1 /* 2 * fs/userfaultfd.c 3 * 4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 5 * Copyright (C) 2008-2009 Red Hat, Inc. 6 * Copyright (C) 2015 Red Hat, Inc. 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2. See 9 * the COPYING file in the top-level directory. 10 * 11 * Some part derived from fs/eventfd.c (anon inode setup) and 12 * mm/ksm.c (mm hashing). 13 */ 14 15 #include <linux/list.h> 16 #include <linux/hashtable.h> 17 #include <linux/sched/signal.h> 18 #include <linux/sched/mm.h> 19 #include <linux/mm.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 34 35 enum userfaultfd_state { 36 UFFD_STATE_WAIT_API, 37 UFFD_STATE_RUNNING, 38 }; 39 40 /* 41 * Start with fault_pending_wqh and fault_wqh so they're more likely 42 * to be in the same cacheline. 43 */ 44 struct userfaultfd_ctx { 45 /* waitqueue head for the pending (i.e. not read) userfaults */ 46 wait_queue_head_t fault_pending_wqh; 47 /* waitqueue head for the userfaults */ 48 wait_queue_head_t fault_wqh; 49 /* waitqueue head for the pseudo fd to wakeup poll/read */ 50 wait_queue_head_t fd_wqh; 51 /* waitqueue head for events */ 52 wait_queue_head_t event_wqh; 53 /* a refile sequence protected by fault_pending_wqh lock */ 54 struct seqcount refile_seq; 55 /* pseudo fd refcounting */ 56 refcount_t refcount; 57 /* userfaultfd syscall flags */ 58 unsigned int flags; 59 /* features requested from the userspace */ 60 unsigned int features; 61 /* state machine */ 62 enum userfaultfd_state state; 63 /* released */ 64 bool released; 65 /* memory mappings are changing because of non-cooperative event */ 66 bool mmap_changing; 67 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 68 struct mm_struct *mm; 69 }; 70 71 struct userfaultfd_fork_ctx { 72 struct userfaultfd_ctx *orig; 73 struct userfaultfd_ctx *new; 74 struct list_head list; 75 }; 76 77 struct userfaultfd_unmap_ctx { 78 struct userfaultfd_ctx *ctx; 79 unsigned long start; 80 unsigned long end; 81 struct list_head list; 82 }; 83 84 struct userfaultfd_wait_queue { 85 struct uffd_msg msg; 86 wait_queue_entry_t wq; 87 struct userfaultfd_ctx *ctx; 88 bool waken; 89 }; 90 91 struct userfaultfd_wake_range { 92 unsigned long start; 93 unsigned long len; 94 }; 95 96 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 97 int wake_flags, void *key) 98 { 99 struct userfaultfd_wake_range *range = key; 100 int ret; 101 struct userfaultfd_wait_queue *uwq; 102 unsigned long start, len; 103 104 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 105 ret = 0; 106 /* len == 0 means wake all */ 107 start = range->start; 108 len = range->len; 109 if (len && (start > uwq->msg.arg.pagefault.address || 110 start + len <= uwq->msg.arg.pagefault.address)) 111 goto out; 112 WRITE_ONCE(uwq->waken, true); 113 /* 114 * The Program-Order guarantees provided by the scheduler 115 * ensure uwq->waken is visible before the task is woken. 116 */ 117 ret = wake_up_state(wq->private, mode); 118 if (ret) { 119 /* 120 * Wake only once, autoremove behavior. 121 * 122 * After the effect of list_del_init is visible to the other 123 * CPUs, the waitqueue may disappear from under us, see the 124 * !list_empty_careful() in handle_userfault(). 125 * 126 * try_to_wake_up() has an implicit smp_mb(), and the 127 * wq->private is read before calling the extern function 128 * "wake_up_state" (which in turns calls try_to_wake_up). 129 */ 130 list_del_init(&wq->entry); 131 } 132 out: 133 return ret; 134 } 135 136 /** 137 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 138 * context. 139 * @ctx: [in] Pointer to the userfaultfd context. 140 */ 141 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 142 { 143 refcount_inc(&ctx->refcount); 144 } 145 146 /** 147 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 148 * context. 149 * @ctx: [in] Pointer to userfaultfd context. 150 * 151 * The userfaultfd context reference must have been previously acquired either 152 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 153 */ 154 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 155 { 156 if (refcount_dec_and_test(&ctx->refcount)) { 157 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 158 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 159 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 160 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 161 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 162 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 163 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 164 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 165 mmdrop(ctx->mm); 166 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 167 } 168 } 169 170 static inline void msg_init(struct uffd_msg *msg) 171 { 172 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 173 /* 174 * Must use memset to zero out the paddings or kernel data is 175 * leaked to userland. 176 */ 177 memset(msg, 0, sizeof(struct uffd_msg)); 178 } 179 180 static inline struct uffd_msg userfault_msg(unsigned long address, 181 unsigned int flags, 182 unsigned long reason, 183 unsigned int features) 184 { 185 struct uffd_msg msg; 186 msg_init(&msg); 187 msg.event = UFFD_EVENT_PAGEFAULT; 188 msg.arg.pagefault.address = address; 189 if (flags & FAULT_FLAG_WRITE) 190 /* 191 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 192 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE 193 * was not set in a UFFD_EVENT_PAGEFAULT, it means it 194 * was a read fault, otherwise if set it means it's 195 * a write fault. 196 */ 197 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 198 if (reason & VM_UFFD_WP) 199 /* 200 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 201 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was 202 * not set in a UFFD_EVENT_PAGEFAULT, it means it was 203 * a missing fault, otherwise if set it means it's a 204 * write protect fault. 205 */ 206 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 207 if (features & UFFD_FEATURE_THREAD_ID) 208 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 209 return msg; 210 } 211 212 #ifdef CONFIG_HUGETLB_PAGE 213 /* 214 * Same functionality as userfaultfd_must_wait below with modifications for 215 * hugepmd ranges. 216 */ 217 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 218 struct vm_area_struct *vma, 219 unsigned long address, 220 unsigned long flags, 221 unsigned long reason) 222 { 223 struct mm_struct *mm = ctx->mm; 224 pte_t *ptep, pte; 225 bool ret = true; 226 227 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 228 229 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); 230 231 if (!ptep) 232 goto out; 233 234 ret = false; 235 pte = huge_ptep_get(ptep); 236 237 /* 238 * Lockless access: we're in a wait_event so it's ok if it 239 * changes under us. 240 */ 241 if (huge_pte_none(pte)) 242 ret = true; 243 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 244 ret = true; 245 out: 246 return ret; 247 } 248 #else 249 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 250 struct vm_area_struct *vma, 251 unsigned long address, 252 unsigned long flags, 253 unsigned long reason) 254 { 255 return false; /* should never get here */ 256 } 257 #endif /* CONFIG_HUGETLB_PAGE */ 258 259 /* 260 * Verify the pagetables are still not ok after having reigstered into 261 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 262 * userfault that has already been resolved, if userfaultfd_read and 263 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 264 * threads. 265 */ 266 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 267 unsigned long address, 268 unsigned long flags, 269 unsigned long reason) 270 { 271 struct mm_struct *mm = ctx->mm; 272 pgd_t *pgd; 273 p4d_t *p4d; 274 pud_t *pud; 275 pmd_t *pmd, _pmd; 276 pte_t *pte; 277 bool ret = true; 278 279 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 280 281 pgd = pgd_offset(mm, address); 282 if (!pgd_present(*pgd)) 283 goto out; 284 p4d = p4d_offset(pgd, address); 285 if (!p4d_present(*p4d)) 286 goto out; 287 pud = pud_offset(p4d, address); 288 if (!pud_present(*pud)) 289 goto out; 290 pmd = pmd_offset(pud, address); 291 /* 292 * READ_ONCE must function as a barrier with narrower scope 293 * and it must be equivalent to: 294 * _pmd = *pmd; barrier(); 295 * 296 * This is to deal with the instability (as in 297 * pmd_trans_unstable) of the pmd. 298 */ 299 _pmd = READ_ONCE(*pmd); 300 if (pmd_none(_pmd)) 301 goto out; 302 303 ret = false; 304 if (!pmd_present(_pmd)) 305 goto out; 306 307 if (pmd_trans_huge(_pmd)) 308 goto out; 309 310 /* 311 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 312 * and use the standard pte_offset_map() instead of parsing _pmd. 313 */ 314 pte = pte_offset_map(pmd, address); 315 /* 316 * Lockless access: we're in a wait_event so it's ok if it 317 * changes under us. 318 */ 319 if (pte_none(*pte)) 320 ret = true; 321 pte_unmap(pte); 322 323 out: 324 return ret; 325 } 326 327 /* 328 * The locking rules involved in returning VM_FAULT_RETRY depending on 329 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 330 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 331 * recommendation in __lock_page_or_retry is not an understatement. 332 * 333 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released 334 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 335 * not set. 336 * 337 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 338 * set, VM_FAULT_RETRY can still be returned if and only if there are 339 * fatal_signal_pending()s, and the mmap_sem must be released before 340 * returning it. 341 */ 342 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 343 { 344 struct mm_struct *mm = vmf->vma->vm_mm; 345 struct userfaultfd_ctx *ctx; 346 struct userfaultfd_wait_queue uwq; 347 vm_fault_t ret = VM_FAULT_SIGBUS; 348 bool must_wait, return_to_userland; 349 long blocking_state; 350 351 /* 352 * We don't do userfault handling for the final child pid update. 353 * 354 * We also don't do userfault handling during 355 * coredumping. hugetlbfs has the special 356 * follow_hugetlb_page() to skip missing pages in the 357 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 358 * the no_page_table() helper in follow_page_mask(), but the 359 * shmem_vm_ops->fault method is invoked even during 360 * coredumping without mmap_sem and it ends up here. 361 */ 362 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 363 goto out; 364 365 /* 366 * Coredumping runs without mmap_sem so we can only check that 367 * the mmap_sem is held, if PF_DUMPCORE was not set. 368 */ 369 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem)); 370 371 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 372 if (!ctx) 373 goto out; 374 375 BUG_ON(ctx->mm != mm); 376 377 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); 378 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); 379 380 if (ctx->features & UFFD_FEATURE_SIGBUS) 381 goto out; 382 383 /* 384 * If it's already released don't get it. This avoids to loop 385 * in __get_user_pages if userfaultfd_release waits on the 386 * caller of handle_userfault to release the mmap_sem. 387 */ 388 if (unlikely(READ_ONCE(ctx->released))) { 389 /* 390 * Don't return VM_FAULT_SIGBUS in this case, so a non 391 * cooperative manager can close the uffd after the 392 * last UFFDIO_COPY, without risking to trigger an 393 * involuntary SIGBUS if the process was starting the 394 * userfaultfd while the userfaultfd was still armed 395 * (but after the last UFFDIO_COPY). If the uffd 396 * wasn't already closed when the userfault reached 397 * this point, that would normally be solved by 398 * userfaultfd_must_wait returning 'false'. 399 * 400 * If we were to return VM_FAULT_SIGBUS here, the non 401 * cooperative manager would be instead forced to 402 * always call UFFDIO_UNREGISTER before it can safely 403 * close the uffd. 404 */ 405 ret = VM_FAULT_NOPAGE; 406 goto out; 407 } 408 409 /* 410 * Check that we can return VM_FAULT_RETRY. 411 * 412 * NOTE: it should become possible to return VM_FAULT_RETRY 413 * even if FAULT_FLAG_TRIED is set without leading to gup() 414 * -EBUSY failures, if the userfaultfd is to be extended for 415 * VM_UFFD_WP tracking and we intend to arm the userfault 416 * without first stopping userland access to the memory. For 417 * VM_UFFD_MISSING userfaults this is enough for now. 418 */ 419 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 420 /* 421 * Validate the invariant that nowait must allow retry 422 * to be sure not to return SIGBUS erroneously on 423 * nowait invocations. 424 */ 425 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 426 #ifdef CONFIG_DEBUG_VM 427 if (printk_ratelimit()) { 428 printk(KERN_WARNING 429 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 430 vmf->flags); 431 dump_stack(); 432 } 433 #endif 434 goto out; 435 } 436 437 /* 438 * Handle nowait, not much to do other than tell it to retry 439 * and wait. 440 */ 441 ret = VM_FAULT_RETRY; 442 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 443 goto out; 444 445 /* take the reference before dropping the mmap_sem */ 446 userfaultfd_ctx_get(ctx); 447 448 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 449 uwq.wq.private = current; 450 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason, 451 ctx->features); 452 uwq.ctx = ctx; 453 uwq.waken = false; 454 455 return_to_userland = 456 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) == 457 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE); 458 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE : 459 TASK_KILLABLE; 460 461 spin_lock(&ctx->fault_pending_wqh.lock); 462 /* 463 * After the __add_wait_queue the uwq is visible to userland 464 * through poll/read(). 465 */ 466 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 467 /* 468 * The smp_mb() after __set_current_state prevents the reads 469 * following the spin_unlock to happen before the list_add in 470 * __add_wait_queue. 471 */ 472 set_current_state(blocking_state); 473 spin_unlock(&ctx->fault_pending_wqh.lock); 474 475 if (!is_vm_hugetlb_page(vmf->vma)) 476 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 477 reason); 478 else 479 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, 480 vmf->address, 481 vmf->flags, reason); 482 up_read(&mm->mmap_sem); 483 484 if (likely(must_wait && !READ_ONCE(ctx->released) && 485 (return_to_userland ? !signal_pending(current) : 486 !fatal_signal_pending(current)))) { 487 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 488 schedule(); 489 ret |= VM_FAULT_MAJOR; 490 491 /* 492 * False wakeups can orginate even from rwsem before 493 * up_read() however userfaults will wait either for a 494 * targeted wakeup on the specific uwq waitqueue from 495 * wake_userfault() or for signals or for uffd 496 * release. 497 */ 498 while (!READ_ONCE(uwq.waken)) { 499 /* 500 * This needs the full smp_store_mb() 501 * guarantee as the state write must be 502 * visible to other CPUs before reading 503 * uwq.waken from other CPUs. 504 */ 505 set_current_state(blocking_state); 506 if (READ_ONCE(uwq.waken) || 507 READ_ONCE(ctx->released) || 508 (return_to_userland ? signal_pending(current) : 509 fatal_signal_pending(current))) 510 break; 511 schedule(); 512 } 513 } 514 515 __set_current_state(TASK_RUNNING); 516 517 if (return_to_userland) { 518 if (signal_pending(current) && 519 !fatal_signal_pending(current)) { 520 /* 521 * If we got a SIGSTOP or SIGCONT and this is 522 * a normal userland page fault, just let 523 * userland return so the signal will be 524 * handled and gdb debugging works. The page 525 * fault code immediately after we return from 526 * this function is going to release the 527 * mmap_sem and it's not depending on it 528 * (unlike gup would if we were not to return 529 * VM_FAULT_RETRY). 530 * 531 * If a fatal signal is pending we still take 532 * the streamlined VM_FAULT_RETRY failure path 533 * and there's no need to retake the mmap_sem 534 * in such case. 535 */ 536 down_read(&mm->mmap_sem); 537 ret = VM_FAULT_NOPAGE; 538 } 539 } 540 541 /* 542 * Here we race with the list_del; list_add in 543 * userfaultfd_ctx_read(), however because we don't ever run 544 * list_del_init() to refile across the two lists, the prev 545 * and next pointers will never point to self. list_add also 546 * would never let any of the two pointers to point to 547 * self. So list_empty_careful won't risk to see both pointers 548 * pointing to self at any time during the list refile. The 549 * only case where list_del_init() is called is the full 550 * removal in the wake function and there we don't re-list_add 551 * and it's fine not to block on the spinlock. The uwq on this 552 * kernel stack can be released after the list_del_init. 553 */ 554 if (!list_empty_careful(&uwq.wq.entry)) { 555 spin_lock(&ctx->fault_pending_wqh.lock); 556 /* 557 * No need of list_del_init(), the uwq on the stack 558 * will be freed shortly anyway. 559 */ 560 list_del(&uwq.wq.entry); 561 spin_unlock(&ctx->fault_pending_wqh.lock); 562 } 563 564 /* 565 * ctx may go away after this if the userfault pseudo fd is 566 * already released. 567 */ 568 userfaultfd_ctx_put(ctx); 569 570 out: 571 return ret; 572 } 573 574 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 575 struct userfaultfd_wait_queue *ewq) 576 { 577 struct userfaultfd_ctx *release_new_ctx; 578 579 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 580 goto out; 581 582 ewq->ctx = ctx; 583 init_waitqueue_entry(&ewq->wq, current); 584 release_new_ctx = NULL; 585 586 spin_lock(&ctx->event_wqh.lock); 587 /* 588 * After the __add_wait_queue the uwq is visible to userland 589 * through poll/read(). 590 */ 591 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 592 for (;;) { 593 set_current_state(TASK_KILLABLE); 594 if (ewq->msg.event == 0) 595 break; 596 if (READ_ONCE(ctx->released) || 597 fatal_signal_pending(current)) { 598 /* 599 * &ewq->wq may be queued in fork_event, but 600 * __remove_wait_queue ignores the head 601 * parameter. It would be a problem if it 602 * didn't. 603 */ 604 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 605 if (ewq->msg.event == UFFD_EVENT_FORK) { 606 struct userfaultfd_ctx *new; 607 608 new = (struct userfaultfd_ctx *) 609 (unsigned long) 610 ewq->msg.arg.reserved.reserved1; 611 release_new_ctx = new; 612 } 613 break; 614 } 615 616 spin_unlock(&ctx->event_wqh.lock); 617 618 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 619 schedule(); 620 621 spin_lock(&ctx->event_wqh.lock); 622 } 623 __set_current_state(TASK_RUNNING); 624 spin_unlock(&ctx->event_wqh.lock); 625 626 if (release_new_ctx) { 627 struct vm_area_struct *vma; 628 struct mm_struct *mm = release_new_ctx->mm; 629 630 /* the various vma->vm_userfaultfd_ctx still points to it */ 631 down_write(&mm->mmap_sem); 632 /* no task can run (and in turn coredump) yet */ 633 VM_WARN_ON(!mmget_still_valid(mm)); 634 for (vma = mm->mmap; vma; vma = vma->vm_next) 635 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 636 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 637 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 638 } 639 up_write(&mm->mmap_sem); 640 641 userfaultfd_ctx_put(release_new_ctx); 642 } 643 644 /* 645 * ctx may go away after this if the userfault pseudo fd is 646 * already released. 647 */ 648 out: 649 WRITE_ONCE(ctx->mmap_changing, false); 650 userfaultfd_ctx_put(ctx); 651 } 652 653 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 654 struct userfaultfd_wait_queue *ewq) 655 { 656 ewq->msg.event = 0; 657 wake_up_locked(&ctx->event_wqh); 658 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 659 } 660 661 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 662 { 663 struct userfaultfd_ctx *ctx = NULL, *octx; 664 struct userfaultfd_fork_ctx *fctx; 665 666 octx = vma->vm_userfaultfd_ctx.ctx; 667 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 668 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 669 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 670 return 0; 671 } 672 673 list_for_each_entry(fctx, fcs, list) 674 if (fctx->orig == octx) { 675 ctx = fctx->new; 676 break; 677 } 678 679 if (!ctx) { 680 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 681 if (!fctx) 682 return -ENOMEM; 683 684 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 685 if (!ctx) { 686 kfree(fctx); 687 return -ENOMEM; 688 } 689 690 refcount_set(&ctx->refcount, 1); 691 ctx->flags = octx->flags; 692 ctx->state = UFFD_STATE_RUNNING; 693 ctx->features = octx->features; 694 ctx->released = false; 695 ctx->mmap_changing = false; 696 ctx->mm = vma->vm_mm; 697 mmgrab(ctx->mm); 698 699 userfaultfd_ctx_get(octx); 700 WRITE_ONCE(octx->mmap_changing, true); 701 fctx->orig = octx; 702 fctx->new = ctx; 703 list_add_tail(&fctx->list, fcs); 704 } 705 706 vma->vm_userfaultfd_ctx.ctx = ctx; 707 return 0; 708 } 709 710 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 711 { 712 struct userfaultfd_ctx *ctx = fctx->orig; 713 struct userfaultfd_wait_queue ewq; 714 715 msg_init(&ewq.msg); 716 717 ewq.msg.event = UFFD_EVENT_FORK; 718 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 719 720 userfaultfd_event_wait_completion(ctx, &ewq); 721 } 722 723 void dup_userfaultfd_complete(struct list_head *fcs) 724 { 725 struct userfaultfd_fork_ctx *fctx, *n; 726 727 list_for_each_entry_safe(fctx, n, fcs, list) { 728 dup_fctx(fctx); 729 list_del(&fctx->list); 730 kfree(fctx); 731 } 732 } 733 734 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 735 struct vm_userfaultfd_ctx *vm_ctx) 736 { 737 struct userfaultfd_ctx *ctx; 738 739 ctx = vma->vm_userfaultfd_ctx.ctx; 740 741 if (!ctx) 742 return; 743 744 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 745 vm_ctx->ctx = ctx; 746 userfaultfd_ctx_get(ctx); 747 WRITE_ONCE(ctx->mmap_changing, true); 748 } else { 749 /* Drop uffd context if remap feature not enabled */ 750 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 751 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 752 } 753 } 754 755 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 756 unsigned long from, unsigned long to, 757 unsigned long len) 758 { 759 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 760 struct userfaultfd_wait_queue ewq; 761 762 if (!ctx) 763 return; 764 765 if (to & ~PAGE_MASK) { 766 userfaultfd_ctx_put(ctx); 767 return; 768 } 769 770 msg_init(&ewq.msg); 771 772 ewq.msg.event = UFFD_EVENT_REMAP; 773 ewq.msg.arg.remap.from = from; 774 ewq.msg.arg.remap.to = to; 775 ewq.msg.arg.remap.len = len; 776 777 userfaultfd_event_wait_completion(ctx, &ewq); 778 } 779 780 bool userfaultfd_remove(struct vm_area_struct *vma, 781 unsigned long start, unsigned long end) 782 { 783 struct mm_struct *mm = vma->vm_mm; 784 struct userfaultfd_ctx *ctx; 785 struct userfaultfd_wait_queue ewq; 786 787 ctx = vma->vm_userfaultfd_ctx.ctx; 788 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 789 return true; 790 791 userfaultfd_ctx_get(ctx); 792 WRITE_ONCE(ctx->mmap_changing, true); 793 up_read(&mm->mmap_sem); 794 795 msg_init(&ewq.msg); 796 797 ewq.msg.event = UFFD_EVENT_REMOVE; 798 ewq.msg.arg.remove.start = start; 799 ewq.msg.arg.remove.end = end; 800 801 userfaultfd_event_wait_completion(ctx, &ewq); 802 803 return false; 804 } 805 806 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 807 unsigned long start, unsigned long end) 808 { 809 struct userfaultfd_unmap_ctx *unmap_ctx; 810 811 list_for_each_entry(unmap_ctx, unmaps, list) 812 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 813 unmap_ctx->end == end) 814 return true; 815 816 return false; 817 } 818 819 int userfaultfd_unmap_prep(struct vm_area_struct *vma, 820 unsigned long start, unsigned long end, 821 struct list_head *unmaps) 822 { 823 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 824 struct userfaultfd_unmap_ctx *unmap_ctx; 825 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 826 827 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 828 has_unmap_ctx(ctx, unmaps, start, end)) 829 continue; 830 831 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 832 if (!unmap_ctx) 833 return -ENOMEM; 834 835 userfaultfd_ctx_get(ctx); 836 WRITE_ONCE(ctx->mmap_changing, true); 837 unmap_ctx->ctx = ctx; 838 unmap_ctx->start = start; 839 unmap_ctx->end = end; 840 list_add_tail(&unmap_ctx->list, unmaps); 841 } 842 843 return 0; 844 } 845 846 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 847 { 848 struct userfaultfd_unmap_ctx *ctx, *n; 849 struct userfaultfd_wait_queue ewq; 850 851 list_for_each_entry_safe(ctx, n, uf, list) { 852 msg_init(&ewq.msg); 853 854 ewq.msg.event = UFFD_EVENT_UNMAP; 855 ewq.msg.arg.remove.start = ctx->start; 856 ewq.msg.arg.remove.end = ctx->end; 857 858 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 859 860 list_del(&ctx->list); 861 kfree(ctx); 862 } 863 } 864 865 static int userfaultfd_release(struct inode *inode, struct file *file) 866 { 867 struct userfaultfd_ctx *ctx = file->private_data; 868 struct mm_struct *mm = ctx->mm; 869 struct vm_area_struct *vma, *prev; 870 /* len == 0 means wake all */ 871 struct userfaultfd_wake_range range = { .len = 0, }; 872 unsigned long new_flags; 873 874 WRITE_ONCE(ctx->released, true); 875 876 if (!mmget_not_zero(mm)) 877 goto wakeup; 878 879 /* 880 * Flush page faults out of all CPUs. NOTE: all page faults 881 * must be retried without returning VM_FAULT_SIGBUS if 882 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 883 * changes while handle_userfault released the mmap_sem. So 884 * it's critical that released is set to true (above), before 885 * taking the mmap_sem for writing. 886 */ 887 down_write(&mm->mmap_sem); 888 if (!mmget_still_valid(mm)) 889 goto skip_mm; 890 prev = NULL; 891 for (vma = mm->mmap; vma; vma = vma->vm_next) { 892 cond_resched(); 893 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 894 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 895 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 896 prev = vma; 897 continue; 898 } 899 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 900 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 901 new_flags, vma->anon_vma, 902 vma->vm_file, vma->vm_pgoff, 903 vma_policy(vma), 904 NULL_VM_UFFD_CTX); 905 if (prev) 906 vma = prev; 907 else 908 prev = vma; 909 vma->vm_flags = new_flags; 910 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 911 } 912 skip_mm: 913 up_write(&mm->mmap_sem); 914 mmput(mm); 915 wakeup: 916 /* 917 * After no new page faults can wait on this fault_*wqh, flush 918 * the last page faults that may have been already waiting on 919 * the fault_*wqh. 920 */ 921 spin_lock(&ctx->fault_pending_wqh.lock); 922 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 923 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 924 spin_unlock(&ctx->fault_pending_wqh.lock); 925 926 /* Flush pending events that may still wait on event_wqh */ 927 wake_up_all(&ctx->event_wqh); 928 929 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 930 userfaultfd_ctx_put(ctx); 931 return 0; 932 } 933 934 /* fault_pending_wqh.lock must be hold by the caller */ 935 static inline struct userfaultfd_wait_queue *find_userfault_in( 936 wait_queue_head_t *wqh) 937 { 938 wait_queue_entry_t *wq; 939 struct userfaultfd_wait_queue *uwq; 940 941 lockdep_assert_held(&wqh->lock); 942 943 uwq = NULL; 944 if (!waitqueue_active(wqh)) 945 goto out; 946 /* walk in reverse to provide FIFO behavior to read userfaults */ 947 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 948 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 949 out: 950 return uwq; 951 } 952 953 static inline struct userfaultfd_wait_queue *find_userfault( 954 struct userfaultfd_ctx *ctx) 955 { 956 return find_userfault_in(&ctx->fault_pending_wqh); 957 } 958 959 static inline struct userfaultfd_wait_queue *find_userfault_evt( 960 struct userfaultfd_ctx *ctx) 961 { 962 return find_userfault_in(&ctx->event_wqh); 963 } 964 965 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 966 { 967 struct userfaultfd_ctx *ctx = file->private_data; 968 __poll_t ret; 969 970 poll_wait(file, &ctx->fd_wqh, wait); 971 972 switch (ctx->state) { 973 case UFFD_STATE_WAIT_API: 974 return EPOLLERR; 975 case UFFD_STATE_RUNNING: 976 /* 977 * poll() never guarantees that read won't block. 978 * userfaults can be waken before they're read(). 979 */ 980 if (unlikely(!(file->f_flags & O_NONBLOCK))) 981 return EPOLLERR; 982 /* 983 * lockless access to see if there are pending faults 984 * __pollwait last action is the add_wait_queue but 985 * the spin_unlock would allow the waitqueue_active to 986 * pass above the actual list_add inside 987 * add_wait_queue critical section. So use a full 988 * memory barrier to serialize the list_add write of 989 * add_wait_queue() with the waitqueue_active read 990 * below. 991 */ 992 ret = 0; 993 smp_mb(); 994 if (waitqueue_active(&ctx->fault_pending_wqh)) 995 ret = EPOLLIN; 996 else if (waitqueue_active(&ctx->event_wqh)) 997 ret = EPOLLIN; 998 999 return ret; 1000 default: 1001 WARN_ON_ONCE(1); 1002 return EPOLLERR; 1003 } 1004 } 1005 1006 static const struct file_operations userfaultfd_fops; 1007 1008 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, 1009 struct userfaultfd_ctx *new, 1010 struct uffd_msg *msg) 1011 { 1012 int fd; 1013 1014 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new, 1015 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS)); 1016 if (fd < 0) 1017 return fd; 1018 1019 msg->arg.reserved.reserved1 = 0; 1020 msg->arg.fork.ufd = fd; 1021 return 0; 1022 } 1023 1024 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1025 struct uffd_msg *msg) 1026 { 1027 ssize_t ret; 1028 DECLARE_WAITQUEUE(wait, current); 1029 struct userfaultfd_wait_queue *uwq; 1030 /* 1031 * Handling fork event requires sleeping operations, so 1032 * we drop the event_wqh lock, then do these ops, then 1033 * lock it back and wake up the waiter. While the lock is 1034 * dropped the ewq may go away so we keep track of it 1035 * carefully. 1036 */ 1037 LIST_HEAD(fork_event); 1038 struct userfaultfd_ctx *fork_nctx = NULL; 1039 1040 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1041 spin_lock_irq(&ctx->fd_wqh.lock); 1042 __add_wait_queue(&ctx->fd_wqh, &wait); 1043 for (;;) { 1044 set_current_state(TASK_INTERRUPTIBLE); 1045 spin_lock(&ctx->fault_pending_wqh.lock); 1046 uwq = find_userfault(ctx); 1047 if (uwq) { 1048 /* 1049 * Use a seqcount to repeat the lockless check 1050 * in wake_userfault() to avoid missing 1051 * wakeups because during the refile both 1052 * waitqueue could become empty if this is the 1053 * only userfault. 1054 */ 1055 write_seqcount_begin(&ctx->refile_seq); 1056 1057 /* 1058 * The fault_pending_wqh.lock prevents the uwq 1059 * to disappear from under us. 1060 * 1061 * Refile this userfault from 1062 * fault_pending_wqh to fault_wqh, it's not 1063 * pending anymore after we read it. 1064 * 1065 * Use list_del() by hand (as 1066 * userfaultfd_wake_function also uses 1067 * list_del_init() by hand) to be sure nobody 1068 * changes __remove_wait_queue() to use 1069 * list_del_init() in turn breaking the 1070 * !list_empty_careful() check in 1071 * handle_userfault(). The uwq->wq.head list 1072 * must never be empty at any time during the 1073 * refile, or the waitqueue could disappear 1074 * from under us. The "wait_queue_head_t" 1075 * parameter of __remove_wait_queue() is unused 1076 * anyway. 1077 */ 1078 list_del(&uwq->wq.entry); 1079 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1080 1081 write_seqcount_end(&ctx->refile_seq); 1082 1083 /* careful to always initialize msg if ret == 0 */ 1084 *msg = uwq->msg; 1085 spin_unlock(&ctx->fault_pending_wqh.lock); 1086 ret = 0; 1087 break; 1088 } 1089 spin_unlock(&ctx->fault_pending_wqh.lock); 1090 1091 spin_lock(&ctx->event_wqh.lock); 1092 uwq = find_userfault_evt(ctx); 1093 if (uwq) { 1094 *msg = uwq->msg; 1095 1096 if (uwq->msg.event == UFFD_EVENT_FORK) { 1097 fork_nctx = (struct userfaultfd_ctx *) 1098 (unsigned long) 1099 uwq->msg.arg.reserved.reserved1; 1100 list_move(&uwq->wq.entry, &fork_event); 1101 /* 1102 * fork_nctx can be freed as soon as 1103 * we drop the lock, unless we take a 1104 * reference on it. 1105 */ 1106 userfaultfd_ctx_get(fork_nctx); 1107 spin_unlock(&ctx->event_wqh.lock); 1108 ret = 0; 1109 break; 1110 } 1111 1112 userfaultfd_event_complete(ctx, uwq); 1113 spin_unlock(&ctx->event_wqh.lock); 1114 ret = 0; 1115 break; 1116 } 1117 spin_unlock(&ctx->event_wqh.lock); 1118 1119 if (signal_pending(current)) { 1120 ret = -ERESTARTSYS; 1121 break; 1122 } 1123 if (no_wait) { 1124 ret = -EAGAIN; 1125 break; 1126 } 1127 spin_unlock_irq(&ctx->fd_wqh.lock); 1128 schedule(); 1129 spin_lock_irq(&ctx->fd_wqh.lock); 1130 } 1131 __remove_wait_queue(&ctx->fd_wqh, &wait); 1132 __set_current_state(TASK_RUNNING); 1133 spin_unlock_irq(&ctx->fd_wqh.lock); 1134 1135 if (!ret && msg->event == UFFD_EVENT_FORK) { 1136 ret = resolve_userfault_fork(ctx, fork_nctx, msg); 1137 spin_lock(&ctx->event_wqh.lock); 1138 if (!list_empty(&fork_event)) { 1139 /* 1140 * The fork thread didn't abort, so we can 1141 * drop the temporary refcount. 1142 */ 1143 userfaultfd_ctx_put(fork_nctx); 1144 1145 uwq = list_first_entry(&fork_event, 1146 typeof(*uwq), 1147 wq.entry); 1148 /* 1149 * If fork_event list wasn't empty and in turn 1150 * the event wasn't already released by fork 1151 * (the event is allocated on fork kernel 1152 * stack), put the event back to its place in 1153 * the event_wq. fork_event head will be freed 1154 * as soon as we return so the event cannot 1155 * stay queued there no matter the current 1156 * "ret" value. 1157 */ 1158 list_del(&uwq->wq.entry); 1159 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1160 1161 /* 1162 * Leave the event in the waitqueue and report 1163 * error to userland if we failed to resolve 1164 * the userfault fork. 1165 */ 1166 if (likely(!ret)) 1167 userfaultfd_event_complete(ctx, uwq); 1168 } else { 1169 /* 1170 * Here the fork thread aborted and the 1171 * refcount from the fork thread on fork_nctx 1172 * has already been released. We still hold 1173 * the reference we took before releasing the 1174 * lock above. If resolve_userfault_fork 1175 * failed we've to drop it because the 1176 * fork_nctx has to be freed in such case. If 1177 * it succeeded we'll hold it because the new 1178 * uffd references it. 1179 */ 1180 if (ret) 1181 userfaultfd_ctx_put(fork_nctx); 1182 } 1183 spin_unlock(&ctx->event_wqh.lock); 1184 } 1185 1186 return ret; 1187 } 1188 1189 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1190 size_t count, loff_t *ppos) 1191 { 1192 struct userfaultfd_ctx *ctx = file->private_data; 1193 ssize_t _ret, ret = 0; 1194 struct uffd_msg msg; 1195 int no_wait = file->f_flags & O_NONBLOCK; 1196 1197 if (ctx->state == UFFD_STATE_WAIT_API) 1198 return -EINVAL; 1199 1200 for (;;) { 1201 if (count < sizeof(msg)) 1202 return ret ? ret : -EINVAL; 1203 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); 1204 if (_ret < 0) 1205 return ret ? ret : _ret; 1206 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1207 return ret ? ret : -EFAULT; 1208 ret += sizeof(msg); 1209 buf += sizeof(msg); 1210 count -= sizeof(msg); 1211 /* 1212 * Allow to read more than one fault at time but only 1213 * block if waiting for the very first one. 1214 */ 1215 no_wait = O_NONBLOCK; 1216 } 1217 } 1218 1219 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1220 struct userfaultfd_wake_range *range) 1221 { 1222 spin_lock(&ctx->fault_pending_wqh.lock); 1223 /* wake all in the range and autoremove */ 1224 if (waitqueue_active(&ctx->fault_pending_wqh)) 1225 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1226 range); 1227 if (waitqueue_active(&ctx->fault_wqh)) 1228 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1229 spin_unlock(&ctx->fault_pending_wqh.lock); 1230 } 1231 1232 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1233 struct userfaultfd_wake_range *range) 1234 { 1235 unsigned seq; 1236 bool need_wakeup; 1237 1238 /* 1239 * To be sure waitqueue_active() is not reordered by the CPU 1240 * before the pagetable update, use an explicit SMP memory 1241 * barrier here. PT lock release or up_read(mmap_sem) still 1242 * have release semantics that can allow the 1243 * waitqueue_active() to be reordered before the pte update. 1244 */ 1245 smp_mb(); 1246 1247 /* 1248 * Use waitqueue_active because it's very frequent to 1249 * change the address space atomically even if there are no 1250 * userfaults yet. So we take the spinlock only when we're 1251 * sure we've userfaults to wake. 1252 */ 1253 do { 1254 seq = read_seqcount_begin(&ctx->refile_seq); 1255 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1256 waitqueue_active(&ctx->fault_wqh); 1257 cond_resched(); 1258 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1259 if (need_wakeup) 1260 __wake_userfault(ctx, range); 1261 } 1262 1263 static __always_inline int validate_range(struct mm_struct *mm, 1264 __u64 start, __u64 len) 1265 { 1266 __u64 task_size = mm->task_size; 1267 1268 if (start & ~PAGE_MASK) 1269 return -EINVAL; 1270 if (len & ~PAGE_MASK) 1271 return -EINVAL; 1272 if (!len) 1273 return -EINVAL; 1274 if (start < mmap_min_addr) 1275 return -EINVAL; 1276 if (start >= task_size) 1277 return -EINVAL; 1278 if (len > task_size - start) 1279 return -EINVAL; 1280 return 0; 1281 } 1282 1283 static inline bool vma_can_userfault(struct vm_area_struct *vma) 1284 { 1285 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || 1286 vma_is_shmem(vma); 1287 } 1288 1289 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1290 unsigned long arg) 1291 { 1292 struct mm_struct *mm = ctx->mm; 1293 struct vm_area_struct *vma, *prev, *cur; 1294 int ret; 1295 struct uffdio_register uffdio_register; 1296 struct uffdio_register __user *user_uffdio_register; 1297 unsigned long vm_flags, new_flags; 1298 bool found; 1299 bool basic_ioctls; 1300 unsigned long start, end, vma_end; 1301 1302 user_uffdio_register = (struct uffdio_register __user *) arg; 1303 1304 ret = -EFAULT; 1305 if (copy_from_user(&uffdio_register, user_uffdio_register, 1306 sizeof(uffdio_register)-sizeof(__u64))) 1307 goto out; 1308 1309 ret = -EINVAL; 1310 if (!uffdio_register.mode) 1311 goto out; 1312 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| 1313 UFFDIO_REGISTER_MODE_WP)) 1314 goto out; 1315 vm_flags = 0; 1316 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1317 vm_flags |= VM_UFFD_MISSING; 1318 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1319 vm_flags |= VM_UFFD_WP; 1320 /* 1321 * FIXME: remove the below error constraint by 1322 * implementing the wprotect tracking mode. 1323 */ 1324 ret = -EINVAL; 1325 goto out; 1326 } 1327 1328 ret = validate_range(mm, uffdio_register.range.start, 1329 uffdio_register.range.len); 1330 if (ret) 1331 goto out; 1332 1333 start = uffdio_register.range.start; 1334 end = start + uffdio_register.range.len; 1335 1336 ret = -ENOMEM; 1337 if (!mmget_not_zero(mm)) 1338 goto out; 1339 1340 down_write(&mm->mmap_sem); 1341 if (!mmget_still_valid(mm)) 1342 goto out_unlock; 1343 vma = find_vma_prev(mm, start, &prev); 1344 if (!vma) 1345 goto out_unlock; 1346 1347 /* check that there's at least one vma in the range */ 1348 ret = -EINVAL; 1349 if (vma->vm_start >= end) 1350 goto out_unlock; 1351 1352 /* 1353 * If the first vma contains huge pages, make sure start address 1354 * is aligned to huge page size. 1355 */ 1356 if (is_vm_hugetlb_page(vma)) { 1357 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1358 1359 if (start & (vma_hpagesize - 1)) 1360 goto out_unlock; 1361 } 1362 1363 /* 1364 * Search for not compatible vmas. 1365 */ 1366 found = false; 1367 basic_ioctls = false; 1368 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1369 cond_resched(); 1370 1371 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1372 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1373 1374 /* check not compatible vmas */ 1375 ret = -EINVAL; 1376 if (!vma_can_userfault(cur)) 1377 goto out_unlock; 1378 1379 /* 1380 * UFFDIO_COPY will fill file holes even without 1381 * PROT_WRITE. This check enforces that if this is a 1382 * MAP_SHARED, the process has write permission to the backing 1383 * file. If VM_MAYWRITE is set it also enforces that on a 1384 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1385 * F_WRITE_SEAL can be taken until the vma is destroyed. 1386 */ 1387 ret = -EPERM; 1388 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1389 goto out_unlock; 1390 1391 /* 1392 * If this vma contains ending address, and huge pages 1393 * check alignment. 1394 */ 1395 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1396 end > cur->vm_start) { 1397 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1398 1399 ret = -EINVAL; 1400 1401 if (end & (vma_hpagesize - 1)) 1402 goto out_unlock; 1403 } 1404 1405 /* 1406 * Check that this vma isn't already owned by a 1407 * different userfaultfd. We can't allow more than one 1408 * userfaultfd to own a single vma simultaneously or we 1409 * wouldn't know which one to deliver the userfaults to. 1410 */ 1411 ret = -EBUSY; 1412 if (cur->vm_userfaultfd_ctx.ctx && 1413 cur->vm_userfaultfd_ctx.ctx != ctx) 1414 goto out_unlock; 1415 1416 /* 1417 * Note vmas containing huge pages 1418 */ 1419 if (is_vm_hugetlb_page(cur)) 1420 basic_ioctls = true; 1421 1422 found = true; 1423 } 1424 BUG_ON(!found); 1425 1426 if (vma->vm_start < start) 1427 prev = vma; 1428 1429 ret = 0; 1430 do { 1431 cond_resched(); 1432 1433 BUG_ON(!vma_can_userfault(vma)); 1434 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1435 vma->vm_userfaultfd_ctx.ctx != ctx); 1436 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1437 1438 /* 1439 * Nothing to do: this vma is already registered into this 1440 * userfaultfd and with the right tracking mode too. 1441 */ 1442 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1443 (vma->vm_flags & vm_flags) == vm_flags) 1444 goto skip; 1445 1446 if (vma->vm_start > start) 1447 start = vma->vm_start; 1448 vma_end = min(end, vma->vm_end); 1449 1450 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags; 1451 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1452 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1453 vma_policy(vma), 1454 ((struct vm_userfaultfd_ctx){ ctx })); 1455 if (prev) { 1456 vma = prev; 1457 goto next; 1458 } 1459 if (vma->vm_start < start) { 1460 ret = split_vma(mm, vma, start, 1); 1461 if (ret) 1462 break; 1463 } 1464 if (vma->vm_end > end) { 1465 ret = split_vma(mm, vma, end, 0); 1466 if (ret) 1467 break; 1468 } 1469 next: 1470 /* 1471 * In the vma_merge() successful mprotect-like case 8: 1472 * the next vma was merged into the current one and 1473 * the current one has not been updated yet. 1474 */ 1475 vma->vm_flags = new_flags; 1476 vma->vm_userfaultfd_ctx.ctx = ctx; 1477 1478 skip: 1479 prev = vma; 1480 start = vma->vm_end; 1481 vma = vma->vm_next; 1482 } while (vma && vma->vm_start < end); 1483 out_unlock: 1484 up_write(&mm->mmap_sem); 1485 mmput(mm); 1486 if (!ret) { 1487 /* 1488 * Now that we scanned all vmas we can already tell 1489 * userland which ioctls methods are guaranteed to 1490 * succeed on this range. 1491 */ 1492 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1493 UFFD_API_RANGE_IOCTLS, 1494 &user_uffdio_register->ioctls)) 1495 ret = -EFAULT; 1496 } 1497 out: 1498 return ret; 1499 } 1500 1501 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1502 unsigned long arg) 1503 { 1504 struct mm_struct *mm = ctx->mm; 1505 struct vm_area_struct *vma, *prev, *cur; 1506 int ret; 1507 struct uffdio_range uffdio_unregister; 1508 unsigned long new_flags; 1509 bool found; 1510 unsigned long start, end, vma_end; 1511 const void __user *buf = (void __user *)arg; 1512 1513 ret = -EFAULT; 1514 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1515 goto out; 1516 1517 ret = validate_range(mm, uffdio_unregister.start, 1518 uffdio_unregister.len); 1519 if (ret) 1520 goto out; 1521 1522 start = uffdio_unregister.start; 1523 end = start + uffdio_unregister.len; 1524 1525 ret = -ENOMEM; 1526 if (!mmget_not_zero(mm)) 1527 goto out; 1528 1529 down_write(&mm->mmap_sem); 1530 if (!mmget_still_valid(mm)) 1531 goto out_unlock; 1532 vma = find_vma_prev(mm, start, &prev); 1533 if (!vma) 1534 goto out_unlock; 1535 1536 /* check that there's at least one vma in the range */ 1537 ret = -EINVAL; 1538 if (vma->vm_start >= end) 1539 goto out_unlock; 1540 1541 /* 1542 * If the first vma contains huge pages, make sure start address 1543 * is aligned to huge page size. 1544 */ 1545 if (is_vm_hugetlb_page(vma)) { 1546 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1547 1548 if (start & (vma_hpagesize - 1)) 1549 goto out_unlock; 1550 } 1551 1552 /* 1553 * Search for not compatible vmas. 1554 */ 1555 found = false; 1556 ret = -EINVAL; 1557 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1558 cond_resched(); 1559 1560 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1561 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1562 1563 /* 1564 * Check not compatible vmas, not strictly required 1565 * here as not compatible vmas cannot have an 1566 * userfaultfd_ctx registered on them, but this 1567 * provides for more strict behavior to notice 1568 * unregistration errors. 1569 */ 1570 if (!vma_can_userfault(cur)) 1571 goto out_unlock; 1572 1573 found = true; 1574 } 1575 BUG_ON(!found); 1576 1577 if (vma->vm_start < start) 1578 prev = vma; 1579 1580 ret = 0; 1581 do { 1582 cond_resched(); 1583 1584 BUG_ON(!vma_can_userfault(vma)); 1585 1586 /* 1587 * Nothing to do: this vma is already registered into this 1588 * userfaultfd and with the right tracking mode too. 1589 */ 1590 if (!vma->vm_userfaultfd_ctx.ctx) 1591 goto skip; 1592 1593 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1594 1595 if (vma->vm_start > start) 1596 start = vma->vm_start; 1597 vma_end = min(end, vma->vm_end); 1598 1599 if (userfaultfd_missing(vma)) { 1600 /* 1601 * Wake any concurrent pending userfault while 1602 * we unregister, so they will not hang 1603 * permanently and it avoids userland to call 1604 * UFFDIO_WAKE explicitly. 1605 */ 1606 struct userfaultfd_wake_range range; 1607 range.start = start; 1608 range.len = vma_end - start; 1609 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1610 } 1611 1612 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 1613 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1614 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1615 vma_policy(vma), 1616 NULL_VM_UFFD_CTX); 1617 if (prev) { 1618 vma = prev; 1619 goto next; 1620 } 1621 if (vma->vm_start < start) { 1622 ret = split_vma(mm, vma, start, 1); 1623 if (ret) 1624 break; 1625 } 1626 if (vma->vm_end > end) { 1627 ret = split_vma(mm, vma, end, 0); 1628 if (ret) 1629 break; 1630 } 1631 next: 1632 /* 1633 * In the vma_merge() successful mprotect-like case 8: 1634 * the next vma was merged into the current one and 1635 * the current one has not been updated yet. 1636 */ 1637 vma->vm_flags = new_flags; 1638 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1639 1640 skip: 1641 prev = vma; 1642 start = vma->vm_end; 1643 vma = vma->vm_next; 1644 } while (vma && vma->vm_start < end); 1645 out_unlock: 1646 up_write(&mm->mmap_sem); 1647 mmput(mm); 1648 out: 1649 return ret; 1650 } 1651 1652 /* 1653 * userfaultfd_wake may be used in combination with the 1654 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1655 */ 1656 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1657 unsigned long arg) 1658 { 1659 int ret; 1660 struct uffdio_range uffdio_wake; 1661 struct userfaultfd_wake_range range; 1662 const void __user *buf = (void __user *)arg; 1663 1664 ret = -EFAULT; 1665 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1666 goto out; 1667 1668 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1669 if (ret) 1670 goto out; 1671 1672 range.start = uffdio_wake.start; 1673 range.len = uffdio_wake.len; 1674 1675 /* 1676 * len == 0 means wake all and we don't want to wake all here, 1677 * so check it again to be sure. 1678 */ 1679 VM_BUG_ON(!range.len); 1680 1681 wake_userfault(ctx, &range); 1682 ret = 0; 1683 1684 out: 1685 return ret; 1686 } 1687 1688 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1689 unsigned long arg) 1690 { 1691 __s64 ret; 1692 struct uffdio_copy uffdio_copy; 1693 struct uffdio_copy __user *user_uffdio_copy; 1694 struct userfaultfd_wake_range range; 1695 1696 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1697 1698 ret = -EAGAIN; 1699 if (READ_ONCE(ctx->mmap_changing)) 1700 goto out; 1701 1702 ret = -EFAULT; 1703 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1704 /* don't copy "copy" last field */ 1705 sizeof(uffdio_copy)-sizeof(__s64))) 1706 goto out; 1707 1708 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1709 if (ret) 1710 goto out; 1711 /* 1712 * double check for wraparound just in case. copy_from_user() 1713 * will later check uffdio_copy.src + uffdio_copy.len to fit 1714 * in the userland range. 1715 */ 1716 ret = -EINVAL; 1717 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1718 goto out; 1719 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) 1720 goto out; 1721 if (mmget_not_zero(ctx->mm)) { 1722 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1723 uffdio_copy.len, &ctx->mmap_changing); 1724 mmput(ctx->mm); 1725 } else { 1726 return -ESRCH; 1727 } 1728 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1729 return -EFAULT; 1730 if (ret < 0) 1731 goto out; 1732 BUG_ON(!ret); 1733 /* len == 0 would wake all */ 1734 range.len = ret; 1735 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1736 range.start = uffdio_copy.dst; 1737 wake_userfault(ctx, &range); 1738 } 1739 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1740 out: 1741 return ret; 1742 } 1743 1744 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1745 unsigned long arg) 1746 { 1747 __s64 ret; 1748 struct uffdio_zeropage uffdio_zeropage; 1749 struct uffdio_zeropage __user *user_uffdio_zeropage; 1750 struct userfaultfd_wake_range range; 1751 1752 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1753 1754 ret = -EAGAIN; 1755 if (READ_ONCE(ctx->mmap_changing)) 1756 goto out; 1757 1758 ret = -EFAULT; 1759 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1760 /* don't copy "zeropage" last field */ 1761 sizeof(uffdio_zeropage)-sizeof(__s64))) 1762 goto out; 1763 1764 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1765 uffdio_zeropage.range.len); 1766 if (ret) 1767 goto out; 1768 ret = -EINVAL; 1769 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1770 goto out; 1771 1772 if (mmget_not_zero(ctx->mm)) { 1773 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1774 uffdio_zeropage.range.len, 1775 &ctx->mmap_changing); 1776 mmput(ctx->mm); 1777 } else { 1778 return -ESRCH; 1779 } 1780 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1781 return -EFAULT; 1782 if (ret < 0) 1783 goto out; 1784 /* len == 0 would wake all */ 1785 BUG_ON(!ret); 1786 range.len = ret; 1787 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1788 range.start = uffdio_zeropage.range.start; 1789 wake_userfault(ctx, &range); 1790 } 1791 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1792 out: 1793 return ret; 1794 } 1795 1796 static inline unsigned int uffd_ctx_features(__u64 user_features) 1797 { 1798 /* 1799 * For the current set of features the bits just coincide 1800 */ 1801 return (unsigned int)user_features; 1802 } 1803 1804 /* 1805 * userland asks for a certain API version and we return which bits 1806 * and ioctl commands are implemented in this kernel for such API 1807 * version or -EINVAL if unknown. 1808 */ 1809 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1810 unsigned long arg) 1811 { 1812 struct uffdio_api uffdio_api; 1813 void __user *buf = (void __user *)arg; 1814 int ret; 1815 __u64 features; 1816 1817 ret = -EINVAL; 1818 if (ctx->state != UFFD_STATE_WAIT_API) 1819 goto out; 1820 ret = -EFAULT; 1821 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1822 goto out; 1823 features = uffdio_api.features; 1824 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) { 1825 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1826 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1827 goto out; 1828 ret = -EINVAL; 1829 goto out; 1830 } 1831 /* report all available features and ioctls to userland */ 1832 uffdio_api.features = UFFD_API_FEATURES; 1833 uffdio_api.ioctls = UFFD_API_IOCTLS; 1834 ret = -EFAULT; 1835 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1836 goto out; 1837 ctx->state = UFFD_STATE_RUNNING; 1838 /* only enable the requested features for this uffd context */ 1839 ctx->features = uffd_ctx_features(features); 1840 ret = 0; 1841 out: 1842 return ret; 1843 } 1844 1845 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1846 unsigned long arg) 1847 { 1848 int ret = -EINVAL; 1849 struct userfaultfd_ctx *ctx = file->private_data; 1850 1851 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) 1852 return -EINVAL; 1853 1854 switch(cmd) { 1855 case UFFDIO_API: 1856 ret = userfaultfd_api(ctx, arg); 1857 break; 1858 case UFFDIO_REGISTER: 1859 ret = userfaultfd_register(ctx, arg); 1860 break; 1861 case UFFDIO_UNREGISTER: 1862 ret = userfaultfd_unregister(ctx, arg); 1863 break; 1864 case UFFDIO_WAKE: 1865 ret = userfaultfd_wake(ctx, arg); 1866 break; 1867 case UFFDIO_COPY: 1868 ret = userfaultfd_copy(ctx, arg); 1869 break; 1870 case UFFDIO_ZEROPAGE: 1871 ret = userfaultfd_zeropage(ctx, arg); 1872 break; 1873 } 1874 return ret; 1875 } 1876 1877 #ifdef CONFIG_PROC_FS 1878 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 1879 { 1880 struct userfaultfd_ctx *ctx = f->private_data; 1881 wait_queue_entry_t *wq; 1882 unsigned long pending = 0, total = 0; 1883 1884 spin_lock(&ctx->fault_pending_wqh.lock); 1885 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 1886 pending++; 1887 total++; 1888 } 1889 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 1890 total++; 1891 } 1892 spin_unlock(&ctx->fault_pending_wqh.lock); 1893 1894 /* 1895 * If more protocols will be added, there will be all shown 1896 * separated by a space. Like this: 1897 * protocols: aa:... bb:... 1898 */ 1899 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 1900 pending, total, UFFD_API, ctx->features, 1901 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 1902 } 1903 #endif 1904 1905 static const struct file_operations userfaultfd_fops = { 1906 #ifdef CONFIG_PROC_FS 1907 .show_fdinfo = userfaultfd_show_fdinfo, 1908 #endif 1909 .release = userfaultfd_release, 1910 .poll = userfaultfd_poll, 1911 .read = userfaultfd_read, 1912 .unlocked_ioctl = userfaultfd_ioctl, 1913 .compat_ioctl = userfaultfd_ioctl, 1914 .llseek = noop_llseek, 1915 }; 1916 1917 static void init_once_userfaultfd_ctx(void *mem) 1918 { 1919 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 1920 1921 init_waitqueue_head(&ctx->fault_pending_wqh); 1922 init_waitqueue_head(&ctx->fault_wqh); 1923 init_waitqueue_head(&ctx->event_wqh); 1924 init_waitqueue_head(&ctx->fd_wqh); 1925 seqcount_init(&ctx->refile_seq); 1926 } 1927 1928 SYSCALL_DEFINE1(userfaultfd, int, flags) 1929 { 1930 struct userfaultfd_ctx *ctx; 1931 int fd; 1932 1933 BUG_ON(!current->mm); 1934 1935 /* Check the UFFD_* constants for consistency. */ 1936 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 1937 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 1938 1939 if (flags & ~UFFD_SHARED_FCNTL_FLAGS) 1940 return -EINVAL; 1941 1942 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 1943 if (!ctx) 1944 return -ENOMEM; 1945 1946 refcount_set(&ctx->refcount, 1); 1947 ctx->flags = flags; 1948 ctx->features = 0; 1949 ctx->state = UFFD_STATE_WAIT_API; 1950 ctx->released = false; 1951 ctx->mmap_changing = false; 1952 ctx->mm = current->mm; 1953 /* prevent the mm struct to be freed */ 1954 mmgrab(ctx->mm); 1955 1956 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx, 1957 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); 1958 if (fd < 0) { 1959 mmdrop(ctx->mm); 1960 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 1961 } 1962 return fd; 1963 } 1964 1965 static int __init userfaultfd_init(void) 1966 { 1967 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 1968 sizeof(struct userfaultfd_ctx), 1969 0, 1970 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 1971 init_once_userfaultfd_ctx); 1972 return 0; 1973 } 1974 __initcall(userfaultfd_init); 1975