1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/userfaultfd.c 4 * 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 8 * 9 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 11 */ 12 13 #include <linux/list.h> 14 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/mmu_notifier.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 #include <linux/swapops.h> 33 #include <linux/miscdevice.h> 34 35 static int sysctl_unprivileged_userfaultfd __read_mostly; 36 37 #ifdef CONFIG_SYSCTL 38 static struct ctl_table vm_userfaultfd_table[] = { 39 { 40 .procname = "unprivileged_userfaultfd", 41 .data = &sysctl_unprivileged_userfaultfd, 42 .maxlen = sizeof(sysctl_unprivileged_userfaultfd), 43 .mode = 0644, 44 .proc_handler = proc_dointvec_minmax, 45 .extra1 = SYSCTL_ZERO, 46 .extra2 = SYSCTL_ONE, 47 }, 48 { } 49 }; 50 #endif 51 52 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 53 54 /* 55 * Start with fault_pending_wqh and fault_wqh so they're more likely 56 * to be in the same cacheline. 57 * 58 * Locking order: 59 * fd_wqh.lock 60 * fault_pending_wqh.lock 61 * fault_wqh.lock 62 * event_wqh.lock 63 * 64 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, 65 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's 66 * also taken in IRQ context. 67 */ 68 struct userfaultfd_ctx { 69 /* waitqueue head for the pending (i.e. not read) userfaults */ 70 wait_queue_head_t fault_pending_wqh; 71 /* waitqueue head for the userfaults */ 72 wait_queue_head_t fault_wqh; 73 /* waitqueue head for the pseudo fd to wakeup poll/read */ 74 wait_queue_head_t fd_wqh; 75 /* waitqueue head for events */ 76 wait_queue_head_t event_wqh; 77 /* a refile sequence protected by fault_pending_wqh lock */ 78 seqcount_spinlock_t refile_seq; 79 /* pseudo fd refcounting */ 80 refcount_t refcount; 81 /* userfaultfd syscall flags */ 82 unsigned int flags; 83 /* features requested from the userspace */ 84 unsigned int features; 85 /* released */ 86 bool released; 87 /* memory mappings are changing because of non-cooperative event */ 88 atomic_t mmap_changing; 89 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 90 struct mm_struct *mm; 91 }; 92 93 struct userfaultfd_fork_ctx { 94 struct userfaultfd_ctx *orig; 95 struct userfaultfd_ctx *new; 96 struct list_head list; 97 }; 98 99 struct userfaultfd_unmap_ctx { 100 struct userfaultfd_ctx *ctx; 101 unsigned long start; 102 unsigned long end; 103 struct list_head list; 104 }; 105 106 struct userfaultfd_wait_queue { 107 struct uffd_msg msg; 108 wait_queue_entry_t wq; 109 struct userfaultfd_ctx *ctx; 110 bool waken; 111 }; 112 113 struct userfaultfd_wake_range { 114 unsigned long start; 115 unsigned long len; 116 }; 117 118 /* internal indication that UFFD_API ioctl was successfully executed */ 119 #define UFFD_FEATURE_INITIALIZED (1u << 31) 120 121 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx) 122 { 123 return ctx->features & UFFD_FEATURE_INITIALIZED; 124 } 125 126 /* 127 * Whether WP_UNPOPULATED is enabled on the uffd context. It is only 128 * meaningful when userfaultfd_wp()==true on the vma and when it's 129 * anonymous. 130 */ 131 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma) 132 { 133 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 134 135 if (!ctx) 136 return false; 137 138 return ctx->features & UFFD_FEATURE_WP_UNPOPULATED; 139 } 140 141 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma, 142 vm_flags_t flags) 143 { 144 const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP; 145 146 vm_flags_reset(vma, flags); 147 /* 148 * For shared mappings, we want to enable writenotify while 149 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply 150 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes. 151 */ 152 if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed) 153 vma_set_page_prot(vma); 154 } 155 156 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 157 int wake_flags, void *key) 158 { 159 struct userfaultfd_wake_range *range = key; 160 int ret; 161 struct userfaultfd_wait_queue *uwq; 162 unsigned long start, len; 163 164 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 165 ret = 0; 166 /* len == 0 means wake all */ 167 start = range->start; 168 len = range->len; 169 if (len && (start > uwq->msg.arg.pagefault.address || 170 start + len <= uwq->msg.arg.pagefault.address)) 171 goto out; 172 WRITE_ONCE(uwq->waken, true); 173 /* 174 * The Program-Order guarantees provided by the scheduler 175 * ensure uwq->waken is visible before the task is woken. 176 */ 177 ret = wake_up_state(wq->private, mode); 178 if (ret) { 179 /* 180 * Wake only once, autoremove behavior. 181 * 182 * After the effect of list_del_init is visible to the other 183 * CPUs, the waitqueue may disappear from under us, see the 184 * !list_empty_careful() in handle_userfault(). 185 * 186 * try_to_wake_up() has an implicit smp_mb(), and the 187 * wq->private is read before calling the extern function 188 * "wake_up_state" (which in turns calls try_to_wake_up). 189 */ 190 list_del_init(&wq->entry); 191 } 192 out: 193 return ret; 194 } 195 196 /** 197 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 198 * context. 199 * @ctx: [in] Pointer to the userfaultfd context. 200 */ 201 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 202 { 203 refcount_inc(&ctx->refcount); 204 } 205 206 /** 207 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 208 * context. 209 * @ctx: [in] Pointer to userfaultfd context. 210 * 211 * The userfaultfd context reference must have been previously acquired either 212 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 213 */ 214 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 215 { 216 if (refcount_dec_and_test(&ctx->refcount)) { 217 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 218 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 219 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 220 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 221 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 222 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 223 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 224 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 225 mmdrop(ctx->mm); 226 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 227 } 228 } 229 230 static inline void msg_init(struct uffd_msg *msg) 231 { 232 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 233 /* 234 * Must use memset to zero out the paddings or kernel data is 235 * leaked to userland. 236 */ 237 memset(msg, 0, sizeof(struct uffd_msg)); 238 } 239 240 static inline struct uffd_msg userfault_msg(unsigned long address, 241 unsigned long real_address, 242 unsigned int flags, 243 unsigned long reason, 244 unsigned int features) 245 { 246 struct uffd_msg msg; 247 248 msg_init(&msg); 249 msg.event = UFFD_EVENT_PAGEFAULT; 250 251 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ? 252 real_address : address; 253 254 /* 255 * These flags indicate why the userfault occurred: 256 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault. 257 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault. 258 * - Neither of these flags being set indicates a MISSING fault. 259 * 260 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write 261 * fault. Otherwise, it was a read fault. 262 */ 263 if (flags & FAULT_FLAG_WRITE) 264 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 265 if (reason & VM_UFFD_WP) 266 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 267 if (reason & VM_UFFD_MINOR) 268 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR; 269 if (features & UFFD_FEATURE_THREAD_ID) 270 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 271 return msg; 272 } 273 274 #ifdef CONFIG_HUGETLB_PAGE 275 /* 276 * Same functionality as userfaultfd_must_wait below with modifications for 277 * hugepmd ranges. 278 */ 279 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 280 struct vm_area_struct *vma, 281 unsigned long address, 282 unsigned long flags, 283 unsigned long reason) 284 { 285 pte_t *ptep, pte; 286 bool ret = true; 287 288 mmap_assert_locked(ctx->mm); 289 290 ptep = hugetlb_walk(vma, address, vma_mmu_pagesize(vma)); 291 if (!ptep) 292 goto out; 293 294 ret = false; 295 pte = huge_ptep_get(ptep); 296 297 /* 298 * Lockless access: we're in a wait_event so it's ok if it 299 * changes under us. PTE markers should be handled the same as none 300 * ptes here. 301 */ 302 if (huge_pte_none_mostly(pte)) 303 ret = true; 304 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 305 ret = true; 306 out: 307 return ret; 308 } 309 #else 310 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 311 struct vm_area_struct *vma, 312 unsigned long address, 313 unsigned long flags, 314 unsigned long reason) 315 { 316 return false; /* should never get here */ 317 } 318 #endif /* CONFIG_HUGETLB_PAGE */ 319 320 /* 321 * Verify the pagetables are still not ok after having reigstered into 322 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 323 * userfault that has already been resolved, if userfaultfd_read and 324 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 325 * threads. 326 */ 327 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 328 unsigned long address, 329 unsigned long flags, 330 unsigned long reason) 331 { 332 struct mm_struct *mm = ctx->mm; 333 pgd_t *pgd; 334 p4d_t *p4d; 335 pud_t *pud; 336 pmd_t *pmd, _pmd; 337 pte_t *pte; 338 pte_t ptent; 339 bool ret = true; 340 341 mmap_assert_locked(mm); 342 343 pgd = pgd_offset(mm, address); 344 if (!pgd_present(*pgd)) 345 goto out; 346 p4d = p4d_offset(pgd, address); 347 if (!p4d_present(*p4d)) 348 goto out; 349 pud = pud_offset(p4d, address); 350 if (!pud_present(*pud)) 351 goto out; 352 pmd = pmd_offset(pud, address); 353 again: 354 _pmd = pmdp_get_lockless(pmd); 355 if (pmd_none(_pmd)) 356 goto out; 357 358 ret = false; 359 if (!pmd_present(_pmd) || pmd_devmap(_pmd)) 360 goto out; 361 362 if (pmd_trans_huge(_pmd)) { 363 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) 364 ret = true; 365 goto out; 366 } 367 368 pte = pte_offset_map(pmd, address); 369 if (!pte) { 370 ret = true; 371 goto again; 372 } 373 /* 374 * Lockless access: we're in a wait_event so it's ok if it 375 * changes under us. PTE markers should be handled the same as none 376 * ptes here. 377 */ 378 ptent = ptep_get(pte); 379 if (pte_none_mostly(ptent)) 380 ret = true; 381 if (!pte_write(ptent) && (reason & VM_UFFD_WP)) 382 ret = true; 383 pte_unmap(pte); 384 385 out: 386 return ret; 387 } 388 389 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags) 390 { 391 if (flags & FAULT_FLAG_INTERRUPTIBLE) 392 return TASK_INTERRUPTIBLE; 393 394 if (flags & FAULT_FLAG_KILLABLE) 395 return TASK_KILLABLE; 396 397 return TASK_UNINTERRUPTIBLE; 398 } 399 400 /* 401 * The locking rules involved in returning VM_FAULT_RETRY depending on 402 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 403 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 404 * recommendation in __lock_page_or_retry is not an understatement. 405 * 406 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released 407 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 408 * not set. 409 * 410 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 411 * set, VM_FAULT_RETRY can still be returned if and only if there are 412 * fatal_signal_pending()s, and the mmap_lock must be released before 413 * returning it. 414 */ 415 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 416 { 417 struct vm_area_struct *vma = vmf->vma; 418 struct mm_struct *mm = vma->vm_mm; 419 struct userfaultfd_ctx *ctx; 420 struct userfaultfd_wait_queue uwq; 421 vm_fault_t ret = VM_FAULT_SIGBUS; 422 bool must_wait; 423 unsigned int blocking_state; 424 425 /* 426 * We don't do userfault handling for the final child pid update. 427 * 428 * We also don't do userfault handling during 429 * coredumping. hugetlbfs has the special 430 * hugetlb_follow_page_mask() to skip missing pages in the 431 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 432 * the no_page_table() helper in follow_page_mask(), but the 433 * shmem_vm_ops->fault method is invoked even during 434 * coredumping without mmap_lock and it ends up here. 435 */ 436 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 437 goto out; 438 439 /* 440 * Coredumping runs without mmap_lock so we can only check that 441 * the mmap_lock is held, if PF_DUMPCORE was not set. 442 */ 443 mmap_assert_locked(mm); 444 445 ctx = vma->vm_userfaultfd_ctx.ctx; 446 if (!ctx) 447 goto out; 448 449 BUG_ON(ctx->mm != mm); 450 451 /* Any unrecognized flag is a bug. */ 452 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS); 453 /* 0 or > 1 flags set is a bug; we expect exactly 1. */ 454 VM_BUG_ON(!reason || (reason & (reason - 1))); 455 456 if (ctx->features & UFFD_FEATURE_SIGBUS) 457 goto out; 458 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY)) 459 goto out; 460 461 /* 462 * If it's already released don't get it. This avoids to loop 463 * in __get_user_pages if userfaultfd_release waits on the 464 * caller of handle_userfault to release the mmap_lock. 465 */ 466 if (unlikely(READ_ONCE(ctx->released))) { 467 /* 468 * Don't return VM_FAULT_SIGBUS in this case, so a non 469 * cooperative manager can close the uffd after the 470 * last UFFDIO_COPY, without risking to trigger an 471 * involuntary SIGBUS if the process was starting the 472 * userfaultfd while the userfaultfd was still armed 473 * (but after the last UFFDIO_COPY). If the uffd 474 * wasn't already closed when the userfault reached 475 * this point, that would normally be solved by 476 * userfaultfd_must_wait returning 'false'. 477 * 478 * If we were to return VM_FAULT_SIGBUS here, the non 479 * cooperative manager would be instead forced to 480 * always call UFFDIO_UNREGISTER before it can safely 481 * close the uffd. 482 */ 483 ret = VM_FAULT_NOPAGE; 484 goto out; 485 } 486 487 /* 488 * Check that we can return VM_FAULT_RETRY. 489 * 490 * NOTE: it should become possible to return VM_FAULT_RETRY 491 * even if FAULT_FLAG_TRIED is set without leading to gup() 492 * -EBUSY failures, if the userfaultfd is to be extended for 493 * VM_UFFD_WP tracking and we intend to arm the userfault 494 * without first stopping userland access to the memory. For 495 * VM_UFFD_MISSING userfaults this is enough for now. 496 */ 497 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 498 /* 499 * Validate the invariant that nowait must allow retry 500 * to be sure not to return SIGBUS erroneously on 501 * nowait invocations. 502 */ 503 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 504 #ifdef CONFIG_DEBUG_VM 505 if (printk_ratelimit()) { 506 printk(KERN_WARNING 507 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 508 vmf->flags); 509 dump_stack(); 510 } 511 #endif 512 goto out; 513 } 514 515 /* 516 * Handle nowait, not much to do other than tell it to retry 517 * and wait. 518 */ 519 ret = VM_FAULT_RETRY; 520 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 521 goto out; 522 523 /* take the reference before dropping the mmap_lock */ 524 userfaultfd_ctx_get(ctx); 525 526 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 527 uwq.wq.private = current; 528 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags, 529 reason, ctx->features); 530 uwq.ctx = ctx; 531 uwq.waken = false; 532 533 blocking_state = userfaultfd_get_blocking_state(vmf->flags); 534 535 /* 536 * Take the vma lock now, in order to safely call 537 * userfaultfd_huge_must_wait() later. Since acquiring the 538 * (sleepable) vma lock can modify the current task state, that 539 * must be before explicitly calling set_current_state(). 540 */ 541 if (is_vm_hugetlb_page(vma)) 542 hugetlb_vma_lock_read(vma); 543 544 spin_lock_irq(&ctx->fault_pending_wqh.lock); 545 /* 546 * After the __add_wait_queue the uwq is visible to userland 547 * through poll/read(). 548 */ 549 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 550 /* 551 * The smp_mb() after __set_current_state prevents the reads 552 * following the spin_unlock to happen before the list_add in 553 * __add_wait_queue. 554 */ 555 set_current_state(blocking_state); 556 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 557 558 if (!is_vm_hugetlb_page(vma)) 559 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 560 reason); 561 else 562 must_wait = userfaultfd_huge_must_wait(ctx, vma, 563 vmf->address, 564 vmf->flags, reason); 565 if (is_vm_hugetlb_page(vma)) 566 hugetlb_vma_unlock_read(vma); 567 mmap_read_unlock(mm); 568 569 if (likely(must_wait && !READ_ONCE(ctx->released))) { 570 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 571 schedule(); 572 } 573 574 __set_current_state(TASK_RUNNING); 575 576 /* 577 * Here we race with the list_del; list_add in 578 * userfaultfd_ctx_read(), however because we don't ever run 579 * list_del_init() to refile across the two lists, the prev 580 * and next pointers will never point to self. list_add also 581 * would never let any of the two pointers to point to 582 * self. So list_empty_careful won't risk to see both pointers 583 * pointing to self at any time during the list refile. The 584 * only case where list_del_init() is called is the full 585 * removal in the wake function and there we don't re-list_add 586 * and it's fine not to block on the spinlock. The uwq on this 587 * kernel stack can be released after the list_del_init. 588 */ 589 if (!list_empty_careful(&uwq.wq.entry)) { 590 spin_lock_irq(&ctx->fault_pending_wqh.lock); 591 /* 592 * No need of list_del_init(), the uwq on the stack 593 * will be freed shortly anyway. 594 */ 595 list_del(&uwq.wq.entry); 596 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 597 } 598 599 /* 600 * ctx may go away after this if the userfault pseudo fd is 601 * already released. 602 */ 603 userfaultfd_ctx_put(ctx); 604 605 out: 606 return ret; 607 } 608 609 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 610 struct userfaultfd_wait_queue *ewq) 611 { 612 struct userfaultfd_ctx *release_new_ctx; 613 614 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 615 goto out; 616 617 ewq->ctx = ctx; 618 init_waitqueue_entry(&ewq->wq, current); 619 release_new_ctx = NULL; 620 621 spin_lock_irq(&ctx->event_wqh.lock); 622 /* 623 * After the __add_wait_queue the uwq is visible to userland 624 * through poll/read(). 625 */ 626 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 627 for (;;) { 628 set_current_state(TASK_KILLABLE); 629 if (ewq->msg.event == 0) 630 break; 631 if (READ_ONCE(ctx->released) || 632 fatal_signal_pending(current)) { 633 /* 634 * &ewq->wq may be queued in fork_event, but 635 * __remove_wait_queue ignores the head 636 * parameter. It would be a problem if it 637 * didn't. 638 */ 639 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 640 if (ewq->msg.event == UFFD_EVENT_FORK) { 641 struct userfaultfd_ctx *new; 642 643 new = (struct userfaultfd_ctx *) 644 (unsigned long) 645 ewq->msg.arg.reserved.reserved1; 646 release_new_ctx = new; 647 } 648 break; 649 } 650 651 spin_unlock_irq(&ctx->event_wqh.lock); 652 653 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 654 schedule(); 655 656 spin_lock_irq(&ctx->event_wqh.lock); 657 } 658 __set_current_state(TASK_RUNNING); 659 spin_unlock_irq(&ctx->event_wqh.lock); 660 661 if (release_new_ctx) { 662 struct vm_area_struct *vma; 663 struct mm_struct *mm = release_new_ctx->mm; 664 VMA_ITERATOR(vmi, mm, 0); 665 666 /* the various vma->vm_userfaultfd_ctx still points to it */ 667 mmap_write_lock(mm); 668 for_each_vma(vmi, vma) { 669 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 670 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 671 userfaultfd_set_vm_flags(vma, 672 vma->vm_flags & ~__VM_UFFD_FLAGS); 673 } 674 } 675 mmap_write_unlock(mm); 676 677 userfaultfd_ctx_put(release_new_ctx); 678 } 679 680 /* 681 * ctx may go away after this if the userfault pseudo fd is 682 * already released. 683 */ 684 out: 685 atomic_dec(&ctx->mmap_changing); 686 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0); 687 userfaultfd_ctx_put(ctx); 688 } 689 690 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 691 struct userfaultfd_wait_queue *ewq) 692 { 693 ewq->msg.event = 0; 694 wake_up_locked(&ctx->event_wqh); 695 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 696 } 697 698 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 699 { 700 struct userfaultfd_ctx *ctx = NULL, *octx; 701 struct userfaultfd_fork_ctx *fctx; 702 703 octx = vma->vm_userfaultfd_ctx.ctx; 704 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 705 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 706 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS); 707 return 0; 708 } 709 710 list_for_each_entry(fctx, fcs, list) 711 if (fctx->orig == octx) { 712 ctx = fctx->new; 713 break; 714 } 715 716 if (!ctx) { 717 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 718 if (!fctx) 719 return -ENOMEM; 720 721 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 722 if (!ctx) { 723 kfree(fctx); 724 return -ENOMEM; 725 } 726 727 refcount_set(&ctx->refcount, 1); 728 ctx->flags = octx->flags; 729 ctx->features = octx->features; 730 ctx->released = false; 731 atomic_set(&ctx->mmap_changing, 0); 732 ctx->mm = vma->vm_mm; 733 mmgrab(ctx->mm); 734 735 userfaultfd_ctx_get(octx); 736 atomic_inc(&octx->mmap_changing); 737 fctx->orig = octx; 738 fctx->new = ctx; 739 list_add_tail(&fctx->list, fcs); 740 } 741 742 vma->vm_userfaultfd_ctx.ctx = ctx; 743 return 0; 744 } 745 746 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 747 { 748 struct userfaultfd_ctx *ctx = fctx->orig; 749 struct userfaultfd_wait_queue ewq; 750 751 msg_init(&ewq.msg); 752 753 ewq.msg.event = UFFD_EVENT_FORK; 754 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 755 756 userfaultfd_event_wait_completion(ctx, &ewq); 757 } 758 759 void dup_userfaultfd_complete(struct list_head *fcs) 760 { 761 struct userfaultfd_fork_ctx *fctx, *n; 762 763 list_for_each_entry_safe(fctx, n, fcs, list) { 764 dup_fctx(fctx); 765 list_del(&fctx->list); 766 kfree(fctx); 767 } 768 } 769 770 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 771 struct vm_userfaultfd_ctx *vm_ctx) 772 { 773 struct userfaultfd_ctx *ctx; 774 775 ctx = vma->vm_userfaultfd_ctx.ctx; 776 777 if (!ctx) 778 return; 779 780 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 781 vm_ctx->ctx = ctx; 782 userfaultfd_ctx_get(ctx); 783 atomic_inc(&ctx->mmap_changing); 784 } else { 785 /* Drop uffd context if remap feature not enabled */ 786 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 787 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS); 788 } 789 } 790 791 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 792 unsigned long from, unsigned long to, 793 unsigned long len) 794 { 795 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 796 struct userfaultfd_wait_queue ewq; 797 798 if (!ctx) 799 return; 800 801 if (to & ~PAGE_MASK) { 802 userfaultfd_ctx_put(ctx); 803 return; 804 } 805 806 msg_init(&ewq.msg); 807 808 ewq.msg.event = UFFD_EVENT_REMAP; 809 ewq.msg.arg.remap.from = from; 810 ewq.msg.arg.remap.to = to; 811 ewq.msg.arg.remap.len = len; 812 813 userfaultfd_event_wait_completion(ctx, &ewq); 814 } 815 816 bool userfaultfd_remove(struct vm_area_struct *vma, 817 unsigned long start, unsigned long end) 818 { 819 struct mm_struct *mm = vma->vm_mm; 820 struct userfaultfd_ctx *ctx; 821 struct userfaultfd_wait_queue ewq; 822 823 ctx = vma->vm_userfaultfd_ctx.ctx; 824 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 825 return true; 826 827 userfaultfd_ctx_get(ctx); 828 atomic_inc(&ctx->mmap_changing); 829 mmap_read_unlock(mm); 830 831 msg_init(&ewq.msg); 832 833 ewq.msg.event = UFFD_EVENT_REMOVE; 834 ewq.msg.arg.remove.start = start; 835 ewq.msg.arg.remove.end = end; 836 837 userfaultfd_event_wait_completion(ctx, &ewq); 838 839 return false; 840 } 841 842 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 843 unsigned long start, unsigned long end) 844 { 845 struct userfaultfd_unmap_ctx *unmap_ctx; 846 847 list_for_each_entry(unmap_ctx, unmaps, list) 848 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 849 unmap_ctx->end == end) 850 return true; 851 852 return false; 853 } 854 855 int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start, 856 unsigned long end, struct list_head *unmaps) 857 { 858 struct userfaultfd_unmap_ctx *unmap_ctx; 859 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 860 861 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 862 has_unmap_ctx(ctx, unmaps, start, end)) 863 return 0; 864 865 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 866 if (!unmap_ctx) 867 return -ENOMEM; 868 869 userfaultfd_ctx_get(ctx); 870 atomic_inc(&ctx->mmap_changing); 871 unmap_ctx->ctx = ctx; 872 unmap_ctx->start = start; 873 unmap_ctx->end = end; 874 list_add_tail(&unmap_ctx->list, unmaps); 875 876 return 0; 877 } 878 879 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 880 { 881 struct userfaultfd_unmap_ctx *ctx, *n; 882 struct userfaultfd_wait_queue ewq; 883 884 list_for_each_entry_safe(ctx, n, uf, list) { 885 msg_init(&ewq.msg); 886 887 ewq.msg.event = UFFD_EVENT_UNMAP; 888 ewq.msg.arg.remove.start = ctx->start; 889 ewq.msg.arg.remove.end = ctx->end; 890 891 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 892 893 list_del(&ctx->list); 894 kfree(ctx); 895 } 896 } 897 898 static int userfaultfd_release(struct inode *inode, struct file *file) 899 { 900 struct userfaultfd_ctx *ctx = file->private_data; 901 struct mm_struct *mm = ctx->mm; 902 struct vm_area_struct *vma, *prev; 903 /* len == 0 means wake all */ 904 struct userfaultfd_wake_range range = { .len = 0, }; 905 unsigned long new_flags; 906 VMA_ITERATOR(vmi, mm, 0); 907 908 WRITE_ONCE(ctx->released, true); 909 910 if (!mmget_not_zero(mm)) 911 goto wakeup; 912 913 /* 914 * Flush page faults out of all CPUs. NOTE: all page faults 915 * must be retried without returning VM_FAULT_SIGBUS if 916 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 917 * changes while handle_userfault released the mmap_lock. So 918 * it's critical that released is set to true (above), before 919 * taking the mmap_lock for writing. 920 */ 921 mmap_write_lock(mm); 922 prev = NULL; 923 for_each_vma(vmi, vma) { 924 cond_resched(); 925 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 926 !!(vma->vm_flags & __VM_UFFD_FLAGS)); 927 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 928 prev = vma; 929 continue; 930 } 931 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 932 prev = vma_merge(&vmi, mm, prev, vma->vm_start, vma->vm_end, 933 new_flags, vma->anon_vma, 934 vma->vm_file, vma->vm_pgoff, 935 vma_policy(vma), 936 NULL_VM_UFFD_CTX, anon_vma_name(vma)); 937 if (prev) { 938 vma = prev; 939 } else { 940 prev = vma; 941 } 942 943 userfaultfd_set_vm_flags(vma, new_flags); 944 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 945 } 946 mmap_write_unlock(mm); 947 mmput(mm); 948 wakeup: 949 /* 950 * After no new page faults can wait on this fault_*wqh, flush 951 * the last page faults that may have been already waiting on 952 * the fault_*wqh. 953 */ 954 spin_lock_irq(&ctx->fault_pending_wqh.lock); 955 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 956 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 957 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 958 959 /* Flush pending events that may still wait on event_wqh */ 960 wake_up_all(&ctx->event_wqh); 961 962 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 963 userfaultfd_ctx_put(ctx); 964 return 0; 965 } 966 967 /* fault_pending_wqh.lock must be hold by the caller */ 968 static inline struct userfaultfd_wait_queue *find_userfault_in( 969 wait_queue_head_t *wqh) 970 { 971 wait_queue_entry_t *wq; 972 struct userfaultfd_wait_queue *uwq; 973 974 lockdep_assert_held(&wqh->lock); 975 976 uwq = NULL; 977 if (!waitqueue_active(wqh)) 978 goto out; 979 /* walk in reverse to provide FIFO behavior to read userfaults */ 980 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 981 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 982 out: 983 return uwq; 984 } 985 986 static inline struct userfaultfd_wait_queue *find_userfault( 987 struct userfaultfd_ctx *ctx) 988 { 989 return find_userfault_in(&ctx->fault_pending_wqh); 990 } 991 992 static inline struct userfaultfd_wait_queue *find_userfault_evt( 993 struct userfaultfd_ctx *ctx) 994 { 995 return find_userfault_in(&ctx->event_wqh); 996 } 997 998 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 999 { 1000 struct userfaultfd_ctx *ctx = file->private_data; 1001 __poll_t ret; 1002 1003 poll_wait(file, &ctx->fd_wqh, wait); 1004 1005 if (!userfaultfd_is_initialized(ctx)) 1006 return EPOLLERR; 1007 1008 /* 1009 * poll() never guarantees that read won't block. 1010 * userfaults can be waken before they're read(). 1011 */ 1012 if (unlikely(!(file->f_flags & O_NONBLOCK))) 1013 return EPOLLERR; 1014 /* 1015 * lockless access to see if there are pending faults 1016 * __pollwait last action is the add_wait_queue but 1017 * the spin_unlock would allow the waitqueue_active to 1018 * pass above the actual list_add inside 1019 * add_wait_queue critical section. So use a full 1020 * memory barrier to serialize the list_add write of 1021 * add_wait_queue() with the waitqueue_active read 1022 * below. 1023 */ 1024 ret = 0; 1025 smp_mb(); 1026 if (waitqueue_active(&ctx->fault_pending_wqh)) 1027 ret = EPOLLIN; 1028 else if (waitqueue_active(&ctx->event_wqh)) 1029 ret = EPOLLIN; 1030 1031 return ret; 1032 } 1033 1034 static const struct file_operations userfaultfd_fops; 1035 1036 static int resolve_userfault_fork(struct userfaultfd_ctx *new, 1037 struct inode *inode, 1038 struct uffd_msg *msg) 1039 { 1040 int fd; 1041 1042 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new, 1043 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode); 1044 if (fd < 0) 1045 return fd; 1046 1047 msg->arg.reserved.reserved1 = 0; 1048 msg->arg.fork.ufd = fd; 1049 return 0; 1050 } 1051 1052 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1053 struct uffd_msg *msg, struct inode *inode) 1054 { 1055 ssize_t ret; 1056 DECLARE_WAITQUEUE(wait, current); 1057 struct userfaultfd_wait_queue *uwq; 1058 /* 1059 * Handling fork event requires sleeping operations, so 1060 * we drop the event_wqh lock, then do these ops, then 1061 * lock it back and wake up the waiter. While the lock is 1062 * dropped the ewq may go away so we keep track of it 1063 * carefully. 1064 */ 1065 LIST_HEAD(fork_event); 1066 struct userfaultfd_ctx *fork_nctx = NULL; 1067 1068 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1069 spin_lock_irq(&ctx->fd_wqh.lock); 1070 __add_wait_queue(&ctx->fd_wqh, &wait); 1071 for (;;) { 1072 set_current_state(TASK_INTERRUPTIBLE); 1073 spin_lock(&ctx->fault_pending_wqh.lock); 1074 uwq = find_userfault(ctx); 1075 if (uwq) { 1076 /* 1077 * Use a seqcount to repeat the lockless check 1078 * in wake_userfault() to avoid missing 1079 * wakeups because during the refile both 1080 * waitqueue could become empty if this is the 1081 * only userfault. 1082 */ 1083 write_seqcount_begin(&ctx->refile_seq); 1084 1085 /* 1086 * The fault_pending_wqh.lock prevents the uwq 1087 * to disappear from under us. 1088 * 1089 * Refile this userfault from 1090 * fault_pending_wqh to fault_wqh, it's not 1091 * pending anymore after we read it. 1092 * 1093 * Use list_del() by hand (as 1094 * userfaultfd_wake_function also uses 1095 * list_del_init() by hand) to be sure nobody 1096 * changes __remove_wait_queue() to use 1097 * list_del_init() in turn breaking the 1098 * !list_empty_careful() check in 1099 * handle_userfault(). The uwq->wq.head list 1100 * must never be empty at any time during the 1101 * refile, or the waitqueue could disappear 1102 * from under us. The "wait_queue_head_t" 1103 * parameter of __remove_wait_queue() is unused 1104 * anyway. 1105 */ 1106 list_del(&uwq->wq.entry); 1107 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1108 1109 write_seqcount_end(&ctx->refile_seq); 1110 1111 /* careful to always initialize msg if ret == 0 */ 1112 *msg = uwq->msg; 1113 spin_unlock(&ctx->fault_pending_wqh.lock); 1114 ret = 0; 1115 break; 1116 } 1117 spin_unlock(&ctx->fault_pending_wqh.lock); 1118 1119 spin_lock(&ctx->event_wqh.lock); 1120 uwq = find_userfault_evt(ctx); 1121 if (uwq) { 1122 *msg = uwq->msg; 1123 1124 if (uwq->msg.event == UFFD_EVENT_FORK) { 1125 fork_nctx = (struct userfaultfd_ctx *) 1126 (unsigned long) 1127 uwq->msg.arg.reserved.reserved1; 1128 list_move(&uwq->wq.entry, &fork_event); 1129 /* 1130 * fork_nctx can be freed as soon as 1131 * we drop the lock, unless we take a 1132 * reference on it. 1133 */ 1134 userfaultfd_ctx_get(fork_nctx); 1135 spin_unlock(&ctx->event_wqh.lock); 1136 ret = 0; 1137 break; 1138 } 1139 1140 userfaultfd_event_complete(ctx, uwq); 1141 spin_unlock(&ctx->event_wqh.lock); 1142 ret = 0; 1143 break; 1144 } 1145 spin_unlock(&ctx->event_wqh.lock); 1146 1147 if (signal_pending(current)) { 1148 ret = -ERESTARTSYS; 1149 break; 1150 } 1151 if (no_wait) { 1152 ret = -EAGAIN; 1153 break; 1154 } 1155 spin_unlock_irq(&ctx->fd_wqh.lock); 1156 schedule(); 1157 spin_lock_irq(&ctx->fd_wqh.lock); 1158 } 1159 __remove_wait_queue(&ctx->fd_wqh, &wait); 1160 __set_current_state(TASK_RUNNING); 1161 spin_unlock_irq(&ctx->fd_wqh.lock); 1162 1163 if (!ret && msg->event == UFFD_EVENT_FORK) { 1164 ret = resolve_userfault_fork(fork_nctx, inode, msg); 1165 spin_lock_irq(&ctx->event_wqh.lock); 1166 if (!list_empty(&fork_event)) { 1167 /* 1168 * The fork thread didn't abort, so we can 1169 * drop the temporary refcount. 1170 */ 1171 userfaultfd_ctx_put(fork_nctx); 1172 1173 uwq = list_first_entry(&fork_event, 1174 typeof(*uwq), 1175 wq.entry); 1176 /* 1177 * If fork_event list wasn't empty and in turn 1178 * the event wasn't already released by fork 1179 * (the event is allocated on fork kernel 1180 * stack), put the event back to its place in 1181 * the event_wq. fork_event head will be freed 1182 * as soon as we return so the event cannot 1183 * stay queued there no matter the current 1184 * "ret" value. 1185 */ 1186 list_del(&uwq->wq.entry); 1187 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1188 1189 /* 1190 * Leave the event in the waitqueue and report 1191 * error to userland if we failed to resolve 1192 * the userfault fork. 1193 */ 1194 if (likely(!ret)) 1195 userfaultfd_event_complete(ctx, uwq); 1196 } else { 1197 /* 1198 * Here the fork thread aborted and the 1199 * refcount from the fork thread on fork_nctx 1200 * has already been released. We still hold 1201 * the reference we took before releasing the 1202 * lock above. If resolve_userfault_fork 1203 * failed we've to drop it because the 1204 * fork_nctx has to be freed in such case. If 1205 * it succeeded we'll hold it because the new 1206 * uffd references it. 1207 */ 1208 if (ret) 1209 userfaultfd_ctx_put(fork_nctx); 1210 } 1211 spin_unlock_irq(&ctx->event_wqh.lock); 1212 } 1213 1214 return ret; 1215 } 1216 1217 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1218 size_t count, loff_t *ppos) 1219 { 1220 struct userfaultfd_ctx *ctx = file->private_data; 1221 ssize_t _ret, ret = 0; 1222 struct uffd_msg msg; 1223 int no_wait = file->f_flags & O_NONBLOCK; 1224 struct inode *inode = file_inode(file); 1225 1226 if (!userfaultfd_is_initialized(ctx)) 1227 return -EINVAL; 1228 1229 for (;;) { 1230 if (count < sizeof(msg)) 1231 return ret ? ret : -EINVAL; 1232 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode); 1233 if (_ret < 0) 1234 return ret ? ret : _ret; 1235 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1236 return ret ? ret : -EFAULT; 1237 ret += sizeof(msg); 1238 buf += sizeof(msg); 1239 count -= sizeof(msg); 1240 /* 1241 * Allow to read more than one fault at time but only 1242 * block if waiting for the very first one. 1243 */ 1244 no_wait = O_NONBLOCK; 1245 } 1246 } 1247 1248 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1249 struct userfaultfd_wake_range *range) 1250 { 1251 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1252 /* wake all in the range and autoremove */ 1253 if (waitqueue_active(&ctx->fault_pending_wqh)) 1254 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1255 range); 1256 if (waitqueue_active(&ctx->fault_wqh)) 1257 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1258 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1259 } 1260 1261 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1262 struct userfaultfd_wake_range *range) 1263 { 1264 unsigned seq; 1265 bool need_wakeup; 1266 1267 /* 1268 * To be sure waitqueue_active() is not reordered by the CPU 1269 * before the pagetable update, use an explicit SMP memory 1270 * barrier here. PT lock release or mmap_read_unlock(mm) still 1271 * have release semantics that can allow the 1272 * waitqueue_active() to be reordered before the pte update. 1273 */ 1274 smp_mb(); 1275 1276 /* 1277 * Use waitqueue_active because it's very frequent to 1278 * change the address space atomically even if there are no 1279 * userfaults yet. So we take the spinlock only when we're 1280 * sure we've userfaults to wake. 1281 */ 1282 do { 1283 seq = read_seqcount_begin(&ctx->refile_seq); 1284 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1285 waitqueue_active(&ctx->fault_wqh); 1286 cond_resched(); 1287 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1288 if (need_wakeup) 1289 __wake_userfault(ctx, range); 1290 } 1291 1292 static __always_inline int validate_unaligned_range( 1293 struct mm_struct *mm, __u64 start, __u64 len) 1294 { 1295 __u64 task_size = mm->task_size; 1296 1297 if (len & ~PAGE_MASK) 1298 return -EINVAL; 1299 if (!len) 1300 return -EINVAL; 1301 if (start < mmap_min_addr) 1302 return -EINVAL; 1303 if (start >= task_size) 1304 return -EINVAL; 1305 if (len > task_size - start) 1306 return -EINVAL; 1307 if (start + len <= start) 1308 return -EINVAL; 1309 return 0; 1310 } 1311 1312 static __always_inline int validate_range(struct mm_struct *mm, 1313 __u64 start, __u64 len) 1314 { 1315 if (start & ~PAGE_MASK) 1316 return -EINVAL; 1317 1318 return validate_unaligned_range(mm, start, len); 1319 } 1320 1321 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1322 unsigned long arg) 1323 { 1324 struct mm_struct *mm = ctx->mm; 1325 struct vm_area_struct *vma, *prev, *cur; 1326 int ret; 1327 struct uffdio_register uffdio_register; 1328 struct uffdio_register __user *user_uffdio_register; 1329 unsigned long vm_flags, new_flags; 1330 bool found; 1331 bool basic_ioctls; 1332 unsigned long start, end, vma_end; 1333 struct vma_iterator vmi; 1334 pgoff_t pgoff; 1335 1336 user_uffdio_register = (struct uffdio_register __user *) arg; 1337 1338 ret = -EFAULT; 1339 if (copy_from_user(&uffdio_register, user_uffdio_register, 1340 sizeof(uffdio_register)-sizeof(__u64))) 1341 goto out; 1342 1343 ret = -EINVAL; 1344 if (!uffdio_register.mode) 1345 goto out; 1346 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES) 1347 goto out; 1348 vm_flags = 0; 1349 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1350 vm_flags |= VM_UFFD_MISSING; 1351 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1352 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1353 goto out; 1354 #endif 1355 vm_flags |= VM_UFFD_WP; 1356 } 1357 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) { 1358 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1359 goto out; 1360 #endif 1361 vm_flags |= VM_UFFD_MINOR; 1362 } 1363 1364 ret = validate_range(mm, uffdio_register.range.start, 1365 uffdio_register.range.len); 1366 if (ret) 1367 goto out; 1368 1369 start = uffdio_register.range.start; 1370 end = start + uffdio_register.range.len; 1371 1372 ret = -ENOMEM; 1373 if (!mmget_not_zero(mm)) 1374 goto out; 1375 1376 ret = -EINVAL; 1377 mmap_write_lock(mm); 1378 vma_iter_init(&vmi, mm, start); 1379 vma = vma_find(&vmi, end); 1380 if (!vma) 1381 goto out_unlock; 1382 1383 /* 1384 * If the first vma contains huge pages, make sure start address 1385 * is aligned to huge page size. 1386 */ 1387 if (is_vm_hugetlb_page(vma)) { 1388 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1389 1390 if (start & (vma_hpagesize - 1)) 1391 goto out_unlock; 1392 } 1393 1394 /* 1395 * Search for not compatible vmas. 1396 */ 1397 found = false; 1398 basic_ioctls = false; 1399 cur = vma; 1400 do { 1401 cond_resched(); 1402 1403 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1404 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1405 1406 /* check not compatible vmas */ 1407 ret = -EINVAL; 1408 if (!vma_can_userfault(cur, vm_flags)) 1409 goto out_unlock; 1410 1411 /* 1412 * UFFDIO_COPY will fill file holes even without 1413 * PROT_WRITE. This check enforces that if this is a 1414 * MAP_SHARED, the process has write permission to the backing 1415 * file. If VM_MAYWRITE is set it also enforces that on a 1416 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1417 * F_WRITE_SEAL can be taken until the vma is destroyed. 1418 */ 1419 ret = -EPERM; 1420 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1421 goto out_unlock; 1422 1423 /* 1424 * If this vma contains ending address, and huge pages 1425 * check alignment. 1426 */ 1427 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1428 end > cur->vm_start) { 1429 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1430 1431 ret = -EINVAL; 1432 1433 if (end & (vma_hpagesize - 1)) 1434 goto out_unlock; 1435 } 1436 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) 1437 goto out_unlock; 1438 1439 /* 1440 * Check that this vma isn't already owned by a 1441 * different userfaultfd. We can't allow more than one 1442 * userfaultfd to own a single vma simultaneously or we 1443 * wouldn't know which one to deliver the userfaults to. 1444 */ 1445 ret = -EBUSY; 1446 if (cur->vm_userfaultfd_ctx.ctx && 1447 cur->vm_userfaultfd_ctx.ctx != ctx) 1448 goto out_unlock; 1449 1450 /* 1451 * Note vmas containing huge pages 1452 */ 1453 if (is_vm_hugetlb_page(cur)) 1454 basic_ioctls = true; 1455 1456 found = true; 1457 } for_each_vma_range(vmi, cur, end); 1458 BUG_ON(!found); 1459 1460 vma_iter_set(&vmi, start); 1461 prev = vma_prev(&vmi); 1462 if (vma->vm_start < start) 1463 prev = vma; 1464 1465 ret = 0; 1466 for_each_vma_range(vmi, vma, end) { 1467 cond_resched(); 1468 1469 BUG_ON(!vma_can_userfault(vma, vm_flags)); 1470 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1471 vma->vm_userfaultfd_ctx.ctx != ctx); 1472 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1473 1474 /* 1475 * Nothing to do: this vma is already registered into this 1476 * userfaultfd and with the right tracking mode too. 1477 */ 1478 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1479 (vma->vm_flags & vm_flags) == vm_flags) 1480 goto skip; 1481 1482 if (vma->vm_start > start) 1483 start = vma->vm_start; 1484 vma_end = min(end, vma->vm_end); 1485 1486 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags; 1487 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 1488 prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags, 1489 vma->anon_vma, vma->vm_file, pgoff, 1490 vma_policy(vma), 1491 ((struct vm_userfaultfd_ctx){ ctx }), 1492 anon_vma_name(vma)); 1493 if (prev) { 1494 /* vma_merge() invalidated the mas */ 1495 vma = prev; 1496 goto next; 1497 } 1498 if (vma->vm_start < start) { 1499 ret = split_vma(&vmi, vma, start, 1); 1500 if (ret) 1501 break; 1502 } 1503 if (vma->vm_end > end) { 1504 ret = split_vma(&vmi, vma, end, 0); 1505 if (ret) 1506 break; 1507 } 1508 next: 1509 /* 1510 * In the vma_merge() successful mprotect-like case 8: 1511 * the next vma was merged into the current one and 1512 * the current one has not been updated yet. 1513 */ 1514 userfaultfd_set_vm_flags(vma, new_flags); 1515 vma->vm_userfaultfd_ctx.ctx = ctx; 1516 1517 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma)) 1518 hugetlb_unshare_all_pmds(vma); 1519 1520 skip: 1521 prev = vma; 1522 start = vma->vm_end; 1523 } 1524 1525 out_unlock: 1526 mmap_write_unlock(mm); 1527 mmput(mm); 1528 if (!ret) { 1529 __u64 ioctls_out; 1530 1531 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1532 UFFD_API_RANGE_IOCTLS; 1533 1534 /* 1535 * Declare the WP ioctl only if the WP mode is 1536 * specified and all checks passed with the range 1537 */ 1538 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) 1539 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); 1540 1541 /* CONTINUE ioctl is only supported for MINOR ranges. */ 1542 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR)) 1543 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE); 1544 1545 /* 1546 * Now that we scanned all vmas we can already tell 1547 * userland which ioctls methods are guaranteed to 1548 * succeed on this range. 1549 */ 1550 if (put_user(ioctls_out, &user_uffdio_register->ioctls)) 1551 ret = -EFAULT; 1552 } 1553 out: 1554 return ret; 1555 } 1556 1557 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1558 unsigned long arg) 1559 { 1560 struct mm_struct *mm = ctx->mm; 1561 struct vm_area_struct *vma, *prev, *cur; 1562 int ret; 1563 struct uffdio_range uffdio_unregister; 1564 unsigned long new_flags; 1565 bool found; 1566 unsigned long start, end, vma_end; 1567 const void __user *buf = (void __user *)arg; 1568 struct vma_iterator vmi; 1569 pgoff_t pgoff; 1570 1571 ret = -EFAULT; 1572 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1573 goto out; 1574 1575 ret = validate_range(mm, uffdio_unregister.start, 1576 uffdio_unregister.len); 1577 if (ret) 1578 goto out; 1579 1580 start = uffdio_unregister.start; 1581 end = start + uffdio_unregister.len; 1582 1583 ret = -ENOMEM; 1584 if (!mmget_not_zero(mm)) 1585 goto out; 1586 1587 mmap_write_lock(mm); 1588 ret = -EINVAL; 1589 vma_iter_init(&vmi, mm, start); 1590 vma = vma_find(&vmi, end); 1591 if (!vma) 1592 goto out_unlock; 1593 1594 /* 1595 * If the first vma contains huge pages, make sure start address 1596 * is aligned to huge page size. 1597 */ 1598 if (is_vm_hugetlb_page(vma)) { 1599 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1600 1601 if (start & (vma_hpagesize - 1)) 1602 goto out_unlock; 1603 } 1604 1605 /* 1606 * Search for not compatible vmas. 1607 */ 1608 found = false; 1609 cur = vma; 1610 do { 1611 cond_resched(); 1612 1613 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1614 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1615 1616 /* 1617 * Check not compatible vmas, not strictly required 1618 * here as not compatible vmas cannot have an 1619 * userfaultfd_ctx registered on them, but this 1620 * provides for more strict behavior to notice 1621 * unregistration errors. 1622 */ 1623 if (!vma_can_userfault(cur, cur->vm_flags)) 1624 goto out_unlock; 1625 1626 found = true; 1627 } for_each_vma_range(vmi, cur, end); 1628 BUG_ON(!found); 1629 1630 vma_iter_set(&vmi, start); 1631 prev = vma_prev(&vmi); 1632 if (vma->vm_start < start) 1633 prev = vma; 1634 1635 ret = 0; 1636 for_each_vma_range(vmi, vma, end) { 1637 cond_resched(); 1638 1639 BUG_ON(!vma_can_userfault(vma, vma->vm_flags)); 1640 1641 /* 1642 * Nothing to do: this vma is already registered into this 1643 * userfaultfd and with the right tracking mode too. 1644 */ 1645 if (!vma->vm_userfaultfd_ctx.ctx) 1646 goto skip; 1647 1648 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1649 1650 if (vma->vm_start > start) 1651 start = vma->vm_start; 1652 vma_end = min(end, vma->vm_end); 1653 1654 if (userfaultfd_missing(vma)) { 1655 /* 1656 * Wake any concurrent pending userfault while 1657 * we unregister, so they will not hang 1658 * permanently and it avoids userland to call 1659 * UFFDIO_WAKE explicitly. 1660 */ 1661 struct userfaultfd_wake_range range; 1662 range.start = start; 1663 range.len = vma_end - start; 1664 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1665 } 1666 1667 /* Reset ptes for the whole vma range if wr-protected */ 1668 if (userfaultfd_wp(vma)) 1669 uffd_wp_range(vma, start, vma_end - start, false); 1670 1671 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 1672 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 1673 prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags, 1674 vma->anon_vma, vma->vm_file, pgoff, 1675 vma_policy(vma), 1676 NULL_VM_UFFD_CTX, anon_vma_name(vma)); 1677 if (prev) { 1678 vma = prev; 1679 goto next; 1680 } 1681 if (vma->vm_start < start) { 1682 ret = split_vma(&vmi, vma, start, 1); 1683 if (ret) 1684 break; 1685 } 1686 if (vma->vm_end > end) { 1687 ret = split_vma(&vmi, vma, end, 0); 1688 if (ret) 1689 break; 1690 } 1691 next: 1692 /* 1693 * In the vma_merge() successful mprotect-like case 8: 1694 * the next vma was merged into the current one and 1695 * the current one has not been updated yet. 1696 */ 1697 userfaultfd_set_vm_flags(vma, new_flags); 1698 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1699 1700 skip: 1701 prev = vma; 1702 start = vma->vm_end; 1703 } 1704 1705 out_unlock: 1706 mmap_write_unlock(mm); 1707 mmput(mm); 1708 out: 1709 return ret; 1710 } 1711 1712 /* 1713 * userfaultfd_wake may be used in combination with the 1714 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1715 */ 1716 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1717 unsigned long arg) 1718 { 1719 int ret; 1720 struct uffdio_range uffdio_wake; 1721 struct userfaultfd_wake_range range; 1722 const void __user *buf = (void __user *)arg; 1723 1724 ret = -EFAULT; 1725 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1726 goto out; 1727 1728 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1729 if (ret) 1730 goto out; 1731 1732 range.start = uffdio_wake.start; 1733 range.len = uffdio_wake.len; 1734 1735 /* 1736 * len == 0 means wake all and we don't want to wake all here, 1737 * so check it again to be sure. 1738 */ 1739 VM_BUG_ON(!range.len); 1740 1741 wake_userfault(ctx, &range); 1742 ret = 0; 1743 1744 out: 1745 return ret; 1746 } 1747 1748 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1749 unsigned long arg) 1750 { 1751 __s64 ret; 1752 struct uffdio_copy uffdio_copy; 1753 struct uffdio_copy __user *user_uffdio_copy; 1754 struct userfaultfd_wake_range range; 1755 uffd_flags_t flags = 0; 1756 1757 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1758 1759 ret = -EAGAIN; 1760 if (atomic_read(&ctx->mmap_changing)) 1761 goto out; 1762 1763 ret = -EFAULT; 1764 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1765 /* don't copy "copy" last field */ 1766 sizeof(uffdio_copy)-sizeof(__s64))) 1767 goto out; 1768 1769 ret = validate_unaligned_range(ctx->mm, uffdio_copy.src, 1770 uffdio_copy.len); 1771 if (ret) 1772 goto out; 1773 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1774 if (ret) 1775 goto out; 1776 1777 ret = -EINVAL; 1778 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) 1779 goto out; 1780 if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP) 1781 flags |= MFILL_ATOMIC_WP; 1782 if (mmget_not_zero(ctx->mm)) { 1783 ret = mfill_atomic_copy(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1784 uffdio_copy.len, &ctx->mmap_changing, 1785 flags); 1786 mmput(ctx->mm); 1787 } else { 1788 return -ESRCH; 1789 } 1790 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1791 return -EFAULT; 1792 if (ret < 0) 1793 goto out; 1794 BUG_ON(!ret); 1795 /* len == 0 would wake all */ 1796 range.len = ret; 1797 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1798 range.start = uffdio_copy.dst; 1799 wake_userfault(ctx, &range); 1800 } 1801 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1802 out: 1803 return ret; 1804 } 1805 1806 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1807 unsigned long arg) 1808 { 1809 __s64 ret; 1810 struct uffdio_zeropage uffdio_zeropage; 1811 struct uffdio_zeropage __user *user_uffdio_zeropage; 1812 struct userfaultfd_wake_range range; 1813 1814 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1815 1816 ret = -EAGAIN; 1817 if (atomic_read(&ctx->mmap_changing)) 1818 goto out; 1819 1820 ret = -EFAULT; 1821 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1822 /* don't copy "zeropage" last field */ 1823 sizeof(uffdio_zeropage)-sizeof(__s64))) 1824 goto out; 1825 1826 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1827 uffdio_zeropage.range.len); 1828 if (ret) 1829 goto out; 1830 ret = -EINVAL; 1831 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1832 goto out; 1833 1834 if (mmget_not_zero(ctx->mm)) { 1835 ret = mfill_atomic_zeropage(ctx->mm, uffdio_zeropage.range.start, 1836 uffdio_zeropage.range.len, 1837 &ctx->mmap_changing); 1838 mmput(ctx->mm); 1839 } else { 1840 return -ESRCH; 1841 } 1842 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1843 return -EFAULT; 1844 if (ret < 0) 1845 goto out; 1846 /* len == 0 would wake all */ 1847 BUG_ON(!ret); 1848 range.len = ret; 1849 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1850 range.start = uffdio_zeropage.range.start; 1851 wake_userfault(ctx, &range); 1852 } 1853 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1854 out: 1855 return ret; 1856 } 1857 1858 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, 1859 unsigned long arg) 1860 { 1861 int ret; 1862 struct uffdio_writeprotect uffdio_wp; 1863 struct uffdio_writeprotect __user *user_uffdio_wp; 1864 struct userfaultfd_wake_range range; 1865 bool mode_wp, mode_dontwake; 1866 1867 if (atomic_read(&ctx->mmap_changing)) 1868 return -EAGAIN; 1869 1870 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; 1871 1872 if (copy_from_user(&uffdio_wp, user_uffdio_wp, 1873 sizeof(struct uffdio_writeprotect))) 1874 return -EFAULT; 1875 1876 ret = validate_range(ctx->mm, uffdio_wp.range.start, 1877 uffdio_wp.range.len); 1878 if (ret) 1879 return ret; 1880 1881 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | 1882 UFFDIO_WRITEPROTECT_MODE_WP)) 1883 return -EINVAL; 1884 1885 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; 1886 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; 1887 1888 if (mode_wp && mode_dontwake) 1889 return -EINVAL; 1890 1891 if (mmget_not_zero(ctx->mm)) { 1892 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start, 1893 uffdio_wp.range.len, mode_wp, 1894 &ctx->mmap_changing); 1895 mmput(ctx->mm); 1896 } else { 1897 return -ESRCH; 1898 } 1899 1900 if (ret) 1901 return ret; 1902 1903 if (!mode_wp && !mode_dontwake) { 1904 range.start = uffdio_wp.range.start; 1905 range.len = uffdio_wp.range.len; 1906 wake_userfault(ctx, &range); 1907 } 1908 return ret; 1909 } 1910 1911 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg) 1912 { 1913 __s64 ret; 1914 struct uffdio_continue uffdio_continue; 1915 struct uffdio_continue __user *user_uffdio_continue; 1916 struct userfaultfd_wake_range range; 1917 uffd_flags_t flags = 0; 1918 1919 user_uffdio_continue = (struct uffdio_continue __user *)arg; 1920 1921 ret = -EAGAIN; 1922 if (atomic_read(&ctx->mmap_changing)) 1923 goto out; 1924 1925 ret = -EFAULT; 1926 if (copy_from_user(&uffdio_continue, user_uffdio_continue, 1927 /* don't copy the output fields */ 1928 sizeof(uffdio_continue) - (sizeof(__s64)))) 1929 goto out; 1930 1931 ret = validate_range(ctx->mm, uffdio_continue.range.start, 1932 uffdio_continue.range.len); 1933 if (ret) 1934 goto out; 1935 1936 ret = -EINVAL; 1937 if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE | 1938 UFFDIO_CONTINUE_MODE_WP)) 1939 goto out; 1940 if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP) 1941 flags |= MFILL_ATOMIC_WP; 1942 1943 if (mmget_not_zero(ctx->mm)) { 1944 ret = mfill_atomic_continue(ctx->mm, uffdio_continue.range.start, 1945 uffdio_continue.range.len, 1946 &ctx->mmap_changing, flags); 1947 mmput(ctx->mm); 1948 } else { 1949 return -ESRCH; 1950 } 1951 1952 if (unlikely(put_user(ret, &user_uffdio_continue->mapped))) 1953 return -EFAULT; 1954 if (ret < 0) 1955 goto out; 1956 1957 /* len == 0 would wake all */ 1958 BUG_ON(!ret); 1959 range.len = ret; 1960 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) { 1961 range.start = uffdio_continue.range.start; 1962 wake_userfault(ctx, &range); 1963 } 1964 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN; 1965 1966 out: 1967 return ret; 1968 } 1969 1970 static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg) 1971 { 1972 __s64 ret; 1973 struct uffdio_poison uffdio_poison; 1974 struct uffdio_poison __user *user_uffdio_poison; 1975 struct userfaultfd_wake_range range; 1976 1977 user_uffdio_poison = (struct uffdio_poison __user *)arg; 1978 1979 ret = -EAGAIN; 1980 if (atomic_read(&ctx->mmap_changing)) 1981 goto out; 1982 1983 ret = -EFAULT; 1984 if (copy_from_user(&uffdio_poison, user_uffdio_poison, 1985 /* don't copy the output fields */ 1986 sizeof(uffdio_poison) - (sizeof(__s64)))) 1987 goto out; 1988 1989 ret = validate_range(ctx->mm, uffdio_poison.range.start, 1990 uffdio_poison.range.len); 1991 if (ret) 1992 goto out; 1993 1994 ret = -EINVAL; 1995 if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE) 1996 goto out; 1997 1998 if (mmget_not_zero(ctx->mm)) { 1999 ret = mfill_atomic_poison(ctx->mm, uffdio_poison.range.start, 2000 uffdio_poison.range.len, 2001 &ctx->mmap_changing, 0); 2002 mmput(ctx->mm); 2003 } else { 2004 return -ESRCH; 2005 } 2006 2007 if (unlikely(put_user(ret, &user_uffdio_poison->updated))) 2008 return -EFAULT; 2009 if (ret < 0) 2010 goto out; 2011 2012 /* len == 0 would wake all */ 2013 BUG_ON(!ret); 2014 range.len = ret; 2015 if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) { 2016 range.start = uffdio_poison.range.start; 2017 wake_userfault(ctx, &range); 2018 } 2019 ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN; 2020 2021 out: 2022 return ret; 2023 } 2024 2025 static inline unsigned int uffd_ctx_features(__u64 user_features) 2026 { 2027 /* 2028 * For the current set of features the bits just coincide. Set 2029 * UFFD_FEATURE_INITIALIZED to mark the features as enabled. 2030 */ 2031 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED; 2032 } 2033 2034 /* 2035 * userland asks for a certain API version and we return which bits 2036 * and ioctl commands are implemented in this kernel for such API 2037 * version or -EINVAL if unknown. 2038 */ 2039 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 2040 unsigned long arg) 2041 { 2042 struct uffdio_api uffdio_api; 2043 void __user *buf = (void __user *)arg; 2044 unsigned int ctx_features; 2045 int ret; 2046 __u64 features; 2047 2048 ret = -EFAULT; 2049 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 2050 goto out; 2051 features = uffdio_api.features; 2052 ret = -EINVAL; 2053 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) 2054 goto err_out; 2055 ret = -EPERM; 2056 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) 2057 goto err_out; 2058 /* report all available features and ioctls to userland */ 2059 uffdio_api.features = UFFD_API_FEATURES; 2060 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 2061 uffdio_api.features &= 2062 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM); 2063 #endif 2064 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 2065 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP; 2066 #endif 2067 #ifndef CONFIG_PTE_MARKER_UFFD_WP 2068 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM; 2069 uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED; 2070 #endif 2071 uffdio_api.ioctls = UFFD_API_IOCTLS; 2072 ret = -EFAULT; 2073 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2074 goto out; 2075 2076 /* only enable the requested features for this uffd context */ 2077 ctx_features = uffd_ctx_features(features); 2078 ret = -EINVAL; 2079 if (cmpxchg(&ctx->features, 0, ctx_features) != 0) 2080 goto err_out; 2081 2082 ret = 0; 2083 out: 2084 return ret; 2085 err_out: 2086 memset(&uffdio_api, 0, sizeof(uffdio_api)); 2087 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2088 ret = -EFAULT; 2089 goto out; 2090 } 2091 2092 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 2093 unsigned long arg) 2094 { 2095 int ret = -EINVAL; 2096 struct userfaultfd_ctx *ctx = file->private_data; 2097 2098 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx)) 2099 return -EINVAL; 2100 2101 switch(cmd) { 2102 case UFFDIO_API: 2103 ret = userfaultfd_api(ctx, arg); 2104 break; 2105 case UFFDIO_REGISTER: 2106 ret = userfaultfd_register(ctx, arg); 2107 break; 2108 case UFFDIO_UNREGISTER: 2109 ret = userfaultfd_unregister(ctx, arg); 2110 break; 2111 case UFFDIO_WAKE: 2112 ret = userfaultfd_wake(ctx, arg); 2113 break; 2114 case UFFDIO_COPY: 2115 ret = userfaultfd_copy(ctx, arg); 2116 break; 2117 case UFFDIO_ZEROPAGE: 2118 ret = userfaultfd_zeropage(ctx, arg); 2119 break; 2120 case UFFDIO_WRITEPROTECT: 2121 ret = userfaultfd_writeprotect(ctx, arg); 2122 break; 2123 case UFFDIO_CONTINUE: 2124 ret = userfaultfd_continue(ctx, arg); 2125 break; 2126 case UFFDIO_POISON: 2127 ret = userfaultfd_poison(ctx, arg); 2128 break; 2129 } 2130 return ret; 2131 } 2132 2133 #ifdef CONFIG_PROC_FS 2134 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 2135 { 2136 struct userfaultfd_ctx *ctx = f->private_data; 2137 wait_queue_entry_t *wq; 2138 unsigned long pending = 0, total = 0; 2139 2140 spin_lock_irq(&ctx->fault_pending_wqh.lock); 2141 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 2142 pending++; 2143 total++; 2144 } 2145 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 2146 total++; 2147 } 2148 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 2149 2150 /* 2151 * If more protocols will be added, there will be all shown 2152 * separated by a space. Like this: 2153 * protocols: aa:... bb:... 2154 */ 2155 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 2156 pending, total, UFFD_API, ctx->features, 2157 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 2158 } 2159 #endif 2160 2161 static const struct file_operations userfaultfd_fops = { 2162 #ifdef CONFIG_PROC_FS 2163 .show_fdinfo = userfaultfd_show_fdinfo, 2164 #endif 2165 .release = userfaultfd_release, 2166 .poll = userfaultfd_poll, 2167 .read = userfaultfd_read, 2168 .unlocked_ioctl = userfaultfd_ioctl, 2169 .compat_ioctl = compat_ptr_ioctl, 2170 .llseek = noop_llseek, 2171 }; 2172 2173 static void init_once_userfaultfd_ctx(void *mem) 2174 { 2175 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 2176 2177 init_waitqueue_head(&ctx->fault_pending_wqh); 2178 init_waitqueue_head(&ctx->fault_wqh); 2179 init_waitqueue_head(&ctx->event_wqh); 2180 init_waitqueue_head(&ctx->fd_wqh); 2181 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); 2182 } 2183 2184 static int new_userfaultfd(int flags) 2185 { 2186 struct userfaultfd_ctx *ctx; 2187 int fd; 2188 2189 BUG_ON(!current->mm); 2190 2191 /* Check the UFFD_* constants for consistency. */ 2192 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS); 2193 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 2194 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 2195 2196 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY)) 2197 return -EINVAL; 2198 2199 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 2200 if (!ctx) 2201 return -ENOMEM; 2202 2203 refcount_set(&ctx->refcount, 1); 2204 ctx->flags = flags; 2205 ctx->features = 0; 2206 ctx->released = false; 2207 atomic_set(&ctx->mmap_changing, 0); 2208 ctx->mm = current->mm; 2209 /* prevent the mm struct to be freed */ 2210 mmgrab(ctx->mm); 2211 2212 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx, 2213 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL); 2214 if (fd < 0) { 2215 mmdrop(ctx->mm); 2216 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 2217 } 2218 return fd; 2219 } 2220 2221 static inline bool userfaultfd_syscall_allowed(int flags) 2222 { 2223 /* Userspace-only page faults are always allowed */ 2224 if (flags & UFFD_USER_MODE_ONLY) 2225 return true; 2226 2227 /* 2228 * The user is requesting a userfaultfd which can handle kernel faults. 2229 * Privileged users are always allowed to do this. 2230 */ 2231 if (capable(CAP_SYS_PTRACE)) 2232 return true; 2233 2234 /* Otherwise, access to kernel fault handling is sysctl controlled. */ 2235 return sysctl_unprivileged_userfaultfd; 2236 } 2237 2238 SYSCALL_DEFINE1(userfaultfd, int, flags) 2239 { 2240 if (!userfaultfd_syscall_allowed(flags)) 2241 return -EPERM; 2242 2243 return new_userfaultfd(flags); 2244 } 2245 2246 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags) 2247 { 2248 if (cmd != USERFAULTFD_IOC_NEW) 2249 return -EINVAL; 2250 2251 return new_userfaultfd(flags); 2252 } 2253 2254 static const struct file_operations userfaultfd_dev_fops = { 2255 .unlocked_ioctl = userfaultfd_dev_ioctl, 2256 .compat_ioctl = userfaultfd_dev_ioctl, 2257 .owner = THIS_MODULE, 2258 .llseek = noop_llseek, 2259 }; 2260 2261 static struct miscdevice userfaultfd_misc = { 2262 .minor = MISC_DYNAMIC_MINOR, 2263 .name = "userfaultfd", 2264 .fops = &userfaultfd_dev_fops 2265 }; 2266 2267 static int __init userfaultfd_init(void) 2268 { 2269 int ret; 2270 2271 ret = misc_register(&userfaultfd_misc); 2272 if (ret) 2273 return ret; 2274 2275 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 2276 sizeof(struct userfaultfd_ctx), 2277 0, 2278 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2279 init_once_userfaultfd_ctx); 2280 #ifdef CONFIG_SYSCTL 2281 register_sysctl_init("vm", vm_userfaultfd_table); 2282 #endif 2283 return 0; 2284 } 2285 __initcall(userfaultfd_init); 2286