xref: /openbmc/linux/fs/userfaultfd.c (revision 63186a89)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12 
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 #include <linux/swapops.h>
33 #include <linux/miscdevice.h>
34 
35 static int sysctl_unprivileged_userfaultfd __read_mostly;
36 
37 #ifdef CONFIG_SYSCTL
38 static struct ctl_table vm_userfaultfd_table[] = {
39 	{
40 		.procname	= "unprivileged_userfaultfd",
41 		.data		= &sysctl_unprivileged_userfaultfd,
42 		.maxlen		= sizeof(sysctl_unprivileged_userfaultfd),
43 		.mode		= 0644,
44 		.proc_handler	= proc_dointvec_minmax,
45 		.extra1		= SYSCTL_ZERO,
46 		.extra2		= SYSCTL_ONE,
47 	},
48 	{ }
49 };
50 #endif
51 
52 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
53 
54 /*
55  * Start with fault_pending_wqh and fault_wqh so they're more likely
56  * to be in the same cacheline.
57  *
58  * Locking order:
59  *	fd_wqh.lock
60  *		fault_pending_wqh.lock
61  *			fault_wqh.lock
62  *		event_wqh.lock
63  *
64  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
65  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
66  * also taken in IRQ context.
67  */
68 struct userfaultfd_ctx {
69 	/* waitqueue head for the pending (i.e. not read) userfaults */
70 	wait_queue_head_t fault_pending_wqh;
71 	/* waitqueue head for the userfaults */
72 	wait_queue_head_t fault_wqh;
73 	/* waitqueue head for the pseudo fd to wakeup poll/read */
74 	wait_queue_head_t fd_wqh;
75 	/* waitqueue head for events */
76 	wait_queue_head_t event_wqh;
77 	/* a refile sequence protected by fault_pending_wqh lock */
78 	seqcount_spinlock_t refile_seq;
79 	/* pseudo fd refcounting */
80 	refcount_t refcount;
81 	/* userfaultfd syscall flags */
82 	unsigned int flags;
83 	/* features requested from the userspace */
84 	unsigned int features;
85 	/* released */
86 	bool released;
87 	/* memory mappings are changing because of non-cooperative event */
88 	atomic_t mmap_changing;
89 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
90 	struct mm_struct *mm;
91 };
92 
93 struct userfaultfd_fork_ctx {
94 	struct userfaultfd_ctx *orig;
95 	struct userfaultfd_ctx *new;
96 	struct list_head list;
97 };
98 
99 struct userfaultfd_unmap_ctx {
100 	struct userfaultfd_ctx *ctx;
101 	unsigned long start;
102 	unsigned long end;
103 	struct list_head list;
104 };
105 
106 struct userfaultfd_wait_queue {
107 	struct uffd_msg msg;
108 	wait_queue_entry_t wq;
109 	struct userfaultfd_ctx *ctx;
110 	bool waken;
111 };
112 
113 struct userfaultfd_wake_range {
114 	unsigned long start;
115 	unsigned long len;
116 };
117 
118 /* internal indication that UFFD_API ioctl was successfully executed */
119 #define UFFD_FEATURE_INITIALIZED		(1u << 31)
120 
121 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
122 {
123 	return ctx->features & UFFD_FEATURE_INITIALIZED;
124 }
125 
126 /*
127  * Whether WP_UNPOPULATED is enabled on the uffd context.  It is only
128  * meaningful when userfaultfd_wp()==true on the vma and when it's
129  * anonymous.
130  */
131 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
132 {
133 	struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
134 
135 	if (!ctx)
136 		return false;
137 
138 	return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
139 }
140 
141 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
142 				     vm_flags_t flags)
143 {
144 	const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
145 
146 	vm_flags_reset(vma, flags);
147 	/*
148 	 * For shared mappings, we want to enable writenotify while
149 	 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
150 	 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
151 	 */
152 	if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
153 		vma_set_page_prot(vma);
154 }
155 
156 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
157 				     int wake_flags, void *key)
158 {
159 	struct userfaultfd_wake_range *range = key;
160 	int ret;
161 	struct userfaultfd_wait_queue *uwq;
162 	unsigned long start, len;
163 
164 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
165 	ret = 0;
166 	/* len == 0 means wake all */
167 	start = range->start;
168 	len = range->len;
169 	if (len && (start > uwq->msg.arg.pagefault.address ||
170 		    start + len <= uwq->msg.arg.pagefault.address))
171 		goto out;
172 	WRITE_ONCE(uwq->waken, true);
173 	/*
174 	 * The Program-Order guarantees provided by the scheduler
175 	 * ensure uwq->waken is visible before the task is woken.
176 	 */
177 	ret = wake_up_state(wq->private, mode);
178 	if (ret) {
179 		/*
180 		 * Wake only once, autoremove behavior.
181 		 *
182 		 * After the effect of list_del_init is visible to the other
183 		 * CPUs, the waitqueue may disappear from under us, see the
184 		 * !list_empty_careful() in handle_userfault().
185 		 *
186 		 * try_to_wake_up() has an implicit smp_mb(), and the
187 		 * wq->private is read before calling the extern function
188 		 * "wake_up_state" (which in turns calls try_to_wake_up).
189 		 */
190 		list_del_init(&wq->entry);
191 	}
192 out:
193 	return ret;
194 }
195 
196 /**
197  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
198  * context.
199  * @ctx: [in] Pointer to the userfaultfd context.
200  */
201 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
202 {
203 	refcount_inc(&ctx->refcount);
204 }
205 
206 /**
207  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
208  * context.
209  * @ctx: [in] Pointer to userfaultfd context.
210  *
211  * The userfaultfd context reference must have been previously acquired either
212  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
213  */
214 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
215 {
216 	if (refcount_dec_and_test(&ctx->refcount)) {
217 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
218 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
219 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
220 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
221 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
222 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
223 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
224 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
225 		mmdrop(ctx->mm);
226 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
227 	}
228 }
229 
230 static inline void msg_init(struct uffd_msg *msg)
231 {
232 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
233 	/*
234 	 * Must use memset to zero out the paddings or kernel data is
235 	 * leaked to userland.
236 	 */
237 	memset(msg, 0, sizeof(struct uffd_msg));
238 }
239 
240 static inline struct uffd_msg userfault_msg(unsigned long address,
241 					    unsigned long real_address,
242 					    unsigned int flags,
243 					    unsigned long reason,
244 					    unsigned int features)
245 {
246 	struct uffd_msg msg;
247 
248 	msg_init(&msg);
249 	msg.event = UFFD_EVENT_PAGEFAULT;
250 
251 	msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
252 				    real_address : address;
253 
254 	/*
255 	 * These flags indicate why the userfault occurred:
256 	 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
257 	 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
258 	 * - Neither of these flags being set indicates a MISSING fault.
259 	 *
260 	 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
261 	 * fault. Otherwise, it was a read fault.
262 	 */
263 	if (flags & FAULT_FLAG_WRITE)
264 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
265 	if (reason & VM_UFFD_WP)
266 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
267 	if (reason & VM_UFFD_MINOR)
268 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
269 	if (features & UFFD_FEATURE_THREAD_ID)
270 		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
271 	return msg;
272 }
273 
274 #ifdef CONFIG_HUGETLB_PAGE
275 /*
276  * Same functionality as userfaultfd_must_wait below with modifications for
277  * hugepmd ranges.
278  */
279 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
280 					 struct vm_area_struct *vma,
281 					 unsigned long address,
282 					 unsigned long flags,
283 					 unsigned long reason)
284 {
285 	pte_t *ptep, pte;
286 	bool ret = true;
287 
288 	mmap_assert_locked(ctx->mm);
289 
290 	ptep = hugetlb_walk(vma, address, vma_mmu_pagesize(vma));
291 	if (!ptep)
292 		goto out;
293 
294 	ret = false;
295 	pte = huge_ptep_get(ptep);
296 
297 	/*
298 	 * Lockless access: we're in a wait_event so it's ok if it
299 	 * changes under us.  PTE markers should be handled the same as none
300 	 * ptes here.
301 	 */
302 	if (huge_pte_none_mostly(pte))
303 		ret = true;
304 	if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
305 		ret = true;
306 out:
307 	return ret;
308 }
309 #else
310 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
311 					 struct vm_area_struct *vma,
312 					 unsigned long address,
313 					 unsigned long flags,
314 					 unsigned long reason)
315 {
316 	return false;	/* should never get here */
317 }
318 #endif /* CONFIG_HUGETLB_PAGE */
319 
320 /*
321  * Verify the pagetables are still not ok after having reigstered into
322  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
323  * userfault that has already been resolved, if userfaultfd_read and
324  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
325  * threads.
326  */
327 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
328 					 unsigned long address,
329 					 unsigned long flags,
330 					 unsigned long reason)
331 {
332 	struct mm_struct *mm = ctx->mm;
333 	pgd_t *pgd;
334 	p4d_t *p4d;
335 	pud_t *pud;
336 	pmd_t *pmd, _pmd;
337 	pte_t *pte;
338 	pte_t ptent;
339 	bool ret = true;
340 
341 	mmap_assert_locked(mm);
342 
343 	pgd = pgd_offset(mm, address);
344 	if (!pgd_present(*pgd))
345 		goto out;
346 	p4d = p4d_offset(pgd, address);
347 	if (!p4d_present(*p4d))
348 		goto out;
349 	pud = pud_offset(p4d, address);
350 	if (!pud_present(*pud))
351 		goto out;
352 	pmd = pmd_offset(pud, address);
353 again:
354 	_pmd = pmdp_get_lockless(pmd);
355 	if (pmd_none(_pmd))
356 		goto out;
357 
358 	ret = false;
359 	if (!pmd_present(_pmd) || pmd_devmap(_pmd))
360 		goto out;
361 
362 	if (pmd_trans_huge(_pmd)) {
363 		if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
364 			ret = true;
365 		goto out;
366 	}
367 
368 	pte = pte_offset_map(pmd, address);
369 	if (!pte) {
370 		ret = true;
371 		goto again;
372 	}
373 	/*
374 	 * Lockless access: we're in a wait_event so it's ok if it
375 	 * changes under us.  PTE markers should be handled the same as none
376 	 * ptes here.
377 	 */
378 	ptent = ptep_get(pte);
379 	if (pte_none_mostly(ptent))
380 		ret = true;
381 	if (!pte_write(ptent) && (reason & VM_UFFD_WP))
382 		ret = true;
383 	pte_unmap(pte);
384 
385 out:
386 	return ret;
387 }
388 
389 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
390 {
391 	if (flags & FAULT_FLAG_INTERRUPTIBLE)
392 		return TASK_INTERRUPTIBLE;
393 
394 	if (flags & FAULT_FLAG_KILLABLE)
395 		return TASK_KILLABLE;
396 
397 	return TASK_UNINTERRUPTIBLE;
398 }
399 
400 /*
401  * The locking rules involved in returning VM_FAULT_RETRY depending on
402  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
403  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
404  * recommendation in __lock_page_or_retry is not an understatement.
405  *
406  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
407  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
408  * not set.
409  *
410  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
411  * set, VM_FAULT_RETRY can still be returned if and only if there are
412  * fatal_signal_pending()s, and the mmap_lock must be released before
413  * returning it.
414  */
415 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
416 {
417 	struct vm_area_struct *vma = vmf->vma;
418 	struct mm_struct *mm = vma->vm_mm;
419 	struct userfaultfd_ctx *ctx;
420 	struct userfaultfd_wait_queue uwq;
421 	vm_fault_t ret = VM_FAULT_SIGBUS;
422 	bool must_wait;
423 	unsigned int blocking_state;
424 
425 	/*
426 	 * We don't do userfault handling for the final child pid update.
427 	 *
428 	 * We also don't do userfault handling during
429 	 * coredumping. hugetlbfs has the special
430 	 * follow_hugetlb_page() to skip missing pages in the
431 	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
432 	 * the no_page_table() helper in follow_page_mask(), but the
433 	 * shmem_vm_ops->fault method is invoked even during
434 	 * coredumping without mmap_lock and it ends up here.
435 	 */
436 	if (current->flags & (PF_EXITING|PF_DUMPCORE))
437 		goto out;
438 
439 	/*
440 	 * Coredumping runs without mmap_lock so we can only check that
441 	 * the mmap_lock is held, if PF_DUMPCORE was not set.
442 	 */
443 	mmap_assert_locked(mm);
444 
445 	ctx = vma->vm_userfaultfd_ctx.ctx;
446 	if (!ctx)
447 		goto out;
448 
449 	BUG_ON(ctx->mm != mm);
450 
451 	/* Any unrecognized flag is a bug. */
452 	VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
453 	/* 0 or > 1 flags set is a bug; we expect exactly 1. */
454 	VM_BUG_ON(!reason || (reason & (reason - 1)));
455 
456 	if (ctx->features & UFFD_FEATURE_SIGBUS)
457 		goto out;
458 	if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
459 		goto out;
460 
461 	/*
462 	 * If it's already released don't get it. This avoids to loop
463 	 * in __get_user_pages if userfaultfd_release waits on the
464 	 * caller of handle_userfault to release the mmap_lock.
465 	 */
466 	if (unlikely(READ_ONCE(ctx->released))) {
467 		/*
468 		 * Don't return VM_FAULT_SIGBUS in this case, so a non
469 		 * cooperative manager can close the uffd after the
470 		 * last UFFDIO_COPY, without risking to trigger an
471 		 * involuntary SIGBUS if the process was starting the
472 		 * userfaultfd while the userfaultfd was still armed
473 		 * (but after the last UFFDIO_COPY). If the uffd
474 		 * wasn't already closed when the userfault reached
475 		 * this point, that would normally be solved by
476 		 * userfaultfd_must_wait returning 'false'.
477 		 *
478 		 * If we were to return VM_FAULT_SIGBUS here, the non
479 		 * cooperative manager would be instead forced to
480 		 * always call UFFDIO_UNREGISTER before it can safely
481 		 * close the uffd.
482 		 */
483 		ret = VM_FAULT_NOPAGE;
484 		goto out;
485 	}
486 
487 	/*
488 	 * Check that we can return VM_FAULT_RETRY.
489 	 *
490 	 * NOTE: it should become possible to return VM_FAULT_RETRY
491 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
492 	 * -EBUSY failures, if the userfaultfd is to be extended for
493 	 * VM_UFFD_WP tracking and we intend to arm the userfault
494 	 * without first stopping userland access to the memory. For
495 	 * VM_UFFD_MISSING userfaults this is enough for now.
496 	 */
497 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
498 		/*
499 		 * Validate the invariant that nowait must allow retry
500 		 * to be sure not to return SIGBUS erroneously on
501 		 * nowait invocations.
502 		 */
503 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
504 #ifdef CONFIG_DEBUG_VM
505 		if (printk_ratelimit()) {
506 			printk(KERN_WARNING
507 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
508 			       vmf->flags);
509 			dump_stack();
510 		}
511 #endif
512 		goto out;
513 	}
514 
515 	/*
516 	 * Handle nowait, not much to do other than tell it to retry
517 	 * and wait.
518 	 */
519 	ret = VM_FAULT_RETRY;
520 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
521 		goto out;
522 
523 	/* take the reference before dropping the mmap_lock */
524 	userfaultfd_ctx_get(ctx);
525 
526 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
527 	uwq.wq.private = current;
528 	uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
529 				reason, ctx->features);
530 	uwq.ctx = ctx;
531 	uwq.waken = false;
532 
533 	blocking_state = userfaultfd_get_blocking_state(vmf->flags);
534 
535         /*
536          * Take the vma lock now, in order to safely call
537          * userfaultfd_huge_must_wait() later. Since acquiring the
538          * (sleepable) vma lock can modify the current task state, that
539          * must be before explicitly calling set_current_state().
540          */
541 	if (is_vm_hugetlb_page(vma))
542 		hugetlb_vma_lock_read(vma);
543 
544 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
545 	/*
546 	 * After the __add_wait_queue the uwq is visible to userland
547 	 * through poll/read().
548 	 */
549 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
550 	/*
551 	 * The smp_mb() after __set_current_state prevents the reads
552 	 * following the spin_unlock to happen before the list_add in
553 	 * __add_wait_queue.
554 	 */
555 	set_current_state(blocking_state);
556 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
557 
558 	if (!is_vm_hugetlb_page(vma))
559 		must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
560 						  reason);
561 	else
562 		must_wait = userfaultfd_huge_must_wait(ctx, vma,
563 						       vmf->address,
564 						       vmf->flags, reason);
565 	if (is_vm_hugetlb_page(vma))
566 		hugetlb_vma_unlock_read(vma);
567 	mmap_read_unlock(mm);
568 
569 	if (likely(must_wait && !READ_ONCE(ctx->released))) {
570 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
571 		schedule();
572 	}
573 
574 	__set_current_state(TASK_RUNNING);
575 
576 	/*
577 	 * Here we race with the list_del; list_add in
578 	 * userfaultfd_ctx_read(), however because we don't ever run
579 	 * list_del_init() to refile across the two lists, the prev
580 	 * and next pointers will never point to self. list_add also
581 	 * would never let any of the two pointers to point to
582 	 * self. So list_empty_careful won't risk to see both pointers
583 	 * pointing to self at any time during the list refile. The
584 	 * only case where list_del_init() is called is the full
585 	 * removal in the wake function and there we don't re-list_add
586 	 * and it's fine not to block on the spinlock. The uwq on this
587 	 * kernel stack can be released after the list_del_init.
588 	 */
589 	if (!list_empty_careful(&uwq.wq.entry)) {
590 		spin_lock_irq(&ctx->fault_pending_wqh.lock);
591 		/*
592 		 * No need of list_del_init(), the uwq on the stack
593 		 * will be freed shortly anyway.
594 		 */
595 		list_del(&uwq.wq.entry);
596 		spin_unlock_irq(&ctx->fault_pending_wqh.lock);
597 	}
598 
599 	/*
600 	 * ctx may go away after this if the userfault pseudo fd is
601 	 * already released.
602 	 */
603 	userfaultfd_ctx_put(ctx);
604 
605 out:
606 	return ret;
607 }
608 
609 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
610 					      struct userfaultfd_wait_queue *ewq)
611 {
612 	struct userfaultfd_ctx *release_new_ctx;
613 
614 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
615 		goto out;
616 
617 	ewq->ctx = ctx;
618 	init_waitqueue_entry(&ewq->wq, current);
619 	release_new_ctx = NULL;
620 
621 	spin_lock_irq(&ctx->event_wqh.lock);
622 	/*
623 	 * After the __add_wait_queue the uwq is visible to userland
624 	 * through poll/read().
625 	 */
626 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
627 	for (;;) {
628 		set_current_state(TASK_KILLABLE);
629 		if (ewq->msg.event == 0)
630 			break;
631 		if (READ_ONCE(ctx->released) ||
632 		    fatal_signal_pending(current)) {
633 			/*
634 			 * &ewq->wq may be queued in fork_event, but
635 			 * __remove_wait_queue ignores the head
636 			 * parameter. It would be a problem if it
637 			 * didn't.
638 			 */
639 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
640 			if (ewq->msg.event == UFFD_EVENT_FORK) {
641 				struct userfaultfd_ctx *new;
642 
643 				new = (struct userfaultfd_ctx *)
644 					(unsigned long)
645 					ewq->msg.arg.reserved.reserved1;
646 				release_new_ctx = new;
647 			}
648 			break;
649 		}
650 
651 		spin_unlock_irq(&ctx->event_wqh.lock);
652 
653 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
654 		schedule();
655 
656 		spin_lock_irq(&ctx->event_wqh.lock);
657 	}
658 	__set_current_state(TASK_RUNNING);
659 	spin_unlock_irq(&ctx->event_wqh.lock);
660 
661 	if (release_new_ctx) {
662 		struct vm_area_struct *vma;
663 		struct mm_struct *mm = release_new_ctx->mm;
664 		VMA_ITERATOR(vmi, mm, 0);
665 
666 		/* the various vma->vm_userfaultfd_ctx still points to it */
667 		mmap_write_lock(mm);
668 		for_each_vma(vmi, vma) {
669 			if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
670 				vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
671 				userfaultfd_set_vm_flags(vma,
672 							 vma->vm_flags & ~__VM_UFFD_FLAGS);
673 			}
674 		}
675 		mmap_write_unlock(mm);
676 
677 		userfaultfd_ctx_put(release_new_ctx);
678 	}
679 
680 	/*
681 	 * ctx may go away after this if the userfault pseudo fd is
682 	 * already released.
683 	 */
684 out:
685 	atomic_dec(&ctx->mmap_changing);
686 	VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
687 	userfaultfd_ctx_put(ctx);
688 }
689 
690 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
691 				       struct userfaultfd_wait_queue *ewq)
692 {
693 	ewq->msg.event = 0;
694 	wake_up_locked(&ctx->event_wqh);
695 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
696 }
697 
698 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
699 {
700 	struct userfaultfd_ctx *ctx = NULL, *octx;
701 	struct userfaultfd_fork_ctx *fctx;
702 
703 	octx = vma->vm_userfaultfd_ctx.ctx;
704 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
705 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
706 		userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
707 		return 0;
708 	}
709 
710 	list_for_each_entry(fctx, fcs, list)
711 		if (fctx->orig == octx) {
712 			ctx = fctx->new;
713 			break;
714 		}
715 
716 	if (!ctx) {
717 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
718 		if (!fctx)
719 			return -ENOMEM;
720 
721 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
722 		if (!ctx) {
723 			kfree(fctx);
724 			return -ENOMEM;
725 		}
726 
727 		refcount_set(&ctx->refcount, 1);
728 		ctx->flags = octx->flags;
729 		ctx->features = octx->features;
730 		ctx->released = false;
731 		atomic_set(&ctx->mmap_changing, 0);
732 		ctx->mm = vma->vm_mm;
733 		mmgrab(ctx->mm);
734 
735 		userfaultfd_ctx_get(octx);
736 		atomic_inc(&octx->mmap_changing);
737 		fctx->orig = octx;
738 		fctx->new = ctx;
739 		list_add_tail(&fctx->list, fcs);
740 	}
741 
742 	vma->vm_userfaultfd_ctx.ctx = ctx;
743 	return 0;
744 }
745 
746 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
747 {
748 	struct userfaultfd_ctx *ctx = fctx->orig;
749 	struct userfaultfd_wait_queue ewq;
750 
751 	msg_init(&ewq.msg);
752 
753 	ewq.msg.event = UFFD_EVENT_FORK;
754 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
755 
756 	userfaultfd_event_wait_completion(ctx, &ewq);
757 }
758 
759 void dup_userfaultfd_complete(struct list_head *fcs)
760 {
761 	struct userfaultfd_fork_ctx *fctx, *n;
762 
763 	list_for_each_entry_safe(fctx, n, fcs, list) {
764 		dup_fctx(fctx);
765 		list_del(&fctx->list);
766 		kfree(fctx);
767 	}
768 }
769 
770 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
771 			     struct vm_userfaultfd_ctx *vm_ctx)
772 {
773 	struct userfaultfd_ctx *ctx;
774 
775 	ctx = vma->vm_userfaultfd_ctx.ctx;
776 
777 	if (!ctx)
778 		return;
779 
780 	if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
781 		vm_ctx->ctx = ctx;
782 		userfaultfd_ctx_get(ctx);
783 		atomic_inc(&ctx->mmap_changing);
784 	} else {
785 		/* Drop uffd context if remap feature not enabled */
786 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
787 		userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
788 	}
789 }
790 
791 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
792 				 unsigned long from, unsigned long to,
793 				 unsigned long len)
794 {
795 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
796 	struct userfaultfd_wait_queue ewq;
797 
798 	if (!ctx)
799 		return;
800 
801 	if (to & ~PAGE_MASK) {
802 		userfaultfd_ctx_put(ctx);
803 		return;
804 	}
805 
806 	msg_init(&ewq.msg);
807 
808 	ewq.msg.event = UFFD_EVENT_REMAP;
809 	ewq.msg.arg.remap.from = from;
810 	ewq.msg.arg.remap.to = to;
811 	ewq.msg.arg.remap.len = len;
812 
813 	userfaultfd_event_wait_completion(ctx, &ewq);
814 }
815 
816 bool userfaultfd_remove(struct vm_area_struct *vma,
817 			unsigned long start, unsigned long end)
818 {
819 	struct mm_struct *mm = vma->vm_mm;
820 	struct userfaultfd_ctx *ctx;
821 	struct userfaultfd_wait_queue ewq;
822 
823 	ctx = vma->vm_userfaultfd_ctx.ctx;
824 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
825 		return true;
826 
827 	userfaultfd_ctx_get(ctx);
828 	atomic_inc(&ctx->mmap_changing);
829 	mmap_read_unlock(mm);
830 
831 	msg_init(&ewq.msg);
832 
833 	ewq.msg.event = UFFD_EVENT_REMOVE;
834 	ewq.msg.arg.remove.start = start;
835 	ewq.msg.arg.remove.end = end;
836 
837 	userfaultfd_event_wait_completion(ctx, &ewq);
838 
839 	return false;
840 }
841 
842 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
843 			  unsigned long start, unsigned long end)
844 {
845 	struct userfaultfd_unmap_ctx *unmap_ctx;
846 
847 	list_for_each_entry(unmap_ctx, unmaps, list)
848 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
849 		    unmap_ctx->end == end)
850 			return true;
851 
852 	return false;
853 }
854 
855 int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start,
856 			   unsigned long end, struct list_head *unmaps)
857 {
858 	struct userfaultfd_unmap_ctx *unmap_ctx;
859 	struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
860 
861 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
862 	    has_unmap_ctx(ctx, unmaps, start, end))
863 		return 0;
864 
865 	unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
866 	if (!unmap_ctx)
867 		return -ENOMEM;
868 
869 	userfaultfd_ctx_get(ctx);
870 	atomic_inc(&ctx->mmap_changing);
871 	unmap_ctx->ctx = ctx;
872 	unmap_ctx->start = start;
873 	unmap_ctx->end = end;
874 	list_add_tail(&unmap_ctx->list, unmaps);
875 
876 	return 0;
877 }
878 
879 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
880 {
881 	struct userfaultfd_unmap_ctx *ctx, *n;
882 	struct userfaultfd_wait_queue ewq;
883 
884 	list_for_each_entry_safe(ctx, n, uf, list) {
885 		msg_init(&ewq.msg);
886 
887 		ewq.msg.event = UFFD_EVENT_UNMAP;
888 		ewq.msg.arg.remove.start = ctx->start;
889 		ewq.msg.arg.remove.end = ctx->end;
890 
891 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
892 
893 		list_del(&ctx->list);
894 		kfree(ctx);
895 	}
896 }
897 
898 static int userfaultfd_release(struct inode *inode, struct file *file)
899 {
900 	struct userfaultfd_ctx *ctx = file->private_data;
901 	struct mm_struct *mm = ctx->mm;
902 	struct vm_area_struct *vma, *prev;
903 	/* len == 0 means wake all */
904 	struct userfaultfd_wake_range range = { .len = 0, };
905 	unsigned long new_flags;
906 	VMA_ITERATOR(vmi, mm, 0);
907 
908 	WRITE_ONCE(ctx->released, true);
909 
910 	if (!mmget_not_zero(mm))
911 		goto wakeup;
912 
913 	/*
914 	 * Flush page faults out of all CPUs. NOTE: all page faults
915 	 * must be retried without returning VM_FAULT_SIGBUS if
916 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
917 	 * changes while handle_userfault released the mmap_lock. So
918 	 * it's critical that released is set to true (above), before
919 	 * taking the mmap_lock for writing.
920 	 */
921 	mmap_write_lock(mm);
922 	prev = NULL;
923 	for_each_vma(vmi, vma) {
924 		cond_resched();
925 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
926 		       !!(vma->vm_flags & __VM_UFFD_FLAGS));
927 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
928 			prev = vma;
929 			continue;
930 		}
931 		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
932 		prev = vma_merge(&vmi, mm, prev, vma->vm_start, vma->vm_end,
933 				 new_flags, vma->anon_vma,
934 				 vma->vm_file, vma->vm_pgoff,
935 				 vma_policy(vma),
936 				 NULL_VM_UFFD_CTX, anon_vma_name(vma));
937 		if (prev) {
938 			vma = prev;
939 		} else {
940 			prev = vma;
941 		}
942 
943 		userfaultfd_set_vm_flags(vma, new_flags);
944 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
945 	}
946 	mmap_write_unlock(mm);
947 	mmput(mm);
948 wakeup:
949 	/*
950 	 * After no new page faults can wait on this fault_*wqh, flush
951 	 * the last page faults that may have been already waiting on
952 	 * the fault_*wqh.
953 	 */
954 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
955 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
956 	__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
957 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
958 
959 	/* Flush pending events that may still wait on event_wqh */
960 	wake_up_all(&ctx->event_wqh);
961 
962 	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
963 	userfaultfd_ctx_put(ctx);
964 	return 0;
965 }
966 
967 /* fault_pending_wqh.lock must be hold by the caller */
968 static inline struct userfaultfd_wait_queue *find_userfault_in(
969 		wait_queue_head_t *wqh)
970 {
971 	wait_queue_entry_t *wq;
972 	struct userfaultfd_wait_queue *uwq;
973 
974 	lockdep_assert_held(&wqh->lock);
975 
976 	uwq = NULL;
977 	if (!waitqueue_active(wqh))
978 		goto out;
979 	/* walk in reverse to provide FIFO behavior to read userfaults */
980 	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
981 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
982 out:
983 	return uwq;
984 }
985 
986 static inline struct userfaultfd_wait_queue *find_userfault(
987 		struct userfaultfd_ctx *ctx)
988 {
989 	return find_userfault_in(&ctx->fault_pending_wqh);
990 }
991 
992 static inline struct userfaultfd_wait_queue *find_userfault_evt(
993 		struct userfaultfd_ctx *ctx)
994 {
995 	return find_userfault_in(&ctx->event_wqh);
996 }
997 
998 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
999 {
1000 	struct userfaultfd_ctx *ctx = file->private_data;
1001 	__poll_t ret;
1002 
1003 	poll_wait(file, &ctx->fd_wqh, wait);
1004 
1005 	if (!userfaultfd_is_initialized(ctx))
1006 		return EPOLLERR;
1007 
1008 	/*
1009 	 * poll() never guarantees that read won't block.
1010 	 * userfaults can be waken before they're read().
1011 	 */
1012 	if (unlikely(!(file->f_flags & O_NONBLOCK)))
1013 		return EPOLLERR;
1014 	/*
1015 	 * lockless access to see if there are pending faults
1016 	 * __pollwait last action is the add_wait_queue but
1017 	 * the spin_unlock would allow the waitqueue_active to
1018 	 * pass above the actual list_add inside
1019 	 * add_wait_queue critical section. So use a full
1020 	 * memory barrier to serialize the list_add write of
1021 	 * add_wait_queue() with the waitqueue_active read
1022 	 * below.
1023 	 */
1024 	ret = 0;
1025 	smp_mb();
1026 	if (waitqueue_active(&ctx->fault_pending_wqh))
1027 		ret = EPOLLIN;
1028 	else if (waitqueue_active(&ctx->event_wqh))
1029 		ret = EPOLLIN;
1030 
1031 	return ret;
1032 }
1033 
1034 static const struct file_operations userfaultfd_fops;
1035 
1036 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1037 				  struct inode *inode,
1038 				  struct uffd_msg *msg)
1039 {
1040 	int fd;
1041 
1042 	fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
1043 			O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
1044 	if (fd < 0)
1045 		return fd;
1046 
1047 	msg->arg.reserved.reserved1 = 0;
1048 	msg->arg.fork.ufd = fd;
1049 	return 0;
1050 }
1051 
1052 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1053 				    struct uffd_msg *msg, struct inode *inode)
1054 {
1055 	ssize_t ret;
1056 	DECLARE_WAITQUEUE(wait, current);
1057 	struct userfaultfd_wait_queue *uwq;
1058 	/*
1059 	 * Handling fork event requires sleeping operations, so
1060 	 * we drop the event_wqh lock, then do these ops, then
1061 	 * lock it back and wake up the waiter. While the lock is
1062 	 * dropped the ewq may go away so we keep track of it
1063 	 * carefully.
1064 	 */
1065 	LIST_HEAD(fork_event);
1066 	struct userfaultfd_ctx *fork_nctx = NULL;
1067 
1068 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1069 	spin_lock_irq(&ctx->fd_wqh.lock);
1070 	__add_wait_queue(&ctx->fd_wqh, &wait);
1071 	for (;;) {
1072 		set_current_state(TASK_INTERRUPTIBLE);
1073 		spin_lock(&ctx->fault_pending_wqh.lock);
1074 		uwq = find_userfault(ctx);
1075 		if (uwq) {
1076 			/*
1077 			 * Use a seqcount to repeat the lockless check
1078 			 * in wake_userfault() to avoid missing
1079 			 * wakeups because during the refile both
1080 			 * waitqueue could become empty if this is the
1081 			 * only userfault.
1082 			 */
1083 			write_seqcount_begin(&ctx->refile_seq);
1084 
1085 			/*
1086 			 * The fault_pending_wqh.lock prevents the uwq
1087 			 * to disappear from under us.
1088 			 *
1089 			 * Refile this userfault from
1090 			 * fault_pending_wqh to fault_wqh, it's not
1091 			 * pending anymore after we read it.
1092 			 *
1093 			 * Use list_del() by hand (as
1094 			 * userfaultfd_wake_function also uses
1095 			 * list_del_init() by hand) to be sure nobody
1096 			 * changes __remove_wait_queue() to use
1097 			 * list_del_init() in turn breaking the
1098 			 * !list_empty_careful() check in
1099 			 * handle_userfault(). The uwq->wq.head list
1100 			 * must never be empty at any time during the
1101 			 * refile, or the waitqueue could disappear
1102 			 * from under us. The "wait_queue_head_t"
1103 			 * parameter of __remove_wait_queue() is unused
1104 			 * anyway.
1105 			 */
1106 			list_del(&uwq->wq.entry);
1107 			add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1108 
1109 			write_seqcount_end(&ctx->refile_seq);
1110 
1111 			/* careful to always initialize msg if ret == 0 */
1112 			*msg = uwq->msg;
1113 			spin_unlock(&ctx->fault_pending_wqh.lock);
1114 			ret = 0;
1115 			break;
1116 		}
1117 		spin_unlock(&ctx->fault_pending_wqh.lock);
1118 
1119 		spin_lock(&ctx->event_wqh.lock);
1120 		uwq = find_userfault_evt(ctx);
1121 		if (uwq) {
1122 			*msg = uwq->msg;
1123 
1124 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1125 				fork_nctx = (struct userfaultfd_ctx *)
1126 					(unsigned long)
1127 					uwq->msg.arg.reserved.reserved1;
1128 				list_move(&uwq->wq.entry, &fork_event);
1129 				/*
1130 				 * fork_nctx can be freed as soon as
1131 				 * we drop the lock, unless we take a
1132 				 * reference on it.
1133 				 */
1134 				userfaultfd_ctx_get(fork_nctx);
1135 				spin_unlock(&ctx->event_wqh.lock);
1136 				ret = 0;
1137 				break;
1138 			}
1139 
1140 			userfaultfd_event_complete(ctx, uwq);
1141 			spin_unlock(&ctx->event_wqh.lock);
1142 			ret = 0;
1143 			break;
1144 		}
1145 		spin_unlock(&ctx->event_wqh.lock);
1146 
1147 		if (signal_pending(current)) {
1148 			ret = -ERESTARTSYS;
1149 			break;
1150 		}
1151 		if (no_wait) {
1152 			ret = -EAGAIN;
1153 			break;
1154 		}
1155 		spin_unlock_irq(&ctx->fd_wqh.lock);
1156 		schedule();
1157 		spin_lock_irq(&ctx->fd_wqh.lock);
1158 	}
1159 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1160 	__set_current_state(TASK_RUNNING);
1161 	spin_unlock_irq(&ctx->fd_wqh.lock);
1162 
1163 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1164 		ret = resolve_userfault_fork(fork_nctx, inode, msg);
1165 		spin_lock_irq(&ctx->event_wqh.lock);
1166 		if (!list_empty(&fork_event)) {
1167 			/*
1168 			 * The fork thread didn't abort, so we can
1169 			 * drop the temporary refcount.
1170 			 */
1171 			userfaultfd_ctx_put(fork_nctx);
1172 
1173 			uwq = list_first_entry(&fork_event,
1174 					       typeof(*uwq),
1175 					       wq.entry);
1176 			/*
1177 			 * If fork_event list wasn't empty and in turn
1178 			 * the event wasn't already released by fork
1179 			 * (the event is allocated on fork kernel
1180 			 * stack), put the event back to its place in
1181 			 * the event_wq. fork_event head will be freed
1182 			 * as soon as we return so the event cannot
1183 			 * stay queued there no matter the current
1184 			 * "ret" value.
1185 			 */
1186 			list_del(&uwq->wq.entry);
1187 			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1188 
1189 			/*
1190 			 * Leave the event in the waitqueue and report
1191 			 * error to userland if we failed to resolve
1192 			 * the userfault fork.
1193 			 */
1194 			if (likely(!ret))
1195 				userfaultfd_event_complete(ctx, uwq);
1196 		} else {
1197 			/*
1198 			 * Here the fork thread aborted and the
1199 			 * refcount from the fork thread on fork_nctx
1200 			 * has already been released. We still hold
1201 			 * the reference we took before releasing the
1202 			 * lock above. If resolve_userfault_fork
1203 			 * failed we've to drop it because the
1204 			 * fork_nctx has to be freed in such case. If
1205 			 * it succeeded we'll hold it because the new
1206 			 * uffd references it.
1207 			 */
1208 			if (ret)
1209 				userfaultfd_ctx_put(fork_nctx);
1210 		}
1211 		spin_unlock_irq(&ctx->event_wqh.lock);
1212 	}
1213 
1214 	return ret;
1215 }
1216 
1217 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1218 				size_t count, loff_t *ppos)
1219 {
1220 	struct userfaultfd_ctx *ctx = file->private_data;
1221 	ssize_t _ret, ret = 0;
1222 	struct uffd_msg msg;
1223 	int no_wait = file->f_flags & O_NONBLOCK;
1224 	struct inode *inode = file_inode(file);
1225 
1226 	if (!userfaultfd_is_initialized(ctx))
1227 		return -EINVAL;
1228 
1229 	for (;;) {
1230 		if (count < sizeof(msg))
1231 			return ret ? ret : -EINVAL;
1232 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1233 		if (_ret < 0)
1234 			return ret ? ret : _ret;
1235 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1236 			return ret ? ret : -EFAULT;
1237 		ret += sizeof(msg);
1238 		buf += sizeof(msg);
1239 		count -= sizeof(msg);
1240 		/*
1241 		 * Allow to read more than one fault at time but only
1242 		 * block if waiting for the very first one.
1243 		 */
1244 		no_wait = O_NONBLOCK;
1245 	}
1246 }
1247 
1248 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1249 			     struct userfaultfd_wake_range *range)
1250 {
1251 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
1252 	/* wake all in the range and autoremove */
1253 	if (waitqueue_active(&ctx->fault_pending_wqh))
1254 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1255 				     range);
1256 	if (waitqueue_active(&ctx->fault_wqh))
1257 		__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1258 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1259 }
1260 
1261 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1262 					   struct userfaultfd_wake_range *range)
1263 {
1264 	unsigned seq;
1265 	bool need_wakeup;
1266 
1267 	/*
1268 	 * To be sure waitqueue_active() is not reordered by the CPU
1269 	 * before the pagetable update, use an explicit SMP memory
1270 	 * barrier here. PT lock release or mmap_read_unlock(mm) still
1271 	 * have release semantics that can allow the
1272 	 * waitqueue_active() to be reordered before the pte update.
1273 	 */
1274 	smp_mb();
1275 
1276 	/*
1277 	 * Use waitqueue_active because it's very frequent to
1278 	 * change the address space atomically even if there are no
1279 	 * userfaults yet. So we take the spinlock only when we're
1280 	 * sure we've userfaults to wake.
1281 	 */
1282 	do {
1283 		seq = read_seqcount_begin(&ctx->refile_seq);
1284 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1285 			waitqueue_active(&ctx->fault_wqh);
1286 		cond_resched();
1287 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1288 	if (need_wakeup)
1289 		__wake_userfault(ctx, range);
1290 }
1291 
1292 static __always_inline int validate_range(struct mm_struct *mm,
1293 					  __u64 start, __u64 len)
1294 {
1295 	__u64 task_size = mm->task_size;
1296 
1297 	if (start & ~PAGE_MASK)
1298 		return -EINVAL;
1299 	if (len & ~PAGE_MASK)
1300 		return -EINVAL;
1301 	if (!len)
1302 		return -EINVAL;
1303 	if (start < mmap_min_addr)
1304 		return -EINVAL;
1305 	if (start >= task_size)
1306 		return -EINVAL;
1307 	if (len > task_size - start)
1308 		return -EINVAL;
1309 	return 0;
1310 }
1311 
1312 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1313 				unsigned long arg)
1314 {
1315 	struct mm_struct *mm = ctx->mm;
1316 	struct vm_area_struct *vma, *prev, *cur;
1317 	int ret;
1318 	struct uffdio_register uffdio_register;
1319 	struct uffdio_register __user *user_uffdio_register;
1320 	unsigned long vm_flags, new_flags;
1321 	bool found;
1322 	bool basic_ioctls;
1323 	unsigned long start, end, vma_end;
1324 	struct vma_iterator vmi;
1325 	pgoff_t pgoff;
1326 
1327 	user_uffdio_register = (struct uffdio_register __user *) arg;
1328 
1329 	ret = -EFAULT;
1330 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1331 			   sizeof(uffdio_register)-sizeof(__u64)))
1332 		goto out;
1333 
1334 	ret = -EINVAL;
1335 	if (!uffdio_register.mode)
1336 		goto out;
1337 	if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1338 		goto out;
1339 	vm_flags = 0;
1340 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1341 		vm_flags |= VM_UFFD_MISSING;
1342 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1343 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1344 		goto out;
1345 #endif
1346 		vm_flags |= VM_UFFD_WP;
1347 	}
1348 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1349 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1350 		goto out;
1351 #endif
1352 		vm_flags |= VM_UFFD_MINOR;
1353 	}
1354 
1355 	ret = validate_range(mm, uffdio_register.range.start,
1356 			     uffdio_register.range.len);
1357 	if (ret)
1358 		goto out;
1359 
1360 	start = uffdio_register.range.start;
1361 	end = start + uffdio_register.range.len;
1362 
1363 	ret = -ENOMEM;
1364 	if (!mmget_not_zero(mm))
1365 		goto out;
1366 
1367 	ret = -EINVAL;
1368 	mmap_write_lock(mm);
1369 	vma_iter_init(&vmi, mm, start);
1370 	vma = vma_find(&vmi, end);
1371 	if (!vma)
1372 		goto out_unlock;
1373 
1374 	/*
1375 	 * If the first vma contains huge pages, make sure start address
1376 	 * is aligned to huge page size.
1377 	 */
1378 	if (is_vm_hugetlb_page(vma)) {
1379 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1380 
1381 		if (start & (vma_hpagesize - 1))
1382 			goto out_unlock;
1383 	}
1384 
1385 	/*
1386 	 * Search for not compatible vmas.
1387 	 */
1388 	found = false;
1389 	basic_ioctls = false;
1390 	cur = vma;
1391 	do {
1392 		cond_resched();
1393 
1394 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1395 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1396 
1397 		/* check not compatible vmas */
1398 		ret = -EINVAL;
1399 		if (!vma_can_userfault(cur, vm_flags))
1400 			goto out_unlock;
1401 
1402 		/*
1403 		 * UFFDIO_COPY will fill file holes even without
1404 		 * PROT_WRITE. This check enforces that if this is a
1405 		 * MAP_SHARED, the process has write permission to the backing
1406 		 * file. If VM_MAYWRITE is set it also enforces that on a
1407 		 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1408 		 * F_WRITE_SEAL can be taken until the vma is destroyed.
1409 		 */
1410 		ret = -EPERM;
1411 		if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1412 			goto out_unlock;
1413 
1414 		/*
1415 		 * If this vma contains ending address, and huge pages
1416 		 * check alignment.
1417 		 */
1418 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1419 		    end > cur->vm_start) {
1420 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1421 
1422 			ret = -EINVAL;
1423 
1424 			if (end & (vma_hpagesize - 1))
1425 				goto out_unlock;
1426 		}
1427 		if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1428 			goto out_unlock;
1429 
1430 		/*
1431 		 * Check that this vma isn't already owned by a
1432 		 * different userfaultfd. We can't allow more than one
1433 		 * userfaultfd to own a single vma simultaneously or we
1434 		 * wouldn't know which one to deliver the userfaults to.
1435 		 */
1436 		ret = -EBUSY;
1437 		if (cur->vm_userfaultfd_ctx.ctx &&
1438 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1439 			goto out_unlock;
1440 
1441 		/*
1442 		 * Note vmas containing huge pages
1443 		 */
1444 		if (is_vm_hugetlb_page(cur))
1445 			basic_ioctls = true;
1446 
1447 		found = true;
1448 	} for_each_vma_range(vmi, cur, end);
1449 	BUG_ON(!found);
1450 
1451 	vma_iter_set(&vmi, start);
1452 	prev = vma_prev(&vmi);
1453 	if (vma->vm_start < start)
1454 		prev = vma;
1455 
1456 	ret = 0;
1457 	for_each_vma_range(vmi, vma, end) {
1458 		cond_resched();
1459 
1460 		BUG_ON(!vma_can_userfault(vma, vm_flags));
1461 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1462 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1463 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1464 
1465 		/*
1466 		 * Nothing to do: this vma is already registered into this
1467 		 * userfaultfd and with the right tracking mode too.
1468 		 */
1469 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1470 		    (vma->vm_flags & vm_flags) == vm_flags)
1471 			goto skip;
1472 
1473 		if (vma->vm_start > start)
1474 			start = vma->vm_start;
1475 		vma_end = min(end, vma->vm_end);
1476 
1477 		new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1478 		pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
1479 		prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags,
1480 				 vma->anon_vma, vma->vm_file, pgoff,
1481 				 vma_policy(vma),
1482 				 ((struct vm_userfaultfd_ctx){ ctx }),
1483 				 anon_vma_name(vma));
1484 		if (prev) {
1485 			/* vma_merge() invalidated the mas */
1486 			vma = prev;
1487 			goto next;
1488 		}
1489 		if (vma->vm_start < start) {
1490 			ret = split_vma(&vmi, vma, start, 1);
1491 			if (ret)
1492 				break;
1493 		}
1494 		if (vma->vm_end > end) {
1495 			ret = split_vma(&vmi, vma, end, 0);
1496 			if (ret)
1497 				break;
1498 		}
1499 	next:
1500 		/*
1501 		 * In the vma_merge() successful mprotect-like case 8:
1502 		 * the next vma was merged into the current one and
1503 		 * the current one has not been updated yet.
1504 		 */
1505 		userfaultfd_set_vm_flags(vma, new_flags);
1506 		vma->vm_userfaultfd_ctx.ctx = ctx;
1507 
1508 		if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1509 			hugetlb_unshare_all_pmds(vma);
1510 
1511 	skip:
1512 		prev = vma;
1513 		start = vma->vm_end;
1514 	}
1515 
1516 out_unlock:
1517 	mmap_write_unlock(mm);
1518 	mmput(mm);
1519 	if (!ret) {
1520 		__u64 ioctls_out;
1521 
1522 		ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1523 		    UFFD_API_RANGE_IOCTLS;
1524 
1525 		/*
1526 		 * Declare the WP ioctl only if the WP mode is
1527 		 * specified and all checks passed with the range
1528 		 */
1529 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1530 			ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1531 
1532 		/* CONTINUE ioctl is only supported for MINOR ranges. */
1533 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1534 			ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1535 
1536 		/*
1537 		 * Now that we scanned all vmas we can already tell
1538 		 * userland which ioctls methods are guaranteed to
1539 		 * succeed on this range.
1540 		 */
1541 		if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1542 			ret = -EFAULT;
1543 	}
1544 out:
1545 	return ret;
1546 }
1547 
1548 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1549 				  unsigned long arg)
1550 {
1551 	struct mm_struct *mm = ctx->mm;
1552 	struct vm_area_struct *vma, *prev, *cur;
1553 	int ret;
1554 	struct uffdio_range uffdio_unregister;
1555 	unsigned long new_flags;
1556 	bool found;
1557 	unsigned long start, end, vma_end;
1558 	const void __user *buf = (void __user *)arg;
1559 	struct vma_iterator vmi;
1560 	pgoff_t pgoff;
1561 
1562 	ret = -EFAULT;
1563 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1564 		goto out;
1565 
1566 	ret = validate_range(mm, uffdio_unregister.start,
1567 			     uffdio_unregister.len);
1568 	if (ret)
1569 		goto out;
1570 
1571 	start = uffdio_unregister.start;
1572 	end = start + uffdio_unregister.len;
1573 
1574 	ret = -ENOMEM;
1575 	if (!mmget_not_zero(mm))
1576 		goto out;
1577 
1578 	mmap_write_lock(mm);
1579 	ret = -EINVAL;
1580 	vma_iter_init(&vmi, mm, start);
1581 	vma = vma_find(&vmi, end);
1582 	if (!vma)
1583 		goto out_unlock;
1584 
1585 	/*
1586 	 * If the first vma contains huge pages, make sure start address
1587 	 * is aligned to huge page size.
1588 	 */
1589 	if (is_vm_hugetlb_page(vma)) {
1590 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1591 
1592 		if (start & (vma_hpagesize - 1))
1593 			goto out_unlock;
1594 	}
1595 
1596 	/*
1597 	 * Search for not compatible vmas.
1598 	 */
1599 	found = false;
1600 	cur = vma;
1601 	do {
1602 		cond_resched();
1603 
1604 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1605 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1606 
1607 		/*
1608 		 * Check not compatible vmas, not strictly required
1609 		 * here as not compatible vmas cannot have an
1610 		 * userfaultfd_ctx registered on them, but this
1611 		 * provides for more strict behavior to notice
1612 		 * unregistration errors.
1613 		 */
1614 		if (!vma_can_userfault(cur, cur->vm_flags))
1615 			goto out_unlock;
1616 
1617 		found = true;
1618 	} for_each_vma_range(vmi, cur, end);
1619 	BUG_ON(!found);
1620 
1621 	vma_iter_set(&vmi, start);
1622 	prev = vma_prev(&vmi);
1623 	if (vma->vm_start < start)
1624 		prev = vma;
1625 
1626 	ret = 0;
1627 	for_each_vma_range(vmi, vma, end) {
1628 		cond_resched();
1629 
1630 		BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1631 
1632 		/*
1633 		 * Nothing to do: this vma is already registered into this
1634 		 * userfaultfd and with the right tracking mode too.
1635 		 */
1636 		if (!vma->vm_userfaultfd_ctx.ctx)
1637 			goto skip;
1638 
1639 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1640 
1641 		if (vma->vm_start > start)
1642 			start = vma->vm_start;
1643 		vma_end = min(end, vma->vm_end);
1644 
1645 		if (userfaultfd_missing(vma)) {
1646 			/*
1647 			 * Wake any concurrent pending userfault while
1648 			 * we unregister, so they will not hang
1649 			 * permanently and it avoids userland to call
1650 			 * UFFDIO_WAKE explicitly.
1651 			 */
1652 			struct userfaultfd_wake_range range;
1653 			range.start = start;
1654 			range.len = vma_end - start;
1655 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1656 		}
1657 
1658 		/* Reset ptes for the whole vma range if wr-protected */
1659 		if (userfaultfd_wp(vma))
1660 			uffd_wp_range(vma, start, vma_end - start, false);
1661 
1662 		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1663 		pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
1664 		prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags,
1665 				 vma->anon_vma, vma->vm_file, pgoff,
1666 				 vma_policy(vma),
1667 				 NULL_VM_UFFD_CTX, anon_vma_name(vma));
1668 		if (prev) {
1669 			vma = prev;
1670 			goto next;
1671 		}
1672 		if (vma->vm_start < start) {
1673 			ret = split_vma(&vmi, vma, start, 1);
1674 			if (ret)
1675 				break;
1676 		}
1677 		if (vma->vm_end > end) {
1678 			ret = split_vma(&vmi, vma, end, 0);
1679 			if (ret)
1680 				break;
1681 		}
1682 	next:
1683 		/*
1684 		 * In the vma_merge() successful mprotect-like case 8:
1685 		 * the next vma was merged into the current one and
1686 		 * the current one has not been updated yet.
1687 		 */
1688 		userfaultfd_set_vm_flags(vma, new_flags);
1689 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1690 
1691 	skip:
1692 		prev = vma;
1693 		start = vma->vm_end;
1694 	}
1695 
1696 out_unlock:
1697 	mmap_write_unlock(mm);
1698 	mmput(mm);
1699 out:
1700 	return ret;
1701 }
1702 
1703 /*
1704  * userfaultfd_wake may be used in combination with the
1705  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1706  */
1707 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1708 			    unsigned long arg)
1709 {
1710 	int ret;
1711 	struct uffdio_range uffdio_wake;
1712 	struct userfaultfd_wake_range range;
1713 	const void __user *buf = (void __user *)arg;
1714 
1715 	ret = -EFAULT;
1716 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1717 		goto out;
1718 
1719 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1720 	if (ret)
1721 		goto out;
1722 
1723 	range.start = uffdio_wake.start;
1724 	range.len = uffdio_wake.len;
1725 
1726 	/*
1727 	 * len == 0 means wake all and we don't want to wake all here,
1728 	 * so check it again to be sure.
1729 	 */
1730 	VM_BUG_ON(!range.len);
1731 
1732 	wake_userfault(ctx, &range);
1733 	ret = 0;
1734 
1735 out:
1736 	return ret;
1737 }
1738 
1739 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1740 			    unsigned long arg)
1741 {
1742 	__s64 ret;
1743 	struct uffdio_copy uffdio_copy;
1744 	struct uffdio_copy __user *user_uffdio_copy;
1745 	struct userfaultfd_wake_range range;
1746 	uffd_flags_t flags = 0;
1747 
1748 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1749 
1750 	ret = -EAGAIN;
1751 	if (atomic_read(&ctx->mmap_changing))
1752 		goto out;
1753 
1754 	ret = -EFAULT;
1755 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1756 			   /* don't copy "copy" last field */
1757 			   sizeof(uffdio_copy)-sizeof(__s64)))
1758 		goto out;
1759 
1760 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1761 	if (ret)
1762 		goto out;
1763 	/*
1764 	 * double check for wraparound just in case. copy_from_user()
1765 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1766 	 * in the userland range.
1767 	 */
1768 	ret = -EINVAL;
1769 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1770 		goto out;
1771 	if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1772 		goto out;
1773 	if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1774 		flags |= MFILL_ATOMIC_WP;
1775 	if (mmget_not_zero(ctx->mm)) {
1776 		ret = mfill_atomic_copy(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1777 					uffdio_copy.len, &ctx->mmap_changing,
1778 					flags);
1779 		mmput(ctx->mm);
1780 	} else {
1781 		return -ESRCH;
1782 	}
1783 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1784 		return -EFAULT;
1785 	if (ret < 0)
1786 		goto out;
1787 	BUG_ON(!ret);
1788 	/* len == 0 would wake all */
1789 	range.len = ret;
1790 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1791 		range.start = uffdio_copy.dst;
1792 		wake_userfault(ctx, &range);
1793 	}
1794 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1795 out:
1796 	return ret;
1797 }
1798 
1799 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1800 				unsigned long arg)
1801 {
1802 	__s64 ret;
1803 	struct uffdio_zeropage uffdio_zeropage;
1804 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1805 	struct userfaultfd_wake_range range;
1806 
1807 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1808 
1809 	ret = -EAGAIN;
1810 	if (atomic_read(&ctx->mmap_changing))
1811 		goto out;
1812 
1813 	ret = -EFAULT;
1814 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1815 			   /* don't copy "zeropage" last field */
1816 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1817 		goto out;
1818 
1819 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1820 			     uffdio_zeropage.range.len);
1821 	if (ret)
1822 		goto out;
1823 	ret = -EINVAL;
1824 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1825 		goto out;
1826 
1827 	if (mmget_not_zero(ctx->mm)) {
1828 		ret = mfill_atomic_zeropage(ctx->mm, uffdio_zeropage.range.start,
1829 					   uffdio_zeropage.range.len,
1830 					   &ctx->mmap_changing);
1831 		mmput(ctx->mm);
1832 	} else {
1833 		return -ESRCH;
1834 	}
1835 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1836 		return -EFAULT;
1837 	if (ret < 0)
1838 		goto out;
1839 	/* len == 0 would wake all */
1840 	BUG_ON(!ret);
1841 	range.len = ret;
1842 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1843 		range.start = uffdio_zeropage.range.start;
1844 		wake_userfault(ctx, &range);
1845 	}
1846 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1847 out:
1848 	return ret;
1849 }
1850 
1851 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1852 				    unsigned long arg)
1853 {
1854 	int ret;
1855 	struct uffdio_writeprotect uffdio_wp;
1856 	struct uffdio_writeprotect __user *user_uffdio_wp;
1857 	struct userfaultfd_wake_range range;
1858 	bool mode_wp, mode_dontwake;
1859 
1860 	if (atomic_read(&ctx->mmap_changing))
1861 		return -EAGAIN;
1862 
1863 	user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1864 
1865 	if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1866 			   sizeof(struct uffdio_writeprotect)))
1867 		return -EFAULT;
1868 
1869 	ret = validate_range(ctx->mm, uffdio_wp.range.start,
1870 			     uffdio_wp.range.len);
1871 	if (ret)
1872 		return ret;
1873 
1874 	if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1875 			       UFFDIO_WRITEPROTECT_MODE_WP))
1876 		return -EINVAL;
1877 
1878 	mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1879 	mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1880 
1881 	if (mode_wp && mode_dontwake)
1882 		return -EINVAL;
1883 
1884 	if (mmget_not_zero(ctx->mm)) {
1885 		ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1886 					  uffdio_wp.range.len, mode_wp,
1887 					  &ctx->mmap_changing);
1888 		mmput(ctx->mm);
1889 	} else {
1890 		return -ESRCH;
1891 	}
1892 
1893 	if (ret)
1894 		return ret;
1895 
1896 	if (!mode_wp && !mode_dontwake) {
1897 		range.start = uffdio_wp.range.start;
1898 		range.len = uffdio_wp.range.len;
1899 		wake_userfault(ctx, &range);
1900 	}
1901 	return ret;
1902 }
1903 
1904 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1905 {
1906 	__s64 ret;
1907 	struct uffdio_continue uffdio_continue;
1908 	struct uffdio_continue __user *user_uffdio_continue;
1909 	struct userfaultfd_wake_range range;
1910 	uffd_flags_t flags = 0;
1911 
1912 	user_uffdio_continue = (struct uffdio_continue __user *)arg;
1913 
1914 	ret = -EAGAIN;
1915 	if (atomic_read(&ctx->mmap_changing))
1916 		goto out;
1917 
1918 	ret = -EFAULT;
1919 	if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1920 			   /* don't copy the output fields */
1921 			   sizeof(uffdio_continue) - (sizeof(__s64))))
1922 		goto out;
1923 
1924 	ret = validate_range(ctx->mm, uffdio_continue.range.start,
1925 			     uffdio_continue.range.len);
1926 	if (ret)
1927 		goto out;
1928 
1929 	ret = -EINVAL;
1930 	/* double check for wraparound just in case. */
1931 	if (uffdio_continue.range.start + uffdio_continue.range.len <=
1932 	    uffdio_continue.range.start) {
1933 		goto out;
1934 	}
1935 	if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1936 				     UFFDIO_CONTINUE_MODE_WP))
1937 		goto out;
1938 	if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1939 		flags |= MFILL_ATOMIC_WP;
1940 
1941 	if (mmget_not_zero(ctx->mm)) {
1942 		ret = mfill_atomic_continue(ctx->mm, uffdio_continue.range.start,
1943 					    uffdio_continue.range.len,
1944 					    &ctx->mmap_changing, flags);
1945 		mmput(ctx->mm);
1946 	} else {
1947 		return -ESRCH;
1948 	}
1949 
1950 	if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1951 		return -EFAULT;
1952 	if (ret < 0)
1953 		goto out;
1954 
1955 	/* len == 0 would wake all */
1956 	BUG_ON(!ret);
1957 	range.len = ret;
1958 	if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1959 		range.start = uffdio_continue.range.start;
1960 		wake_userfault(ctx, &range);
1961 	}
1962 	ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1963 
1964 out:
1965 	return ret;
1966 }
1967 
1968 static inline unsigned int uffd_ctx_features(__u64 user_features)
1969 {
1970 	/*
1971 	 * For the current set of features the bits just coincide. Set
1972 	 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1973 	 */
1974 	return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1975 }
1976 
1977 /*
1978  * userland asks for a certain API version and we return which bits
1979  * and ioctl commands are implemented in this kernel for such API
1980  * version or -EINVAL if unknown.
1981  */
1982 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1983 			   unsigned long arg)
1984 {
1985 	struct uffdio_api uffdio_api;
1986 	void __user *buf = (void __user *)arg;
1987 	unsigned int ctx_features;
1988 	int ret;
1989 	__u64 features;
1990 
1991 	ret = -EFAULT;
1992 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1993 		goto out;
1994 	features = uffdio_api.features;
1995 	ret = -EINVAL;
1996 	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1997 		goto err_out;
1998 	ret = -EPERM;
1999 	if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
2000 		goto err_out;
2001 	/* report all available features and ioctls to userland */
2002 	uffdio_api.features = UFFD_API_FEATURES;
2003 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
2004 	uffdio_api.features &=
2005 		~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
2006 #endif
2007 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
2008 	uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
2009 #endif
2010 #ifndef CONFIG_PTE_MARKER_UFFD_WP
2011 	uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
2012 	uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
2013 #endif
2014 	uffdio_api.ioctls = UFFD_API_IOCTLS;
2015 	ret = -EFAULT;
2016 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2017 		goto out;
2018 
2019 	/* only enable the requested features for this uffd context */
2020 	ctx_features = uffd_ctx_features(features);
2021 	ret = -EINVAL;
2022 	if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2023 		goto err_out;
2024 
2025 	ret = 0;
2026 out:
2027 	return ret;
2028 err_out:
2029 	memset(&uffdio_api, 0, sizeof(uffdio_api));
2030 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2031 		ret = -EFAULT;
2032 	goto out;
2033 }
2034 
2035 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2036 			      unsigned long arg)
2037 {
2038 	int ret = -EINVAL;
2039 	struct userfaultfd_ctx *ctx = file->private_data;
2040 
2041 	if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2042 		return -EINVAL;
2043 
2044 	switch(cmd) {
2045 	case UFFDIO_API:
2046 		ret = userfaultfd_api(ctx, arg);
2047 		break;
2048 	case UFFDIO_REGISTER:
2049 		ret = userfaultfd_register(ctx, arg);
2050 		break;
2051 	case UFFDIO_UNREGISTER:
2052 		ret = userfaultfd_unregister(ctx, arg);
2053 		break;
2054 	case UFFDIO_WAKE:
2055 		ret = userfaultfd_wake(ctx, arg);
2056 		break;
2057 	case UFFDIO_COPY:
2058 		ret = userfaultfd_copy(ctx, arg);
2059 		break;
2060 	case UFFDIO_ZEROPAGE:
2061 		ret = userfaultfd_zeropage(ctx, arg);
2062 		break;
2063 	case UFFDIO_WRITEPROTECT:
2064 		ret = userfaultfd_writeprotect(ctx, arg);
2065 		break;
2066 	case UFFDIO_CONTINUE:
2067 		ret = userfaultfd_continue(ctx, arg);
2068 		break;
2069 	}
2070 	return ret;
2071 }
2072 
2073 #ifdef CONFIG_PROC_FS
2074 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2075 {
2076 	struct userfaultfd_ctx *ctx = f->private_data;
2077 	wait_queue_entry_t *wq;
2078 	unsigned long pending = 0, total = 0;
2079 
2080 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
2081 	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2082 		pending++;
2083 		total++;
2084 	}
2085 	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2086 		total++;
2087 	}
2088 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2089 
2090 	/*
2091 	 * If more protocols will be added, there will be all shown
2092 	 * separated by a space. Like this:
2093 	 *	protocols: aa:... bb:...
2094 	 */
2095 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2096 		   pending, total, UFFD_API, ctx->features,
2097 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2098 }
2099 #endif
2100 
2101 static const struct file_operations userfaultfd_fops = {
2102 #ifdef CONFIG_PROC_FS
2103 	.show_fdinfo	= userfaultfd_show_fdinfo,
2104 #endif
2105 	.release	= userfaultfd_release,
2106 	.poll		= userfaultfd_poll,
2107 	.read		= userfaultfd_read,
2108 	.unlocked_ioctl = userfaultfd_ioctl,
2109 	.compat_ioctl	= compat_ptr_ioctl,
2110 	.llseek		= noop_llseek,
2111 };
2112 
2113 static void init_once_userfaultfd_ctx(void *mem)
2114 {
2115 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2116 
2117 	init_waitqueue_head(&ctx->fault_pending_wqh);
2118 	init_waitqueue_head(&ctx->fault_wqh);
2119 	init_waitqueue_head(&ctx->event_wqh);
2120 	init_waitqueue_head(&ctx->fd_wqh);
2121 	seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2122 }
2123 
2124 static int new_userfaultfd(int flags)
2125 {
2126 	struct userfaultfd_ctx *ctx;
2127 	int fd;
2128 
2129 	BUG_ON(!current->mm);
2130 
2131 	/* Check the UFFD_* constants for consistency.  */
2132 	BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2133 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2134 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2135 
2136 	if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2137 		return -EINVAL;
2138 
2139 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2140 	if (!ctx)
2141 		return -ENOMEM;
2142 
2143 	refcount_set(&ctx->refcount, 1);
2144 	ctx->flags = flags;
2145 	ctx->features = 0;
2146 	ctx->released = false;
2147 	atomic_set(&ctx->mmap_changing, 0);
2148 	ctx->mm = current->mm;
2149 	/* prevent the mm struct to be freed */
2150 	mmgrab(ctx->mm);
2151 
2152 	fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2153 			O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2154 	if (fd < 0) {
2155 		mmdrop(ctx->mm);
2156 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2157 	}
2158 	return fd;
2159 }
2160 
2161 static inline bool userfaultfd_syscall_allowed(int flags)
2162 {
2163 	/* Userspace-only page faults are always allowed */
2164 	if (flags & UFFD_USER_MODE_ONLY)
2165 		return true;
2166 
2167 	/*
2168 	 * The user is requesting a userfaultfd which can handle kernel faults.
2169 	 * Privileged users are always allowed to do this.
2170 	 */
2171 	if (capable(CAP_SYS_PTRACE))
2172 		return true;
2173 
2174 	/* Otherwise, access to kernel fault handling is sysctl controlled. */
2175 	return sysctl_unprivileged_userfaultfd;
2176 }
2177 
2178 SYSCALL_DEFINE1(userfaultfd, int, flags)
2179 {
2180 	if (!userfaultfd_syscall_allowed(flags))
2181 		return -EPERM;
2182 
2183 	return new_userfaultfd(flags);
2184 }
2185 
2186 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2187 {
2188 	if (cmd != USERFAULTFD_IOC_NEW)
2189 		return -EINVAL;
2190 
2191 	return new_userfaultfd(flags);
2192 }
2193 
2194 static const struct file_operations userfaultfd_dev_fops = {
2195 	.unlocked_ioctl = userfaultfd_dev_ioctl,
2196 	.compat_ioctl = userfaultfd_dev_ioctl,
2197 	.owner = THIS_MODULE,
2198 	.llseek = noop_llseek,
2199 };
2200 
2201 static struct miscdevice userfaultfd_misc = {
2202 	.minor = MISC_DYNAMIC_MINOR,
2203 	.name = "userfaultfd",
2204 	.fops = &userfaultfd_dev_fops
2205 };
2206 
2207 static int __init userfaultfd_init(void)
2208 {
2209 	int ret;
2210 
2211 	ret = misc_register(&userfaultfd_misc);
2212 	if (ret)
2213 		return ret;
2214 
2215 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2216 						sizeof(struct userfaultfd_ctx),
2217 						0,
2218 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2219 						init_once_userfaultfd_ctx);
2220 #ifdef CONFIG_SYSCTL
2221 	register_sysctl_init("vm", vm_userfaultfd_table);
2222 #endif
2223 	return 0;
2224 }
2225 __initcall(userfaultfd_init);
2226