfaultfd_ctx.ctx;
746 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
747 		return true;
748 
749 	userfaultfd_ctx_get(ctx);
750 	up_read(&mm->mmap_sem);
751 
752 	msg_init(&ewq.msg);
753 
754 	ewq.msg.event = UFFD_EVENT_REMOVE;
755 	ewq.msg.arg.remove.start = start;
756 	ewq.msg.arg.remove.end = end;
757 
758 	userfaultfd_event_wait_completion(ctx, &ewq);
759 
760 	return false;
761 }
762 
763 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
764 			  unsigned long start, unsigned long end)
765 {
766 	struct userfaultfd_unmap_ctx *unmap_ctx;
767 
768 	list_for_each_entry(unmap_ctx, unmaps, list)
769 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
770 		    unmap_ctx->end == end)
771 			return true;
772 
773 	return false;
774 }
775 
776 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
777 			   unsigned long start, unsigned long end,
778 			   struct list_head *unmaps)
779 {
780 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
781 		struct userfaultfd_unmap_ctx *unmap_ctx;
782 		struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
783 
784 		if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
785 		    has_unmap_ctx(ctx, unmaps, start, end))
786 			continue;
787 
788 		unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
789 		if (!unmap_ctx)
790 			return -ENOMEM;
791 
792 		userfaultfd_ctx_get(ctx);
793 		unmap_ctx->ctx = ctx;
794 		unmap_ctx->start = start;
795 		unmap_ctx->end = end;
796 		list_add_tail(&unmap_ctx->list, unmaps);
797 	}
798 
799 	return 0;
800 }
801 
802 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
803 {
804 	struct userfaultfd_unmap_ctx *ctx, *n;
805 	struct userfaultfd_wait_queue ewq;
806 
807 	list_for_each_entry_safe(ctx, n, uf, list) {
808 		msg_init(&ewq.msg);
809 
810 		ewq.msg.event = UFFD_EVENT_UNMAP;
811 		ewq.msg.arg.remove.start = ctx->start;
812 		ewq.msg.arg.remove.end = ctx->end;
813 
814 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
815 
816 		list_del(&ctx->list);
817 		kfree(ctx);
818 	}
819 }
820 
821 static int userfaultfd_release(struct inode *inode, struct file *file)
822 {
823 	struct userfaultfd_ctx *ctx = file->private_data;
824 	struct mm_struct *mm = ctx->mm;
825 	struct vm_area_struct *vma, *prev;
826 	/* len == 0 means wake all */
827 	struct userfaultfd_wake_range range = { .len = 0, };
828 	unsigned long new_flags;
829 
830 	ACCESS_ONCE(ctx->released) = true;
831 
832 	if (!mmget_not_zero(mm))
833 		goto wakeup;
834 
835 	/*
836 	 * Flush page faults out of all CPUs. NOTE: all page faults
837 	 * must be retried without returning VM_FAULT_SIGBUS if
838 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
839 	 * changes while handle_userfault released the mmap_sem. So
840 	 * it's critical that released is set to true (above), before
841 	 * taking the mmap_sem for writing.
842 	 */
843 	down_write(&mm->mmap_sem);
844 	prev = NULL;
845 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
846 		cond_resched();
847 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
848 		       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
849 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
850 			prev = vma;
851 			continue;
852 		}
853 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
854 		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
855 				 new_flags, vma->anon_vma,
856 				 vma->vm_file, vma->vm_pgoff,
857 				 vma_policy(vma),
858 				 NULL_VM_UFFD_CTX);
859 		if (prev)
860 			vma = prev;
861 		else
862 			prev = vma;
863 		vma->vm_flags = new_flags;
864 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
865 	}
866 	up_write(&mm->mmap_sem);
867 	mmput(mm);
868 wakeup:
869 	/*
870 	 * After no new page faults can wait on this fault_*wqh, flush
871 	 * the last page faults that may have been already waiting on
872 	 * the fault_*wqh.
873 	 */
874 	spin_lock(&ctx->fault_pending_wqh.lock);
875 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
876 	__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
877 	spin_unlock(&ctx->fault_pending_wqh.lock);
878 
879 	/* Flush pending events that may still wait on event_wqh */
880 	wake_up_all(&ctx->event_wqh);
881 
882 	wake_up_poll(&ctx->fd_wqh, POLLHUP);
883 	userfaultfd_ctx_put(ctx);
884 	return 0;
885 }
886 
887 /* fault_pending_wqh.lock must be hold by the caller */
888 static inline struct userfaultfd_wait_queue *find_userfault_in(
889 		wait_queue_head_t *wqh)
890 {
891 	wait_queue_entry_t *wq;
892 	struct userfaultfd_wait_queue *uwq;
893 
894 	VM_BUG_ON(!spin_is_locked(&wqh->lock));
895 
896 	uwq = NULL;
897 	if (!waitqueue_active(wqh))
898 		goto out;
899 	/* walk in reverse to provide FIFO behavior to read userfaults */
900 	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
901 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
902 out:
903 	return uwq;
904 }
905 
906 static inline struct userfaultfd_wait_queue *find_userfault(
907 		struct userfaultfd_ctx *ctx)
908 {
909 	return find_userfault_in(&ctx->fault_pending_wqh);
910 }
911 
912 static inline struct userfaultfd_wait_queue *find_userfault_evt(
913 		struct userfaultfd_ctx *ctx)
914 {
915 	return find_userfault_in(&ctx->event_wqh);
916 }
917 
918 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
919 {
920 	struct userfaultfd_ctx *ctx = file->private_data;
921 	unsigned int ret;
922 
923 	poll_wait(file, &ctx->fd_wqh, wait);
924 
925 	switch (ctx->state) {
926 	case UFFD_STATE_WAIT_API:
927 		return POLLERR;
928 	case UFFD_STATE_RUNNING:
929 		/*
930 		 * poll() never guarantees that read won't block.
931 		 * userfaults can be waken before they're read().
932 		 */
933 		if (unlikely(!(file->f_flags & O_NONBLOCK)))
934 			return POLLERR;
935 		/*
936 		 * lockless access to see if there are pending faults
937 		 * __pollwait last action is the add_wait_queue but
938 		 * the spin_unlock would allow the waitqueue_active to
939 		 * pass above the actual list_add inside
940 		 * add_wait_queue critical section. So use a full
941 		 * memory barrier to serialize the list_add write of
942 		 * add_wait_queue() with the waitqueue_active read
943 		 * below.
944 		 */
945 		ret = 0;
946 		smp_mb();
947 		if (waitqueue_active(&ctx->fault_pending_wqh))
948 			ret = POLLIN;
949 		else if (waitqueue_active(&ctx->event_wqh))
950 			ret = POLLIN;
951 
952 		return ret;
953 	default:
954 		WARN_ON_ONCE(1);
955 		return POLLERR;
956 	}
957 }
958 
959 static const struct file_operations userfaultfd_fops;
960 
961 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
962 				  struct userfaultfd_ctx *new,
963 				  struct uffd_msg *msg)
964 {
965 	int fd;
966 	struct file *file;
967 	unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
968 
969 	fd = get_unused_fd_flags(flags);
970 	if (fd < 0)
971 		return fd;
972 
973 	file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
974 				  O_RDWR | flags);
975 	if (IS_ERR(file)) {
976 		put_unused_fd(fd);
977 		return PTR_ERR(file);
978 	}
979 
980 	fd_install(fd, file);
981 	msg->arg.reserved.reserved1 = 0;
982 	msg->arg.fork.ufd = fd;
983 
984 	return 0;
985 }
986 
987 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
988 				    struct uffd_msg *msg)
989 {
990 	ssize_t ret;
991 	DECLARE_WAITQUEUE(wait, current);
992 	struct userfaultfd_wait_queue *uwq;
993 	/*
994 	 * Handling fork event requires sleeping operations, so
995 	 * we drop the event_wqh lock, then do these ops, then
996 	 * lock it back and wake up the waiter. While the lock is
997 	 * dropped the ewq may go away so we keep track of it
998 	 * carefully.
999 	 */
1000 	LIST_HEAD(fork_event);
1001 	struct userfaultfd_ctx *fork_nctx = NULL;
1002 
1003 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1004 	spin_lock(&ctx->fd_wqh.lock);
1005 	__add_wait_queue(&ctx->fd_wqh, &wait);
1006 	for (;;) {
1007 		set_current_state(TASK_INTERRUPTIBLE);
1008 		spin_lock(&ctx->fault_pending_wqh.lock);
1009 		uwq = find_userfault(ctx);
1010 		if (uwq) {
1011 			/*
1012 			 * Use a seqcount to repeat the lockless check
1013 			 * in wake_userfault() to avoid missing
1014 			 * wakeups because during the refile both
1015 			 * waitqueue could become empty if this is the
1016 			 * only userfault.
1017 			 */
1018 			write_seqcount_begin(&ctx->refile_seq);
1019 
1020 			/*
1021 			 * The fault_pending_wqh.lock prevents the uwq
1022 			 * to disappear from under us.
1023 			 *
1024 			 * Refile this userfault from
1025 			 * fault_pending_wqh to fault_wqh, it's not
1026 			 * pending anymore after we read it.
1027 			 *
1028 			 * Use list_del() by hand (as
1029 			 * userfaultfd_wake_function also uses
1030 			 * list_del_init() by hand) to be sure nobody
1031 			 * changes __remove_wait_queue() to use
1032 			 * list_del_init() in turn breaking the
1033 			 * !list_empty_careful() check in
1034 			 * handle_userfault(). The uwq->wq.head list
1035 			 * must never be empty at any time during the
1036 			 * refile, or the waitqueue could disappear
1037 			 * from under us. The "wait_queue_head_t"
1038 			 * parameter of __remove_wait_queue() is unused
1039 			 * anyway.
1040 			 */
1041 			list_del(&uwq->wq.entry);
1042 			__add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1043 
1044 			write_seqcount_end(&ctx->refile_seq);
1045 
1046 			/* careful to always initialize msg if ret == 0 */
1047 			*msg = uwq->msg;
1048 			spin_unlock(&ctx->fault_pending_wqh.lock);
1049 			ret = 0;
1050 			break;
1051 		}
1052 		spin_unlock(&ctx->fault_pending_wqh.lock);
1053 
1054 		spin_lock(&ctx->event_wqh.lock);
1055 		uwq = find_userfault_evt(ctx);
1056 		if (uwq) {
1057 			*msg = uwq->msg;
1058 
1059 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1060 				fork_nctx = (struct userfaultfd_ctx *)
1061 					(unsigned long)
1062 					uwq->msg.arg.reserved.reserved1;
1063 				list_move(&uwq->wq.entry, &fork_event);
1064 				spin_unlock(&ctx->event_wqh.lock);
1065 				ret = 0;
1066 				break;
1067 			}
1068 
1069 			userfaultfd_event_complete(ctx, uwq);
1070 			spin_unlock(&ctx->event_wqh.lock);
1071 			ret = 0;
1072 			break;
1073 		}
1074 		spin_unlock(&ctx->event_wqh.lock);
1075 
1076 		if (signal_pending(current)) {
1077 			ret = -ERESTARTSYS;
1078 			break;
1079 		}
1080 		if (no_wait) {
1081 			ret = -EAGAIN;
1082 			break;
1083 		}
1084 		spin_unlock(&ctx->fd_wqh.lock);
1085 		schedule();
1086 		spin_lock(&ctx->fd_wqh.lock);
1087 	}
1088 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1089 	__set_current_state(TASK_RUNNING);
1090 	spin_unlock(&ctx->fd_wqh.lock);
1091 
1092 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1093 		ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1094 
1095 		if (!ret) {
1096 			spin_lock(&ctx->event_wqh.lock);
1097 			if (!list_empty(&fork_event)) {
1098 				uwq = list_first_entry(&fork_event,
1099 						       typeof(*uwq),
1100 						       wq.entry);
1101 				list_del(&uwq->wq.entry);
1102 				__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1103 				userfaultfd_event_complete(ctx, uwq);
1104 			}
1105 			spin_unlock(&ctx->event_wqh.lock);
1106 		}
1107 	}
1108 
1109 	return ret;
1110 }
1111 
1112 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1113 				size_t count, loff_t *ppos)
1114 {
1115 	struct userfaultfd_ctx *ctx = file->private_data;
1116 	ssize_t _ret, ret = 0;
1117 	struct uffd_msg msg;
1118 	int no_wait = file->f_flags & O_NONBLOCK;
1119 
1120 	if (ctx->state == UFFD_STATE_WAIT_API)
1121 		return -EINVAL;
1122 
1123 	for (;;) {
1124 		if (count < sizeof(msg))
1125 			return ret ? ret : -EINVAL;
1126 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1127 		if (_ret < 0)
1128 			return ret ? ret : _ret;
1129 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1130 			return ret ? ret : -EFAULT;
1131 		ret += sizeof(msg);
1132 		buf += sizeof(msg);
1133 		count -= sizeof(msg);
1134 		/*
1135 		 * Allow to read more than one fault at time but only
1136 		 * block if waiting for the very first one.
1137 		 */
1138 		no_wait = O_NONBLOCK;
1139 	}
1140 }
1141 
1142 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1143 			     struct userfaultfd_wake_range *range)
1144 {
1145 	spin_lock(&ctx->fault_pending_wqh.lock);
1146 	/* wake all in the range and autoremove */
1147 	if (waitqueue_active(&ctx->fault_pending_wqh))
1148 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1149 				     range);
1150 	if (waitqueue_active(&ctx->fault_wqh))
1151 		__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1152 	spin_unlock(&ctx->fault_pending_wqh.lock);
1153 }
1154 
1155 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1156 					   struct userfaultfd_wake_range *range)
1157 {
1158 	unsigned seq;
1159 	bool need_wakeup;
1160 
1161 	/*
1162 	 * To be sure waitqueue_active() is not reordered by the CPU
1163 	 * before the pagetable update, use an explicit SMP memory
1164 	 * barrier here. PT lock release or up_read(mmap_sem) still
1165 	 * have release semantics that can allow the
1166 	 * waitqueue_active() to be reordered before the pte update.
1167 	 */
1168 	smp_mb();
1169 
1170 	/*
1171 	 * Use waitqueue_active because it's very frequent to
1172 	 * change the address space atomically even if there are no
1173 	 * userfaults yet. So we take the spinlock only when we're
1174 	 * sure we've userfaults to wake.
1175 	 */
1176 	do {
1177 		seq = read_seqcount_begin(&ctx->refile_seq);
1178 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1179 			waitqueue_active(&ctx->fault_wqh);
1180 		cond_resched();
1181 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1182 	if (need_wakeup)
1183 		__wake_userfault(ctx, range);
1184 }
1185 
1186 static __always_inline int validate_range(struct mm_struct *mm,
1187 					  __u64 start, __u64 len)
1188 {
1189 	__u64 task_size = mm->task_size;
1190 
1191 	if (start & ~PAGE_MASK)
1192 		return -EINVAL;
1193 	if (len & ~PAGE_MASK)
1194 		return -EINVAL;
1195 	if (!len)
1196 		return -EINVAL;
1197 	if (start < mmap_min_addr)
1198 		return -EINVAL;
1199 	if (start >= task_size)
1200 		return -EINVAL;
1201 	if (len > task_size - start)
1202 		return -EINVAL;
1203 	return 0;
1204 }
1205 
1206 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1207 {
1208 	return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1209 		vma_is_shmem(vma);
1210 }
1211 
1212 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1213 				unsigned long arg)
1214 {
1215 	struct mm_struct *mm = ctx->mm;
1216 	struct vm_area_struct *vma, *prev, *cur;
1217 	int ret;
1218 	struct uffdio_register uffdio_register;
1219 	struct uffdio_register __user *user_uffdio_register;
1220 	unsigned long vm_flags, new_flags;
1221 	bool found;
1222 	bool basic_ioctls;
1223 	unsigned long start, end, vma_end;
1224 
1225 	user_uffdio_register = (struct uffdio_register __user *) arg;
1226 
1227 	ret = -EFAULT;
1228 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1229 			   sizeof(uffdio_register)-sizeof(__u64)))
1230 		goto out;
1231 
1232 	ret = -EINVAL;
1233 	if (!uffdio_register.mode)
1234 		goto out;
1235 	if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1236 				     UFFDIO_REGISTER_MODE_WP))
1237 		goto out;
1238 	vm_flags = 0;
1239 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1240 		vm_flags |= VM_UFFD_MISSING;
1241 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1242 		vm_flags |= VM_UFFD_WP;
1243 		/*
1244 		 * FIXME: remove the below error constraint by
1245 		 * implementing the wprotect tracking mode.
1246 		 */
1247 		ret = -EINVAL;
1248 		goto out;
1249 	}
1250 
1251 	ret = validate_range(mm, uffdio_register.range.start,
1252 			     uffdio_register.range.len);
1253 	if (ret)
1254 		goto out;
1255 
1256 	start = uffdio_register.range.start;
1257 	end = start + uffdio_register.range.len;
1258 
1259 	ret = -ENOMEM;
1260 	if (!mmget_not_zero(mm))
1261 		goto out;
1262 
1263 	down_write(&mm->mmap_sem);
1264 	vma = find_vma_prev(mm, start, &prev);
1265 	if (!vma)
1266 		goto out_unlock;
1267 
1268 	/* check that there's at least one vma in the range */
1269 	ret = -EINVAL;
1270 	if (vma->vm_start >= end)
1271 		goto out_unlock;
1272 
1273 	/*
1274 	 * If the first vma contains huge pages, make sure start address
1275 	 * is aligned to huge page size.
1276 	 */
1277 	if (is_vm_hugetlb_page(vma)) {
1278 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1279 
1280 		if (start & (vma_hpagesize - 1))
1281 			goto out_unlock;
1282 	}
1283 
1284 	/*
1285 	 * Search for not compatible vmas.
1286 	 */
1287 	found = false;
1288 	basic_ioctls = false;
1289 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1290 		cond_resched();
1291 
1292 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1293 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1294 
1295 		/* check not compatible vmas */
1296 		ret = -EINVAL;
1297 		if (!vma_can_userfault(cur))
1298 			goto out_unlock;
1299 		/*
1300 		 * If this vma contains ending address, and huge pages
1301 		 * check alignment.
1302 		 */
1303 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1304 		    end > cur->vm_start) {
1305 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1306 
1307 			ret = -EINVAL;
1308 
1309 			if (end & (vma_hpagesize - 1))
1310 				goto out_unlock;
1311 		}
1312 
1313 		/*
1314 		 * Check that this vma isn't already owned by a
1315 		 * different userfaultfd. We can't allow more than one
1316 		 * userfaultfd to own a single vma simultaneously or we
1317 		 * wouldn't know which one to deliver the userfaults to.
1318 		 */
1319 		ret = -EBUSY;
1320 		if (cur->vm_userfaultfd_ctx.ctx &&
1321 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1322 			goto out_unlock;
1323 
1324 		/*
1325 		 * Note vmas containing huge pages
1326 		 */
1327 		if (is_vm_hugetlb_page(cur))
1328 			basic_ioctls = true;
1329 
1330 		found = true;
1331 	}
1332 	BUG_ON(!found);
1333 
1334 	if (vma->vm_start < start)
1335 		prev = vma;
1336 
1337 	ret = 0;
1338 	do {
1339 		cond_resched();
1340 
1341 		BUG_ON(!vma_can_userfault(vma));
1342 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1343 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1344 
1345 		/*
1346 		 * Nothing to do: this vma is already registered into this
1347 		 * userfaultfd and with the right tracking mode too.
1348 		 */
1349 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1350 		    (vma->vm_flags & vm_flags) == vm_flags)
1351 			goto skip;
1352 
1353 		if (vma->vm_start > start)
1354 			start = vma->vm_start;
1355 		vma_end = min(end, vma->vm_end);
1356 
1357 		new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1358 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1359 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1360 				 vma_policy(vma),
1361 				 ((struct vm_userfaultfd_ctx){ ctx }));
1362 		if (prev) {
1363 			vma = prev;
1364 			goto next;
1365 		}
1366 		if (vma->vm_start < start) {
1367 			ret = split_vma(mm, vma, start, 1);
1368 			if (ret)
1369 				break;
1370 		}
1371 		if (vma->vm_end > end) {
1372 			ret = split_vma(mm, vma, end, 0);
1373 			if (ret)
1374 				break;
1375 		}
1376 	next:
1377 		/*
1378 		 * In the vma_merge() successful mprotect-like case 8:
1379 		 * the next vma was merged into the current one and
1380 		 * the current one has not been updated yet.
1381 		 */
1382 		vma->vm_flags = new_flags;
1383 		vma->vm_userfaultfd_ctx.ctx = ctx;
1384 
1385 	skip:
1386 		prev = vma;
1387 		start = vma->vm_end;
1388 		vma = vma->vm_next;
1389 	} while (vma && vma->vm_start < end);
1390 out_unlock:
1391 	up_write(&mm->mmap_sem);
1392 	mmput(mm);
1393 	if (!ret) {
1394 		/*
1395 		 * Now that we scanned all vmas we can already tell
1396 		 * userland which ioctls methods are guaranteed to
1397 		 * succeed on this range.
1398 		 */
1399 		if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1400 			     UFFD_API_RANGE_IOCTLS,
1401 			     &user_uffdio_register->ioctls))
1402 			ret = -EFAULT;
1403 	}
1404 out:
1405 	return ret;
1406 }
1407 
1408 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1409 				  unsigned long arg)
1410 {
1411 	struct mm_struct *mm = ctx->mm;
1412 	struct vm_area_struct *vma, *prev, *cur;
1413 	int ret;
1414 	struct uffdio_range uffdio_unregister;
1415 	unsigned long new_flags;
1416 	bool found;
1417 	unsigned long start, end, vma_end;
1418 	const void __user *buf = (void __user *)arg;
1419 
1420 	ret = -EFAULT;
1421 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1422 		goto out;
1423 
1424 	ret = validate_range(mm, uffdio_unregister.start,
1425 			     uffdio_unregister.len);
1426 	if (ret)
1427 		goto out;
1428 
1429 	start = uffdio_unregister.start;
1430 	end = start + uffdio_unregister.len;
1431 
1432 	ret = -ENOMEM;
1433 	if (!mmget_not_zero(mm))
1434 		goto out;
1435 
1436 	down_write(&mm->mmap_sem);
1437 	vma = find_vma_prev(mm, start, &prev);
1438 	if (!vma)
1439 		goto out_unlock;
1440 
1441 	/* check that there's at least one vma in the range */
1442 	ret = -EINVAL;
1443 	if (vma->vm_start >= end)
1444 		goto out_unlock;
1445 
1446 	/*
1447 	 * If the first vma contains huge pages, make sure start address
1448 	 * is aligned to huge page size.
1449 	 */
1450 	if (is_vm_hugetlb_page(vma)) {
1451 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1452 
1453 		if (start & (vma_hpagesize - 1))
1454 			goto out_unlock;
1455 	}
1456 
1457 	/*
1458 	 * Search for not compatible vmas.
1459 	 */
1460 	found = false;
1461 	ret = -EINVAL;
1462 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1463 		cond_resched();
1464 
1465 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1466 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1467 
1468 		/*
1469 		 * Check not compatible vmas, not strictly required
1470 		 * here as not compatible vmas cannot have an
1471 		 * userfaultfd_ctx registered on them, but this
1472 		 * provides for more strict behavior to notice
1473 		 * unregistration errors.
1474 		 */
1475 		if (!vma_can_userfault(cur))
1476 			goto out_unlock;
1477 
1478 		found = true;
1479 	}
1480 	BUG_ON(!found);
1481 
1482 	if (vma->vm_start < start)
1483 		prev = vma;
1484 
1485 	ret = 0;
1486 	do {
1487 		cond_resched();
1488 
1489 		BUG_ON(!vma_can_userfault(vma));
1490 
1491 		/*
1492 		 * Nothing to do: this vma is already registered into this
1493 		 * userfaultfd and with the right tracking mode too.
1494 		 */
1495 		if (!vma->vm_userfaultfd_ctx.ctx)
1496 			goto skip;
1497 
1498 		if (vma->vm_start > start)
1499 			start = vma->vm_start;
1500 		vma_end = min(end, vma->vm_end);
1501 
1502 		if (userfaultfd_missing(vma)) {
1503 			/*
1504 			 * Wake any concurrent pending userfault while
1505 			 * we unregister, so they will not hang
1506 			 * permanently and it avoids userland to call
1507 			 * UFFDIO_WAKE explicitly.
1508 			 */
1509 			struct userfaultfd_wake_range range;
1510 			range.start = start;
1511 			range.len = vma_end - start;
1512 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1513 		}
1514 
1515 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1516 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1517 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1518 				 vma_policy(vma),
1519 				 NULL_VM_UFFD_CTX);
1520 		if (prev) {
1521 			vma = prev;
1522 			goto next;
1523 		}
1524 		if (vma->vm_start < start) {
1525 			ret = split_vma(mm, vma, start, 1);
1526 			if (ret)
1527 				break;
1528 		}
1529 		if (vma->vm_end > end) {
1530 			ret = split_vma(mm, vma, end, 0);
1531 			if (ret)
1532 				break;
1533 		}
1534 	next:
1535 		/*
1536 		 * In the vma_merge() successful mprotect-like case 8:
1537 		 * the next vma was merged into the current one and
1538 		 * the current one has not been updated yet.
1539 		 */
1540 		vma->vm_flags = new_flags;
1541 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1542 
1543 	skip:
1544 		prev = vma;
1545 		start = vma->vm_end;
1546 		vma = vma->vm_next;
1547 	} while (vma && vma->vm_start < end);
1548 out_unlock:
1549 	up_write(&mm->mmap_sem);
1550 	mmput(mm);
1551 out:
1552 	return ret;
1553 }
1554 
1555 /*
1556  * userfaultfd_wake may be used in combination with the
1557  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1558  */
1559 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1560 			    unsigned long arg)
1561 {
1562 	int ret;
1563 	struct uffdio_range uffdio_wake;
1564 	struct userfaultfd_wake_range range;
1565 	const void __user *buf = (void __user *)arg;
1566 
1567 	ret = -EFAULT;
1568 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1569 		goto out;
1570 
1571 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1572 	if (ret)
1573 		goto out;
1574 
1575 	range.start = uffdio_wake.start;
1576 	range.len = uffdio_wake.len;
1577 
1578 	/*
1579 	 * len == 0 means wake all and we don't want to wake all here,
1580 	 * so check it again to be sure.
1581 	 */
1582 	VM_BUG_ON(!range.len);
1583 
1584 	wake_userfault(ctx, &range);
1585 	ret = 0;
1586 
1587 out:
1588 	return ret;
1589 }
1590 
1591 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1592 			    unsigned long arg)
1593 {
1594 	__s64 ret;
1595 	struct uffdio_copy uffdio_copy;
1596 	struct uffdio_copy __user *user_uffdio_copy;
1597 	struct userfaultfd_wake_range range;
1598 
1599 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1600 
1601 	ret = -EFAULT;
1602 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1603 			   /* don't copy "copy" last field */
1604 			   sizeof(uffdio_copy)-sizeof(__s64)))
1605 		goto out;
1606 
1607 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1608 	if (ret)
1609 		goto out;
1610 	/*
1611 	 * double check for wraparound just in case. copy_from_user()
1612 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1613 	 * in the userland range.
1614 	 */
1615 	ret = -EINVAL;
1616 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1617 		goto out;
1618 	if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1619 		goto out;
1620 	if (mmget_not_zero(ctx->mm)) {
1621 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1622 				   uffdio_copy.len);
1623 		mmput(ctx->mm);
1624 	} else {
1625 		return -ESRCH;
1626 	}
1627 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1628 		return -EFAULT;
1629 	if (ret < 0)
1630 		goto out;
1631 	BUG_ON(!ret);
1632 	/* len == 0 would wake all */
1633 	range.len = ret;
1634 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1635 		range.start = uffdio_copy.dst;
1636 		wake_userfault(ctx, &range);
1637 	}
1638 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1639 out:
1640 	return ret;
1641 }
1642 
1643 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1644 				unsigned long arg)
1645 {
1646 	__s64 ret;
1647 	struct uffdio_zeropage uffdio_zeropage;
1648 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1649 	struct userfaultfd_wake_range range;
1650 
1651 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1652 
1653 	ret = -EFAULT;
1654 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1655 			   /* don't copy "zeropage" last field */
1656 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1657 		goto out;
1658 
1659 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1660 			     uffdio_zeropage.range.len);
1661 	if (ret)
1662 		goto out;
1663 	ret = -EINVAL;
1664 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1665 		goto out;
1666 
1667 	if (mmget_not_zero(ctx->mm)) {
1668 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1669 				     uffdio_zeropage.range.len);
1670 		mmput(ctx->mm);
1671 	} else {
1672 		return -ESRCH;
1673 	}
1674 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1675 		return -EFAULT;
1676 	if (ret < 0)
1677 		goto out;
1678 	/* len == 0 would wake all */
1679 	BUG_ON(!ret);
1680 	range.len = ret;
1681 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1682 		range.start = uffdio_zeropage.range.start;
1683 		wake_userfault(ctx, &range);
1684 	}
1685 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1686 out:
1687 	return ret;
1688 }
1689 
1690 static inline unsigned int uffd_ctx_features(__u64 user_features)
1691 {
1692 	/*
1693 	 * For the current set of features the bits just coincide
1694 	 */
1695 	return (unsigned int)user_features;
1696 }
1697 
1698 /*
1699  * userland asks for a certain API version and we return which bits
1700  * and ioctl commands are implemented in this kernel for such API
1701  * version or -EINVAL if unknown.
1702  */
1703 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1704 			   unsigned long arg)
1705 {
1706 	struct uffdio_api uffdio_api;
1707 	void __user *buf = (void __user *)arg;
1708 	int ret;
1709 	__u64 features;
1710 
1711 	ret = -EINVAL;
1712 	if (ctx->state != UFFD_STATE_WAIT_API)
1713 		goto out;
1714 	ret = -EFAULT;
1715 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1716 		goto out;
1717 	features = uffdio_api.features;
1718 	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1719 		memset(&uffdio_api, 0, sizeof(uffdio_api));
1720 		if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1721 			goto out;
1722 		ret = -EINVAL;
1723 		goto out;
1724 	}
1725 	/* report all available features and ioctls to userland */
1726 	uffdio_api.features = UFFD_API_FEATURES;
1727 	uffdio_api.ioctls = UFFD_API_IOCTLS;
1728 	ret = -EFAULT;
1729 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1730 		goto out;
1731 	ctx->state = UFFD_STATE_RUNNING;
1732 	/* only enable the requested features for this uffd context */
1733 	ctx->features = uffd_ctx_features(features);
1734 	ret = 0;
1735 out:
1736 	return ret;
1737 }
1738 
1739 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1740 			      unsigned long arg)
1741 {
1742 	int ret = -EINVAL;
1743 	struct userfaultfd_ctx *ctx = file->private_data;
1744 
1745 	if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1746 		return -EINVAL;
1747 
1748 	switch(cmd) {
1749 	case UFFDIO_API:
1750 		ret = userfaultfd_api(ctx, arg);
1751 		break;
1752 	case UFFDIO_REGISTER:
1753 		ret = userfaultfd_register(ctx, arg);
1754 		break;
1755 	case UFFDIO_UNREGISTER:
1756 		ret = userfaultfd_unregister(ctx, arg);
1757 		break;
1758 	case UFFDIO_WAKE:
1759 		ret = userfaultfd_wake(ctx, arg);
1760 		break;
1761 	case UFFDIO_COPY:
1762 		ret = userfaultfd_copy(ctx, arg);
1763 		break;
1764 	case UFFDIO_ZEROPAGE:
1765 		ret = userfaultfd_zeropage(ctx, arg);
1766 		break;
1767 	}
1768 	return ret;
1769 }
1770 
1771 #ifdef CONFIG_PROC_FS
1772 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1773 {
1774 	struct userfaultfd_ctx *ctx = f->private_data;
1775 	wait_queue_entry_t *wq;
1776 	struct userfaultfd_wait_queue *uwq;
1777 	unsigned long pending = 0, total = 0;
1778 
1779 	spin_lock(&ctx->fault_pending_wqh.lock);
1780 	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1781 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1782 		pending++;
1783 		total++;
1784 	}
1785 	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1786 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1787 		total++;
1788 	}
1789 	spin_unlock(&ctx->fault_pending_wqh.lock);
1790 
1791 	/*
1792 	 * If more protocols will be added, there will be all shown
1793 	 * separated by a space. Like this:
1794 	 *	protocols: aa:... bb:...
1795 	 */
1796 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1797 		   pending, total, UFFD_API, ctx->features,
1798 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1799 }
1800 #endif
1801 
1802 static const struct file_operations userfaultfd_fops = {
1803 #ifdef CONFIG_PROC_FS
1804 	.show_fdinfo	= userfaultfd_show_fdinfo,
1805 #endif
1806 	.release	= userfaultfd_release,
1807 	.poll		= userfaultfd_poll,
1808 	.read		= userfaultfd_read,
1809 	.unlocked_ioctl = userfaultfd_ioctl,
1810 	.compat_ioctl	= userfaultfd_ioctl,
1811 	.llseek		= noop_llseek,
1812 };
1813 
1814 static void init_once_userfaultfd_ctx(void *mem)
1815 {
1816 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1817 
1818 	init_waitqueue_head(&ctx->fault_pending_wqh);
1819 	init_waitqueue_head(&ctx->fault_wqh);
1820 	init_waitqueue_head(&ctx->event_wqh);
1821 	init_waitqueue_head(&ctx->fd_wqh);
1822 	seqcount_init(&ctx->refile_seq);
1823 }
1824 
1825 /**
1826  * userfaultfd_file_create - Creates a userfaultfd file pointer.
1827  * @flags: Flags for the userfaultfd file.
1828  *
1829  * This function creates a userfaultfd file pointer, w/out installing
1830  * it into the fd table. This is useful when the userfaultfd file is
1831  * used during the initialization of data structures that require
1832  * extra setup after the userfaultfd creation. So the userfaultfd
1833  * creation is split into the file pointer creation phase, and the
1834  * file descriptor installation phase.  In this way races with
1835  * userspace closing the newly installed file descriptor can be
1836  * avoided.  Returns a userfaultfd file pointer, or a proper error
1837  * pointer.
1838  */
1839 static struct file *userfaultfd_file_create(int flags)
1840 {
1841 	struct file *file;
1842 	struct userfaultfd_ctx *ctx;
1843 
1844 	BUG_ON(!current->mm);
1845 
1846 	/* Check the UFFD_* constants for consistency.  */
1847 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1848 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1849 
1850 	file = ERR_PTR(-EINVAL);
1851 	if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1852 		goto out;
1853 
1854 	file = ERR_PTR(-ENOMEM);
1855 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1856 	if (!ctx)
1857 		goto out;
1858 
1859 	atomic_set(&ctx->refcount, 1);
1860 	ctx->flags = flags;
1861 	ctx->features = 0;
1862 	ctx->state = UFFD_STATE_WAIT_API;
1863 	ctx->released = false;
1864 	ctx->mm = current->mm;
1865 	/* prevent the mm struct to be freed */
1866 	mmgrab(ctx->mm);
1867 
1868 	file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1869 				  O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1870 	if (IS_ERR(file)) {
1871 		mmdrop(ctx->mm);
1872 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1873 	}
1874 out:
1875 	return file;
1876 }
1877 
1878 SYSCALL_DEFINE1(userfaultfd, int, flags)
1879 {
1880 	int fd, error;
1881 	struct file *file;
1882 
1883 	error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1884 	if (error < 0)
1885 		return error;
1886 	fd = error;
1887 
1888 	file = userfaultfd_file_create(flags);
1889 	if (IS_ERR(file)) {
1890 		error = PTR_ERR(file);
1891 		goto err_put_unused_fd;
1892 	}
1893 	fd_install(fd, file);
1894 
1895 	return fd;
1896 
1897 err_put_unused_fd:
1898 	put_unused_fd(fd);
1899 
1900 	return error;
1901 }
1902 
1903 static int __init userfaultfd_init(void)
1904 {
1905 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1906 						sizeof(struct userfaultfd_ctx),
1907 						0,
1908 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1909 						init_once_userfaultfd_ctx);
1910 	return 0;
1911 }
1912 __initcall(userfaultfd_init);
1913