xref: /openbmc/linux/fs/userfaultfd.c (revision 54a611b6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12 
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/mmu_notifier.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 #include <linux/swapops.h>
33 #include <linux/miscdevice.h>
34 
35 int sysctl_unprivileged_userfaultfd __read_mostly;
36 
37 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
38 
39 /*
40  * Start with fault_pending_wqh and fault_wqh so they're more likely
41  * to be in the same cacheline.
42  *
43  * Locking order:
44  *	fd_wqh.lock
45  *		fault_pending_wqh.lock
46  *			fault_wqh.lock
47  *		event_wqh.lock
48  *
49  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
50  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
51  * also taken in IRQ context.
52  */
53 struct userfaultfd_ctx {
54 	/* waitqueue head for the pending (i.e. not read) userfaults */
55 	wait_queue_head_t fault_pending_wqh;
56 	/* waitqueue head for the userfaults */
57 	wait_queue_head_t fault_wqh;
58 	/* waitqueue head for the pseudo fd to wakeup poll/read */
59 	wait_queue_head_t fd_wqh;
60 	/* waitqueue head for events */
61 	wait_queue_head_t event_wqh;
62 	/* a refile sequence protected by fault_pending_wqh lock */
63 	seqcount_spinlock_t refile_seq;
64 	/* pseudo fd refcounting */
65 	refcount_t refcount;
66 	/* userfaultfd syscall flags */
67 	unsigned int flags;
68 	/* features requested from the userspace */
69 	unsigned int features;
70 	/* released */
71 	bool released;
72 	/* memory mappings are changing because of non-cooperative event */
73 	atomic_t mmap_changing;
74 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
75 	struct mm_struct *mm;
76 };
77 
78 struct userfaultfd_fork_ctx {
79 	struct userfaultfd_ctx *orig;
80 	struct userfaultfd_ctx *new;
81 	struct list_head list;
82 };
83 
84 struct userfaultfd_unmap_ctx {
85 	struct userfaultfd_ctx *ctx;
86 	unsigned long start;
87 	unsigned long end;
88 	struct list_head list;
89 };
90 
91 struct userfaultfd_wait_queue {
92 	struct uffd_msg msg;
93 	wait_queue_entry_t wq;
94 	struct userfaultfd_ctx *ctx;
95 	bool waken;
96 };
97 
98 struct userfaultfd_wake_range {
99 	unsigned long start;
100 	unsigned long len;
101 };
102 
103 /* internal indication that UFFD_API ioctl was successfully executed */
104 #define UFFD_FEATURE_INITIALIZED		(1u << 31)
105 
106 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
107 {
108 	return ctx->features & UFFD_FEATURE_INITIALIZED;
109 }
110 
111 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
112 				     int wake_flags, void *key)
113 {
114 	struct userfaultfd_wake_range *range = key;
115 	int ret;
116 	struct userfaultfd_wait_queue *uwq;
117 	unsigned long start, len;
118 
119 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
120 	ret = 0;
121 	/* len == 0 means wake all */
122 	start = range->start;
123 	len = range->len;
124 	if (len && (start > uwq->msg.arg.pagefault.address ||
125 		    start + len <= uwq->msg.arg.pagefault.address))
126 		goto out;
127 	WRITE_ONCE(uwq->waken, true);
128 	/*
129 	 * The Program-Order guarantees provided by the scheduler
130 	 * ensure uwq->waken is visible before the task is woken.
131 	 */
132 	ret = wake_up_state(wq->private, mode);
133 	if (ret) {
134 		/*
135 		 * Wake only once, autoremove behavior.
136 		 *
137 		 * After the effect of list_del_init is visible to the other
138 		 * CPUs, the waitqueue may disappear from under us, see the
139 		 * !list_empty_careful() in handle_userfault().
140 		 *
141 		 * try_to_wake_up() has an implicit smp_mb(), and the
142 		 * wq->private is read before calling the extern function
143 		 * "wake_up_state" (which in turns calls try_to_wake_up).
144 		 */
145 		list_del_init(&wq->entry);
146 	}
147 out:
148 	return ret;
149 }
150 
151 /**
152  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
153  * context.
154  * @ctx: [in] Pointer to the userfaultfd context.
155  */
156 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
157 {
158 	refcount_inc(&ctx->refcount);
159 }
160 
161 /**
162  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
163  * context.
164  * @ctx: [in] Pointer to userfaultfd context.
165  *
166  * The userfaultfd context reference must have been previously acquired either
167  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
168  */
169 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
170 {
171 	if (refcount_dec_and_test(&ctx->refcount)) {
172 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
173 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
174 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
175 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
176 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
177 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
178 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
179 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
180 		mmdrop(ctx->mm);
181 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
182 	}
183 }
184 
185 static inline void msg_init(struct uffd_msg *msg)
186 {
187 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
188 	/*
189 	 * Must use memset to zero out the paddings or kernel data is
190 	 * leaked to userland.
191 	 */
192 	memset(msg, 0, sizeof(struct uffd_msg));
193 }
194 
195 static inline struct uffd_msg userfault_msg(unsigned long address,
196 					    unsigned long real_address,
197 					    unsigned int flags,
198 					    unsigned long reason,
199 					    unsigned int features)
200 {
201 	struct uffd_msg msg;
202 
203 	msg_init(&msg);
204 	msg.event = UFFD_EVENT_PAGEFAULT;
205 
206 	msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
207 				    real_address : address;
208 
209 	/*
210 	 * These flags indicate why the userfault occurred:
211 	 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
212 	 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
213 	 * - Neither of these flags being set indicates a MISSING fault.
214 	 *
215 	 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
216 	 * fault. Otherwise, it was a read fault.
217 	 */
218 	if (flags & FAULT_FLAG_WRITE)
219 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
220 	if (reason & VM_UFFD_WP)
221 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
222 	if (reason & VM_UFFD_MINOR)
223 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
224 	if (features & UFFD_FEATURE_THREAD_ID)
225 		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
226 	return msg;
227 }
228 
229 #ifdef CONFIG_HUGETLB_PAGE
230 /*
231  * Same functionality as userfaultfd_must_wait below with modifications for
232  * hugepmd ranges.
233  */
234 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
235 					 struct vm_area_struct *vma,
236 					 unsigned long address,
237 					 unsigned long flags,
238 					 unsigned long reason)
239 {
240 	struct mm_struct *mm = ctx->mm;
241 	pte_t *ptep, pte;
242 	bool ret = true;
243 
244 	mmap_assert_locked(mm);
245 
246 	ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
247 
248 	if (!ptep)
249 		goto out;
250 
251 	ret = false;
252 	pte = huge_ptep_get(ptep);
253 
254 	/*
255 	 * Lockless access: we're in a wait_event so it's ok if it
256 	 * changes under us.  PTE markers should be handled the same as none
257 	 * ptes here.
258 	 */
259 	if (huge_pte_none_mostly(pte))
260 		ret = true;
261 	if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
262 		ret = true;
263 out:
264 	return ret;
265 }
266 #else
267 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
268 					 struct vm_area_struct *vma,
269 					 unsigned long address,
270 					 unsigned long flags,
271 					 unsigned long reason)
272 {
273 	return false;	/* should never get here */
274 }
275 #endif /* CONFIG_HUGETLB_PAGE */
276 
277 /*
278  * Verify the pagetables are still not ok after having reigstered into
279  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
280  * userfault that has already been resolved, if userfaultfd_read and
281  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
282  * threads.
283  */
284 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
285 					 unsigned long address,
286 					 unsigned long flags,
287 					 unsigned long reason)
288 {
289 	struct mm_struct *mm = ctx->mm;
290 	pgd_t *pgd;
291 	p4d_t *p4d;
292 	pud_t *pud;
293 	pmd_t *pmd, _pmd;
294 	pte_t *pte;
295 	bool ret = true;
296 
297 	mmap_assert_locked(mm);
298 
299 	pgd = pgd_offset(mm, address);
300 	if (!pgd_present(*pgd))
301 		goto out;
302 	p4d = p4d_offset(pgd, address);
303 	if (!p4d_present(*p4d))
304 		goto out;
305 	pud = pud_offset(p4d, address);
306 	if (!pud_present(*pud))
307 		goto out;
308 	pmd = pmd_offset(pud, address);
309 	/*
310 	 * READ_ONCE must function as a barrier with narrower scope
311 	 * and it must be equivalent to:
312 	 *	_pmd = *pmd; barrier();
313 	 *
314 	 * This is to deal with the instability (as in
315 	 * pmd_trans_unstable) of the pmd.
316 	 */
317 	_pmd = READ_ONCE(*pmd);
318 	if (pmd_none(_pmd))
319 		goto out;
320 
321 	ret = false;
322 	if (!pmd_present(_pmd))
323 		goto out;
324 
325 	if (pmd_trans_huge(_pmd)) {
326 		if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
327 			ret = true;
328 		goto out;
329 	}
330 
331 	/*
332 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
333 	 * and use the standard pte_offset_map() instead of parsing _pmd.
334 	 */
335 	pte = pte_offset_map(pmd, address);
336 	/*
337 	 * Lockless access: we're in a wait_event so it's ok if it
338 	 * changes under us.  PTE markers should be handled the same as none
339 	 * ptes here.
340 	 */
341 	if (pte_none_mostly(*pte))
342 		ret = true;
343 	if (!pte_write(*pte) && (reason & VM_UFFD_WP))
344 		ret = true;
345 	pte_unmap(pte);
346 
347 out:
348 	return ret;
349 }
350 
351 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
352 {
353 	if (flags & FAULT_FLAG_INTERRUPTIBLE)
354 		return TASK_INTERRUPTIBLE;
355 
356 	if (flags & FAULT_FLAG_KILLABLE)
357 		return TASK_KILLABLE;
358 
359 	return TASK_UNINTERRUPTIBLE;
360 }
361 
362 /*
363  * The locking rules involved in returning VM_FAULT_RETRY depending on
364  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
365  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
366  * recommendation in __lock_page_or_retry is not an understatement.
367  *
368  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
369  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
370  * not set.
371  *
372  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
373  * set, VM_FAULT_RETRY can still be returned if and only if there are
374  * fatal_signal_pending()s, and the mmap_lock must be released before
375  * returning it.
376  */
377 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
378 {
379 	struct mm_struct *mm = vmf->vma->vm_mm;
380 	struct userfaultfd_ctx *ctx;
381 	struct userfaultfd_wait_queue uwq;
382 	vm_fault_t ret = VM_FAULT_SIGBUS;
383 	bool must_wait;
384 	unsigned int blocking_state;
385 
386 	/*
387 	 * We don't do userfault handling for the final child pid update.
388 	 *
389 	 * We also don't do userfault handling during
390 	 * coredumping. hugetlbfs has the special
391 	 * follow_hugetlb_page() to skip missing pages in the
392 	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
393 	 * the no_page_table() helper in follow_page_mask(), but the
394 	 * shmem_vm_ops->fault method is invoked even during
395 	 * coredumping without mmap_lock and it ends up here.
396 	 */
397 	if (current->flags & (PF_EXITING|PF_DUMPCORE))
398 		goto out;
399 
400 	/*
401 	 * Coredumping runs without mmap_lock so we can only check that
402 	 * the mmap_lock is held, if PF_DUMPCORE was not set.
403 	 */
404 	mmap_assert_locked(mm);
405 
406 	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
407 	if (!ctx)
408 		goto out;
409 
410 	BUG_ON(ctx->mm != mm);
411 
412 	/* Any unrecognized flag is a bug. */
413 	VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
414 	/* 0 or > 1 flags set is a bug; we expect exactly 1. */
415 	VM_BUG_ON(!reason || (reason & (reason - 1)));
416 
417 	if (ctx->features & UFFD_FEATURE_SIGBUS)
418 		goto out;
419 	if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
420 		goto out;
421 
422 	/*
423 	 * If it's already released don't get it. This avoids to loop
424 	 * in __get_user_pages if userfaultfd_release waits on the
425 	 * caller of handle_userfault to release the mmap_lock.
426 	 */
427 	if (unlikely(READ_ONCE(ctx->released))) {
428 		/*
429 		 * Don't return VM_FAULT_SIGBUS in this case, so a non
430 		 * cooperative manager can close the uffd after the
431 		 * last UFFDIO_COPY, without risking to trigger an
432 		 * involuntary SIGBUS if the process was starting the
433 		 * userfaultfd while the userfaultfd was still armed
434 		 * (but after the last UFFDIO_COPY). If the uffd
435 		 * wasn't already closed when the userfault reached
436 		 * this point, that would normally be solved by
437 		 * userfaultfd_must_wait returning 'false'.
438 		 *
439 		 * If we were to return VM_FAULT_SIGBUS here, the non
440 		 * cooperative manager would be instead forced to
441 		 * always call UFFDIO_UNREGISTER before it can safely
442 		 * close the uffd.
443 		 */
444 		ret = VM_FAULT_NOPAGE;
445 		goto out;
446 	}
447 
448 	/*
449 	 * Check that we can return VM_FAULT_RETRY.
450 	 *
451 	 * NOTE: it should become possible to return VM_FAULT_RETRY
452 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
453 	 * -EBUSY failures, if the userfaultfd is to be extended for
454 	 * VM_UFFD_WP tracking and we intend to arm the userfault
455 	 * without first stopping userland access to the memory. For
456 	 * VM_UFFD_MISSING userfaults this is enough for now.
457 	 */
458 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
459 		/*
460 		 * Validate the invariant that nowait must allow retry
461 		 * to be sure not to return SIGBUS erroneously on
462 		 * nowait invocations.
463 		 */
464 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
465 #ifdef CONFIG_DEBUG_VM
466 		if (printk_ratelimit()) {
467 			printk(KERN_WARNING
468 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
469 			       vmf->flags);
470 			dump_stack();
471 		}
472 #endif
473 		goto out;
474 	}
475 
476 	/*
477 	 * Handle nowait, not much to do other than tell it to retry
478 	 * and wait.
479 	 */
480 	ret = VM_FAULT_RETRY;
481 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
482 		goto out;
483 
484 	/* take the reference before dropping the mmap_lock */
485 	userfaultfd_ctx_get(ctx);
486 
487 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
488 	uwq.wq.private = current;
489 	uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
490 				reason, ctx->features);
491 	uwq.ctx = ctx;
492 	uwq.waken = false;
493 
494 	blocking_state = userfaultfd_get_blocking_state(vmf->flags);
495 
496 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
497 	/*
498 	 * After the __add_wait_queue the uwq is visible to userland
499 	 * through poll/read().
500 	 */
501 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
502 	/*
503 	 * The smp_mb() after __set_current_state prevents the reads
504 	 * following the spin_unlock to happen before the list_add in
505 	 * __add_wait_queue.
506 	 */
507 	set_current_state(blocking_state);
508 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
509 
510 	if (!is_vm_hugetlb_page(vmf->vma))
511 		must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
512 						  reason);
513 	else
514 		must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
515 						       vmf->address,
516 						       vmf->flags, reason);
517 	mmap_read_unlock(mm);
518 
519 	if (likely(must_wait && !READ_ONCE(ctx->released))) {
520 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
521 		schedule();
522 	}
523 
524 	__set_current_state(TASK_RUNNING);
525 
526 	/*
527 	 * Here we race with the list_del; list_add in
528 	 * userfaultfd_ctx_read(), however because we don't ever run
529 	 * list_del_init() to refile across the two lists, the prev
530 	 * and next pointers will never point to self. list_add also
531 	 * would never let any of the two pointers to point to
532 	 * self. So list_empty_careful won't risk to see both pointers
533 	 * pointing to self at any time during the list refile. The
534 	 * only case where list_del_init() is called is the full
535 	 * removal in the wake function and there we don't re-list_add
536 	 * and it's fine not to block on the spinlock. The uwq on this
537 	 * kernel stack can be released after the list_del_init.
538 	 */
539 	if (!list_empty_careful(&uwq.wq.entry)) {
540 		spin_lock_irq(&ctx->fault_pending_wqh.lock);
541 		/*
542 		 * No need of list_del_init(), the uwq on the stack
543 		 * will be freed shortly anyway.
544 		 */
545 		list_del(&uwq.wq.entry);
546 		spin_unlock_irq(&ctx->fault_pending_wqh.lock);
547 	}
548 
549 	/*
550 	 * ctx may go away after this if the userfault pseudo fd is
551 	 * already released.
552 	 */
553 	userfaultfd_ctx_put(ctx);
554 
555 out:
556 	return ret;
557 }
558 
559 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
560 					      struct userfaultfd_wait_queue *ewq)
561 {
562 	struct userfaultfd_ctx *release_new_ctx;
563 
564 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
565 		goto out;
566 
567 	ewq->ctx = ctx;
568 	init_waitqueue_entry(&ewq->wq, current);
569 	release_new_ctx = NULL;
570 
571 	spin_lock_irq(&ctx->event_wqh.lock);
572 	/*
573 	 * After the __add_wait_queue the uwq is visible to userland
574 	 * through poll/read().
575 	 */
576 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
577 	for (;;) {
578 		set_current_state(TASK_KILLABLE);
579 		if (ewq->msg.event == 0)
580 			break;
581 		if (READ_ONCE(ctx->released) ||
582 		    fatal_signal_pending(current)) {
583 			/*
584 			 * &ewq->wq may be queued in fork_event, but
585 			 * __remove_wait_queue ignores the head
586 			 * parameter. It would be a problem if it
587 			 * didn't.
588 			 */
589 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
590 			if (ewq->msg.event == UFFD_EVENT_FORK) {
591 				struct userfaultfd_ctx *new;
592 
593 				new = (struct userfaultfd_ctx *)
594 					(unsigned long)
595 					ewq->msg.arg.reserved.reserved1;
596 				release_new_ctx = new;
597 			}
598 			break;
599 		}
600 
601 		spin_unlock_irq(&ctx->event_wqh.lock);
602 
603 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
604 		schedule();
605 
606 		spin_lock_irq(&ctx->event_wqh.lock);
607 	}
608 	__set_current_state(TASK_RUNNING);
609 	spin_unlock_irq(&ctx->event_wqh.lock);
610 
611 	if (release_new_ctx) {
612 		struct vm_area_struct *vma;
613 		struct mm_struct *mm = release_new_ctx->mm;
614 
615 		/* the various vma->vm_userfaultfd_ctx still points to it */
616 		mmap_write_lock(mm);
617 		for (vma = mm->mmap; vma; vma = vma->vm_next)
618 			if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
619 				vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
620 				vma->vm_flags &= ~__VM_UFFD_FLAGS;
621 			}
622 		mmap_write_unlock(mm);
623 
624 		userfaultfd_ctx_put(release_new_ctx);
625 	}
626 
627 	/*
628 	 * ctx may go away after this if the userfault pseudo fd is
629 	 * already released.
630 	 */
631 out:
632 	atomic_dec(&ctx->mmap_changing);
633 	VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
634 	userfaultfd_ctx_put(ctx);
635 }
636 
637 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
638 				       struct userfaultfd_wait_queue *ewq)
639 {
640 	ewq->msg.event = 0;
641 	wake_up_locked(&ctx->event_wqh);
642 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
643 }
644 
645 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
646 {
647 	struct userfaultfd_ctx *ctx = NULL, *octx;
648 	struct userfaultfd_fork_ctx *fctx;
649 
650 	octx = vma->vm_userfaultfd_ctx.ctx;
651 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
652 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
653 		vma->vm_flags &= ~__VM_UFFD_FLAGS;
654 		return 0;
655 	}
656 
657 	list_for_each_entry(fctx, fcs, list)
658 		if (fctx->orig == octx) {
659 			ctx = fctx->new;
660 			break;
661 		}
662 
663 	if (!ctx) {
664 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
665 		if (!fctx)
666 			return -ENOMEM;
667 
668 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
669 		if (!ctx) {
670 			kfree(fctx);
671 			return -ENOMEM;
672 		}
673 
674 		refcount_set(&ctx->refcount, 1);
675 		ctx->flags = octx->flags;
676 		ctx->features = octx->features;
677 		ctx->released = false;
678 		atomic_set(&ctx->mmap_changing, 0);
679 		ctx->mm = vma->vm_mm;
680 		mmgrab(ctx->mm);
681 
682 		userfaultfd_ctx_get(octx);
683 		atomic_inc(&octx->mmap_changing);
684 		fctx->orig = octx;
685 		fctx->new = ctx;
686 		list_add_tail(&fctx->list, fcs);
687 	}
688 
689 	vma->vm_userfaultfd_ctx.ctx = ctx;
690 	return 0;
691 }
692 
693 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
694 {
695 	struct userfaultfd_ctx *ctx = fctx->orig;
696 	struct userfaultfd_wait_queue ewq;
697 
698 	msg_init(&ewq.msg);
699 
700 	ewq.msg.event = UFFD_EVENT_FORK;
701 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
702 
703 	userfaultfd_event_wait_completion(ctx, &ewq);
704 }
705 
706 void dup_userfaultfd_complete(struct list_head *fcs)
707 {
708 	struct userfaultfd_fork_ctx *fctx, *n;
709 
710 	list_for_each_entry_safe(fctx, n, fcs, list) {
711 		dup_fctx(fctx);
712 		list_del(&fctx->list);
713 		kfree(fctx);
714 	}
715 }
716 
717 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
718 			     struct vm_userfaultfd_ctx *vm_ctx)
719 {
720 	struct userfaultfd_ctx *ctx;
721 
722 	ctx = vma->vm_userfaultfd_ctx.ctx;
723 
724 	if (!ctx)
725 		return;
726 
727 	if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
728 		vm_ctx->ctx = ctx;
729 		userfaultfd_ctx_get(ctx);
730 		atomic_inc(&ctx->mmap_changing);
731 	} else {
732 		/* Drop uffd context if remap feature not enabled */
733 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
734 		vma->vm_flags &= ~__VM_UFFD_FLAGS;
735 	}
736 }
737 
738 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
739 				 unsigned long from, unsigned long to,
740 				 unsigned long len)
741 {
742 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
743 	struct userfaultfd_wait_queue ewq;
744 
745 	if (!ctx)
746 		return;
747 
748 	if (to & ~PAGE_MASK) {
749 		userfaultfd_ctx_put(ctx);
750 		return;
751 	}
752 
753 	msg_init(&ewq.msg);
754 
755 	ewq.msg.event = UFFD_EVENT_REMAP;
756 	ewq.msg.arg.remap.from = from;
757 	ewq.msg.arg.remap.to = to;
758 	ewq.msg.arg.remap.len = len;
759 
760 	userfaultfd_event_wait_completion(ctx, &ewq);
761 }
762 
763 bool userfaultfd_remove(struct vm_area_struct *vma,
764 			unsigned long start, unsigned long end)
765 {
766 	struct mm_struct *mm = vma->vm_mm;
767 	struct userfaultfd_ctx *ctx;
768 	struct userfaultfd_wait_queue ewq;
769 
770 	ctx = vma->vm_userfaultfd_ctx.ctx;
771 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
772 		return true;
773 
774 	userfaultfd_ctx_get(ctx);
775 	atomic_inc(&ctx->mmap_changing);
776 	mmap_read_unlock(mm);
777 
778 	msg_init(&ewq.msg);
779 
780 	ewq.msg.event = UFFD_EVENT_REMOVE;
781 	ewq.msg.arg.remove.start = start;
782 	ewq.msg.arg.remove.end = end;
783 
784 	userfaultfd_event_wait_completion(ctx, &ewq);
785 
786 	return false;
787 }
788 
789 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
790 			  unsigned long start, unsigned long end)
791 {
792 	struct userfaultfd_unmap_ctx *unmap_ctx;
793 
794 	list_for_each_entry(unmap_ctx, unmaps, list)
795 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
796 		    unmap_ctx->end == end)
797 			return true;
798 
799 	return false;
800 }
801 
802 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
803 			   unsigned long start, unsigned long end,
804 			   struct list_head *unmaps)
805 {
806 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
807 		struct userfaultfd_unmap_ctx *unmap_ctx;
808 		struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
809 
810 		if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
811 		    has_unmap_ctx(ctx, unmaps, start, end))
812 			continue;
813 
814 		unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
815 		if (!unmap_ctx)
816 			return -ENOMEM;
817 
818 		userfaultfd_ctx_get(ctx);
819 		atomic_inc(&ctx->mmap_changing);
820 		unmap_ctx->ctx = ctx;
821 		unmap_ctx->start = start;
822 		unmap_ctx->end = end;
823 		list_add_tail(&unmap_ctx->list, unmaps);
824 	}
825 
826 	return 0;
827 }
828 
829 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
830 {
831 	struct userfaultfd_unmap_ctx *ctx, *n;
832 	struct userfaultfd_wait_queue ewq;
833 
834 	list_for_each_entry_safe(ctx, n, uf, list) {
835 		msg_init(&ewq.msg);
836 
837 		ewq.msg.event = UFFD_EVENT_UNMAP;
838 		ewq.msg.arg.remove.start = ctx->start;
839 		ewq.msg.arg.remove.end = ctx->end;
840 
841 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
842 
843 		list_del(&ctx->list);
844 		kfree(ctx);
845 	}
846 }
847 
848 static int userfaultfd_release(struct inode *inode, struct file *file)
849 {
850 	struct userfaultfd_ctx *ctx = file->private_data;
851 	struct mm_struct *mm = ctx->mm;
852 	struct vm_area_struct *vma, *prev;
853 	/* len == 0 means wake all */
854 	struct userfaultfd_wake_range range = { .len = 0, };
855 	unsigned long new_flags;
856 
857 	WRITE_ONCE(ctx->released, true);
858 
859 	if (!mmget_not_zero(mm))
860 		goto wakeup;
861 
862 	/*
863 	 * Flush page faults out of all CPUs. NOTE: all page faults
864 	 * must be retried without returning VM_FAULT_SIGBUS if
865 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
866 	 * changes while handle_userfault released the mmap_lock. So
867 	 * it's critical that released is set to true (above), before
868 	 * taking the mmap_lock for writing.
869 	 */
870 	mmap_write_lock(mm);
871 	prev = NULL;
872 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
873 		cond_resched();
874 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
875 		       !!(vma->vm_flags & __VM_UFFD_FLAGS));
876 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
877 			prev = vma;
878 			continue;
879 		}
880 		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
881 		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
882 				 new_flags, vma->anon_vma,
883 				 vma->vm_file, vma->vm_pgoff,
884 				 vma_policy(vma),
885 				 NULL_VM_UFFD_CTX, anon_vma_name(vma));
886 		if (prev)
887 			vma = prev;
888 		else
889 			prev = vma;
890 		vma->vm_flags = new_flags;
891 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
892 	}
893 	mmap_write_unlock(mm);
894 	mmput(mm);
895 wakeup:
896 	/*
897 	 * After no new page faults can wait on this fault_*wqh, flush
898 	 * the last page faults that may have been already waiting on
899 	 * the fault_*wqh.
900 	 */
901 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
902 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
903 	__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
904 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
905 
906 	/* Flush pending events that may still wait on event_wqh */
907 	wake_up_all(&ctx->event_wqh);
908 
909 	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
910 	userfaultfd_ctx_put(ctx);
911 	return 0;
912 }
913 
914 /* fault_pending_wqh.lock must be hold by the caller */
915 static inline struct userfaultfd_wait_queue *find_userfault_in(
916 		wait_queue_head_t *wqh)
917 {
918 	wait_queue_entry_t *wq;
919 	struct userfaultfd_wait_queue *uwq;
920 
921 	lockdep_assert_held(&wqh->lock);
922 
923 	uwq = NULL;
924 	if (!waitqueue_active(wqh))
925 		goto out;
926 	/* walk in reverse to provide FIFO behavior to read userfaults */
927 	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
928 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
929 out:
930 	return uwq;
931 }
932 
933 static inline struct userfaultfd_wait_queue *find_userfault(
934 		struct userfaultfd_ctx *ctx)
935 {
936 	return find_userfault_in(&ctx->fault_pending_wqh);
937 }
938 
939 static inline struct userfaultfd_wait_queue *find_userfault_evt(
940 		struct userfaultfd_ctx *ctx)
941 {
942 	return find_userfault_in(&ctx->event_wqh);
943 }
944 
945 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
946 {
947 	struct userfaultfd_ctx *ctx = file->private_data;
948 	__poll_t ret;
949 
950 	poll_wait(file, &ctx->fd_wqh, wait);
951 
952 	if (!userfaultfd_is_initialized(ctx))
953 		return EPOLLERR;
954 
955 	/*
956 	 * poll() never guarantees that read won't block.
957 	 * userfaults can be waken before they're read().
958 	 */
959 	if (unlikely(!(file->f_flags & O_NONBLOCK)))
960 		return EPOLLERR;
961 	/*
962 	 * lockless access to see if there are pending faults
963 	 * __pollwait last action is the add_wait_queue but
964 	 * the spin_unlock would allow the waitqueue_active to
965 	 * pass above the actual list_add inside
966 	 * add_wait_queue critical section. So use a full
967 	 * memory barrier to serialize the list_add write of
968 	 * add_wait_queue() with the waitqueue_active read
969 	 * below.
970 	 */
971 	ret = 0;
972 	smp_mb();
973 	if (waitqueue_active(&ctx->fault_pending_wqh))
974 		ret = EPOLLIN;
975 	else if (waitqueue_active(&ctx->event_wqh))
976 		ret = EPOLLIN;
977 
978 	return ret;
979 }
980 
981 static const struct file_operations userfaultfd_fops;
982 
983 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
984 				  struct inode *inode,
985 				  struct uffd_msg *msg)
986 {
987 	int fd;
988 
989 	fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
990 			O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
991 	if (fd < 0)
992 		return fd;
993 
994 	msg->arg.reserved.reserved1 = 0;
995 	msg->arg.fork.ufd = fd;
996 	return 0;
997 }
998 
999 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1000 				    struct uffd_msg *msg, struct inode *inode)
1001 {
1002 	ssize_t ret;
1003 	DECLARE_WAITQUEUE(wait, current);
1004 	struct userfaultfd_wait_queue *uwq;
1005 	/*
1006 	 * Handling fork event requires sleeping operations, so
1007 	 * we drop the event_wqh lock, then do these ops, then
1008 	 * lock it back and wake up the waiter. While the lock is
1009 	 * dropped the ewq may go away so we keep track of it
1010 	 * carefully.
1011 	 */
1012 	LIST_HEAD(fork_event);
1013 	struct userfaultfd_ctx *fork_nctx = NULL;
1014 
1015 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1016 	spin_lock_irq(&ctx->fd_wqh.lock);
1017 	__add_wait_queue(&ctx->fd_wqh, &wait);
1018 	for (;;) {
1019 		set_current_state(TASK_INTERRUPTIBLE);
1020 		spin_lock(&ctx->fault_pending_wqh.lock);
1021 		uwq = find_userfault(ctx);
1022 		if (uwq) {
1023 			/*
1024 			 * Use a seqcount to repeat the lockless check
1025 			 * in wake_userfault() to avoid missing
1026 			 * wakeups because during the refile both
1027 			 * waitqueue could become empty if this is the
1028 			 * only userfault.
1029 			 */
1030 			write_seqcount_begin(&ctx->refile_seq);
1031 
1032 			/*
1033 			 * The fault_pending_wqh.lock prevents the uwq
1034 			 * to disappear from under us.
1035 			 *
1036 			 * Refile this userfault from
1037 			 * fault_pending_wqh to fault_wqh, it's not
1038 			 * pending anymore after we read it.
1039 			 *
1040 			 * Use list_del() by hand (as
1041 			 * userfaultfd_wake_function also uses
1042 			 * list_del_init() by hand) to be sure nobody
1043 			 * changes __remove_wait_queue() to use
1044 			 * list_del_init() in turn breaking the
1045 			 * !list_empty_careful() check in
1046 			 * handle_userfault(). The uwq->wq.head list
1047 			 * must never be empty at any time during the
1048 			 * refile, or the waitqueue could disappear
1049 			 * from under us. The "wait_queue_head_t"
1050 			 * parameter of __remove_wait_queue() is unused
1051 			 * anyway.
1052 			 */
1053 			list_del(&uwq->wq.entry);
1054 			add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1055 
1056 			write_seqcount_end(&ctx->refile_seq);
1057 
1058 			/* careful to always initialize msg if ret == 0 */
1059 			*msg = uwq->msg;
1060 			spin_unlock(&ctx->fault_pending_wqh.lock);
1061 			ret = 0;
1062 			break;
1063 		}
1064 		spin_unlock(&ctx->fault_pending_wqh.lock);
1065 
1066 		spin_lock(&ctx->event_wqh.lock);
1067 		uwq = find_userfault_evt(ctx);
1068 		if (uwq) {
1069 			*msg = uwq->msg;
1070 
1071 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1072 				fork_nctx = (struct userfaultfd_ctx *)
1073 					(unsigned long)
1074 					uwq->msg.arg.reserved.reserved1;
1075 				list_move(&uwq->wq.entry, &fork_event);
1076 				/*
1077 				 * fork_nctx can be freed as soon as
1078 				 * we drop the lock, unless we take a
1079 				 * reference on it.
1080 				 */
1081 				userfaultfd_ctx_get(fork_nctx);
1082 				spin_unlock(&ctx->event_wqh.lock);
1083 				ret = 0;
1084 				break;
1085 			}
1086 
1087 			userfaultfd_event_complete(ctx, uwq);
1088 			spin_unlock(&ctx->event_wqh.lock);
1089 			ret = 0;
1090 			break;
1091 		}
1092 		spin_unlock(&ctx->event_wqh.lock);
1093 
1094 		if (signal_pending(current)) {
1095 			ret = -ERESTARTSYS;
1096 			break;
1097 		}
1098 		if (no_wait) {
1099 			ret = -EAGAIN;
1100 			break;
1101 		}
1102 		spin_unlock_irq(&ctx->fd_wqh.lock);
1103 		schedule();
1104 		spin_lock_irq(&ctx->fd_wqh.lock);
1105 	}
1106 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1107 	__set_current_state(TASK_RUNNING);
1108 	spin_unlock_irq(&ctx->fd_wqh.lock);
1109 
1110 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1111 		ret = resolve_userfault_fork(fork_nctx, inode, msg);
1112 		spin_lock_irq(&ctx->event_wqh.lock);
1113 		if (!list_empty(&fork_event)) {
1114 			/*
1115 			 * The fork thread didn't abort, so we can
1116 			 * drop the temporary refcount.
1117 			 */
1118 			userfaultfd_ctx_put(fork_nctx);
1119 
1120 			uwq = list_first_entry(&fork_event,
1121 					       typeof(*uwq),
1122 					       wq.entry);
1123 			/*
1124 			 * If fork_event list wasn't empty and in turn
1125 			 * the event wasn't already released by fork
1126 			 * (the event is allocated on fork kernel
1127 			 * stack), put the event back to its place in
1128 			 * the event_wq. fork_event head will be freed
1129 			 * as soon as we return so the event cannot
1130 			 * stay queued there no matter the current
1131 			 * "ret" value.
1132 			 */
1133 			list_del(&uwq->wq.entry);
1134 			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1135 
1136 			/*
1137 			 * Leave the event in the waitqueue and report
1138 			 * error to userland if we failed to resolve
1139 			 * the userfault fork.
1140 			 */
1141 			if (likely(!ret))
1142 				userfaultfd_event_complete(ctx, uwq);
1143 		} else {
1144 			/*
1145 			 * Here the fork thread aborted and the
1146 			 * refcount from the fork thread on fork_nctx
1147 			 * has already been released. We still hold
1148 			 * the reference we took before releasing the
1149 			 * lock above. If resolve_userfault_fork
1150 			 * failed we've to drop it because the
1151 			 * fork_nctx has to be freed in such case. If
1152 			 * it succeeded we'll hold it because the new
1153 			 * uffd references it.
1154 			 */
1155 			if (ret)
1156 				userfaultfd_ctx_put(fork_nctx);
1157 		}
1158 		spin_unlock_irq(&ctx->event_wqh.lock);
1159 	}
1160 
1161 	return ret;
1162 }
1163 
1164 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1165 				size_t count, loff_t *ppos)
1166 {
1167 	struct userfaultfd_ctx *ctx = file->private_data;
1168 	ssize_t _ret, ret = 0;
1169 	struct uffd_msg msg;
1170 	int no_wait = file->f_flags & O_NONBLOCK;
1171 	struct inode *inode = file_inode(file);
1172 
1173 	if (!userfaultfd_is_initialized(ctx))
1174 		return -EINVAL;
1175 
1176 	for (;;) {
1177 		if (count < sizeof(msg))
1178 			return ret ? ret : -EINVAL;
1179 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1180 		if (_ret < 0)
1181 			return ret ? ret : _ret;
1182 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1183 			return ret ? ret : -EFAULT;
1184 		ret += sizeof(msg);
1185 		buf += sizeof(msg);
1186 		count -= sizeof(msg);
1187 		/*
1188 		 * Allow to read more than one fault at time but only
1189 		 * block if waiting for the very first one.
1190 		 */
1191 		no_wait = O_NONBLOCK;
1192 	}
1193 }
1194 
1195 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1196 			     struct userfaultfd_wake_range *range)
1197 {
1198 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
1199 	/* wake all in the range and autoremove */
1200 	if (waitqueue_active(&ctx->fault_pending_wqh))
1201 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1202 				     range);
1203 	if (waitqueue_active(&ctx->fault_wqh))
1204 		__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1205 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1206 }
1207 
1208 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1209 					   struct userfaultfd_wake_range *range)
1210 {
1211 	unsigned seq;
1212 	bool need_wakeup;
1213 
1214 	/*
1215 	 * To be sure waitqueue_active() is not reordered by the CPU
1216 	 * before the pagetable update, use an explicit SMP memory
1217 	 * barrier here. PT lock release or mmap_read_unlock(mm) still
1218 	 * have release semantics that can allow the
1219 	 * waitqueue_active() to be reordered before the pte update.
1220 	 */
1221 	smp_mb();
1222 
1223 	/*
1224 	 * Use waitqueue_active because it's very frequent to
1225 	 * change the address space atomically even if there are no
1226 	 * userfaults yet. So we take the spinlock only when we're
1227 	 * sure we've userfaults to wake.
1228 	 */
1229 	do {
1230 		seq = read_seqcount_begin(&ctx->refile_seq);
1231 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1232 			waitqueue_active(&ctx->fault_wqh);
1233 		cond_resched();
1234 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1235 	if (need_wakeup)
1236 		__wake_userfault(ctx, range);
1237 }
1238 
1239 static __always_inline int validate_range(struct mm_struct *mm,
1240 					  __u64 start, __u64 len)
1241 {
1242 	__u64 task_size = mm->task_size;
1243 
1244 	if (start & ~PAGE_MASK)
1245 		return -EINVAL;
1246 	if (len & ~PAGE_MASK)
1247 		return -EINVAL;
1248 	if (!len)
1249 		return -EINVAL;
1250 	if (start < mmap_min_addr)
1251 		return -EINVAL;
1252 	if (start >= task_size)
1253 		return -EINVAL;
1254 	if (len > task_size - start)
1255 		return -EINVAL;
1256 	return 0;
1257 }
1258 
1259 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1260 				unsigned long arg)
1261 {
1262 	struct mm_struct *mm = ctx->mm;
1263 	struct vm_area_struct *vma, *prev, *cur;
1264 	int ret;
1265 	struct uffdio_register uffdio_register;
1266 	struct uffdio_register __user *user_uffdio_register;
1267 	unsigned long vm_flags, new_flags;
1268 	bool found;
1269 	bool basic_ioctls;
1270 	unsigned long start, end, vma_end;
1271 
1272 	user_uffdio_register = (struct uffdio_register __user *) arg;
1273 
1274 	ret = -EFAULT;
1275 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1276 			   sizeof(uffdio_register)-sizeof(__u64)))
1277 		goto out;
1278 
1279 	ret = -EINVAL;
1280 	if (!uffdio_register.mode)
1281 		goto out;
1282 	if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1283 		goto out;
1284 	vm_flags = 0;
1285 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1286 		vm_flags |= VM_UFFD_MISSING;
1287 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1288 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1289 		goto out;
1290 #endif
1291 		vm_flags |= VM_UFFD_WP;
1292 	}
1293 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1294 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1295 		goto out;
1296 #endif
1297 		vm_flags |= VM_UFFD_MINOR;
1298 	}
1299 
1300 	ret = validate_range(mm, uffdio_register.range.start,
1301 			     uffdio_register.range.len);
1302 	if (ret)
1303 		goto out;
1304 
1305 	start = uffdio_register.range.start;
1306 	end = start + uffdio_register.range.len;
1307 
1308 	ret = -ENOMEM;
1309 	if (!mmget_not_zero(mm))
1310 		goto out;
1311 
1312 	mmap_write_lock(mm);
1313 	vma = find_vma_prev(mm, start, &prev);
1314 	if (!vma)
1315 		goto out_unlock;
1316 
1317 	/* check that there's at least one vma in the range */
1318 	ret = -EINVAL;
1319 	if (vma->vm_start >= end)
1320 		goto out_unlock;
1321 
1322 	/*
1323 	 * If the first vma contains huge pages, make sure start address
1324 	 * is aligned to huge page size.
1325 	 */
1326 	if (is_vm_hugetlb_page(vma)) {
1327 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1328 
1329 		if (start & (vma_hpagesize - 1))
1330 			goto out_unlock;
1331 	}
1332 
1333 	/*
1334 	 * Search for not compatible vmas.
1335 	 */
1336 	found = false;
1337 	basic_ioctls = false;
1338 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1339 		cond_resched();
1340 
1341 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1342 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1343 
1344 		/* check not compatible vmas */
1345 		ret = -EINVAL;
1346 		if (!vma_can_userfault(cur, vm_flags))
1347 			goto out_unlock;
1348 
1349 		/*
1350 		 * UFFDIO_COPY will fill file holes even without
1351 		 * PROT_WRITE. This check enforces that if this is a
1352 		 * MAP_SHARED, the process has write permission to the backing
1353 		 * file. If VM_MAYWRITE is set it also enforces that on a
1354 		 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1355 		 * F_WRITE_SEAL can be taken until the vma is destroyed.
1356 		 */
1357 		ret = -EPERM;
1358 		if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1359 			goto out_unlock;
1360 
1361 		/*
1362 		 * If this vma contains ending address, and huge pages
1363 		 * check alignment.
1364 		 */
1365 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1366 		    end > cur->vm_start) {
1367 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1368 
1369 			ret = -EINVAL;
1370 
1371 			if (end & (vma_hpagesize - 1))
1372 				goto out_unlock;
1373 		}
1374 		if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1375 			goto out_unlock;
1376 
1377 		/*
1378 		 * Check that this vma isn't already owned by a
1379 		 * different userfaultfd. We can't allow more than one
1380 		 * userfaultfd to own a single vma simultaneously or we
1381 		 * wouldn't know which one to deliver the userfaults to.
1382 		 */
1383 		ret = -EBUSY;
1384 		if (cur->vm_userfaultfd_ctx.ctx &&
1385 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1386 			goto out_unlock;
1387 
1388 		/*
1389 		 * Note vmas containing huge pages
1390 		 */
1391 		if (is_vm_hugetlb_page(cur))
1392 			basic_ioctls = true;
1393 
1394 		found = true;
1395 	}
1396 	BUG_ON(!found);
1397 
1398 	if (vma->vm_start < start)
1399 		prev = vma;
1400 
1401 	ret = 0;
1402 	do {
1403 		cond_resched();
1404 
1405 		BUG_ON(!vma_can_userfault(vma, vm_flags));
1406 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1407 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1408 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1409 
1410 		/*
1411 		 * Nothing to do: this vma is already registered into this
1412 		 * userfaultfd and with the right tracking mode too.
1413 		 */
1414 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1415 		    (vma->vm_flags & vm_flags) == vm_flags)
1416 			goto skip;
1417 
1418 		if (vma->vm_start > start)
1419 			start = vma->vm_start;
1420 		vma_end = min(end, vma->vm_end);
1421 
1422 		new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1423 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1424 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1425 				 vma_policy(vma),
1426 				 ((struct vm_userfaultfd_ctx){ ctx }),
1427 				 anon_vma_name(vma));
1428 		if (prev) {
1429 			vma = prev;
1430 			goto next;
1431 		}
1432 		if (vma->vm_start < start) {
1433 			ret = split_vma(mm, vma, start, 1);
1434 			if (ret)
1435 				break;
1436 		}
1437 		if (vma->vm_end > end) {
1438 			ret = split_vma(mm, vma, end, 0);
1439 			if (ret)
1440 				break;
1441 		}
1442 	next:
1443 		/*
1444 		 * In the vma_merge() successful mprotect-like case 8:
1445 		 * the next vma was merged into the current one and
1446 		 * the current one has not been updated yet.
1447 		 */
1448 		vma->vm_flags = new_flags;
1449 		vma->vm_userfaultfd_ctx.ctx = ctx;
1450 
1451 		if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1452 			hugetlb_unshare_all_pmds(vma);
1453 
1454 	skip:
1455 		prev = vma;
1456 		start = vma->vm_end;
1457 		vma = vma->vm_next;
1458 	} while (vma && vma->vm_start < end);
1459 out_unlock:
1460 	mmap_write_unlock(mm);
1461 	mmput(mm);
1462 	if (!ret) {
1463 		__u64 ioctls_out;
1464 
1465 		ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1466 		    UFFD_API_RANGE_IOCTLS;
1467 
1468 		/*
1469 		 * Declare the WP ioctl only if the WP mode is
1470 		 * specified and all checks passed with the range
1471 		 */
1472 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1473 			ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1474 
1475 		/* CONTINUE ioctl is only supported for MINOR ranges. */
1476 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1477 			ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1478 
1479 		/*
1480 		 * Now that we scanned all vmas we can already tell
1481 		 * userland which ioctls methods are guaranteed to
1482 		 * succeed on this range.
1483 		 */
1484 		if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1485 			ret = -EFAULT;
1486 	}
1487 out:
1488 	return ret;
1489 }
1490 
1491 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1492 				  unsigned long arg)
1493 {
1494 	struct mm_struct *mm = ctx->mm;
1495 	struct vm_area_struct *vma, *prev, *cur;
1496 	int ret;
1497 	struct uffdio_range uffdio_unregister;
1498 	unsigned long new_flags;
1499 	bool found;
1500 	unsigned long start, end, vma_end;
1501 	const void __user *buf = (void __user *)arg;
1502 
1503 	ret = -EFAULT;
1504 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1505 		goto out;
1506 
1507 	ret = validate_range(mm, uffdio_unregister.start,
1508 			     uffdio_unregister.len);
1509 	if (ret)
1510 		goto out;
1511 
1512 	start = uffdio_unregister.start;
1513 	end = start + uffdio_unregister.len;
1514 
1515 	ret = -ENOMEM;
1516 	if (!mmget_not_zero(mm))
1517 		goto out;
1518 
1519 	mmap_write_lock(mm);
1520 	vma = find_vma_prev(mm, start, &prev);
1521 	if (!vma)
1522 		goto out_unlock;
1523 
1524 	/* check that there's at least one vma in the range */
1525 	ret = -EINVAL;
1526 	if (vma->vm_start >= end)
1527 		goto out_unlock;
1528 
1529 	/*
1530 	 * If the first vma contains huge pages, make sure start address
1531 	 * is aligned to huge page size.
1532 	 */
1533 	if (is_vm_hugetlb_page(vma)) {
1534 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1535 
1536 		if (start & (vma_hpagesize - 1))
1537 			goto out_unlock;
1538 	}
1539 
1540 	/*
1541 	 * Search for not compatible vmas.
1542 	 */
1543 	found = false;
1544 	ret = -EINVAL;
1545 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1546 		cond_resched();
1547 
1548 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1549 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1550 
1551 		/*
1552 		 * Check not compatible vmas, not strictly required
1553 		 * here as not compatible vmas cannot have an
1554 		 * userfaultfd_ctx registered on them, but this
1555 		 * provides for more strict behavior to notice
1556 		 * unregistration errors.
1557 		 */
1558 		if (!vma_can_userfault(cur, cur->vm_flags))
1559 			goto out_unlock;
1560 
1561 		found = true;
1562 	}
1563 	BUG_ON(!found);
1564 
1565 	if (vma->vm_start < start)
1566 		prev = vma;
1567 
1568 	ret = 0;
1569 	do {
1570 		cond_resched();
1571 
1572 		BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1573 
1574 		/*
1575 		 * Nothing to do: this vma is already registered into this
1576 		 * userfaultfd and with the right tracking mode too.
1577 		 */
1578 		if (!vma->vm_userfaultfd_ctx.ctx)
1579 			goto skip;
1580 
1581 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1582 
1583 		if (vma->vm_start > start)
1584 			start = vma->vm_start;
1585 		vma_end = min(end, vma->vm_end);
1586 
1587 		if (userfaultfd_missing(vma)) {
1588 			/*
1589 			 * Wake any concurrent pending userfault while
1590 			 * we unregister, so they will not hang
1591 			 * permanently and it avoids userland to call
1592 			 * UFFDIO_WAKE explicitly.
1593 			 */
1594 			struct userfaultfd_wake_range range;
1595 			range.start = start;
1596 			range.len = vma_end - start;
1597 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1598 		}
1599 
1600 		/* Reset ptes for the whole vma range if wr-protected */
1601 		if (userfaultfd_wp(vma))
1602 			uffd_wp_range(mm, vma, start, vma_end - start, false);
1603 
1604 		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1605 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1606 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1607 				 vma_policy(vma),
1608 				 NULL_VM_UFFD_CTX, anon_vma_name(vma));
1609 		if (prev) {
1610 			vma = prev;
1611 			goto next;
1612 		}
1613 		if (vma->vm_start < start) {
1614 			ret = split_vma(mm, vma, start, 1);
1615 			if (ret)
1616 				break;
1617 		}
1618 		if (vma->vm_end > end) {
1619 			ret = split_vma(mm, vma, end, 0);
1620 			if (ret)
1621 				break;
1622 		}
1623 	next:
1624 		/*
1625 		 * In the vma_merge() successful mprotect-like case 8:
1626 		 * the next vma was merged into the current one and
1627 		 * the current one has not been updated yet.
1628 		 */
1629 		vma->vm_flags = new_flags;
1630 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1631 
1632 	skip:
1633 		prev = vma;
1634 		start = vma->vm_end;
1635 		vma = vma->vm_next;
1636 	} while (vma && vma->vm_start < end);
1637 out_unlock:
1638 	mmap_write_unlock(mm);
1639 	mmput(mm);
1640 out:
1641 	return ret;
1642 }
1643 
1644 /*
1645  * userfaultfd_wake may be used in combination with the
1646  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1647  */
1648 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1649 			    unsigned long arg)
1650 {
1651 	int ret;
1652 	struct uffdio_range uffdio_wake;
1653 	struct userfaultfd_wake_range range;
1654 	const void __user *buf = (void __user *)arg;
1655 
1656 	ret = -EFAULT;
1657 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1658 		goto out;
1659 
1660 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1661 	if (ret)
1662 		goto out;
1663 
1664 	range.start = uffdio_wake.start;
1665 	range.len = uffdio_wake.len;
1666 
1667 	/*
1668 	 * len == 0 means wake all and we don't want to wake all here,
1669 	 * so check it again to be sure.
1670 	 */
1671 	VM_BUG_ON(!range.len);
1672 
1673 	wake_userfault(ctx, &range);
1674 	ret = 0;
1675 
1676 out:
1677 	return ret;
1678 }
1679 
1680 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1681 			    unsigned long arg)
1682 {
1683 	__s64 ret;
1684 	struct uffdio_copy uffdio_copy;
1685 	struct uffdio_copy __user *user_uffdio_copy;
1686 	struct userfaultfd_wake_range range;
1687 
1688 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1689 
1690 	ret = -EAGAIN;
1691 	if (atomic_read(&ctx->mmap_changing))
1692 		goto out;
1693 
1694 	ret = -EFAULT;
1695 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1696 			   /* don't copy "copy" last field */
1697 			   sizeof(uffdio_copy)-sizeof(__s64)))
1698 		goto out;
1699 
1700 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1701 	if (ret)
1702 		goto out;
1703 	/*
1704 	 * double check for wraparound just in case. copy_from_user()
1705 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1706 	 * in the userland range.
1707 	 */
1708 	ret = -EINVAL;
1709 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1710 		goto out;
1711 	if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1712 		goto out;
1713 	if (mmget_not_zero(ctx->mm)) {
1714 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1715 				   uffdio_copy.len, &ctx->mmap_changing,
1716 				   uffdio_copy.mode);
1717 		mmput(ctx->mm);
1718 	} else {
1719 		return -ESRCH;
1720 	}
1721 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1722 		return -EFAULT;
1723 	if (ret < 0)
1724 		goto out;
1725 	BUG_ON(!ret);
1726 	/* len == 0 would wake all */
1727 	range.len = ret;
1728 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1729 		range.start = uffdio_copy.dst;
1730 		wake_userfault(ctx, &range);
1731 	}
1732 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1733 out:
1734 	return ret;
1735 }
1736 
1737 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1738 				unsigned long arg)
1739 {
1740 	__s64 ret;
1741 	struct uffdio_zeropage uffdio_zeropage;
1742 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1743 	struct userfaultfd_wake_range range;
1744 
1745 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1746 
1747 	ret = -EAGAIN;
1748 	if (atomic_read(&ctx->mmap_changing))
1749 		goto out;
1750 
1751 	ret = -EFAULT;
1752 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1753 			   /* don't copy "zeropage" last field */
1754 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1755 		goto out;
1756 
1757 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1758 			     uffdio_zeropage.range.len);
1759 	if (ret)
1760 		goto out;
1761 	ret = -EINVAL;
1762 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1763 		goto out;
1764 
1765 	if (mmget_not_zero(ctx->mm)) {
1766 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1767 				     uffdio_zeropage.range.len,
1768 				     &ctx->mmap_changing);
1769 		mmput(ctx->mm);
1770 	} else {
1771 		return -ESRCH;
1772 	}
1773 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1774 		return -EFAULT;
1775 	if (ret < 0)
1776 		goto out;
1777 	/* len == 0 would wake all */
1778 	BUG_ON(!ret);
1779 	range.len = ret;
1780 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1781 		range.start = uffdio_zeropage.range.start;
1782 		wake_userfault(ctx, &range);
1783 	}
1784 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1785 out:
1786 	return ret;
1787 }
1788 
1789 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1790 				    unsigned long arg)
1791 {
1792 	int ret;
1793 	struct uffdio_writeprotect uffdio_wp;
1794 	struct uffdio_writeprotect __user *user_uffdio_wp;
1795 	struct userfaultfd_wake_range range;
1796 	bool mode_wp, mode_dontwake;
1797 
1798 	if (atomic_read(&ctx->mmap_changing))
1799 		return -EAGAIN;
1800 
1801 	user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1802 
1803 	if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1804 			   sizeof(struct uffdio_writeprotect)))
1805 		return -EFAULT;
1806 
1807 	ret = validate_range(ctx->mm, uffdio_wp.range.start,
1808 			     uffdio_wp.range.len);
1809 	if (ret)
1810 		return ret;
1811 
1812 	if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1813 			       UFFDIO_WRITEPROTECT_MODE_WP))
1814 		return -EINVAL;
1815 
1816 	mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1817 	mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1818 
1819 	if (mode_wp && mode_dontwake)
1820 		return -EINVAL;
1821 
1822 	if (mmget_not_zero(ctx->mm)) {
1823 		ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1824 					  uffdio_wp.range.len, mode_wp,
1825 					  &ctx->mmap_changing);
1826 		mmput(ctx->mm);
1827 	} else {
1828 		return -ESRCH;
1829 	}
1830 
1831 	if (ret)
1832 		return ret;
1833 
1834 	if (!mode_wp && !mode_dontwake) {
1835 		range.start = uffdio_wp.range.start;
1836 		range.len = uffdio_wp.range.len;
1837 		wake_userfault(ctx, &range);
1838 	}
1839 	return ret;
1840 }
1841 
1842 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1843 {
1844 	__s64 ret;
1845 	struct uffdio_continue uffdio_continue;
1846 	struct uffdio_continue __user *user_uffdio_continue;
1847 	struct userfaultfd_wake_range range;
1848 
1849 	user_uffdio_continue = (struct uffdio_continue __user *)arg;
1850 
1851 	ret = -EAGAIN;
1852 	if (atomic_read(&ctx->mmap_changing))
1853 		goto out;
1854 
1855 	ret = -EFAULT;
1856 	if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1857 			   /* don't copy the output fields */
1858 			   sizeof(uffdio_continue) - (sizeof(__s64))))
1859 		goto out;
1860 
1861 	ret = validate_range(ctx->mm, uffdio_continue.range.start,
1862 			     uffdio_continue.range.len);
1863 	if (ret)
1864 		goto out;
1865 
1866 	ret = -EINVAL;
1867 	/* double check for wraparound just in case. */
1868 	if (uffdio_continue.range.start + uffdio_continue.range.len <=
1869 	    uffdio_continue.range.start) {
1870 		goto out;
1871 	}
1872 	if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE)
1873 		goto out;
1874 
1875 	if (mmget_not_zero(ctx->mm)) {
1876 		ret = mcopy_continue(ctx->mm, uffdio_continue.range.start,
1877 				     uffdio_continue.range.len,
1878 				     &ctx->mmap_changing);
1879 		mmput(ctx->mm);
1880 	} else {
1881 		return -ESRCH;
1882 	}
1883 
1884 	if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1885 		return -EFAULT;
1886 	if (ret < 0)
1887 		goto out;
1888 
1889 	/* len == 0 would wake all */
1890 	BUG_ON(!ret);
1891 	range.len = ret;
1892 	if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1893 		range.start = uffdio_continue.range.start;
1894 		wake_userfault(ctx, &range);
1895 	}
1896 	ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1897 
1898 out:
1899 	return ret;
1900 }
1901 
1902 static inline unsigned int uffd_ctx_features(__u64 user_features)
1903 {
1904 	/*
1905 	 * For the current set of features the bits just coincide. Set
1906 	 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1907 	 */
1908 	return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1909 }
1910 
1911 /*
1912  * userland asks for a certain API version and we return which bits
1913  * and ioctl commands are implemented in this kernel for such API
1914  * version or -EINVAL if unknown.
1915  */
1916 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1917 			   unsigned long arg)
1918 {
1919 	struct uffdio_api uffdio_api;
1920 	void __user *buf = (void __user *)arg;
1921 	unsigned int ctx_features;
1922 	int ret;
1923 	__u64 features;
1924 
1925 	ret = -EFAULT;
1926 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1927 		goto out;
1928 	/* Ignore unsupported features (userspace built against newer kernel) */
1929 	features = uffdio_api.features & UFFD_API_FEATURES;
1930 	ret = -EPERM;
1931 	if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1932 		goto err_out;
1933 	/* report all available features and ioctls to userland */
1934 	uffdio_api.features = UFFD_API_FEATURES;
1935 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1936 	uffdio_api.features &=
1937 		~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
1938 #endif
1939 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1940 	uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
1941 #endif
1942 #ifndef CONFIG_PTE_MARKER_UFFD_WP
1943 	uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
1944 #endif
1945 	uffdio_api.ioctls = UFFD_API_IOCTLS;
1946 	ret = -EFAULT;
1947 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1948 		goto out;
1949 
1950 	/* only enable the requested features for this uffd context */
1951 	ctx_features = uffd_ctx_features(features);
1952 	ret = -EINVAL;
1953 	if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
1954 		goto err_out;
1955 
1956 	ret = 0;
1957 out:
1958 	return ret;
1959 err_out:
1960 	memset(&uffdio_api, 0, sizeof(uffdio_api));
1961 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1962 		ret = -EFAULT;
1963 	goto out;
1964 }
1965 
1966 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1967 			      unsigned long arg)
1968 {
1969 	int ret = -EINVAL;
1970 	struct userfaultfd_ctx *ctx = file->private_data;
1971 
1972 	if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
1973 		return -EINVAL;
1974 
1975 	switch(cmd) {
1976 	case UFFDIO_API:
1977 		ret = userfaultfd_api(ctx, arg);
1978 		break;
1979 	case UFFDIO_REGISTER:
1980 		ret = userfaultfd_register(ctx, arg);
1981 		break;
1982 	case UFFDIO_UNREGISTER:
1983 		ret = userfaultfd_unregister(ctx, arg);
1984 		break;
1985 	case UFFDIO_WAKE:
1986 		ret = userfaultfd_wake(ctx, arg);
1987 		break;
1988 	case UFFDIO_COPY:
1989 		ret = userfaultfd_copy(ctx, arg);
1990 		break;
1991 	case UFFDIO_ZEROPAGE:
1992 		ret = userfaultfd_zeropage(ctx, arg);
1993 		break;
1994 	case UFFDIO_WRITEPROTECT:
1995 		ret = userfaultfd_writeprotect(ctx, arg);
1996 		break;
1997 	case UFFDIO_CONTINUE:
1998 		ret = userfaultfd_continue(ctx, arg);
1999 		break;
2000 	}
2001 	return ret;
2002 }
2003 
2004 #ifdef CONFIG_PROC_FS
2005 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2006 {
2007 	struct userfaultfd_ctx *ctx = f->private_data;
2008 	wait_queue_entry_t *wq;
2009 	unsigned long pending = 0, total = 0;
2010 
2011 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
2012 	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2013 		pending++;
2014 		total++;
2015 	}
2016 	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2017 		total++;
2018 	}
2019 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2020 
2021 	/*
2022 	 * If more protocols will be added, there will be all shown
2023 	 * separated by a space. Like this:
2024 	 *	protocols: aa:... bb:...
2025 	 */
2026 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2027 		   pending, total, UFFD_API, ctx->features,
2028 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2029 }
2030 #endif
2031 
2032 static const struct file_operations userfaultfd_fops = {
2033 #ifdef CONFIG_PROC_FS
2034 	.show_fdinfo	= userfaultfd_show_fdinfo,
2035 #endif
2036 	.release	= userfaultfd_release,
2037 	.poll		= userfaultfd_poll,
2038 	.read		= userfaultfd_read,
2039 	.unlocked_ioctl = userfaultfd_ioctl,
2040 	.compat_ioctl	= compat_ptr_ioctl,
2041 	.llseek		= noop_llseek,
2042 };
2043 
2044 static void init_once_userfaultfd_ctx(void *mem)
2045 {
2046 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2047 
2048 	init_waitqueue_head(&ctx->fault_pending_wqh);
2049 	init_waitqueue_head(&ctx->fault_wqh);
2050 	init_waitqueue_head(&ctx->event_wqh);
2051 	init_waitqueue_head(&ctx->fd_wqh);
2052 	seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2053 }
2054 
2055 static int new_userfaultfd(int flags)
2056 {
2057 	struct userfaultfd_ctx *ctx;
2058 	int fd;
2059 
2060 	BUG_ON(!current->mm);
2061 
2062 	/* Check the UFFD_* constants for consistency.  */
2063 	BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2064 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2065 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2066 
2067 	if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2068 		return -EINVAL;
2069 
2070 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2071 	if (!ctx)
2072 		return -ENOMEM;
2073 
2074 	refcount_set(&ctx->refcount, 1);
2075 	ctx->flags = flags;
2076 	ctx->features = 0;
2077 	ctx->released = false;
2078 	atomic_set(&ctx->mmap_changing, 0);
2079 	ctx->mm = current->mm;
2080 	/* prevent the mm struct to be freed */
2081 	mmgrab(ctx->mm);
2082 
2083 	fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2084 			O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2085 	if (fd < 0) {
2086 		mmdrop(ctx->mm);
2087 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2088 	}
2089 	return fd;
2090 }
2091 
2092 static inline bool userfaultfd_syscall_allowed(int flags)
2093 {
2094 	/* Userspace-only page faults are always allowed */
2095 	if (flags & UFFD_USER_MODE_ONLY)
2096 		return true;
2097 
2098 	/*
2099 	 * The user is requesting a userfaultfd which can handle kernel faults.
2100 	 * Privileged users are always allowed to do this.
2101 	 */
2102 	if (capable(CAP_SYS_PTRACE))
2103 		return true;
2104 
2105 	/* Otherwise, access to kernel fault handling is sysctl controlled. */
2106 	return sysctl_unprivileged_userfaultfd;
2107 }
2108 
2109 SYSCALL_DEFINE1(userfaultfd, int, flags)
2110 {
2111 	if (!userfaultfd_syscall_allowed(flags))
2112 		return -EPERM;
2113 
2114 	return new_userfaultfd(flags);
2115 }
2116 
2117 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2118 {
2119 	if (cmd != USERFAULTFD_IOC_NEW)
2120 		return -EINVAL;
2121 
2122 	return new_userfaultfd(flags);
2123 }
2124 
2125 static const struct file_operations userfaultfd_dev_fops = {
2126 	.unlocked_ioctl = userfaultfd_dev_ioctl,
2127 	.compat_ioctl = userfaultfd_dev_ioctl,
2128 	.owner = THIS_MODULE,
2129 	.llseek = noop_llseek,
2130 };
2131 
2132 static struct miscdevice userfaultfd_misc = {
2133 	.minor = MISC_DYNAMIC_MINOR,
2134 	.name = "userfaultfd",
2135 	.fops = &userfaultfd_dev_fops
2136 };
2137 
2138 static int __init userfaultfd_init(void)
2139 {
2140 	int ret;
2141 
2142 	ret = misc_register(&userfaultfd_misc);
2143 	if (ret)
2144 		return ret;
2145 
2146 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2147 						sizeof(struct userfaultfd_ctx),
2148 						0,
2149 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2150 						init_once_userfaultfd_ctx);
2151 	return 0;
2152 }
2153 __initcall(userfaultfd_init);
2154