xref: /openbmc/linux/fs/userfaultfd.c (revision 6f6573a4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12 
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
29 #include <linux/hugetlb.h>
30 
31 int sysctl_unprivileged_userfaultfd __read_mostly = 1;
32 
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34 
35 enum userfaultfd_state {
36 	UFFD_STATE_WAIT_API,
37 	UFFD_STATE_RUNNING,
38 };
39 
40 /*
41  * Start with fault_pending_wqh and fault_wqh so they're more likely
42  * to be in the same cacheline.
43  *
44  * Locking order:
45  *	fd_wqh.lock
46  *		fault_pending_wqh.lock
47  *			fault_wqh.lock
48  *		event_wqh.lock
49  *
50  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
51  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
52  * also taken in IRQ context.
53  */
54 struct userfaultfd_ctx {
55 	/* waitqueue head for the pending (i.e. not read) userfaults */
56 	wait_queue_head_t fault_pending_wqh;
57 	/* waitqueue head for the userfaults */
58 	wait_queue_head_t fault_wqh;
59 	/* waitqueue head for the pseudo fd to wakeup poll/read */
60 	wait_queue_head_t fd_wqh;
61 	/* waitqueue head for events */
62 	wait_queue_head_t event_wqh;
63 	/* a refile sequence protected by fault_pending_wqh lock */
64 	seqcount_spinlock_t refile_seq;
65 	/* pseudo fd refcounting */
66 	refcount_t refcount;
67 	/* userfaultfd syscall flags */
68 	unsigned int flags;
69 	/* features requested from the userspace */
70 	unsigned int features;
71 	/* state machine */
72 	enum userfaultfd_state state;
73 	/* released */
74 	bool released;
75 	/* memory mappings are changing because of non-cooperative event */
76 	bool mmap_changing;
77 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
78 	struct mm_struct *mm;
79 };
80 
81 struct userfaultfd_fork_ctx {
82 	struct userfaultfd_ctx *orig;
83 	struct userfaultfd_ctx *new;
84 	struct list_head list;
85 };
86 
87 struct userfaultfd_unmap_ctx {
88 	struct userfaultfd_ctx *ctx;
89 	unsigned long start;
90 	unsigned long end;
91 	struct list_head list;
92 };
93 
94 struct userfaultfd_wait_queue {
95 	struct uffd_msg msg;
96 	wait_queue_entry_t wq;
97 	struct userfaultfd_ctx *ctx;
98 	bool waken;
99 };
100 
101 struct userfaultfd_wake_range {
102 	unsigned long start;
103 	unsigned long len;
104 };
105 
106 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
107 				     int wake_flags, void *key)
108 {
109 	struct userfaultfd_wake_range *range = key;
110 	int ret;
111 	struct userfaultfd_wait_queue *uwq;
112 	unsigned long start, len;
113 
114 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
115 	ret = 0;
116 	/* len == 0 means wake all */
117 	start = range->start;
118 	len = range->len;
119 	if (len && (start > uwq->msg.arg.pagefault.address ||
120 		    start + len <= uwq->msg.arg.pagefault.address))
121 		goto out;
122 	WRITE_ONCE(uwq->waken, true);
123 	/*
124 	 * The Program-Order guarantees provided by the scheduler
125 	 * ensure uwq->waken is visible before the task is woken.
126 	 */
127 	ret = wake_up_state(wq->private, mode);
128 	if (ret) {
129 		/*
130 		 * Wake only once, autoremove behavior.
131 		 *
132 		 * After the effect of list_del_init is visible to the other
133 		 * CPUs, the waitqueue may disappear from under us, see the
134 		 * !list_empty_careful() in handle_userfault().
135 		 *
136 		 * try_to_wake_up() has an implicit smp_mb(), and the
137 		 * wq->private is read before calling the extern function
138 		 * "wake_up_state" (which in turns calls try_to_wake_up).
139 		 */
140 		list_del_init(&wq->entry);
141 	}
142 out:
143 	return ret;
144 }
145 
146 /**
147  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
148  * context.
149  * @ctx: [in] Pointer to the userfaultfd context.
150  */
151 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
152 {
153 	refcount_inc(&ctx->refcount);
154 }
155 
156 /**
157  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
158  * context.
159  * @ctx: [in] Pointer to userfaultfd context.
160  *
161  * The userfaultfd context reference must have been previously acquired either
162  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
163  */
164 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
165 {
166 	if (refcount_dec_and_test(&ctx->refcount)) {
167 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
168 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
169 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
170 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
171 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
172 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
173 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
174 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
175 		mmdrop(ctx->mm);
176 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
177 	}
178 }
179 
180 static inline void msg_init(struct uffd_msg *msg)
181 {
182 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
183 	/*
184 	 * Must use memset to zero out the paddings or kernel data is
185 	 * leaked to userland.
186 	 */
187 	memset(msg, 0, sizeof(struct uffd_msg));
188 }
189 
190 static inline struct uffd_msg userfault_msg(unsigned long address,
191 					    unsigned int flags,
192 					    unsigned long reason,
193 					    unsigned int features)
194 {
195 	struct uffd_msg msg;
196 	msg_init(&msg);
197 	msg.event = UFFD_EVENT_PAGEFAULT;
198 	msg.arg.pagefault.address = address;
199 	if (flags & FAULT_FLAG_WRITE)
200 		/*
201 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
202 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
203 		 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
204 		 * was a read fault, otherwise if set it means it's
205 		 * a write fault.
206 		 */
207 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
208 	if (reason & VM_UFFD_WP)
209 		/*
210 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
211 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
212 		 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
213 		 * a missing fault, otherwise if set it means it's a
214 		 * write protect fault.
215 		 */
216 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
217 	if (features & UFFD_FEATURE_THREAD_ID)
218 		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
219 	return msg;
220 }
221 
222 #ifdef CONFIG_HUGETLB_PAGE
223 /*
224  * Same functionality as userfaultfd_must_wait below with modifications for
225  * hugepmd ranges.
226  */
227 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
228 					 struct vm_area_struct *vma,
229 					 unsigned long address,
230 					 unsigned long flags,
231 					 unsigned long reason)
232 {
233 	struct mm_struct *mm = ctx->mm;
234 	pte_t *ptep, pte;
235 	bool ret = true;
236 
237 	mmap_assert_locked(mm);
238 
239 	ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
240 
241 	if (!ptep)
242 		goto out;
243 
244 	ret = false;
245 	pte = huge_ptep_get(ptep);
246 
247 	/*
248 	 * Lockless access: we're in a wait_event so it's ok if it
249 	 * changes under us.
250 	 */
251 	if (huge_pte_none(pte))
252 		ret = true;
253 	if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
254 		ret = true;
255 out:
256 	return ret;
257 }
258 #else
259 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
260 					 struct vm_area_struct *vma,
261 					 unsigned long address,
262 					 unsigned long flags,
263 					 unsigned long reason)
264 {
265 	return false;	/* should never get here */
266 }
267 #endif /* CONFIG_HUGETLB_PAGE */
268 
269 /*
270  * Verify the pagetables are still not ok after having reigstered into
271  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
272  * userfault that has already been resolved, if userfaultfd_read and
273  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
274  * threads.
275  */
276 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
277 					 unsigned long address,
278 					 unsigned long flags,
279 					 unsigned long reason)
280 {
281 	struct mm_struct *mm = ctx->mm;
282 	pgd_t *pgd;
283 	p4d_t *p4d;
284 	pud_t *pud;
285 	pmd_t *pmd, _pmd;
286 	pte_t *pte;
287 	bool ret = true;
288 
289 	mmap_assert_locked(mm);
290 
291 	pgd = pgd_offset(mm, address);
292 	if (!pgd_present(*pgd))
293 		goto out;
294 	p4d = p4d_offset(pgd, address);
295 	if (!p4d_present(*p4d))
296 		goto out;
297 	pud = pud_offset(p4d, address);
298 	if (!pud_present(*pud))
299 		goto out;
300 	pmd = pmd_offset(pud, address);
301 	/*
302 	 * READ_ONCE must function as a barrier with narrower scope
303 	 * and it must be equivalent to:
304 	 *	_pmd = *pmd; barrier();
305 	 *
306 	 * This is to deal with the instability (as in
307 	 * pmd_trans_unstable) of the pmd.
308 	 */
309 	_pmd = READ_ONCE(*pmd);
310 	if (pmd_none(_pmd))
311 		goto out;
312 
313 	ret = false;
314 	if (!pmd_present(_pmd))
315 		goto out;
316 
317 	if (pmd_trans_huge(_pmd)) {
318 		if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
319 			ret = true;
320 		goto out;
321 	}
322 
323 	/*
324 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
325 	 * and use the standard pte_offset_map() instead of parsing _pmd.
326 	 */
327 	pte = pte_offset_map(pmd, address);
328 	/*
329 	 * Lockless access: we're in a wait_event so it's ok if it
330 	 * changes under us.
331 	 */
332 	if (pte_none(*pte))
333 		ret = true;
334 	if (!pte_write(*pte) && (reason & VM_UFFD_WP))
335 		ret = true;
336 	pte_unmap(pte);
337 
338 out:
339 	return ret;
340 }
341 
342 static inline long userfaultfd_get_blocking_state(unsigned int flags)
343 {
344 	if (flags & FAULT_FLAG_INTERRUPTIBLE)
345 		return TASK_INTERRUPTIBLE;
346 
347 	if (flags & FAULT_FLAG_KILLABLE)
348 		return TASK_KILLABLE;
349 
350 	return TASK_UNINTERRUPTIBLE;
351 }
352 
353 /*
354  * The locking rules involved in returning VM_FAULT_RETRY depending on
355  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
356  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
357  * recommendation in __lock_page_or_retry is not an understatement.
358  *
359  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
360  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
361  * not set.
362  *
363  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
364  * set, VM_FAULT_RETRY can still be returned if and only if there are
365  * fatal_signal_pending()s, and the mmap_lock must be released before
366  * returning it.
367  */
368 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
369 {
370 	struct mm_struct *mm = vmf->vma->vm_mm;
371 	struct userfaultfd_ctx *ctx;
372 	struct userfaultfd_wait_queue uwq;
373 	vm_fault_t ret = VM_FAULT_SIGBUS;
374 	bool must_wait;
375 	long blocking_state;
376 
377 	/*
378 	 * We don't do userfault handling for the final child pid update.
379 	 *
380 	 * We also don't do userfault handling during
381 	 * coredumping. hugetlbfs has the special
382 	 * follow_hugetlb_page() to skip missing pages in the
383 	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
384 	 * the no_page_table() helper in follow_page_mask(), but the
385 	 * shmem_vm_ops->fault method is invoked even during
386 	 * coredumping without mmap_lock and it ends up here.
387 	 */
388 	if (current->flags & (PF_EXITING|PF_DUMPCORE))
389 		goto out;
390 
391 	/*
392 	 * Coredumping runs without mmap_lock so we can only check that
393 	 * the mmap_lock is held, if PF_DUMPCORE was not set.
394 	 */
395 	mmap_assert_locked(mm);
396 
397 	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
398 	if (!ctx)
399 		goto out;
400 
401 	BUG_ON(ctx->mm != mm);
402 
403 	VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
404 	VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
405 
406 	if (ctx->features & UFFD_FEATURE_SIGBUS)
407 		goto out;
408 
409 	/*
410 	 * If it's already released don't get it. This avoids to loop
411 	 * in __get_user_pages if userfaultfd_release waits on the
412 	 * caller of handle_userfault to release the mmap_lock.
413 	 */
414 	if (unlikely(READ_ONCE(ctx->released))) {
415 		/*
416 		 * Don't return VM_FAULT_SIGBUS in this case, so a non
417 		 * cooperative manager can close the uffd after the
418 		 * last UFFDIO_COPY, without risking to trigger an
419 		 * involuntary SIGBUS if the process was starting the
420 		 * userfaultfd while the userfaultfd was still armed
421 		 * (but after the last UFFDIO_COPY). If the uffd
422 		 * wasn't already closed when the userfault reached
423 		 * this point, that would normally be solved by
424 		 * userfaultfd_must_wait returning 'false'.
425 		 *
426 		 * If we were to return VM_FAULT_SIGBUS here, the non
427 		 * cooperative manager would be instead forced to
428 		 * always call UFFDIO_UNREGISTER before it can safely
429 		 * close the uffd.
430 		 */
431 		ret = VM_FAULT_NOPAGE;
432 		goto out;
433 	}
434 
435 	/*
436 	 * Check that we can return VM_FAULT_RETRY.
437 	 *
438 	 * NOTE: it should become possible to return VM_FAULT_RETRY
439 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
440 	 * -EBUSY failures, if the userfaultfd is to be extended for
441 	 * VM_UFFD_WP tracking and we intend to arm the userfault
442 	 * without first stopping userland access to the memory. For
443 	 * VM_UFFD_MISSING userfaults this is enough for now.
444 	 */
445 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
446 		/*
447 		 * Validate the invariant that nowait must allow retry
448 		 * to be sure not to return SIGBUS erroneously on
449 		 * nowait invocations.
450 		 */
451 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
452 #ifdef CONFIG_DEBUG_VM
453 		if (printk_ratelimit()) {
454 			printk(KERN_WARNING
455 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
456 			       vmf->flags);
457 			dump_stack();
458 		}
459 #endif
460 		goto out;
461 	}
462 
463 	/*
464 	 * Handle nowait, not much to do other than tell it to retry
465 	 * and wait.
466 	 */
467 	ret = VM_FAULT_RETRY;
468 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
469 		goto out;
470 
471 	/* take the reference before dropping the mmap_lock */
472 	userfaultfd_ctx_get(ctx);
473 
474 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
475 	uwq.wq.private = current;
476 	uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
477 			ctx->features);
478 	uwq.ctx = ctx;
479 	uwq.waken = false;
480 
481 	blocking_state = userfaultfd_get_blocking_state(vmf->flags);
482 
483 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
484 	/*
485 	 * After the __add_wait_queue the uwq is visible to userland
486 	 * through poll/read().
487 	 */
488 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
489 	/*
490 	 * The smp_mb() after __set_current_state prevents the reads
491 	 * following the spin_unlock to happen before the list_add in
492 	 * __add_wait_queue.
493 	 */
494 	set_current_state(blocking_state);
495 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
496 
497 	if (!is_vm_hugetlb_page(vmf->vma))
498 		must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
499 						  reason);
500 	else
501 		must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
502 						       vmf->address,
503 						       vmf->flags, reason);
504 	mmap_read_unlock(mm);
505 
506 	if (likely(must_wait && !READ_ONCE(ctx->released))) {
507 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
508 		schedule();
509 	}
510 
511 	__set_current_state(TASK_RUNNING);
512 
513 	/*
514 	 * Here we race with the list_del; list_add in
515 	 * userfaultfd_ctx_read(), however because we don't ever run
516 	 * list_del_init() to refile across the two lists, the prev
517 	 * and next pointers will never point to self. list_add also
518 	 * would never let any of the two pointers to point to
519 	 * self. So list_empty_careful won't risk to see both pointers
520 	 * pointing to self at any time during the list refile. The
521 	 * only case where list_del_init() is called is the full
522 	 * removal in the wake function and there we don't re-list_add
523 	 * and it's fine not to block on the spinlock. The uwq on this
524 	 * kernel stack can be released after the list_del_init.
525 	 */
526 	if (!list_empty_careful(&uwq.wq.entry)) {
527 		spin_lock_irq(&ctx->fault_pending_wqh.lock);
528 		/*
529 		 * No need of list_del_init(), the uwq on the stack
530 		 * will be freed shortly anyway.
531 		 */
532 		list_del(&uwq.wq.entry);
533 		spin_unlock_irq(&ctx->fault_pending_wqh.lock);
534 	}
535 
536 	/*
537 	 * ctx may go away after this if the userfault pseudo fd is
538 	 * already released.
539 	 */
540 	userfaultfd_ctx_put(ctx);
541 
542 out:
543 	return ret;
544 }
545 
546 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
547 					      struct userfaultfd_wait_queue *ewq)
548 {
549 	struct userfaultfd_ctx *release_new_ctx;
550 
551 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
552 		goto out;
553 
554 	ewq->ctx = ctx;
555 	init_waitqueue_entry(&ewq->wq, current);
556 	release_new_ctx = NULL;
557 
558 	spin_lock_irq(&ctx->event_wqh.lock);
559 	/*
560 	 * After the __add_wait_queue the uwq is visible to userland
561 	 * through poll/read().
562 	 */
563 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
564 	for (;;) {
565 		set_current_state(TASK_KILLABLE);
566 		if (ewq->msg.event == 0)
567 			break;
568 		if (READ_ONCE(ctx->released) ||
569 		    fatal_signal_pending(current)) {
570 			/*
571 			 * &ewq->wq may be queued in fork_event, but
572 			 * __remove_wait_queue ignores the head
573 			 * parameter. It would be a problem if it
574 			 * didn't.
575 			 */
576 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
577 			if (ewq->msg.event == UFFD_EVENT_FORK) {
578 				struct userfaultfd_ctx *new;
579 
580 				new = (struct userfaultfd_ctx *)
581 					(unsigned long)
582 					ewq->msg.arg.reserved.reserved1;
583 				release_new_ctx = new;
584 			}
585 			break;
586 		}
587 
588 		spin_unlock_irq(&ctx->event_wqh.lock);
589 
590 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
591 		schedule();
592 
593 		spin_lock_irq(&ctx->event_wqh.lock);
594 	}
595 	__set_current_state(TASK_RUNNING);
596 	spin_unlock_irq(&ctx->event_wqh.lock);
597 
598 	if (release_new_ctx) {
599 		struct vm_area_struct *vma;
600 		struct mm_struct *mm = release_new_ctx->mm;
601 
602 		/* the various vma->vm_userfaultfd_ctx still points to it */
603 		mmap_write_lock(mm);
604 		for (vma = mm->mmap; vma; vma = vma->vm_next)
605 			if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
606 				vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
607 				vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
608 			}
609 		mmap_write_unlock(mm);
610 
611 		userfaultfd_ctx_put(release_new_ctx);
612 	}
613 
614 	/*
615 	 * ctx may go away after this if the userfault pseudo fd is
616 	 * already released.
617 	 */
618 out:
619 	WRITE_ONCE(ctx->mmap_changing, false);
620 	userfaultfd_ctx_put(ctx);
621 }
622 
623 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
624 				       struct userfaultfd_wait_queue *ewq)
625 {
626 	ewq->msg.event = 0;
627 	wake_up_locked(&ctx->event_wqh);
628 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
629 }
630 
631 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
632 {
633 	struct userfaultfd_ctx *ctx = NULL, *octx;
634 	struct userfaultfd_fork_ctx *fctx;
635 
636 	octx = vma->vm_userfaultfd_ctx.ctx;
637 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
638 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
639 		vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
640 		return 0;
641 	}
642 
643 	list_for_each_entry(fctx, fcs, list)
644 		if (fctx->orig == octx) {
645 			ctx = fctx->new;
646 			break;
647 		}
648 
649 	if (!ctx) {
650 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
651 		if (!fctx)
652 			return -ENOMEM;
653 
654 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
655 		if (!ctx) {
656 			kfree(fctx);
657 			return -ENOMEM;
658 		}
659 
660 		refcount_set(&ctx->refcount, 1);
661 		ctx->flags = octx->flags;
662 		ctx->state = UFFD_STATE_RUNNING;
663 		ctx->features = octx->features;
664 		ctx->released = false;
665 		ctx->mmap_changing = false;
666 		ctx->mm = vma->vm_mm;
667 		mmgrab(ctx->mm);
668 
669 		userfaultfd_ctx_get(octx);
670 		WRITE_ONCE(octx->mmap_changing, true);
671 		fctx->orig = octx;
672 		fctx->new = ctx;
673 		list_add_tail(&fctx->list, fcs);
674 	}
675 
676 	vma->vm_userfaultfd_ctx.ctx = ctx;
677 	return 0;
678 }
679 
680 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
681 {
682 	struct userfaultfd_ctx *ctx = fctx->orig;
683 	struct userfaultfd_wait_queue ewq;
684 
685 	msg_init(&ewq.msg);
686 
687 	ewq.msg.event = UFFD_EVENT_FORK;
688 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
689 
690 	userfaultfd_event_wait_completion(ctx, &ewq);
691 }
692 
693 void dup_userfaultfd_complete(struct list_head *fcs)
694 {
695 	struct userfaultfd_fork_ctx *fctx, *n;
696 
697 	list_for_each_entry_safe(fctx, n, fcs, list) {
698 		dup_fctx(fctx);
699 		list_del(&fctx->list);
700 		kfree(fctx);
701 	}
702 }
703 
704 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
705 			     struct vm_userfaultfd_ctx *vm_ctx)
706 {
707 	struct userfaultfd_ctx *ctx;
708 
709 	ctx = vma->vm_userfaultfd_ctx.ctx;
710 
711 	if (!ctx)
712 		return;
713 
714 	if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
715 		vm_ctx->ctx = ctx;
716 		userfaultfd_ctx_get(ctx);
717 		WRITE_ONCE(ctx->mmap_changing, true);
718 	} else {
719 		/* Drop uffd context if remap feature not enabled */
720 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
721 		vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
722 	}
723 }
724 
725 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
726 				 unsigned long from, unsigned long to,
727 				 unsigned long len)
728 {
729 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
730 	struct userfaultfd_wait_queue ewq;
731 
732 	if (!ctx)
733 		return;
734 
735 	if (to & ~PAGE_MASK) {
736 		userfaultfd_ctx_put(ctx);
737 		return;
738 	}
739 
740 	msg_init(&ewq.msg);
741 
742 	ewq.msg.event = UFFD_EVENT_REMAP;
743 	ewq.msg.arg.remap.from = from;
744 	ewq.msg.arg.remap.to = to;
745 	ewq.msg.arg.remap.len = len;
746 
747 	userfaultfd_event_wait_completion(ctx, &ewq);
748 }
749 
750 bool userfaultfd_remove(struct vm_area_struct *vma,
751 			unsigned long start, unsigned long end)
752 {
753 	struct mm_struct *mm = vma->vm_mm;
754 	struct userfaultfd_ctx *ctx;
755 	struct userfaultfd_wait_queue ewq;
756 
757 	ctx = vma->vm_userfaultfd_ctx.ctx;
758 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
759 		return true;
760 
761 	userfaultfd_ctx_get(ctx);
762 	WRITE_ONCE(ctx->mmap_changing, true);
763 	mmap_read_unlock(mm);
764 
765 	msg_init(&ewq.msg);
766 
767 	ewq.msg.event = UFFD_EVENT_REMOVE;
768 	ewq.msg.arg.remove.start = start;
769 	ewq.msg.arg.remove.end = end;
770 
771 	userfaultfd_event_wait_completion(ctx, &ewq);
772 
773 	return false;
774 }
775 
776 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
777 			  unsigned long start, unsigned long end)
778 {
779 	struct userfaultfd_unmap_ctx *unmap_ctx;
780 
781 	list_for_each_entry(unmap_ctx, unmaps, list)
782 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
783 		    unmap_ctx->end == end)
784 			return true;
785 
786 	return false;
787 }
788 
789 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
790 			   unsigned long start, unsigned long end,
791 			   struct list_head *unmaps)
792 {
793 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
794 		struct userfaultfd_unmap_ctx *unmap_ctx;
795 		struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
796 
797 		if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
798 		    has_unmap_ctx(ctx, unmaps, start, end))
799 			continue;
800 
801 		unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
802 		if (!unmap_ctx)
803 			return -ENOMEM;
804 
805 		userfaultfd_ctx_get(ctx);
806 		WRITE_ONCE(ctx->mmap_changing, true);
807 		unmap_ctx->ctx = ctx;
808 		unmap_ctx->start = start;
809 		unmap_ctx->end = end;
810 		list_add_tail(&unmap_ctx->list, unmaps);
811 	}
812 
813 	return 0;
814 }
815 
816 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
817 {
818 	struct userfaultfd_unmap_ctx *ctx, *n;
819 	struct userfaultfd_wait_queue ewq;
820 
821 	list_for_each_entry_safe(ctx, n, uf, list) {
822 		msg_init(&ewq.msg);
823 
824 		ewq.msg.event = UFFD_EVENT_UNMAP;
825 		ewq.msg.arg.remove.start = ctx->start;
826 		ewq.msg.arg.remove.end = ctx->end;
827 
828 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
829 
830 		list_del(&ctx->list);
831 		kfree(ctx);
832 	}
833 }
834 
835 static int userfaultfd_release(struct inode *inode, struct file *file)
836 {
837 	struct userfaultfd_ctx *ctx = file->private_data;
838 	struct mm_struct *mm = ctx->mm;
839 	struct vm_area_struct *vma, *prev;
840 	/* len == 0 means wake all */
841 	struct userfaultfd_wake_range range = { .len = 0, };
842 	unsigned long new_flags;
843 
844 	WRITE_ONCE(ctx->released, true);
845 
846 	if (!mmget_not_zero(mm))
847 		goto wakeup;
848 
849 	/*
850 	 * Flush page faults out of all CPUs. NOTE: all page faults
851 	 * must be retried without returning VM_FAULT_SIGBUS if
852 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
853 	 * changes while handle_userfault released the mmap_lock. So
854 	 * it's critical that released is set to true (above), before
855 	 * taking the mmap_lock for writing.
856 	 */
857 	mmap_write_lock(mm);
858 	prev = NULL;
859 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
860 		cond_resched();
861 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
862 		       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
863 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
864 			prev = vma;
865 			continue;
866 		}
867 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
868 		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
869 				 new_flags, vma->anon_vma,
870 				 vma->vm_file, vma->vm_pgoff,
871 				 vma_policy(vma),
872 				 NULL_VM_UFFD_CTX);
873 		if (prev)
874 			vma = prev;
875 		else
876 			prev = vma;
877 		vma->vm_flags = new_flags;
878 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
879 	}
880 	mmap_write_unlock(mm);
881 	mmput(mm);
882 wakeup:
883 	/*
884 	 * After no new page faults can wait on this fault_*wqh, flush
885 	 * the last page faults that may have been already waiting on
886 	 * the fault_*wqh.
887 	 */
888 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
889 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
890 	__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
891 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
892 
893 	/* Flush pending events that may still wait on event_wqh */
894 	wake_up_all(&ctx->event_wqh);
895 
896 	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
897 	userfaultfd_ctx_put(ctx);
898 	return 0;
899 }
900 
901 /* fault_pending_wqh.lock must be hold by the caller */
902 static inline struct userfaultfd_wait_queue *find_userfault_in(
903 		wait_queue_head_t *wqh)
904 {
905 	wait_queue_entry_t *wq;
906 	struct userfaultfd_wait_queue *uwq;
907 
908 	lockdep_assert_held(&wqh->lock);
909 
910 	uwq = NULL;
911 	if (!waitqueue_active(wqh))
912 		goto out;
913 	/* walk in reverse to provide FIFO behavior to read userfaults */
914 	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
915 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
916 out:
917 	return uwq;
918 }
919 
920 static inline struct userfaultfd_wait_queue *find_userfault(
921 		struct userfaultfd_ctx *ctx)
922 {
923 	return find_userfault_in(&ctx->fault_pending_wqh);
924 }
925 
926 static inline struct userfaultfd_wait_queue *find_userfault_evt(
927 		struct userfaultfd_ctx *ctx)
928 {
929 	return find_userfault_in(&ctx->event_wqh);
930 }
931 
932 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
933 {
934 	struct userfaultfd_ctx *ctx = file->private_data;
935 	__poll_t ret;
936 
937 	poll_wait(file, &ctx->fd_wqh, wait);
938 
939 	switch (ctx->state) {
940 	case UFFD_STATE_WAIT_API:
941 		return EPOLLERR;
942 	case UFFD_STATE_RUNNING:
943 		/*
944 		 * poll() never guarantees that read won't block.
945 		 * userfaults can be waken before they're read().
946 		 */
947 		if (unlikely(!(file->f_flags & O_NONBLOCK)))
948 			return EPOLLERR;
949 		/*
950 		 * lockless access to see if there are pending faults
951 		 * __pollwait last action is the add_wait_queue but
952 		 * the spin_unlock would allow the waitqueue_active to
953 		 * pass above the actual list_add inside
954 		 * add_wait_queue critical section. So use a full
955 		 * memory barrier to serialize the list_add write of
956 		 * add_wait_queue() with the waitqueue_active read
957 		 * below.
958 		 */
959 		ret = 0;
960 		smp_mb();
961 		if (waitqueue_active(&ctx->fault_pending_wqh))
962 			ret = EPOLLIN;
963 		else if (waitqueue_active(&ctx->event_wqh))
964 			ret = EPOLLIN;
965 
966 		return ret;
967 	default:
968 		WARN_ON_ONCE(1);
969 		return EPOLLERR;
970 	}
971 }
972 
973 static const struct file_operations userfaultfd_fops;
974 
975 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
976 				  struct userfaultfd_ctx *new,
977 				  struct uffd_msg *msg)
978 {
979 	int fd;
980 
981 	fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
982 			      O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
983 	if (fd < 0)
984 		return fd;
985 
986 	msg->arg.reserved.reserved1 = 0;
987 	msg->arg.fork.ufd = fd;
988 	return 0;
989 }
990 
991 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
992 				    struct uffd_msg *msg)
993 {
994 	ssize_t ret;
995 	DECLARE_WAITQUEUE(wait, current);
996 	struct userfaultfd_wait_queue *uwq;
997 	/*
998 	 * Handling fork event requires sleeping operations, so
999 	 * we drop the event_wqh lock, then do these ops, then
1000 	 * lock it back and wake up the waiter. While the lock is
1001 	 * dropped the ewq may go away so we keep track of it
1002 	 * carefully.
1003 	 */
1004 	LIST_HEAD(fork_event);
1005 	struct userfaultfd_ctx *fork_nctx = NULL;
1006 
1007 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1008 	spin_lock_irq(&ctx->fd_wqh.lock);
1009 	__add_wait_queue(&ctx->fd_wqh, &wait);
1010 	for (;;) {
1011 		set_current_state(TASK_INTERRUPTIBLE);
1012 		spin_lock(&ctx->fault_pending_wqh.lock);
1013 		uwq = find_userfault(ctx);
1014 		if (uwq) {
1015 			/*
1016 			 * Use a seqcount to repeat the lockless check
1017 			 * in wake_userfault() to avoid missing
1018 			 * wakeups because during the refile both
1019 			 * waitqueue could become empty if this is the
1020 			 * only userfault.
1021 			 */
1022 			write_seqcount_begin(&ctx->refile_seq);
1023 
1024 			/*
1025 			 * The fault_pending_wqh.lock prevents the uwq
1026 			 * to disappear from under us.
1027 			 *
1028 			 * Refile this userfault from
1029 			 * fault_pending_wqh to fault_wqh, it's not
1030 			 * pending anymore after we read it.
1031 			 *
1032 			 * Use list_del() by hand (as
1033 			 * userfaultfd_wake_function also uses
1034 			 * list_del_init() by hand) to be sure nobody
1035 			 * changes __remove_wait_queue() to use
1036 			 * list_del_init() in turn breaking the
1037 			 * !list_empty_careful() check in
1038 			 * handle_userfault(). The uwq->wq.head list
1039 			 * must never be empty at any time during the
1040 			 * refile, or the waitqueue could disappear
1041 			 * from under us. The "wait_queue_head_t"
1042 			 * parameter of __remove_wait_queue() is unused
1043 			 * anyway.
1044 			 */
1045 			list_del(&uwq->wq.entry);
1046 			add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1047 
1048 			write_seqcount_end(&ctx->refile_seq);
1049 
1050 			/* careful to always initialize msg if ret == 0 */
1051 			*msg = uwq->msg;
1052 			spin_unlock(&ctx->fault_pending_wqh.lock);
1053 			ret = 0;
1054 			break;
1055 		}
1056 		spin_unlock(&ctx->fault_pending_wqh.lock);
1057 
1058 		spin_lock(&ctx->event_wqh.lock);
1059 		uwq = find_userfault_evt(ctx);
1060 		if (uwq) {
1061 			*msg = uwq->msg;
1062 
1063 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1064 				fork_nctx = (struct userfaultfd_ctx *)
1065 					(unsigned long)
1066 					uwq->msg.arg.reserved.reserved1;
1067 				list_move(&uwq->wq.entry, &fork_event);
1068 				/*
1069 				 * fork_nctx can be freed as soon as
1070 				 * we drop the lock, unless we take a
1071 				 * reference on it.
1072 				 */
1073 				userfaultfd_ctx_get(fork_nctx);
1074 				spin_unlock(&ctx->event_wqh.lock);
1075 				ret = 0;
1076 				break;
1077 			}
1078 
1079 			userfaultfd_event_complete(ctx, uwq);
1080 			spin_unlock(&ctx->event_wqh.lock);
1081 			ret = 0;
1082 			break;
1083 		}
1084 		spin_unlock(&ctx->event_wqh.lock);
1085 
1086 		if (signal_pending(current)) {
1087 			ret = -ERESTARTSYS;
1088 			break;
1089 		}
1090 		if (no_wait) {
1091 			ret = -EAGAIN;
1092 			break;
1093 		}
1094 		spin_unlock_irq(&ctx->fd_wqh.lock);
1095 		schedule();
1096 		spin_lock_irq(&ctx->fd_wqh.lock);
1097 	}
1098 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1099 	__set_current_state(TASK_RUNNING);
1100 	spin_unlock_irq(&ctx->fd_wqh.lock);
1101 
1102 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1103 		ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1104 		spin_lock_irq(&ctx->event_wqh.lock);
1105 		if (!list_empty(&fork_event)) {
1106 			/*
1107 			 * The fork thread didn't abort, so we can
1108 			 * drop the temporary refcount.
1109 			 */
1110 			userfaultfd_ctx_put(fork_nctx);
1111 
1112 			uwq = list_first_entry(&fork_event,
1113 					       typeof(*uwq),
1114 					       wq.entry);
1115 			/*
1116 			 * If fork_event list wasn't empty and in turn
1117 			 * the event wasn't already released by fork
1118 			 * (the event is allocated on fork kernel
1119 			 * stack), put the event back to its place in
1120 			 * the event_wq. fork_event head will be freed
1121 			 * as soon as we return so the event cannot
1122 			 * stay queued there no matter the current
1123 			 * "ret" value.
1124 			 */
1125 			list_del(&uwq->wq.entry);
1126 			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1127 
1128 			/*
1129 			 * Leave the event in the waitqueue and report
1130 			 * error to userland if we failed to resolve
1131 			 * the userfault fork.
1132 			 */
1133 			if (likely(!ret))
1134 				userfaultfd_event_complete(ctx, uwq);
1135 		} else {
1136 			/*
1137 			 * Here the fork thread aborted and the
1138 			 * refcount from the fork thread on fork_nctx
1139 			 * has already been released. We still hold
1140 			 * the reference we took before releasing the
1141 			 * lock above. If resolve_userfault_fork
1142 			 * failed we've to drop it because the
1143 			 * fork_nctx has to be freed in such case. If
1144 			 * it succeeded we'll hold it because the new
1145 			 * uffd references it.
1146 			 */
1147 			if (ret)
1148 				userfaultfd_ctx_put(fork_nctx);
1149 		}
1150 		spin_unlock_irq(&ctx->event_wqh.lock);
1151 	}
1152 
1153 	return ret;
1154 }
1155 
1156 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1157 				size_t count, loff_t *ppos)
1158 {
1159 	struct userfaultfd_ctx *ctx = file->private_data;
1160 	ssize_t _ret, ret = 0;
1161 	struct uffd_msg msg;
1162 	int no_wait = file->f_flags & O_NONBLOCK;
1163 
1164 	if (ctx->state == UFFD_STATE_WAIT_API)
1165 		return -EINVAL;
1166 
1167 	for (;;) {
1168 		if (count < sizeof(msg))
1169 			return ret ? ret : -EINVAL;
1170 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1171 		if (_ret < 0)
1172 			return ret ? ret : _ret;
1173 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1174 			return ret ? ret : -EFAULT;
1175 		ret += sizeof(msg);
1176 		buf += sizeof(msg);
1177 		count -= sizeof(msg);
1178 		/*
1179 		 * Allow to read more than one fault at time but only
1180 		 * block if waiting for the very first one.
1181 		 */
1182 		no_wait = O_NONBLOCK;
1183 	}
1184 }
1185 
1186 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1187 			     struct userfaultfd_wake_range *range)
1188 {
1189 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
1190 	/* wake all in the range and autoremove */
1191 	if (waitqueue_active(&ctx->fault_pending_wqh))
1192 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1193 				     range);
1194 	if (waitqueue_active(&ctx->fault_wqh))
1195 		__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1196 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1197 }
1198 
1199 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1200 					   struct userfaultfd_wake_range *range)
1201 {
1202 	unsigned seq;
1203 	bool need_wakeup;
1204 
1205 	/*
1206 	 * To be sure waitqueue_active() is not reordered by the CPU
1207 	 * before the pagetable update, use an explicit SMP memory
1208 	 * barrier here. PT lock release or mmap_read_unlock(mm) still
1209 	 * have release semantics that can allow the
1210 	 * waitqueue_active() to be reordered before the pte update.
1211 	 */
1212 	smp_mb();
1213 
1214 	/*
1215 	 * Use waitqueue_active because it's very frequent to
1216 	 * change the address space atomically even if there are no
1217 	 * userfaults yet. So we take the spinlock only when we're
1218 	 * sure we've userfaults to wake.
1219 	 */
1220 	do {
1221 		seq = read_seqcount_begin(&ctx->refile_seq);
1222 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1223 			waitqueue_active(&ctx->fault_wqh);
1224 		cond_resched();
1225 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1226 	if (need_wakeup)
1227 		__wake_userfault(ctx, range);
1228 }
1229 
1230 static __always_inline int validate_range(struct mm_struct *mm,
1231 					  __u64 *start, __u64 len)
1232 {
1233 	__u64 task_size = mm->task_size;
1234 
1235 	*start = untagged_addr(*start);
1236 
1237 	if (*start & ~PAGE_MASK)
1238 		return -EINVAL;
1239 	if (len & ~PAGE_MASK)
1240 		return -EINVAL;
1241 	if (!len)
1242 		return -EINVAL;
1243 	if (*start < mmap_min_addr)
1244 		return -EINVAL;
1245 	if (*start >= task_size)
1246 		return -EINVAL;
1247 	if (len > task_size - *start)
1248 		return -EINVAL;
1249 	return 0;
1250 }
1251 
1252 static inline bool vma_can_userfault(struct vm_area_struct *vma,
1253 				     unsigned long vm_flags)
1254 {
1255 	/* FIXME: add WP support to hugetlbfs and shmem */
1256 	return vma_is_anonymous(vma) ||
1257 		((is_vm_hugetlb_page(vma) || vma_is_shmem(vma)) &&
1258 		 !(vm_flags & VM_UFFD_WP));
1259 }
1260 
1261 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1262 				unsigned long arg)
1263 {
1264 	struct mm_struct *mm = ctx->mm;
1265 	struct vm_area_struct *vma, *prev, *cur;
1266 	int ret;
1267 	struct uffdio_register uffdio_register;
1268 	struct uffdio_register __user *user_uffdio_register;
1269 	unsigned long vm_flags, new_flags;
1270 	bool found;
1271 	bool basic_ioctls;
1272 	unsigned long start, end, vma_end;
1273 
1274 	user_uffdio_register = (struct uffdio_register __user *) arg;
1275 
1276 	ret = -EFAULT;
1277 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1278 			   sizeof(uffdio_register)-sizeof(__u64)))
1279 		goto out;
1280 
1281 	ret = -EINVAL;
1282 	if (!uffdio_register.mode)
1283 		goto out;
1284 	if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1285 				     UFFDIO_REGISTER_MODE_WP))
1286 		goto out;
1287 	vm_flags = 0;
1288 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1289 		vm_flags |= VM_UFFD_MISSING;
1290 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)
1291 		vm_flags |= VM_UFFD_WP;
1292 
1293 	ret = validate_range(mm, &uffdio_register.range.start,
1294 			     uffdio_register.range.len);
1295 	if (ret)
1296 		goto out;
1297 
1298 	start = uffdio_register.range.start;
1299 	end = start + uffdio_register.range.len;
1300 
1301 	ret = -ENOMEM;
1302 	if (!mmget_not_zero(mm))
1303 		goto out;
1304 
1305 	mmap_write_lock(mm);
1306 	vma = find_vma_prev(mm, start, &prev);
1307 	if (!vma)
1308 		goto out_unlock;
1309 
1310 	/* check that there's at least one vma in the range */
1311 	ret = -EINVAL;
1312 	if (vma->vm_start >= end)
1313 		goto out_unlock;
1314 
1315 	/*
1316 	 * If the first vma contains huge pages, make sure start address
1317 	 * is aligned to huge page size.
1318 	 */
1319 	if (is_vm_hugetlb_page(vma)) {
1320 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1321 
1322 		if (start & (vma_hpagesize - 1))
1323 			goto out_unlock;
1324 	}
1325 
1326 	/*
1327 	 * Search for not compatible vmas.
1328 	 */
1329 	found = false;
1330 	basic_ioctls = false;
1331 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1332 		cond_resched();
1333 
1334 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1335 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1336 
1337 		/* check not compatible vmas */
1338 		ret = -EINVAL;
1339 		if (!vma_can_userfault(cur, vm_flags))
1340 			goto out_unlock;
1341 
1342 		/*
1343 		 * UFFDIO_COPY will fill file holes even without
1344 		 * PROT_WRITE. This check enforces that if this is a
1345 		 * MAP_SHARED, the process has write permission to the backing
1346 		 * file. If VM_MAYWRITE is set it also enforces that on a
1347 		 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1348 		 * F_WRITE_SEAL can be taken until the vma is destroyed.
1349 		 */
1350 		ret = -EPERM;
1351 		if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1352 			goto out_unlock;
1353 
1354 		/*
1355 		 * If this vma contains ending address, and huge pages
1356 		 * check alignment.
1357 		 */
1358 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1359 		    end > cur->vm_start) {
1360 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1361 
1362 			ret = -EINVAL;
1363 
1364 			if (end & (vma_hpagesize - 1))
1365 				goto out_unlock;
1366 		}
1367 		if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1368 			goto out_unlock;
1369 
1370 		/*
1371 		 * Check that this vma isn't already owned by a
1372 		 * different userfaultfd. We can't allow more than one
1373 		 * userfaultfd to own a single vma simultaneously or we
1374 		 * wouldn't know which one to deliver the userfaults to.
1375 		 */
1376 		ret = -EBUSY;
1377 		if (cur->vm_userfaultfd_ctx.ctx &&
1378 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1379 			goto out_unlock;
1380 
1381 		/*
1382 		 * Note vmas containing huge pages
1383 		 */
1384 		if (is_vm_hugetlb_page(cur))
1385 			basic_ioctls = true;
1386 
1387 		found = true;
1388 	}
1389 	BUG_ON(!found);
1390 
1391 	if (vma->vm_start < start)
1392 		prev = vma;
1393 
1394 	ret = 0;
1395 	do {
1396 		cond_resched();
1397 
1398 		BUG_ON(!vma_can_userfault(vma, vm_flags));
1399 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1400 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1401 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1402 
1403 		/*
1404 		 * Nothing to do: this vma is already registered into this
1405 		 * userfaultfd and with the right tracking mode too.
1406 		 */
1407 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1408 		    (vma->vm_flags & vm_flags) == vm_flags)
1409 			goto skip;
1410 
1411 		if (vma->vm_start > start)
1412 			start = vma->vm_start;
1413 		vma_end = min(end, vma->vm_end);
1414 
1415 		new_flags = (vma->vm_flags &
1416 			     ~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags;
1417 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1418 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1419 				 vma_policy(vma),
1420 				 ((struct vm_userfaultfd_ctx){ ctx }));
1421 		if (prev) {
1422 			vma = prev;
1423 			goto next;
1424 		}
1425 		if (vma->vm_start < start) {
1426 			ret = split_vma(mm, vma, start, 1);
1427 			if (ret)
1428 				break;
1429 		}
1430 		if (vma->vm_end > end) {
1431 			ret = split_vma(mm, vma, end, 0);
1432 			if (ret)
1433 				break;
1434 		}
1435 	next:
1436 		/*
1437 		 * In the vma_merge() successful mprotect-like case 8:
1438 		 * the next vma was merged into the current one and
1439 		 * the current one has not been updated yet.
1440 		 */
1441 		vma->vm_flags = new_flags;
1442 		vma->vm_userfaultfd_ctx.ctx = ctx;
1443 
1444 	skip:
1445 		prev = vma;
1446 		start = vma->vm_end;
1447 		vma = vma->vm_next;
1448 	} while (vma && vma->vm_start < end);
1449 out_unlock:
1450 	mmap_write_unlock(mm);
1451 	mmput(mm);
1452 	if (!ret) {
1453 		__u64 ioctls_out;
1454 
1455 		ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1456 		    UFFD_API_RANGE_IOCTLS;
1457 
1458 		/*
1459 		 * Declare the WP ioctl only if the WP mode is
1460 		 * specified and all checks passed with the range
1461 		 */
1462 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1463 			ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1464 
1465 		/*
1466 		 * Now that we scanned all vmas we can already tell
1467 		 * userland which ioctls methods are guaranteed to
1468 		 * succeed on this range.
1469 		 */
1470 		if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1471 			ret = -EFAULT;
1472 	}
1473 out:
1474 	return ret;
1475 }
1476 
1477 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1478 				  unsigned long arg)
1479 {
1480 	struct mm_struct *mm = ctx->mm;
1481 	struct vm_area_struct *vma, *prev, *cur;
1482 	int ret;
1483 	struct uffdio_range uffdio_unregister;
1484 	unsigned long new_flags;
1485 	bool found;
1486 	unsigned long start, end, vma_end;
1487 	const void __user *buf = (void __user *)arg;
1488 
1489 	ret = -EFAULT;
1490 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1491 		goto out;
1492 
1493 	ret = validate_range(mm, &uffdio_unregister.start,
1494 			     uffdio_unregister.len);
1495 	if (ret)
1496 		goto out;
1497 
1498 	start = uffdio_unregister.start;
1499 	end = start + uffdio_unregister.len;
1500 
1501 	ret = -ENOMEM;
1502 	if (!mmget_not_zero(mm))
1503 		goto out;
1504 
1505 	mmap_write_lock(mm);
1506 	vma = find_vma_prev(mm, start, &prev);
1507 	if (!vma)
1508 		goto out_unlock;
1509 
1510 	/* check that there's at least one vma in the range */
1511 	ret = -EINVAL;
1512 	if (vma->vm_start >= end)
1513 		goto out_unlock;
1514 
1515 	/*
1516 	 * If the first vma contains huge pages, make sure start address
1517 	 * is aligned to huge page size.
1518 	 */
1519 	if (is_vm_hugetlb_page(vma)) {
1520 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1521 
1522 		if (start & (vma_hpagesize - 1))
1523 			goto out_unlock;
1524 	}
1525 
1526 	/*
1527 	 * Search for not compatible vmas.
1528 	 */
1529 	found = false;
1530 	ret = -EINVAL;
1531 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1532 		cond_resched();
1533 
1534 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1535 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1536 
1537 		/*
1538 		 * Check not compatible vmas, not strictly required
1539 		 * here as not compatible vmas cannot have an
1540 		 * userfaultfd_ctx registered on them, but this
1541 		 * provides for more strict behavior to notice
1542 		 * unregistration errors.
1543 		 */
1544 		if (!vma_can_userfault(cur, cur->vm_flags))
1545 			goto out_unlock;
1546 
1547 		found = true;
1548 	}
1549 	BUG_ON(!found);
1550 
1551 	if (vma->vm_start < start)
1552 		prev = vma;
1553 
1554 	ret = 0;
1555 	do {
1556 		cond_resched();
1557 
1558 		BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1559 
1560 		/*
1561 		 * Nothing to do: this vma is already registered into this
1562 		 * userfaultfd and with the right tracking mode too.
1563 		 */
1564 		if (!vma->vm_userfaultfd_ctx.ctx)
1565 			goto skip;
1566 
1567 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1568 
1569 		if (vma->vm_start > start)
1570 			start = vma->vm_start;
1571 		vma_end = min(end, vma->vm_end);
1572 
1573 		if (userfaultfd_missing(vma)) {
1574 			/*
1575 			 * Wake any concurrent pending userfault while
1576 			 * we unregister, so they will not hang
1577 			 * permanently and it avoids userland to call
1578 			 * UFFDIO_WAKE explicitly.
1579 			 */
1580 			struct userfaultfd_wake_range range;
1581 			range.start = start;
1582 			range.len = vma_end - start;
1583 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1584 		}
1585 
1586 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1587 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1588 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1589 				 vma_policy(vma),
1590 				 NULL_VM_UFFD_CTX);
1591 		if (prev) {
1592 			vma = prev;
1593 			goto next;
1594 		}
1595 		if (vma->vm_start < start) {
1596 			ret = split_vma(mm, vma, start, 1);
1597 			if (ret)
1598 				break;
1599 		}
1600 		if (vma->vm_end > end) {
1601 			ret = split_vma(mm, vma, end, 0);
1602 			if (ret)
1603 				break;
1604 		}
1605 	next:
1606 		/*
1607 		 * In the vma_merge() successful mprotect-like case 8:
1608 		 * the next vma was merged into the current one and
1609 		 * the current one has not been updated yet.
1610 		 */
1611 		vma->vm_flags = new_flags;
1612 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1613 
1614 	skip:
1615 		prev = vma;
1616 		start = vma->vm_end;
1617 		vma = vma->vm_next;
1618 	} while (vma && vma->vm_start < end);
1619 out_unlock:
1620 	mmap_write_unlock(mm);
1621 	mmput(mm);
1622 out:
1623 	return ret;
1624 }
1625 
1626 /*
1627  * userfaultfd_wake may be used in combination with the
1628  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1629  */
1630 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1631 			    unsigned long arg)
1632 {
1633 	int ret;
1634 	struct uffdio_range uffdio_wake;
1635 	struct userfaultfd_wake_range range;
1636 	const void __user *buf = (void __user *)arg;
1637 
1638 	ret = -EFAULT;
1639 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1640 		goto out;
1641 
1642 	ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len);
1643 	if (ret)
1644 		goto out;
1645 
1646 	range.start = uffdio_wake.start;
1647 	range.len = uffdio_wake.len;
1648 
1649 	/*
1650 	 * len == 0 means wake all and we don't want to wake all here,
1651 	 * so check it again to be sure.
1652 	 */
1653 	VM_BUG_ON(!range.len);
1654 
1655 	wake_userfault(ctx, &range);
1656 	ret = 0;
1657 
1658 out:
1659 	return ret;
1660 }
1661 
1662 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1663 			    unsigned long arg)
1664 {
1665 	__s64 ret;
1666 	struct uffdio_copy uffdio_copy;
1667 	struct uffdio_copy __user *user_uffdio_copy;
1668 	struct userfaultfd_wake_range range;
1669 
1670 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1671 
1672 	ret = -EAGAIN;
1673 	if (READ_ONCE(ctx->mmap_changing))
1674 		goto out;
1675 
1676 	ret = -EFAULT;
1677 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1678 			   /* don't copy "copy" last field */
1679 			   sizeof(uffdio_copy)-sizeof(__s64)))
1680 		goto out;
1681 
1682 	ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len);
1683 	if (ret)
1684 		goto out;
1685 	/*
1686 	 * double check for wraparound just in case. copy_from_user()
1687 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1688 	 * in the userland range.
1689 	 */
1690 	ret = -EINVAL;
1691 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1692 		goto out;
1693 	if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1694 		goto out;
1695 	if (mmget_not_zero(ctx->mm)) {
1696 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1697 				   uffdio_copy.len, &ctx->mmap_changing,
1698 				   uffdio_copy.mode);
1699 		mmput(ctx->mm);
1700 	} else {
1701 		return -ESRCH;
1702 	}
1703 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1704 		return -EFAULT;
1705 	if (ret < 0)
1706 		goto out;
1707 	BUG_ON(!ret);
1708 	/* len == 0 would wake all */
1709 	range.len = ret;
1710 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1711 		range.start = uffdio_copy.dst;
1712 		wake_userfault(ctx, &range);
1713 	}
1714 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1715 out:
1716 	return ret;
1717 }
1718 
1719 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1720 				unsigned long arg)
1721 {
1722 	__s64 ret;
1723 	struct uffdio_zeropage uffdio_zeropage;
1724 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1725 	struct userfaultfd_wake_range range;
1726 
1727 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1728 
1729 	ret = -EAGAIN;
1730 	if (READ_ONCE(ctx->mmap_changing))
1731 		goto out;
1732 
1733 	ret = -EFAULT;
1734 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1735 			   /* don't copy "zeropage" last field */
1736 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1737 		goto out;
1738 
1739 	ret = validate_range(ctx->mm, &uffdio_zeropage.range.start,
1740 			     uffdio_zeropage.range.len);
1741 	if (ret)
1742 		goto out;
1743 	ret = -EINVAL;
1744 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1745 		goto out;
1746 
1747 	if (mmget_not_zero(ctx->mm)) {
1748 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1749 				     uffdio_zeropage.range.len,
1750 				     &ctx->mmap_changing);
1751 		mmput(ctx->mm);
1752 	} else {
1753 		return -ESRCH;
1754 	}
1755 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1756 		return -EFAULT;
1757 	if (ret < 0)
1758 		goto out;
1759 	/* len == 0 would wake all */
1760 	BUG_ON(!ret);
1761 	range.len = ret;
1762 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1763 		range.start = uffdio_zeropage.range.start;
1764 		wake_userfault(ctx, &range);
1765 	}
1766 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1767 out:
1768 	return ret;
1769 }
1770 
1771 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1772 				    unsigned long arg)
1773 {
1774 	int ret;
1775 	struct uffdio_writeprotect uffdio_wp;
1776 	struct uffdio_writeprotect __user *user_uffdio_wp;
1777 	struct userfaultfd_wake_range range;
1778 	bool mode_wp, mode_dontwake;
1779 
1780 	if (READ_ONCE(ctx->mmap_changing))
1781 		return -EAGAIN;
1782 
1783 	user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1784 
1785 	if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1786 			   sizeof(struct uffdio_writeprotect)))
1787 		return -EFAULT;
1788 
1789 	ret = validate_range(ctx->mm, &uffdio_wp.range.start,
1790 			     uffdio_wp.range.len);
1791 	if (ret)
1792 		return ret;
1793 
1794 	if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1795 			       UFFDIO_WRITEPROTECT_MODE_WP))
1796 		return -EINVAL;
1797 
1798 	mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1799 	mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1800 
1801 	if (mode_wp && mode_dontwake)
1802 		return -EINVAL;
1803 
1804 	ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1805 				  uffdio_wp.range.len, mode_wp,
1806 				  &ctx->mmap_changing);
1807 	if (ret)
1808 		return ret;
1809 
1810 	if (!mode_wp && !mode_dontwake) {
1811 		range.start = uffdio_wp.range.start;
1812 		range.len = uffdio_wp.range.len;
1813 		wake_userfault(ctx, &range);
1814 	}
1815 	return ret;
1816 }
1817 
1818 static inline unsigned int uffd_ctx_features(__u64 user_features)
1819 {
1820 	/*
1821 	 * For the current set of features the bits just coincide
1822 	 */
1823 	return (unsigned int)user_features;
1824 }
1825 
1826 /*
1827  * userland asks for a certain API version and we return which bits
1828  * and ioctl commands are implemented in this kernel for such API
1829  * version or -EINVAL if unknown.
1830  */
1831 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1832 			   unsigned long arg)
1833 {
1834 	struct uffdio_api uffdio_api;
1835 	void __user *buf = (void __user *)arg;
1836 	int ret;
1837 	__u64 features;
1838 
1839 	ret = -EINVAL;
1840 	if (ctx->state != UFFD_STATE_WAIT_API)
1841 		goto out;
1842 	ret = -EFAULT;
1843 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1844 		goto out;
1845 	features = uffdio_api.features;
1846 	ret = -EINVAL;
1847 	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1848 		goto err_out;
1849 	ret = -EPERM;
1850 	if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1851 		goto err_out;
1852 	/* report all available features and ioctls to userland */
1853 	uffdio_api.features = UFFD_API_FEATURES;
1854 	uffdio_api.ioctls = UFFD_API_IOCTLS;
1855 	ret = -EFAULT;
1856 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1857 		goto out;
1858 	ctx->state = UFFD_STATE_RUNNING;
1859 	/* only enable the requested features for this uffd context */
1860 	ctx->features = uffd_ctx_features(features);
1861 	ret = 0;
1862 out:
1863 	return ret;
1864 err_out:
1865 	memset(&uffdio_api, 0, sizeof(uffdio_api));
1866 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1867 		ret = -EFAULT;
1868 	goto out;
1869 }
1870 
1871 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1872 			      unsigned long arg)
1873 {
1874 	int ret = -EINVAL;
1875 	struct userfaultfd_ctx *ctx = file->private_data;
1876 
1877 	if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1878 		return -EINVAL;
1879 
1880 	switch(cmd) {
1881 	case UFFDIO_API:
1882 		ret = userfaultfd_api(ctx, arg);
1883 		break;
1884 	case UFFDIO_REGISTER:
1885 		ret = userfaultfd_register(ctx, arg);
1886 		break;
1887 	case UFFDIO_UNREGISTER:
1888 		ret = userfaultfd_unregister(ctx, arg);
1889 		break;
1890 	case UFFDIO_WAKE:
1891 		ret = userfaultfd_wake(ctx, arg);
1892 		break;
1893 	case UFFDIO_COPY:
1894 		ret = userfaultfd_copy(ctx, arg);
1895 		break;
1896 	case UFFDIO_ZEROPAGE:
1897 		ret = userfaultfd_zeropage(ctx, arg);
1898 		break;
1899 	case UFFDIO_WRITEPROTECT:
1900 		ret = userfaultfd_writeprotect(ctx, arg);
1901 		break;
1902 	}
1903 	return ret;
1904 }
1905 
1906 #ifdef CONFIG_PROC_FS
1907 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1908 {
1909 	struct userfaultfd_ctx *ctx = f->private_data;
1910 	wait_queue_entry_t *wq;
1911 	unsigned long pending = 0, total = 0;
1912 
1913 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
1914 	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1915 		pending++;
1916 		total++;
1917 	}
1918 	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1919 		total++;
1920 	}
1921 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1922 
1923 	/*
1924 	 * If more protocols will be added, there will be all shown
1925 	 * separated by a space. Like this:
1926 	 *	protocols: aa:... bb:...
1927 	 */
1928 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1929 		   pending, total, UFFD_API, ctx->features,
1930 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1931 }
1932 #endif
1933 
1934 static const struct file_operations userfaultfd_fops = {
1935 #ifdef CONFIG_PROC_FS
1936 	.show_fdinfo	= userfaultfd_show_fdinfo,
1937 #endif
1938 	.release	= userfaultfd_release,
1939 	.poll		= userfaultfd_poll,
1940 	.read		= userfaultfd_read,
1941 	.unlocked_ioctl = userfaultfd_ioctl,
1942 	.compat_ioctl	= compat_ptr_ioctl,
1943 	.llseek		= noop_llseek,
1944 };
1945 
1946 static void init_once_userfaultfd_ctx(void *mem)
1947 {
1948 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1949 
1950 	init_waitqueue_head(&ctx->fault_pending_wqh);
1951 	init_waitqueue_head(&ctx->fault_wqh);
1952 	init_waitqueue_head(&ctx->event_wqh);
1953 	init_waitqueue_head(&ctx->fd_wqh);
1954 	seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
1955 }
1956 
1957 SYSCALL_DEFINE1(userfaultfd, int, flags)
1958 {
1959 	struct userfaultfd_ctx *ctx;
1960 	int fd;
1961 
1962 	if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE))
1963 		return -EPERM;
1964 
1965 	BUG_ON(!current->mm);
1966 
1967 	/* Check the UFFD_* constants for consistency.  */
1968 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1969 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1970 
1971 	if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1972 		return -EINVAL;
1973 
1974 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1975 	if (!ctx)
1976 		return -ENOMEM;
1977 
1978 	refcount_set(&ctx->refcount, 1);
1979 	ctx->flags = flags;
1980 	ctx->features = 0;
1981 	ctx->state = UFFD_STATE_WAIT_API;
1982 	ctx->released = false;
1983 	ctx->mmap_changing = false;
1984 	ctx->mm = current->mm;
1985 	/* prevent the mm struct to be freed */
1986 	mmgrab(ctx->mm);
1987 
1988 	fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1989 			      O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1990 	if (fd < 0) {
1991 		mmdrop(ctx->mm);
1992 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1993 	}
1994 	return fd;
1995 }
1996 
1997 static int __init userfaultfd_init(void)
1998 {
1999 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2000 						sizeof(struct userfaultfd_ctx),
2001 						0,
2002 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2003 						init_once_userfaultfd_ctx);
2004 	return 0;
2005 }
2006 __initcall(userfaultfd_init);
2007