xref: /openbmc/linux/fs/userfaultfd.c (revision 593692d2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12 
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 
33 int sysctl_unprivileged_userfaultfd __read_mostly;
34 
35 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
36 
37 /*
38  * Start with fault_pending_wqh and fault_wqh so they're more likely
39  * to be in the same cacheline.
40  *
41  * Locking order:
42  *	fd_wqh.lock
43  *		fault_pending_wqh.lock
44  *			fault_wqh.lock
45  *		event_wqh.lock
46  *
47  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
48  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
49  * also taken in IRQ context.
50  */
51 struct userfaultfd_ctx {
52 	/* waitqueue head for the pending (i.e. not read) userfaults */
53 	wait_queue_head_t fault_pending_wqh;
54 	/* waitqueue head for the userfaults */
55 	wait_queue_head_t fault_wqh;
56 	/* waitqueue head for the pseudo fd to wakeup poll/read */
57 	wait_queue_head_t fd_wqh;
58 	/* waitqueue head for events */
59 	wait_queue_head_t event_wqh;
60 	/* a refile sequence protected by fault_pending_wqh lock */
61 	seqcount_spinlock_t refile_seq;
62 	/* pseudo fd refcounting */
63 	refcount_t refcount;
64 	/* userfaultfd syscall flags */
65 	unsigned int flags;
66 	/* features requested from the userspace */
67 	unsigned int features;
68 	/* released */
69 	bool released;
70 	/* memory mappings are changing because of non-cooperative event */
71 	atomic_t mmap_changing;
72 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
73 	struct mm_struct *mm;
74 };
75 
76 struct userfaultfd_fork_ctx {
77 	struct userfaultfd_ctx *orig;
78 	struct userfaultfd_ctx *new;
79 	struct list_head list;
80 };
81 
82 struct userfaultfd_unmap_ctx {
83 	struct userfaultfd_ctx *ctx;
84 	unsigned long start;
85 	unsigned long end;
86 	struct list_head list;
87 };
88 
89 struct userfaultfd_wait_queue {
90 	struct uffd_msg msg;
91 	wait_queue_entry_t wq;
92 	struct userfaultfd_ctx *ctx;
93 	bool waken;
94 };
95 
96 struct userfaultfd_wake_range {
97 	unsigned long start;
98 	unsigned long len;
99 };
100 
101 /* internal indication that UFFD_API ioctl was successfully executed */
102 #define UFFD_FEATURE_INITIALIZED		(1u << 31)
103 
104 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
105 {
106 	return ctx->features & UFFD_FEATURE_INITIALIZED;
107 }
108 
109 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
110 				     int wake_flags, void *key)
111 {
112 	struct userfaultfd_wake_range *range = key;
113 	int ret;
114 	struct userfaultfd_wait_queue *uwq;
115 	unsigned long start, len;
116 
117 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
118 	ret = 0;
119 	/* len == 0 means wake all */
120 	start = range->start;
121 	len = range->len;
122 	if (len && (start > uwq->msg.arg.pagefault.address ||
123 		    start + len <= uwq->msg.arg.pagefault.address))
124 		goto out;
125 	WRITE_ONCE(uwq->waken, true);
126 	/*
127 	 * The Program-Order guarantees provided by the scheduler
128 	 * ensure uwq->waken is visible before the task is woken.
129 	 */
130 	ret = wake_up_state(wq->private, mode);
131 	if (ret) {
132 		/*
133 		 * Wake only once, autoremove behavior.
134 		 *
135 		 * After the effect of list_del_init is visible to the other
136 		 * CPUs, the waitqueue may disappear from under us, see the
137 		 * !list_empty_careful() in handle_userfault().
138 		 *
139 		 * try_to_wake_up() has an implicit smp_mb(), and the
140 		 * wq->private is read before calling the extern function
141 		 * "wake_up_state" (which in turns calls try_to_wake_up).
142 		 */
143 		list_del_init(&wq->entry);
144 	}
145 out:
146 	return ret;
147 }
148 
149 /**
150  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
151  * context.
152  * @ctx: [in] Pointer to the userfaultfd context.
153  */
154 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
155 {
156 	refcount_inc(&ctx->refcount);
157 }
158 
159 /**
160  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
161  * context.
162  * @ctx: [in] Pointer to userfaultfd context.
163  *
164  * The userfaultfd context reference must have been previously acquired either
165  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
166  */
167 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
168 {
169 	if (refcount_dec_and_test(&ctx->refcount)) {
170 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
171 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
172 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
173 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
174 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
175 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
176 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
177 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
178 		mmdrop(ctx->mm);
179 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
180 	}
181 }
182 
183 static inline void msg_init(struct uffd_msg *msg)
184 {
185 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
186 	/*
187 	 * Must use memset to zero out the paddings or kernel data is
188 	 * leaked to userland.
189 	 */
190 	memset(msg, 0, sizeof(struct uffd_msg));
191 }
192 
193 static inline struct uffd_msg userfault_msg(unsigned long address,
194 					    unsigned int flags,
195 					    unsigned long reason,
196 					    unsigned int features)
197 {
198 	struct uffd_msg msg;
199 	msg_init(&msg);
200 	msg.event = UFFD_EVENT_PAGEFAULT;
201 	msg.arg.pagefault.address = address;
202 	/*
203 	 * These flags indicate why the userfault occurred:
204 	 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
205 	 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
206 	 * - Neither of these flags being set indicates a MISSING fault.
207 	 *
208 	 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
209 	 * fault. Otherwise, it was a read fault.
210 	 */
211 	if (flags & FAULT_FLAG_WRITE)
212 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
213 	if (reason & VM_UFFD_WP)
214 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
215 	if (reason & VM_UFFD_MINOR)
216 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
217 	if (features & UFFD_FEATURE_THREAD_ID)
218 		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
219 	return msg;
220 }
221 
222 #ifdef CONFIG_HUGETLB_PAGE
223 /*
224  * Same functionality as userfaultfd_must_wait below with modifications for
225  * hugepmd ranges.
226  */
227 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
228 					 struct vm_area_struct *vma,
229 					 unsigned long address,
230 					 unsigned long flags,
231 					 unsigned long reason)
232 {
233 	struct mm_struct *mm = ctx->mm;
234 	pte_t *ptep, pte;
235 	bool ret = true;
236 
237 	mmap_assert_locked(mm);
238 
239 	ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
240 
241 	if (!ptep)
242 		goto out;
243 
244 	ret = false;
245 	pte = huge_ptep_get(ptep);
246 
247 	/*
248 	 * Lockless access: we're in a wait_event so it's ok if it
249 	 * changes under us.
250 	 */
251 	if (huge_pte_none(pte))
252 		ret = true;
253 	if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
254 		ret = true;
255 out:
256 	return ret;
257 }
258 #else
259 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
260 					 struct vm_area_struct *vma,
261 					 unsigned long address,
262 					 unsigned long flags,
263 					 unsigned long reason)
264 {
265 	return false;	/* should never get here */
266 }
267 #endif /* CONFIG_HUGETLB_PAGE */
268 
269 /*
270  * Verify the pagetables are still not ok after having reigstered into
271  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
272  * userfault that has already been resolved, if userfaultfd_read and
273  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
274  * threads.
275  */
276 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
277 					 unsigned long address,
278 					 unsigned long flags,
279 					 unsigned long reason)
280 {
281 	struct mm_struct *mm = ctx->mm;
282 	pgd_t *pgd;
283 	p4d_t *p4d;
284 	pud_t *pud;
285 	pmd_t *pmd, _pmd;
286 	pte_t *pte;
287 	bool ret = true;
288 
289 	mmap_assert_locked(mm);
290 
291 	pgd = pgd_offset(mm, address);
292 	if (!pgd_present(*pgd))
293 		goto out;
294 	p4d = p4d_offset(pgd, address);
295 	if (!p4d_present(*p4d))
296 		goto out;
297 	pud = pud_offset(p4d, address);
298 	if (!pud_present(*pud))
299 		goto out;
300 	pmd = pmd_offset(pud, address);
301 	/*
302 	 * READ_ONCE must function as a barrier with narrower scope
303 	 * and it must be equivalent to:
304 	 *	_pmd = *pmd; barrier();
305 	 *
306 	 * This is to deal with the instability (as in
307 	 * pmd_trans_unstable) of the pmd.
308 	 */
309 	_pmd = READ_ONCE(*pmd);
310 	if (pmd_none(_pmd))
311 		goto out;
312 
313 	ret = false;
314 	if (!pmd_present(_pmd))
315 		goto out;
316 
317 	if (pmd_trans_huge(_pmd)) {
318 		if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
319 			ret = true;
320 		goto out;
321 	}
322 
323 	/*
324 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
325 	 * and use the standard pte_offset_map() instead of parsing _pmd.
326 	 */
327 	pte = pte_offset_map(pmd, address);
328 	/*
329 	 * Lockless access: we're in a wait_event so it's ok if it
330 	 * changes under us.
331 	 */
332 	if (pte_none(*pte))
333 		ret = true;
334 	if (!pte_write(*pte) && (reason & VM_UFFD_WP))
335 		ret = true;
336 	pte_unmap(pte);
337 
338 out:
339 	return ret;
340 }
341 
342 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
343 {
344 	if (flags & FAULT_FLAG_INTERRUPTIBLE)
345 		return TASK_INTERRUPTIBLE;
346 
347 	if (flags & FAULT_FLAG_KILLABLE)
348 		return TASK_KILLABLE;
349 
350 	return TASK_UNINTERRUPTIBLE;
351 }
352 
353 /*
354  * The locking rules involved in returning VM_FAULT_RETRY depending on
355  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
356  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
357  * recommendation in __lock_page_or_retry is not an understatement.
358  *
359  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
360  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
361  * not set.
362  *
363  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
364  * set, VM_FAULT_RETRY can still be returned if and only if there are
365  * fatal_signal_pending()s, and the mmap_lock must be released before
366  * returning it.
367  */
368 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
369 {
370 	struct mm_struct *mm = vmf->vma->vm_mm;
371 	struct userfaultfd_ctx *ctx;
372 	struct userfaultfd_wait_queue uwq;
373 	vm_fault_t ret = VM_FAULT_SIGBUS;
374 	bool must_wait;
375 	unsigned int blocking_state;
376 
377 	/*
378 	 * We don't do userfault handling for the final child pid update.
379 	 *
380 	 * We also don't do userfault handling during
381 	 * coredumping. hugetlbfs has the special
382 	 * follow_hugetlb_page() to skip missing pages in the
383 	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
384 	 * the no_page_table() helper in follow_page_mask(), but the
385 	 * shmem_vm_ops->fault method is invoked even during
386 	 * coredumping without mmap_lock and it ends up here.
387 	 */
388 	if (current->flags & (PF_EXITING|PF_DUMPCORE))
389 		goto out;
390 
391 	/*
392 	 * Coredumping runs without mmap_lock so we can only check that
393 	 * the mmap_lock is held, if PF_DUMPCORE was not set.
394 	 */
395 	mmap_assert_locked(mm);
396 
397 	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
398 	if (!ctx)
399 		goto out;
400 
401 	BUG_ON(ctx->mm != mm);
402 
403 	/* Any unrecognized flag is a bug. */
404 	VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
405 	/* 0 or > 1 flags set is a bug; we expect exactly 1. */
406 	VM_BUG_ON(!reason || (reason & (reason - 1)));
407 
408 	if (ctx->features & UFFD_FEATURE_SIGBUS)
409 		goto out;
410 	if ((vmf->flags & FAULT_FLAG_USER) == 0 &&
411 	    ctx->flags & UFFD_USER_MODE_ONLY) {
412 		printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
413 			"sysctl knob to 1 if kernel faults must be handled "
414 			"without obtaining CAP_SYS_PTRACE capability\n");
415 		goto out;
416 	}
417 
418 	/*
419 	 * If it's already released don't get it. This avoids to loop
420 	 * in __get_user_pages if userfaultfd_release waits on the
421 	 * caller of handle_userfault to release the mmap_lock.
422 	 */
423 	if (unlikely(READ_ONCE(ctx->released))) {
424 		/*
425 		 * Don't return VM_FAULT_SIGBUS in this case, so a non
426 		 * cooperative manager can close the uffd after the
427 		 * last UFFDIO_COPY, without risking to trigger an
428 		 * involuntary SIGBUS if the process was starting the
429 		 * userfaultfd while the userfaultfd was still armed
430 		 * (but after the last UFFDIO_COPY). If the uffd
431 		 * wasn't already closed when the userfault reached
432 		 * this point, that would normally be solved by
433 		 * userfaultfd_must_wait returning 'false'.
434 		 *
435 		 * If we were to return VM_FAULT_SIGBUS here, the non
436 		 * cooperative manager would be instead forced to
437 		 * always call UFFDIO_UNREGISTER before it can safely
438 		 * close the uffd.
439 		 */
440 		ret = VM_FAULT_NOPAGE;
441 		goto out;
442 	}
443 
444 	/*
445 	 * Check that we can return VM_FAULT_RETRY.
446 	 *
447 	 * NOTE: it should become possible to return VM_FAULT_RETRY
448 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
449 	 * -EBUSY failures, if the userfaultfd is to be extended for
450 	 * VM_UFFD_WP tracking and we intend to arm the userfault
451 	 * without first stopping userland access to the memory. For
452 	 * VM_UFFD_MISSING userfaults this is enough for now.
453 	 */
454 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
455 		/*
456 		 * Validate the invariant that nowait must allow retry
457 		 * to be sure not to return SIGBUS erroneously on
458 		 * nowait invocations.
459 		 */
460 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
461 #ifdef CONFIG_DEBUG_VM
462 		if (printk_ratelimit()) {
463 			printk(KERN_WARNING
464 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
465 			       vmf->flags);
466 			dump_stack();
467 		}
468 #endif
469 		goto out;
470 	}
471 
472 	/*
473 	 * Handle nowait, not much to do other than tell it to retry
474 	 * and wait.
475 	 */
476 	ret = VM_FAULT_RETRY;
477 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
478 		goto out;
479 
480 	/* take the reference before dropping the mmap_lock */
481 	userfaultfd_ctx_get(ctx);
482 
483 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
484 	uwq.wq.private = current;
485 	uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
486 			ctx->features);
487 	uwq.ctx = ctx;
488 	uwq.waken = false;
489 
490 	blocking_state = userfaultfd_get_blocking_state(vmf->flags);
491 
492 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
493 	/*
494 	 * After the __add_wait_queue the uwq is visible to userland
495 	 * through poll/read().
496 	 */
497 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
498 	/*
499 	 * The smp_mb() after __set_current_state prevents the reads
500 	 * following the spin_unlock to happen before the list_add in
501 	 * __add_wait_queue.
502 	 */
503 	set_current_state(blocking_state);
504 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
505 
506 	if (!is_vm_hugetlb_page(vmf->vma))
507 		must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
508 						  reason);
509 	else
510 		must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
511 						       vmf->address,
512 						       vmf->flags, reason);
513 	mmap_read_unlock(mm);
514 
515 	if (likely(must_wait && !READ_ONCE(ctx->released))) {
516 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
517 		schedule();
518 	}
519 
520 	__set_current_state(TASK_RUNNING);
521 
522 	/*
523 	 * Here we race with the list_del; list_add in
524 	 * userfaultfd_ctx_read(), however because we don't ever run
525 	 * list_del_init() to refile across the two lists, the prev
526 	 * and next pointers will never point to self. list_add also
527 	 * would never let any of the two pointers to point to
528 	 * self. So list_empty_careful won't risk to see both pointers
529 	 * pointing to self at any time during the list refile. The
530 	 * only case where list_del_init() is called is the full
531 	 * removal in the wake function and there we don't re-list_add
532 	 * and it's fine not to block on the spinlock. The uwq on this
533 	 * kernel stack can be released after the list_del_init.
534 	 */
535 	if (!list_empty_careful(&uwq.wq.entry)) {
536 		spin_lock_irq(&ctx->fault_pending_wqh.lock);
537 		/*
538 		 * No need of list_del_init(), the uwq on the stack
539 		 * will be freed shortly anyway.
540 		 */
541 		list_del(&uwq.wq.entry);
542 		spin_unlock_irq(&ctx->fault_pending_wqh.lock);
543 	}
544 
545 	/*
546 	 * ctx may go away after this if the userfault pseudo fd is
547 	 * already released.
548 	 */
549 	userfaultfd_ctx_put(ctx);
550 
551 out:
552 	return ret;
553 }
554 
555 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
556 					      struct userfaultfd_wait_queue *ewq)
557 {
558 	struct userfaultfd_ctx *release_new_ctx;
559 
560 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
561 		goto out;
562 
563 	ewq->ctx = ctx;
564 	init_waitqueue_entry(&ewq->wq, current);
565 	release_new_ctx = NULL;
566 
567 	spin_lock_irq(&ctx->event_wqh.lock);
568 	/*
569 	 * After the __add_wait_queue the uwq is visible to userland
570 	 * through poll/read().
571 	 */
572 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
573 	for (;;) {
574 		set_current_state(TASK_KILLABLE);
575 		if (ewq->msg.event == 0)
576 			break;
577 		if (READ_ONCE(ctx->released) ||
578 		    fatal_signal_pending(current)) {
579 			/*
580 			 * &ewq->wq may be queued in fork_event, but
581 			 * __remove_wait_queue ignores the head
582 			 * parameter. It would be a problem if it
583 			 * didn't.
584 			 */
585 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
586 			if (ewq->msg.event == UFFD_EVENT_FORK) {
587 				struct userfaultfd_ctx *new;
588 
589 				new = (struct userfaultfd_ctx *)
590 					(unsigned long)
591 					ewq->msg.arg.reserved.reserved1;
592 				release_new_ctx = new;
593 			}
594 			break;
595 		}
596 
597 		spin_unlock_irq(&ctx->event_wqh.lock);
598 
599 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
600 		schedule();
601 
602 		spin_lock_irq(&ctx->event_wqh.lock);
603 	}
604 	__set_current_state(TASK_RUNNING);
605 	spin_unlock_irq(&ctx->event_wqh.lock);
606 
607 	if (release_new_ctx) {
608 		struct vm_area_struct *vma;
609 		struct mm_struct *mm = release_new_ctx->mm;
610 
611 		/* the various vma->vm_userfaultfd_ctx still points to it */
612 		mmap_write_lock(mm);
613 		for (vma = mm->mmap; vma; vma = vma->vm_next)
614 			if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
615 				vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
616 				vma->vm_flags &= ~__VM_UFFD_FLAGS;
617 			}
618 		mmap_write_unlock(mm);
619 
620 		userfaultfd_ctx_put(release_new_ctx);
621 	}
622 
623 	/*
624 	 * ctx may go away after this if the userfault pseudo fd is
625 	 * already released.
626 	 */
627 out:
628 	atomic_dec(&ctx->mmap_changing);
629 	VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
630 	userfaultfd_ctx_put(ctx);
631 }
632 
633 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
634 				       struct userfaultfd_wait_queue *ewq)
635 {
636 	ewq->msg.event = 0;
637 	wake_up_locked(&ctx->event_wqh);
638 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
639 }
640 
641 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
642 {
643 	struct userfaultfd_ctx *ctx = NULL, *octx;
644 	struct userfaultfd_fork_ctx *fctx;
645 
646 	octx = vma->vm_userfaultfd_ctx.ctx;
647 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
648 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
649 		vma->vm_flags &= ~__VM_UFFD_FLAGS;
650 		return 0;
651 	}
652 
653 	list_for_each_entry(fctx, fcs, list)
654 		if (fctx->orig == octx) {
655 			ctx = fctx->new;
656 			break;
657 		}
658 
659 	if (!ctx) {
660 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
661 		if (!fctx)
662 			return -ENOMEM;
663 
664 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
665 		if (!ctx) {
666 			kfree(fctx);
667 			return -ENOMEM;
668 		}
669 
670 		refcount_set(&ctx->refcount, 1);
671 		ctx->flags = octx->flags;
672 		ctx->features = octx->features;
673 		ctx->released = false;
674 		atomic_set(&ctx->mmap_changing, 0);
675 		ctx->mm = vma->vm_mm;
676 		mmgrab(ctx->mm);
677 
678 		userfaultfd_ctx_get(octx);
679 		atomic_inc(&octx->mmap_changing);
680 		fctx->orig = octx;
681 		fctx->new = ctx;
682 		list_add_tail(&fctx->list, fcs);
683 	}
684 
685 	vma->vm_userfaultfd_ctx.ctx = ctx;
686 	return 0;
687 }
688 
689 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
690 {
691 	struct userfaultfd_ctx *ctx = fctx->orig;
692 	struct userfaultfd_wait_queue ewq;
693 
694 	msg_init(&ewq.msg);
695 
696 	ewq.msg.event = UFFD_EVENT_FORK;
697 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
698 
699 	userfaultfd_event_wait_completion(ctx, &ewq);
700 }
701 
702 void dup_userfaultfd_complete(struct list_head *fcs)
703 {
704 	struct userfaultfd_fork_ctx *fctx, *n;
705 
706 	list_for_each_entry_safe(fctx, n, fcs, list) {
707 		dup_fctx(fctx);
708 		list_del(&fctx->list);
709 		kfree(fctx);
710 	}
711 }
712 
713 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
714 			     struct vm_userfaultfd_ctx *vm_ctx)
715 {
716 	struct userfaultfd_ctx *ctx;
717 
718 	ctx = vma->vm_userfaultfd_ctx.ctx;
719 
720 	if (!ctx)
721 		return;
722 
723 	if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
724 		vm_ctx->ctx = ctx;
725 		userfaultfd_ctx_get(ctx);
726 		atomic_inc(&ctx->mmap_changing);
727 	} else {
728 		/* Drop uffd context if remap feature not enabled */
729 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
730 		vma->vm_flags &= ~__VM_UFFD_FLAGS;
731 	}
732 }
733 
734 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
735 				 unsigned long from, unsigned long to,
736 				 unsigned long len)
737 {
738 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
739 	struct userfaultfd_wait_queue ewq;
740 
741 	if (!ctx)
742 		return;
743 
744 	if (to & ~PAGE_MASK) {
745 		userfaultfd_ctx_put(ctx);
746 		return;
747 	}
748 
749 	msg_init(&ewq.msg);
750 
751 	ewq.msg.event = UFFD_EVENT_REMAP;
752 	ewq.msg.arg.remap.from = from;
753 	ewq.msg.arg.remap.to = to;
754 	ewq.msg.arg.remap.len = len;
755 
756 	userfaultfd_event_wait_completion(ctx, &ewq);
757 }
758 
759 bool userfaultfd_remove(struct vm_area_struct *vma,
760 			unsigned long start, unsigned long end)
761 {
762 	struct mm_struct *mm = vma->vm_mm;
763 	struct userfaultfd_ctx *ctx;
764 	struct userfaultfd_wait_queue ewq;
765 
766 	ctx = vma->vm_userfaultfd_ctx.ctx;
767 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
768 		return true;
769 
770 	userfaultfd_ctx_get(ctx);
771 	atomic_inc(&ctx->mmap_changing);
772 	mmap_read_unlock(mm);
773 
774 	msg_init(&ewq.msg);
775 
776 	ewq.msg.event = UFFD_EVENT_REMOVE;
777 	ewq.msg.arg.remove.start = start;
778 	ewq.msg.arg.remove.end = end;
779 
780 	userfaultfd_event_wait_completion(ctx, &ewq);
781 
782 	return false;
783 }
784 
785 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
786 			  unsigned long start, unsigned long end)
787 {
788 	struct userfaultfd_unmap_ctx *unmap_ctx;
789 
790 	list_for_each_entry(unmap_ctx, unmaps, list)
791 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
792 		    unmap_ctx->end == end)
793 			return true;
794 
795 	return false;
796 }
797 
798 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
799 			   unsigned long start, unsigned long end,
800 			   struct list_head *unmaps)
801 {
802 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
803 		struct userfaultfd_unmap_ctx *unmap_ctx;
804 		struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
805 
806 		if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
807 		    has_unmap_ctx(ctx, unmaps, start, end))
808 			continue;
809 
810 		unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
811 		if (!unmap_ctx)
812 			return -ENOMEM;
813 
814 		userfaultfd_ctx_get(ctx);
815 		atomic_inc(&ctx->mmap_changing);
816 		unmap_ctx->ctx = ctx;
817 		unmap_ctx->start = start;
818 		unmap_ctx->end = end;
819 		list_add_tail(&unmap_ctx->list, unmaps);
820 	}
821 
822 	return 0;
823 }
824 
825 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
826 {
827 	struct userfaultfd_unmap_ctx *ctx, *n;
828 	struct userfaultfd_wait_queue ewq;
829 
830 	list_for_each_entry_safe(ctx, n, uf, list) {
831 		msg_init(&ewq.msg);
832 
833 		ewq.msg.event = UFFD_EVENT_UNMAP;
834 		ewq.msg.arg.remove.start = ctx->start;
835 		ewq.msg.arg.remove.end = ctx->end;
836 
837 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
838 
839 		list_del(&ctx->list);
840 		kfree(ctx);
841 	}
842 }
843 
844 static int userfaultfd_release(struct inode *inode, struct file *file)
845 {
846 	struct userfaultfd_ctx *ctx = file->private_data;
847 	struct mm_struct *mm = ctx->mm;
848 	struct vm_area_struct *vma, *prev;
849 	/* len == 0 means wake all */
850 	struct userfaultfd_wake_range range = { .len = 0, };
851 	unsigned long new_flags;
852 
853 	WRITE_ONCE(ctx->released, true);
854 
855 	if (!mmget_not_zero(mm))
856 		goto wakeup;
857 
858 	/*
859 	 * Flush page faults out of all CPUs. NOTE: all page faults
860 	 * must be retried without returning VM_FAULT_SIGBUS if
861 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
862 	 * changes while handle_userfault released the mmap_lock. So
863 	 * it's critical that released is set to true (above), before
864 	 * taking the mmap_lock for writing.
865 	 */
866 	mmap_write_lock(mm);
867 	prev = NULL;
868 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
869 		cond_resched();
870 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
871 		       !!(vma->vm_flags & __VM_UFFD_FLAGS));
872 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
873 			prev = vma;
874 			continue;
875 		}
876 		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
877 		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
878 				 new_flags, vma->anon_vma,
879 				 vma->vm_file, vma->vm_pgoff,
880 				 vma_policy(vma),
881 				 NULL_VM_UFFD_CTX, vma_anon_name(vma));
882 		if (prev)
883 			vma = prev;
884 		else
885 			prev = vma;
886 		vma->vm_flags = new_flags;
887 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
888 	}
889 	mmap_write_unlock(mm);
890 	mmput(mm);
891 wakeup:
892 	/*
893 	 * After no new page faults can wait on this fault_*wqh, flush
894 	 * the last page faults that may have been already waiting on
895 	 * the fault_*wqh.
896 	 */
897 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
898 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
899 	__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
900 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
901 
902 	/* Flush pending events that may still wait on event_wqh */
903 	wake_up_all(&ctx->event_wqh);
904 
905 	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
906 	userfaultfd_ctx_put(ctx);
907 	return 0;
908 }
909 
910 /* fault_pending_wqh.lock must be hold by the caller */
911 static inline struct userfaultfd_wait_queue *find_userfault_in(
912 		wait_queue_head_t *wqh)
913 {
914 	wait_queue_entry_t *wq;
915 	struct userfaultfd_wait_queue *uwq;
916 
917 	lockdep_assert_held(&wqh->lock);
918 
919 	uwq = NULL;
920 	if (!waitqueue_active(wqh))
921 		goto out;
922 	/* walk in reverse to provide FIFO behavior to read userfaults */
923 	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
924 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
925 out:
926 	return uwq;
927 }
928 
929 static inline struct userfaultfd_wait_queue *find_userfault(
930 		struct userfaultfd_ctx *ctx)
931 {
932 	return find_userfault_in(&ctx->fault_pending_wqh);
933 }
934 
935 static inline struct userfaultfd_wait_queue *find_userfault_evt(
936 		struct userfaultfd_ctx *ctx)
937 {
938 	return find_userfault_in(&ctx->event_wqh);
939 }
940 
941 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
942 {
943 	struct userfaultfd_ctx *ctx = file->private_data;
944 	__poll_t ret;
945 
946 	poll_wait(file, &ctx->fd_wqh, wait);
947 
948 	if (!userfaultfd_is_initialized(ctx))
949 		return EPOLLERR;
950 
951 	/*
952 	 * poll() never guarantees that read won't block.
953 	 * userfaults can be waken before they're read().
954 	 */
955 	if (unlikely(!(file->f_flags & O_NONBLOCK)))
956 		return EPOLLERR;
957 	/*
958 	 * lockless access to see if there are pending faults
959 	 * __pollwait last action is the add_wait_queue but
960 	 * the spin_unlock would allow the waitqueue_active to
961 	 * pass above the actual list_add inside
962 	 * add_wait_queue critical section. So use a full
963 	 * memory barrier to serialize the list_add write of
964 	 * add_wait_queue() with the waitqueue_active read
965 	 * below.
966 	 */
967 	ret = 0;
968 	smp_mb();
969 	if (waitqueue_active(&ctx->fault_pending_wqh))
970 		ret = EPOLLIN;
971 	else if (waitqueue_active(&ctx->event_wqh))
972 		ret = EPOLLIN;
973 
974 	return ret;
975 }
976 
977 static const struct file_operations userfaultfd_fops;
978 
979 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
980 				  struct inode *inode,
981 				  struct uffd_msg *msg)
982 {
983 	int fd;
984 
985 	fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
986 			O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
987 	if (fd < 0)
988 		return fd;
989 
990 	msg->arg.reserved.reserved1 = 0;
991 	msg->arg.fork.ufd = fd;
992 	return 0;
993 }
994 
995 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
996 				    struct uffd_msg *msg, struct inode *inode)
997 {
998 	ssize_t ret;
999 	DECLARE_WAITQUEUE(wait, current);
1000 	struct userfaultfd_wait_queue *uwq;
1001 	/*
1002 	 * Handling fork event requires sleeping operations, so
1003 	 * we drop the event_wqh lock, then do these ops, then
1004 	 * lock it back and wake up the waiter. While the lock is
1005 	 * dropped the ewq may go away so we keep track of it
1006 	 * carefully.
1007 	 */
1008 	LIST_HEAD(fork_event);
1009 	struct userfaultfd_ctx *fork_nctx = NULL;
1010 
1011 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1012 	spin_lock_irq(&ctx->fd_wqh.lock);
1013 	__add_wait_queue(&ctx->fd_wqh, &wait);
1014 	for (;;) {
1015 		set_current_state(TASK_INTERRUPTIBLE);
1016 		spin_lock(&ctx->fault_pending_wqh.lock);
1017 		uwq = find_userfault(ctx);
1018 		if (uwq) {
1019 			/*
1020 			 * Use a seqcount to repeat the lockless check
1021 			 * in wake_userfault() to avoid missing
1022 			 * wakeups because during the refile both
1023 			 * waitqueue could become empty if this is the
1024 			 * only userfault.
1025 			 */
1026 			write_seqcount_begin(&ctx->refile_seq);
1027 
1028 			/*
1029 			 * The fault_pending_wqh.lock prevents the uwq
1030 			 * to disappear from under us.
1031 			 *
1032 			 * Refile this userfault from
1033 			 * fault_pending_wqh to fault_wqh, it's not
1034 			 * pending anymore after we read it.
1035 			 *
1036 			 * Use list_del() by hand (as
1037 			 * userfaultfd_wake_function also uses
1038 			 * list_del_init() by hand) to be sure nobody
1039 			 * changes __remove_wait_queue() to use
1040 			 * list_del_init() in turn breaking the
1041 			 * !list_empty_careful() check in
1042 			 * handle_userfault(). The uwq->wq.head list
1043 			 * must never be empty at any time during the
1044 			 * refile, or the waitqueue could disappear
1045 			 * from under us. The "wait_queue_head_t"
1046 			 * parameter of __remove_wait_queue() is unused
1047 			 * anyway.
1048 			 */
1049 			list_del(&uwq->wq.entry);
1050 			add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1051 
1052 			write_seqcount_end(&ctx->refile_seq);
1053 
1054 			/* careful to always initialize msg if ret == 0 */
1055 			*msg = uwq->msg;
1056 			spin_unlock(&ctx->fault_pending_wqh.lock);
1057 			ret = 0;
1058 			break;
1059 		}
1060 		spin_unlock(&ctx->fault_pending_wqh.lock);
1061 
1062 		spin_lock(&ctx->event_wqh.lock);
1063 		uwq = find_userfault_evt(ctx);
1064 		if (uwq) {
1065 			*msg = uwq->msg;
1066 
1067 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1068 				fork_nctx = (struct userfaultfd_ctx *)
1069 					(unsigned long)
1070 					uwq->msg.arg.reserved.reserved1;
1071 				list_move(&uwq->wq.entry, &fork_event);
1072 				/*
1073 				 * fork_nctx can be freed as soon as
1074 				 * we drop the lock, unless we take a
1075 				 * reference on it.
1076 				 */
1077 				userfaultfd_ctx_get(fork_nctx);
1078 				spin_unlock(&ctx->event_wqh.lock);
1079 				ret = 0;
1080 				break;
1081 			}
1082 
1083 			userfaultfd_event_complete(ctx, uwq);
1084 			spin_unlock(&ctx->event_wqh.lock);
1085 			ret = 0;
1086 			break;
1087 		}
1088 		spin_unlock(&ctx->event_wqh.lock);
1089 
1090 		if (signal_pending(current)) {
1091 			ret = -ERESTARTSYS;
1092 			break;
1093 		}
1094 		if (no_wait) {
1095 			ret = -EAGAIN;
1096 			break;
1097 		}
1098 		spin_unlock_irq(&ctx->fd_wqh.lock);
1099 		schedule();
1100 		spin_lock_irq(&ctx->fd_wqh.lock);
1101 	}
1102 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1103 	__set_current_state(TASK_RUNNING);
1104 	spin_unlock_irq(&ctx->fd_wqh.lock);
1105 
1106 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1107 		ret = resolve_userfault_fork(fork_nctx, inode, msg);
1108 		spin_lock_irq(&ctx->event_wqh.lock);
1109 		if (!list_empty(&fork_event)) {
1110 			/*
1111 			 * The fork thread didn't abort, so we can
1112 			 * drop the temporary refcount.
1113 			 */
1114 			userfaultfd_ctx_put(fork_nctx);
1115 
1116 			uwq = list_first_entry(&fork_event,
1117 					       typeof(*uwq),
1118 					       wq.entry);
1119 			/*
1120 			 * If fork_event list wasn't empty and in turn
1121 			 * the event wasn't already released by fork
1122 			 * (the event is allocated on fork kernel
1123 			 * stack), put the event back to its place in
1124 			 * the event_wq. fork_event head will be freed
1125 			 * as soon as we return so the event cannot
1126 			 * stay queued there no matter the current
1127 			 * "ret" value.
1128 			 */
1129 			list_del(&uwq->wq.entry);
1130 			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1131 
1132 			/*
1133 			 * Leave the event in the waitqueue and report
1134 			 * error to userland if we failed to resolve
1135 			 * the userfault fork.
1136 			 */
1137 			if (likely(!ret))
1138 				userfaultfd_event_complete(ctx, uwq);
1139 		} else {
1140 			/*
1141 			 * Here the fork thread aborted and the
1142 			 * refcount from the fork thread on fork_nctx
1143 			 * has already been released. We still hold
1144 			 * the reference we took before releasing the
1145 			 * lock above. If resolve_userfault_fork
1146 			 * failed we've to drop it because the
1147 			 * fork_nctx has to be freed in such case. If
1148 			 * it succeeded we'll hold it because the new
1149 			 * uffd references it.
1150 			 */
1151 			if (ret)
1152 				userfaultfd_ctx_put(fork_nctx);
1153 		}
1154 		spin_unlock_irq(&ctx->event_wqh.lock);
1155 	}
1156 
1157 	return ret;
1158 }
1159 
1160 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1161 				size_t count, loff_t *ppos)
1162 {
1163 	struct userfaultfd_ctx *ctx = file->private_data;
1164 	ssize_t _ret, ret = 0;
1165 	struct uffd_msg msg;
1166 	int no_wait = file->f_flags & O_NONBLOCK;
1167 	struct inode *inode = file_inode(file);
1168 
1169 	if (!userfaultfd_is_initialized(ctx))
1170 		return -EINVAL;
1171 
1172 	for (;;) {
1173 		if (count < sizeof(msg))
1174 			return ret ? ret : -EINVAL;
1175 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1176 		if (_ret < 0)
1177 			return ret ? ret : _ret;
1178 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1179 			return ret ? ret : -EFAULT;
1180 		ret += sizeof(msg);
1181 		buf += sizeof(msg);
1182 		count -= sizeof(msg);
1183 		/*
1184 		 * Allow to read more than one fault at time but only
1185 		 * block if waiting for the very first one.
1186 		 */
1187 		no_wait = O_NONBLOCK;
1188 	}
1189 }
1190 
1191 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1192 			     struct userfaultfd_wake_range *range)
1193 {
1194 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
1195 	/* wake all in the range and autoremove */
1196 	if (waitqueue_active(&ctx->fault_pending_wqh))
1197 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1198 				     range);
1199 	if (waitqueue_active(&ctx->fault_wqh))
1200 		__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1201 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1202 }
1203 
1204 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1205 					   struct userfaultfd_wake_range *range)
1206 {
1207 	unsigned seq;
1208 	bool need_wakeup;
1209 
1210 	/*
1211 	 * To be sure waitqueue_active() is not reordered by the CPU
1212 	 * before the pagetable update, use an explicit SMP memory
1213 	 * barrier here. PT lock release or mmap_read_unlock(mm) still
1214 	 * have release semantics that can allow the
1215 	 * waitqueue_active() to be reordered before the pte update.
1216 	 */
1217 	smp_mb();
1218 
1219 	/*
1220 	 * Use waitqueue_active because it's very frequent to
1221 	 * change the address space atomically even if there are no
1222 	 * userfaults yet. So we take the spinlock only when we're
1223 	 * sure we've userfaults to wake.
1224 	 */
1225 	do {
1226 		seq = read_seqcount_begin(&ctx->refile_seq);
1227 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1228 			waitqueue_active(&ctx->fault_wqh);
1229 		cond_resched();
1230 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1231 	if (need_wakeup)
1232 		__wake_userfault(ctx, range);
1233 }
1234 
1235 static __always_inline int validate_range(struct mm_struct *mm,
1236 					  __u64 start, __u64 len)
1237 {
1238 	__u64 task_size = mm->task_size;
1239 
1240 	if (start & ~PAGE_MASK)
1241 		return -EINVAL;
1242 	if (len & ~PAGE_MASK)
1243 		return -EINVAL;
1244 	if (!len)
1245 		return -EINVAL;
1246 	if (start < mmap_min_addr)
1247 		return -EINVAL;
1248 	if (start >= task_size)
1249 		return -EINVAL;
1250 	if (len > task_size - start)
1251 		return -EINVAL;
1252 	return 0;
1253 }
1254 
1255 static inline bool vma_can_userfault(struct vm_area_struct *vma,
1256 				     unsigned long vm_flags)
1257 {
1258 	/* FIXME: add WP support to hugetlbfs and shmem */
1259 	if (vm_flags & VM_UFFD_WP) {
1260 		if (is_vm_hugetlb_page(vma) || vma_is_shmem(vma))
1261 			return false;
1262 	}
1263 
1264 	if (vm_flags & VM_UFFD_MINOR) {
1265 		if (!(is_vm_hugetlb_page(vma) || vma_is_shmem(vma)))
1266 			return false;
1267 	}
1268 
1269 	return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1270 	       vma_is_shmem(vma);
1271 }
1272 
1273 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1274 				unsigned long arg)
1275 {
1276 	struct mm_struct *mm = ctx->mm;
1277 	struct vm_area_struct *vma, *prev, *cur;
1278 	int ret;
1279 	struct uffdio_register uffdio_register;
1280 	struct uffdio_register __user *user_uffdio_register;
1281 	unsigned long vm_flags, new_flags;
1282 	bool found;
1283 	bool basic_ioctls;
1284 	unsigned long start, end, vma_end;
1285 
1286 	user_uffdio_register = (struct uffdio_register __user *) arg;
1287 
1288 	ret = -EFAULT;
1289 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1290 			   sizeof(uffdio_register)-sizeof(__u64)))
1291 		goto out;
1292 
1293 	ret = -EINVAL;
1294 	if (!uffdio_register.mode)
1295 		goto out;
1296 	if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1297 		goto out;
1298 	vm_flags = 0;
1299 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1300 		vm_flags |= VM_UFFD_MISSING;
1301 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1302 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1303 		goto out;
1304 #endif
1305 		vm_flags |= VM_UFFD_WP;
1306 	}
1307 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1308 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1309 		goto out;
1310 #endif
1311 		vm_flags |= VM_UFFD_MINOR;
1312 	}
1313 
1314 	ret = validate_range(mm, uffdio_register.range.start,
1315 			     uffdio_register.range.len);
1316 	if (ret)
1317 		goto out;
1318 
1319 	start = uffdio_register.range.start;
1320 	end = start + uffdio_register.range.len;
1321 
1322 	ret = -ENOMEM;
1323 	if (!mmget_not_zero(mm))
1324 		goto out;
1325 
1326 	mmap_write_lock(mm);
1327 	vma = find_vma_prev(mm, start, &prev);
1328 	if (!vma)
1329 		goto out_unlock;
1330 
1331 	/* check that there's at least one vma in the range */
1332 	ret = -EINVAL;
1333 	if (vma->vm_start >= end)
1334 		goto out_unlock;
1335 
1336 	/*
1337 	 * If the first vma contains huge pages, make sure start address
1338 	 * is aligned to huge page size.
1339 	 */
1340 	if (is_vm_hugetlb_page(vma)) {
1341 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1342 
1343 		if (start & (vma_hpagesize - 1))
1344 			goto out_unlock;
1345 	}
1346 
1347 	/*
1348 	 * Search for not compatible vmas.
1349 	 */
1350 	found = false;
1351 	basic_ioctls = false;
1352 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1353 		cond_resched();
1354 
1355 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1356 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1357 
1358 		/* check not compatible vmas */
1359 		ret = -EINVAL;
1360 		if (!vma_can_userfault(cur, vm_flags))
1361 			goto out_unlock;
1362 
1363 		/*
1364 		 * UFFDIO_COPY will fill file holes even without
1365 		 * PROT_WRITE. This check enforces that if this is a
1366 		 * MAP_SHARED, the process has write permission to the backing
1367 		 * file. If VM_MAYWRITE is set it also enforces that on a
1368 		 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1369 		 * F_WRITE_SEAL can be taken until the vma is destroyed.
1370 		 */
1371 		ret = -EPERM;
1372 		if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1373 			goto out_unlock;
1374 
1375 		/*
1376 		 * If this vma contains ending address, and huge pages
1377 		 * check alignment.
1378 		 */
1379 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1380 		    end > cur->vm_start) {
1381 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1382 
1383 			ret = -EINVAL;
1384 
1385 			if (end & (vma_hpagesize - 1))
1386 				goto out_unlock;
1387 		}
1388 		if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1389 			goto out_unlock;
1390 
1391 		/*
1392 		 * Check that this vma isn't already owned by a
1393 		 * different userfaultfd. We can't allow more than one
1394 		 * userfaultfd to own a single vma simultaneously or we
1395 		 * wouldn't know which one to deliver the userfaults to.
1396 		 */
1397 		ret = -EBUSY;
1398 		if (cur->vm_userfaultfd_ctx.ctx &&
1399 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1400 			goto out_unlock;
1401 
1402 		/*
1403 		 * Note vmas containing huge pages
1404 		 */
1405 		if (is_vm_hugetlb_page(cur))
1406 			basic_ioctls = true;
1407 
1408 		found = true;
1409 	}
1410 	BUG_ON(!found);
1411 
1412 	if (vma->vm_start < start)
1413 		prev = vma;
1414 
1415 	ret = 0;
1416 	do {
1417 		cond_resched();
1418 
1419 		BUG_ON(!vma_can_userfault(vma, vm_flags));
1420 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1421 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1422 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1423 
1424 		/*
1425 		 * Nothing to do: this vma is already registered into this
1426 		 * userfaultfd and with the right tracking mode too.
1427 		 */
1428 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1429 		    (vma->vm_flags & vm_flags) == vm_flags)
1430 			goto skip;
1431 
1432 		if (vma->vm_start > start)
1433 			start = vma->vm_start;
1434 		vma_end = min(end, vma->vm_end);
1435 
1436 		new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1437 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1438 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1439 				 vma_policy(vma),
1440 				 ((struct vm_userfaultfd_ctx){ ctx }),
1441 				 vma_anon_name(vma));
1442 		if (prev) {
1443 			vma = prev;
1444 			goto next;
1445 		}
1446 		if (vma->vm_start < start) {
1447 			ret = split_vma(mm, vma, start, 1);
1448 			if (ret)
1449 				break;
1450 		}
1451 		if (vma->vm_end > end) {
1452 			ret = split_vma(mm, vma, end, 0);
1453 			if (ret)
1454 				break;
1455 		}
1456 	next:
1457 		/*
1458 		 * In the vma_merge() successful mprotect-like case 8:
1459 		 * the next vma was merged into the current one and
1460 		 * the current one has not been updated yet.
1461 		 */
1462 		vma->vm_flags = new_flags;
1463 		vma->vm_userfaultfd_ctx.ctx = ctx;
1464 
1465 		if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1466 			hugetlb_unshare_all_pmds(vma);
1467 
1468 	skip:
1469 		prev = vma;
1470 		start = vma->vm_end;
1471 		vma = vma->vm_next;
1472 	} while (vma && vma->vm_start < end);
1473 out_unlock:
1474 	mmap_write_unlock(mm);
1475 	mmput(mm);
1476 	if (!ret) {
1477 		__u64 ioctls_out;
1478 
1479 		ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1480 		    UFFD_API_RANGE_IOCTLS;
1481 
1482 		/*
1483 		 * Declare the WP ioctl only if the WP mode is
1484 		 * specified and all checks passed with the range
1485 		 */
1486 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1487 			ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1488 
1489 		/* CONTINUE ioctl is only supported for MINOR ranges. */
1490 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1491 			ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1492 
1493 		/*
1494 		 * Now that we scanned all vmas we can already tell
1495 		 * userland which ioctls methods are guaranteed to
1496 		 * succeed on this range.
1497 		 */
1498 		if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1499 			ret = -EFAULT;
1500 	}
1501 out:
1502 	return ret;
1503 }
1504 
1505 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1506 				  unsigned long arg)
1507 {
1508 	struct mm_struct *mm = ctx->mm;
1509 	struct vm_area_struct *vma, *prev, *cur;
1510 	int ret;
1511 	struct uffdio_range uffdio_unregister;
1512 	unsigned long new_flags;
1513 	bool found;
1514 	unsigned long start, end, vma_end;
1515 	const void __user *buf = (void __user *)arg;
1516 
1517 	ret = -EFAULT;
1518 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1519 		goto out;
1520 
1521 	ret = validate_range(mm, uffdio_unregister.start,
1522 			     uffdio_unregister.len);
1523 	if (ret)
1524 		goto out;
1525 
1526 	start = uffdio_unregister.start;
1527 	end = start + uffdio_unregister.len;
1528 
1529 	ret = -ENOMEM;
1530 	if (!mmget_not_zero(mm))
1531 		goto out;
1532 
1533 	mmap_write_lock(mm);
1534 	vma = find_vma_prev(mm, start, &prev);
1535 	if (!vma)
1536 		goto out_unlock;
1537 
1538 	/* check that there's at least one vma in the range */
1539 	ret = -EINVAL;
1540 	if (vma->vm_start >= end)
1541 		goto out_unlock;
1542 
1543 	/*
1544 	 * If the first vma contains huge pages, make sure start address
1545 	 * is aligned to huge page size.
1546 	 */
1547 	if (is_vm_hugetlb_page(vma)) {
1548 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1549 
1550 		if (start & (vma_hpagesize - 1))
1551 			goto out_unlock;
1552 	}
1553 
1554 	/*
1555 	 * Search for not compatible vmas.
1556 	 */
1557 	found = false;
1558 	ret = -EINVAL;
1559 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1560 		cond_resched();
1561 
1562 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1563 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1564 
1565 		/*
1566 		 * Check not compatible vmas, not strictly required
1567 		 * here as not compatible vmas cannot have an
1568 		 * userfaultfd_ctx registered on them, but this
1569 		 * provides for more strict behavior to notice
1570 		 * unregistration errors.
1571 		 */
1572 		if (!vma_can_userfault(cur, cur->vm_flags))
1573 			goto out_unlock;
1574 
1575 		found = true;
1576 	}
1577 	BUG_ON(!found);
1578 
1579 	if (vma->vm_start < start)
1580 		prev = vma;
1581 
1582 	ret = 0;
1583 	do {
1584 		cond_resched();
1585 
1586 		BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1587 
1588 		/*
1589 		 * Nothing to do: this vma is already registered into this
1590 		 * userfaultfd and with the right tracking mode too.
1591 		 */
1592 		if (!vma->vm_userfaultfd_ctx.ctx)
1593 			goto skip;
1594 
1595 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1596 
1597 		if (vma->vm_start > start)
1598 			start = vma->vm_start;
1599 		vma_end = min(end, vma->vm_end);
1600 
1601 		if (userfaultfd_missing(vma)) {
1602 			/*
1603 			 * Wake any concurrent pending userfault while
1604 			 * we unregister, so they will not hang
1605 			 * permanently and it avoids userland to call
1606 			 * UFFDIO_WAKE explicitly.
1607 			 */
1608 			struct userfaultfd_wake_range range;
1609 			range.start = start;
1610 			range.len = vma_end - start;
1611 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1612 		}
1613 
1614 		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1615 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1616 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1617 				 vma_policy(vma),
1618 				 NULL_VM_UFFD_CTX, vma_anon_name(vma));
1619 		if (prev) {
1620 			vma = prev;
1621 			goto next;
1622 		}
1623 		if (vma->vm_start < start) {
1624 			ret = split_vma(mm, vma, start, 1);
1625 			if (ret)
1626 				break;
1627 		}
1628 		if (vma->vm_end > end) {
1629 			ret = split_vma(mm, vma, end, 0);
1630 			if (ret)
1631 				break;
1632 		}
1633 	next:
1634 		/*
1635 		 * In the vma_merge() successful mprotect-like case 8:
1636 		 * the next vma was merged into the current one and
1637 		 * the current one has not been updated yet.
1638 		 */
1639 		vma->vm_flags = new_flags;
1640 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1641 
1642 	skip:
1643 		prev = vma;
1644 		start = vma->vm_end;
1645 		vma = vma->vm_next;
1646 	} while (vma && vma->vm_start < end);
1647 out_unlock:
1648 	mmap_write_unlock(mm);
1649 	mmput(mm);
1650 out:
1651 	return ret;
1652 }
1653 
1654 /*
1655  * userfaultfd_wake may be used in combination with the
1656  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1657  */
1658 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1659 			    unsigned long arg)
1660 {
1661 	int ret;
1662 	struct uffdio_range uffdio_wake;
1663 	struct userfaultfd_wake_range range;
1664 	const void __user *buf = (void __user *)arg;
1665 
1666 	ret = -EFAULT;
1667 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1668 		goto out;
1669 
1670 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1671 	if (ret)
1672 		goto out;
1673 
1674 	range.start = uffdio_wake.start;
1675 	range.len = uffdio_wake.len;
1676 
1677 	/*
1678 	 * len == 0 means wake all and we don't want to wake all here,
1679 	 * so check it again to be sure.
1680 	 */
1681 	VM_BUG_ON(!range.len);
1682 
1683 	wake_userfault(ctx, &range);
1684 	ret = 0;
1685 
1686 out:
1687 	return ret;
1688 }
1689 
1690 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1691 			    unsigned long arg)
1692 {
1693 	__s64 ret;
1694 	struct uffdio_copy uffdio_copy;
1695 	struct uffdio_copy __user *user_uffdio_copy;
1696 	struct userfaultfd_wake_range range;
1697 
1698 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1699 
1700 	ret = -EAGAIN;
1701 	if (atomic_read(&ctx->mmap_changing))
1702 		goto out;
1703 
1704 	ret = -EFAULT;
1705 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1706 			   /* don't copy "copy" last field */
1707 			   sizeof(uffdio_copy)-sizeof(__s64)))
1708 		goto out;
1709 
1710 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1711 	if (ret)
1712 		goto out;
1713 	/*
1714 	 * double check for wraparound just in case. copy_from_user()
1715 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1716 	 * in the userland range.
1717 	 */
1718 	ret = -EINVAL;
1719 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1720 		goto out;
1721 	if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1722 		goto out;
1723 	if (mmget_not_zero(ctx->mm)) {
1724 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1725 				   uffdio_copy.len, &ctx->mmap_changing,
1726 				   uffdio_copy.mode);
1727 		mmput(ctx->mm);
1728 	} else {
1729 		return -ESRCH;
1730 	}
1731 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1732 		return -EFAULT;
1733 	if (ret < 0)
1734 		goto out;
1735 	BUG_ON(!ret);
1736 	/* len == 0 would wake all */
1737 	range.len = ret;
1738 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1739 		range.start = uffdio_copy.dst;
1740 		wake_userfault(ctx, &range);
1741 	}
1742 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1743 out:
1744 	return ret;
1745 }
1746 
1747 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1748 				unsigned long arg)
1749 {
1750 	__s64 ret;
1751 	struct uffdio_zeropage uffdio_zeropage;
1752 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1753 	struct userfaultfd_wake_range range;
1754 
1755 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1756 
1757 	ret = -EAGAIN;
1758 	if (atomic_read(&ctx->mmap_changing))
1759 		goto out;
1760 
1761 	ret = -EFAULT;
1762 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1763 			   /* don't copy "zeropage" last field */
1764 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1765 		goto out;
1766 
1767 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1768 			     uffdio_zeropage.range.len);
1769 	if (ret)
1770 		goto out;
1771 	ret = -EINVAL;
1772 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1773 		goto out;
1774 
1775 	if (mmget_not_zero(ctx->mm)) {
1776 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1777 				     uffdio_zeropage.range.len,
1778 				     &ctx->mmap_changing);
1779 		mmput(ctx->mm);
1780 	} else {
1781 		return -ESRCH;
1782 	}
1783 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1784 		return -EFAULT;
1785 	if (ret < 0)
1786 		goto out;
1787 	/* len == 0 would wake all */
1788 	BUG_ON(!ret);
1789 	range.len = ret;
1790 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1791 		range.start = uffdio_zeropage.range.start;
1792 		wake_userfault(ctx, &range);
1793 	}
1794 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1795 out:
1796 	return ret;
1797 }
1798 
1799 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1800 				    unsigned long arg)
1801 {
1802 	int ret;
1803 	struct uffdio_writeprotect uffdio_wp;
1804 	struct uffdio_writeprotect __user *user_uffdio_wp;
1805 	struct userfaultfd_wake_range range;
1806 	bool mode_wp, mode_dontwake;
1807 
1808 	if (atomic_read(&ctx->mmap_changing))
1809 		return -EAGAIN;
1810 
1811 	user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1812 
1813 	if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1814 			   sizeof(struct uffdio_writeprotect)))
1815 		return -EFAULT;
1816 
1817 	ret = validate_range(ctx->mm, uffdio_wp.range.start,
1818 			     uffdio_wp.range.len);
1819 	if (ret)
1820 		return ret;
1821 
1822 	if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1823 			       UFFDIO_WRITEPROTECT_MODE_WP))
1824 		return -EINVAL;
1825 
1826 	mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1827 	mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1828 
1829 	if (mode_wp && mode_dontwake)
1830 		return -EINVAL;
1831 
1832 	if (mmget_not_zero(ctx->mm)) {
1833 		ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1834 					  uffdio_wp.range.len, mode_wp,
1835 					  &ctx->mmap_changing);
1836 		mmput(ctx->mm);
1837 	} else {
1838 		return -ESRCH;
1839 	}
1840 
1841 	if (ret)
1842 		return ret;
1843 
1844 	if (!mode_wp && !mode_dontwake) {
1845 		range.start = uffdio_wp.range.start;
1846 		range.len = uffdio_wp.range.len;
1847 		wake_userfault(ctx, &range);
1848 	}
1849 	return ret;
1850 }
1851 
1852 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1853 {
1854 	__s64 ret;
1855 	struct uffdio_continue uffdio_continue;
1856 	struct uffdio_continue __user *user_uffdio_continue;
1857 	struct userfaultfd_wake_range range;
1858 
1859 	user_uffdio_continue = (struct uffdio_continue __user *)arg;
1860 
1861 	ret = -EAGAIN;
1862 	if (atomic_read(&ctx->mmap_changing))
1863 		goto out;
1864 
1865 	ret = -EFAULT;
1866 	if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1867 			   /* don't copy the output fields */
1868 			   sizeof(uffdio_continue) - (sizeof(__s64))))
1869 		goto out;
1870 
1871 	ret = validate_range(ctx->mm, uffdio_continue.range.start,
1872 			     uffdio_continue.range.len);
1873 	if (ret)
1874 		goto out;
1875 
1876 	ret = -EINVAL;
1877 	/* double check for wraparound just in case. */
1878 	if (uffdio_continue.range.start + uffdio_continue.range.len <=
1879 	    uffdio_continue.range.start) {
1880 		goto out;
1881 	}
1882 	if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE)
1883 		goto out;
1884 
1885 	if (mmget_not_zero(ctx->mm)) {
1886 		ret = mcopy_continue(ctx->mm, uffdio_continue.range.start,
1887 				     uffdio_continue.range.len,
1888 				     &ctx->mmap_changing);
1889 		mmput(ctx->mm);
1890 	} else {
1891 		return -ESRCH;
1892 	}
1893 
1894 	if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1895 		return -EFAULT;
1896 	if (ret < 0)
1897 		goto out;
1898 
1899 	/* len == 0 would wake all */
1900 	BUG_ON(!ret);
1901 	range.len = ret;
1902 	if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1903 		range.start = uffdio_continue.range.start;
1904 		wake_userfault(ctx, &range);
1905 	}
1906 	ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1907 
1908 out:
1909 	return ret;
1910 }
1911 
1912 static inline unsigned int uffd_ctx_features(__u64 user_features)
1913 {
1914 	/*
1915 	 * For the current set of features the bits just coincide. Set
1916 	 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1917 	 */
1918 	return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1919 }
1920 
1921 /*
1922  * userland asks for a certain API version and we return which bits
1923  * and ioctl commands are implemented in this kernel for such API
1924  * version or -EINVAL if unknown.
1925  */
1926 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1927 			   unsigned long arg)
1928 {
1929 	struct uffdio_api uffdio_api;
1930 	void __user *buf = (void __user *)arg;
1931 	unsigned int ctx_features;
1932 	int ret;
1933 	__u64 features;
1934 
1935 	ret = -EFAULT;
1936 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1937 		goto out;
1938 	features = uffdio_api.features;
1939 	ret = -EINVAL;
1940 	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1941 		goto err_out;
1942 	ret = -EPERM;
1943 	if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1944 		goto err_out;
1945 	/* report all available features and ioctls to userland */
1946 	uffdio_api.features = UFFD_API_FEATURES;
1947 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1948 	uffdio_api.features &=
1949 		~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
1950 #endif
1951 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1952 	uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
1953 #endif
1954 	uffdio_api.ioctls = UFFD_API_IOCTLS;
1955 	ret = -EFAULT;
1956 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1957 		goto out;
1958 
1959 	/* only enable the requested features for this uffd context */
1960 	ctx_features = uffd_ctx_features(features);
1961 	ret = -EINVAL;
1962 	if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
1963 		goto err_out;
1964 
1965 	ret = 0;
1966 out:
1967 	return ret;
1968 err_out:
1969 	memset(&uffdio_api, 0, sizeof(uffdio_api));
1970 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1971 		ret = -EFAULT;
1972 	goto out;
1973 }
1974 
1975 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1976 			      unsigned long arg)
1977 {
1978 	int ret = -EINVAL;
1979 	struct userfaultfd_ctx *ctx = file->private_data;
1980 
1981 	if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
1982 		return -EINVAL;
1983 
1984 	switch(cmd) {
1985 	case UFFDIO_API:
1986 		ret = userfaultfd_api(ctx, arg);
1987 		break;
1988 	case UFFDIO_REGISTER:
1989 		ret = userfaultfd_register(ctx, arg);
1990 		break;
1991 	case UFFDIO_UNREGISTER:
1992 		ret = userfaultfd_unregister(ctx, arg);
1993 		break;
1994 	case UFFDIO_WAKE:
1995 		ret = userfaultfd_wake(ctx, arg);
1996 		break;
1997 	case UFFDIO_COPY:
1998 		ret = userfaultfd_copy(ctx, arg);
1999 		break;
2000 	case UFFDIO_ZEROPAGE:
2001 		ret = userfaultfd_zeropage(ctx, arg);
2002 		break;
2003 	case UFFDIO_WRITEPROTECT:
2004 		ret = userfaultfd_writeprotect(ctx, arg);
2005 		break;
2006 	case UFFDIO_CONTINUE:
2007 		ret = userfaultfd_continue(ctx, arg);
2008 		break;
2009 	}
2010 	return ret;
2011 }
2012 
2013 #ifdef CONFIG_PROC_FS
2014 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2015 {
2016 	struct userfaultfd_ctx *ctx = f->private_data;
2017 	wait_queue_entry_t *wq;
2018 	unsigned long pending = 0, total = 0;
2019 
2020 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
2021 	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2022 		pending++;
2023 		total++;
2024 	}
2025 	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2026 		total++;
2027 	}
2028 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2029 
2030 	/*
2031 	 * If more protocols will be added, there will be all shown
2032 	 * separated by a space. Like this:
2033 	 *	protocols: aa:... bb:...
2034 	 */
2035 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2036 		   pending, total, UFFD_API, ctx->features,
2037 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2038 }
2039 #endif
2040 
2041 static const struct file_operations userfaultfd_fops = {
2042 #ifdef CONFIG_PROC_FS
2043 	.show_fdinfo	= userfaultfd_show_fdinfo,
2044 #endif
2045 	.release	= userfaultfd_release,
2046 	.poll		= userfaultfd_poll,
2047 	.read		= userfaultfd_read,
2048 	.unlocked_ioctl = userfaultfd_ioctl,
2049 	.compat_ioctl	= compat_ptr_ioctl,
2050 	.llseek		= noop_llseek,
2051 };
2052 
2053 static void init_once_userfaultfd_ctx(void *mem)
2054 {
2055 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2056 
2057 	init_waitqueue_head(&ctx->fault_pending_wqh);
2058 	init_waitqueue_head(&ctx->fault_wqh);
2059 	init_waitqueue_head(&ctx->event_wqh);
2060 	init_waitqueue_head(&ctx->fd_wqh);
2061 	seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2062 }
2063 
2064 SYSCALL_DEFINE1(userfaultfd, int, flags)
2065 {
2066 	struct userfaultfd_ctx *ctx;
2067 	int fd;
2068 
2069 	if (!sysctl_unprivileged_userfaultfd &&
2070 	    (flags & UFFD_USER_MODE_ONLY) == 0 &&
2071 	    !capable(CAP_SYS_PTRACE)) {
2072 		printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
2073 			"sysctl knob to 1 if kernel faults must be handled "
2074 			"without obtaining CAP_SYS_PTRACE capability\n");
2075 		return -EPERM;
2076 	}
2077 
2078 	BUG_ON(!current->mm);
2079 
2080 	/* Check the UFFD_* constants for consistency.  */
2081 	BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2082 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2083 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2084 
2085 	if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2086 		return -EINVAL;
2087 
2088 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2089 	if (!ctx)
2090 		return -ENOMEM;
2091 
2092 	refcount_set(&ctx->refcount, 1);
2093 	ctx->flags = flags;
2094 	ctx->features = 0;
2095 	ctx->released = false;
2096 	atomic_set(&ctx->mmap_changing, 0);
2097 	ctx->mm = current->mm;
2098 	/* prevent the mm struct to be freed */
2099 	mmgrab(ctx->mm);
2100 
2101 	fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2102 			O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2103 	if (fd < 0) {
2104 		mmdrop(ctx->mm);
2105 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2106 	}
2107 	return fd;
2108 }
2109 
2110 static int __init userfaultfd_init(void)
2111 {
2112 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2113 						sizeof(struct userfaultfd_ctx),
2114 						0,
2115 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2116 						init_once_userfaultfd_ctx);
2117 	return 0;
2118 }
2119 __initcall(userfaultfd_init);
2120