1 /* 2 * fs/userfaultfd.c 3 * 4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 5 * Copyright (C) 2008-2009 Red Hat, Inc. 6 * Copyright (C) 2015 Red Hat, Inc. 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2. See 9 * the COPYING file in the top-level directory. 10 * 11 * Some part derived from fs/eventfd.c (anon inode setup) and 12 * mm/ksm.c (mm hashing). 13 */ 14 15 #include <linux/hashtable.h> 16 #include <linux/sched.h> 17 #include <linux/mm.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/seq_file.h> 21 #include <linux/file.h> 22 #include <linux/bug.h> 23 #include <linux/anon_inodes.h> 24 #include <linux/syscalls.h> 25 #include <linux/userfaultfd_k.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ioctl.h> 28 #include <linux/security.h> 29 30 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 31 32 enum userfaultfd_state { 33 UFFD_STATE_WAIT_API, 34 UFFD_STATE_RUNNING, 35 }; 36 37 /* 38 * Start with fault_pending_wqh and fault_wqh so they're more likely 39 * to be in the same cacheline. 40 */ 41 struct userfaultfd_ctx { 42 /* waitqueue head for the pending (i.e. not read) userfaults */ 43 wait_queue_head_t fault_pending_wqh; 44 /* waitqueue head for the userfaults */ 45 wait_queue_head_t fault_wqh; 46 /* waitqueue head for the pseudo fd to wakeup poll/read */ 47 wait_queue_head_t fd_wqh; 48 /* a refile sequence protected by fault_pending_wqh lock */ 49 struct seqcount refile_seq; 50 /* pseudo fd refcounting */ 51 atomic_t refcount; 52 /* userfaultfd syscall flags */ 53 unsigned int flags; 54 /* state machine */ 55 enum userfaultfd_state state; 56 /* released */ 57 bool released; 58 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 59 struct mm_struct *mm; 60 }; 61 62 struct userfaultfd_wait_queue { 63 struct uffd_msg msg; 64 wait_queue_t wq; 65 struct userfaultfd_ctx *ctx; 66 bool waken; 67 }; 68 69 struct userfaultfd_wake_range { 70 unsigned long start; 71 unsigned long len; 72 }; 73 74 static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode, 75 int wake_flags, void *key) 76 { 77 struct userfaultfd_wake_range *range = key; 78 int ret; 79 struct userfaultfd_wait_queue *uwq; 80 unsigned long start, len; 81 82 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 83 ret = 0; 84 /* len == 0 means wake all */ 85 start = range->start; 86 len = range->len; 87 if (len && (start > uwq->msg.arg.pagefault.address || 88 start + len <= uwq->msg.arg.pagefault.address)) 89 goto out; 90 WRITE_ONCE(uwq->waken, true); 91 /* 92 * The implicit smp_mb__before_spinlock in try_to_wake_up() 93 * renders uwq->waken visible to other CPUs before the task is 94 * waken. 95 */ 96 ret = wake_up_state(wq->private, mode); 97 if (ret) 98 /* 99 * Wake only once, autoremove behavior. 100 * 101 * After the effect of list_del_init is visible to the 102 * other CPUs, the waitqueue may disappear from under 103 * us, see the !list_empty_careful() in 104 * handle_userfault(). try_to_wake_up() has an 105 * implicit smp_mb__before_spinlock, and the 106 * wq->private is read before calling the extern 107 * function "wake_up_state" (which in turns calls 108 * try_to_wake_up). While the spin_lock;spin_unlock; 109 * wouldn't be enough, the smp_mb__before_spinlock is 110 * enough to avoid an explicit smp_mb() here. 111 */ 112 list_del_init(&wq->task_list); 113 out: 114 return ret; 115 } 116 117 /** 118 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 119 * context. 120 * @ctx: [in] Pointer to the userfaultfd context. 121 * 122 * Returns: In case of success, returns not zero. 123 */ 124 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 125 { 126 if (!atomic_inc_not_zero(&ctx->refcount)) 127 BUG(); 128 } 129 130 /** 131 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 132 * context. 133 * @ctx: [in] Pointer to userfaultfd context. 134 * 135 * The userfaultfd context reference must have been previously acquired either 136 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 137 */ 138 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 139 { 140 if (atomic_dec_and_test(&ctx->refcount)) { 141 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 142 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 143 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 144 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 145 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 146 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 147 mmdrop(ctx->mm); 148 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 149 } 150 } 151 152 static inline void msg_init(struct uffd_msg *msg) 153 { 154 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 155 /* 156 * Must use memset to zero out the paddings or kernel data is 157 * leaked to userland. 158 */ 159 memset(msg, 0, sizeof(struct uffd_msg)); 160 } 161 162 static inline struct uffd_msg userfault_msg(unsigned long address, 163 unsigned int flags, 164 unsigned long reason) 165 { 166 struct uffd_msg msg; 167 msg_init(&msg); 168 msg.event = UFFD_EVENT_PAGEFAULT; 169 msg.arg.pagefault.address = address; 170 if (flags & FAULT_FLAG_WRITE) 171 /* 172 * If UFFD_FEATURE_PAGEFAULT_FLAG_WRITE was set in the 173 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE 174 * was not set in a UFFD_EVENT_PAGEFAULT, it means it 175 * was a read fault, otherwise if set it means it's 176 * a write fault. 177 */ 178 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 179 if (reason & VM_UFFD_WP) 180 /* 181 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 182 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was 183 * not set in a UFFD_EVENT_PAGEFAULT, it means it was 184 * a missing fault, otherwise if set it means it's a 185 * write protect fault. 186 */ 187 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 188 return msg; 189 } 190 191 /* 192 * Verify the pagetables are still not ok after having reigstered into 193 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 194 * userfault that has already been resolved, if userfaultfd_read and 195 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 196 * threads. 197 */ 198 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 199 unsigned long address, 200 unsigned long flags, 201 unsigned long reason) 202 { 203 struct mm_struct *mm = ctx->mm; 204 pgd_t *pgd; 205 pud_t *pud; 206 pmd_t *pmd, _pmd; 207 pte_t *pte; 208 bool ret = true; 209 210 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 211 212 pgd = pgd_offset(mm, address); 213 if (!pgd_present(*pgd)) 214 goto out; 215 pud = pud_offset(pgd, address); 216 if (!pud_present(*pud)) 217 goto out; 218 pmd = pmd_offset(pud, address); 219 /* 220 * READ_ONCE must function as a barrier with narrower scope 221 * and it must be equivalent to: 222 * _pmd = *pmd; barrier(); 223 * 224 * This is to deal with the instability (as in 225 * pmd_trans_unstable) of the pmd. 226 */ 227 _pmd = READ_ONCE(*pmd); 228 if (!pmd_present(_pmd)) 229 goto out; 230 231 ret = false; 232 if (pmd_trans_huge(_pmd)) 233 goto out; 234 235 /* 236 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 237 * and use the standard pte_offset_map() instead of parsing _pmd. 238 */ 239 pte = pte_offset_map(pmd, address); 240 /* 241 * Lockless access: we're in a wait_event so it's ok if it 242 * changes under us. 243 */ 244 if (pte_none(*pte)) 245 ret = true; 246 pte_unmap(pte); 247 248 out: 249 return ret; 250 } 251 252 /* 253 * The locking rules involved in returning VM_FAULT_RETRY depending on 254 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 255 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 256 * recommendation in __lock_page_or_retry is not an understatement. 257 * 258 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released 259 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 260 * not set. 261 * 262 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 263 * set, VM_FAULT_RETRY can still be returned if and only if there are 264 * fatal_signal_pending()s, and the mmap_sem must be released before 265 * returning it. 266 */ 267 int handle_userfault(struct vm_fault *vmf, unsigned long reason) 268 { 269 struct mm_struct *mm = vmf->vma->vm_mm; 270 struct userfaultfd_ctx *ctx; 271 struct userfaultfd_wait_queue uwq; 272 int ret; 273 bool must_wait, return_to_userland; 274 long blocking_state; 275 276 BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 277 278 ret = VM_FAULT_SIGBUS; 279 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 280 if (!ctx) 281 goto out; 282 283 BUG_ON(ctx->mm != mm); 284 285 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); 286 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); 287 288 /* 289 * If it's already released don't get it. This avoids to loop 290 * in __get_user_pages if userfaultfd_release waits on the 291 * caller of handle_userfault to release the mmap_sem. 292 */ 293 if (unlikely(ACCESS_ONCE(ctx->released))) 294 goto out; 295 296 /* 297 * We don't do userfault handling for the final child pid update. 298 */ 299 if (current->flags & PF_EXITING) 300 goto out; 301 302 /* 303 * Check that we can return VM_FAULT_RETRY. 304 * 305 * NOTE: it should become possible to return VM_FAULT_RETRY 306 * even if FAULT_FLAG_TRIED is set without leading to gup() 307 * -EBUSY failures, if the userfaultfd is to be extended for 308 * VM_UFFD_WP tracking and we intend to arm the userfault 309 * without first stopping userland access to the memory. For 310 * VM_UFFD_MISSING userfaults this is enough for now. 311 */ 312 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 313 /* 314 * Validate the invariant that nowait must allow retry 315 * to be sure not to return SIGBUS erroneously on 316 * nowait invocations. 317 */ 318 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 319 #ifdef CONFIG_DEBUG_VM 320 if (printk_ratelimit()) { 321 printk(KERN_WARNING 322 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 323 vmf->flags); 324 dump_stack(); 325 } 326 #endif 327 goto out; 328 } 329 330 /* 331 * Handle nowait, not much to do other than tell it to retry 332 * and wait. 333 */ 334 ret = VM_FAULT_RETRY; 335 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 336 goto out; 337 338 /* take the reference before dropping the mmap_sem */ 339 userfaultfd_ctx_get(ctx); 340 341 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 342 uwq.wq.private = current; 343 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason); 344 uwq.ctx = ctx; 345 uwq.waken = false; 346 347 return_to_userland = 348 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) == 349 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE); 350 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE : 351 TASK_KILLABLE; 352 353 spin_lock(&ctx->fault_pending_wqh.lock); 354 /* 355 * After the __add_wait_queue the uwq is visible to userland 356 * through poll/read(). 357 */ 358 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 359 /* 360 * The smp_mb() after __set_current_state prevents the reads 361 * following the spin_unlock to happen before the list_add in 362 * __add_wait_queue. 363 */ 364 set_current_state(blocking_state); 365 spin_unlock(&ctx->fault_pending_wqh.lock); 366 367 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 368 reason); 369 up_read(&mm->mmap_sem); 370 371 if (likely(must_wait && !ACCESS_ONCE(ctx->released) && 372 (return_to_userland ? !signal_pending(current) : 373 !fatal_signal_pending(current)))) { 374 wake_up_poll(&ctx->fd_wqh, POLLIN); 375 schedule(); 376 ret |= VM_FAULT_MAJOR; 377 378 /* 379 * False wakeups can orginate even from rwsem before 380 * up_read() however userfaults will wait either for a 381 * targeted wakeup on the specific uwq waitqueue from 382 * wake_userfault() or for signals or for uffd 383 * release. 384 */ 385 while (!READ_ONCE(uwq.waken)) { 386 /* 387 * This needs the full smp_store_mb() 388 * guarantee as the state write must be 389 * visible to other CPUs before reading 390 * uwq.waken from other CPUs. 391 */ 392 set_current_state(blocking_state); 393 if (READ_ONCE(uwq.waken) || 394 READ_ONCE(ctx->released) || 395 (return_to_userland ? signal_pending(current) : 396 fatal_signal_pending(current))) 397 break; 398 schedule(); 399 } 400 } 401 402 __set_current_state(TASK_RUNNING); 403 404 if (return_to_userland) { 405 if (signal_pending(current) && 406 !fatal_signal_pending(current)) { 407 /* 408 * If we got a SIGSTOP or SIGCONT and this is 409 * a normal userland page fault, just let 410 * userland return so the signal will be 411 * handled and gdb debugging works. The page 412 * fault code immediately after we return from 413 * this function is going to release the 414 * mmap_sem and it's not depending on it 415 * (unlike gup would if we were not to return 416 * VM_FAULT_RETRY). 417 * 418 * If a fatal signal is pending we still take 419 * the streamlined VM_FAULT_RETRY failure path 420 * and there's no need to retake the mmap_sem 421 * in such case. 422 */ 423 down_read(&mm->mmap_sem); 424 ret = 0; 425 } 426 } 427 428 /* 429 * Here we race with the list_del; list_add in 430 * userfaultfd_ctx_read(), however because we don't ever run 431 * list_del_init() to refile across the two lists, the prev 432 * and next pointers will never point to self. list_add also 433 * would never let any of the two pointers to point to 434 * self. So list_empty_careful won't risk to see both pointers 435 * pointing to self at any time during the list refile. The 436 * only case where list_del_init() is called is the full 437 * removal in the wake function and there we don't re-list_add 438 * and it's fine not to block on the spinlock. The uwq on this 439 * kernel stack can be released after the list_del_init. 440 */ 441 if (!list_empty_careful(&uwq.wq.task_list)) { 442 spin_lock(&ctx->fault_pending_wqh.lock); 443 /* 444 * No need of list_del_init(), the uwq on the stack 445 * will be freed shortly anyway. 446 */ 447 list_del(&uwq.wq.task_list); 448 spin_unlock(&ctx->fault_pending_wqh.lock); 449 } 450 451 /* 452 * ctx may go away after this if the userfault pseudo fd is 453 * already released. 454 */ 455 userfaultfd_ctx_put(ctx); 456 457 out: 458 return ret; 459 } 460 461 static int userfaultfd_release(struct inode *inode, struct file *file) 462 { 463 struct userfaultfd_ctx *ctx = file->private_data; 464 struct mm_struct *mm = ctx->mm; 465 struct vm_area_struct *vma, *prev; 466 /* len == 0 means wake all */ 467 struct userfaultfd_wake_range range = { .len = 0, }; 468 unsigned long new_flags; 469 470 ACCESS_ONCE(ctx->released) = true; 471 472 if (!mmget_not_zero(mm)) 473 goto wakeup; 474 475 /* 476 * Flush page faults out of all CPUs. NOTE: all page faults 477 * must be retried without returning VM_FAULT_SIGBUS if 478 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 479 * changes while handle_userfault released the mmap_sem. So 480 * it's critical that released is set to true (above), before 481 * taking the mmap_sem for writing. 482 */ 483 down_write(&mm->mmap_sem); 484 prev = NULL; 485 for (vma = mm->mmap; vma; vma = vma->vm_next) { 486 cond_resched(); 487 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 488 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 489 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 490 prev = vma; 491 continue; 492 } 493 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 494 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 495 new_flags, vma->anon_vma, 496 vma->vm_file, vma->vm_pgoff, 497 vma_policy(vma), 498 NULL_VM_UFFD_CTX); 499 if (prev) 500 vma = prev; 501 else 502 prev = vma; 503 vma->vm_flags = new_flags; 504 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 505 } 506 up_write(&mm->mmap_sem); 507 mmput(mm); 508 wakeup: 509 /* 510 * After no new page faults can wait on this fault_*wqh, flush 511 * the last page faults that may have been already waiting on 512 * the fault_*wqh. 513 */ 514 spin_lock(&ctx->fault_pending_wqh.lock); 515 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 516 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range); 517 spin_unlock(&ctx->fault_pending_wqh.lock); 518 519 wake_up_poll(&ctx->fd_wqh, POLLHUP); 520 userfaultfd_ctx_put(ctx); 521 return 0; 522 } 523 524 /* fault_pending_wqh.lock must be hold by the caller */ 525 static inline struct userfaultfd_wait_queue *find_userfault( 526 struct userfaultfd_ctx *ctx) 527 { 528 wait_queue_t *wq; 529 struct userfaultfd_wait_queue *uwq; 530 531 VM_BUG_ON(!spin_is_locked(&ctx->fault_pending_wqh.lock)); 532 533 uwq = NULL; 534 if (!waitqueue_active(&ctx->fault_pending_wqh)) 535 goto out; 536 /* walk in reverse to provide FIFO behavior to read userfaults */ 537 wq = list_last_entry(&ctx->fault_pending_wqh.task_list, 538 typeof(*wq), task_list); 539 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 540 out: 541 return uwq; 542 } 543 544 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait) 545 { 546 struct userfaultfd_ctx *ctx = file->private_data; 547 unsigned int ret; 548 549 poll_wait(file, &ctx->fd_wqh, wait); 550 551 switch (ctx->state) { 552 case UFFD_STATE_WAIT_API: 553 return POLLERR; 554 case UFFD_STATE_RUNNING: 555 /* 556 * poll() never guarantees that read won't block. 557 * userfaults can be waken before they're read(). 558 */ 559 if (unlikely(!(file->f_flags & O_NONBLOCK))) 560 return POLLERR; 561 /* 562 * lockless access to see if there are pending faults 563 * __pollwait last action is the add_wait_queue but 564 * the spin_unlock would allow the waitqueue_active to 565 * pass above the actual list_add inside 566 * add_wait_queue critical section. So use a full 567 * memory barrier to serialize the list_add write of 568 * add_wait_queue() with the waitqueue_active read 569 * below. 570 */ 571 ret = 0; 572 smp_mb(); 573 if (waitqueue_active(&ctx->fault_pending_wqh)) 574 ret = POLLIN; 575 return ret; 576 default: 577 BUG(); 578 } 579 } 580 581 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 582 struct uffd_msg *msg) 583 { 584 ssize_t ret; 585 DECLARE_WAITQUEUE(wait, current); 586 struct userfaultfd_wait_queue *uwq; 587 588 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 589 spin_lock(&ctx->fd_wqh.lock); 590 __add_wait_queue(&ctx->fd_wqh, &wait); 591 for (;;) { 592 set_current_state(TASK_INTERRUPTIBLE); 593 spin_lock(&ctx->fault_pending_wqh.lock); 594 uwq = find_userfault(ctx); 595 if (uwq) { 596 /* 597 * Use a seqcount to repeat the lockless check 598 * in wake_userfault() to avoid missing 599 * wakeups because during the refile both 600 * waitqueue could become empty if this is the 601 * only userfault. 602 */ 603 write_seqcount_begin(&ctx->refile_seq); 604 605 /* 606 * The fault_pending_wqh.lock prevents the uwq 607 * to disappear from under us. 608 * 609 * Refile this userfault from 610 * fault_pending_wqh to fault_wqh, it's not 611 * pending anymore after we read it. 612 * 613 * Use list_del() by hand (as 614 * userfaultfd_wake_function also uses 615 * list_del_init() by hand) to be sure nobody 616 * changes __remove_wait_queue() to use 617 * list_del_init() in turn breaking the 618 * !list_empty_careful() check in 619 * handle_userfault(). The uwq->wq.task_list 620 * must never be empty at any time during the 621 * refile, or the waitqueue could disappear 622 * from under us. The "wait_queue_head_t" 623 * parameter of __remove_wait_queue() is unused 624 * anyway. 625 */ 626 list_del(&uwq->wq.task_list); 627 __add_wait_queue(&ctx->fault_wqh, &uwq->wq); 628 629 write_seqcount_end(&ctx->refile_seq); 630 631 /* careful to always initialize msg if ret == 0 */ 632 *msg = uwq->msg; 633 spin_unlock(&ctx->fault_pending_wqh.lock); 634 ret = 0; 635 break; 636 } 637 spin_unlock(&ctx->fault_pending_wqh.lock); 638 if (signal_pending(current)) { 639 ret = -ERESTARTSYS; 640 break; 641 } 642 if (no_wait) { 643 ret = -EAGAIN; 644 break; 645 } 646 spin_unlock(&ctx->fd_wqh.lock); 647 schedule(); 648 spin_lock(&ctx->fd_wqh.lock); 649 } 650 __remove_wait_queue(&ctx->fd_wqh, &wait); 651 __set_current_state(TASK_RUNNING); 652 spin_unlock(&ctx->fd_wqh.lock); 653 654 return ret; 655 } 656 657 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 658 size_t count, loff_t *ppos) 659 { 660 struct userfaultfd_ctx *ctx = file->private_data; 661 ssize_t _ret, ret = 0; 662 struct uffd_msg msg; 663 int no_wait = file->f_flags & O_NONBLOCK; 664 665 if (ctx->state == UFFD_STATE_WAIT_API) 666 return -EINVAL; 667 668 for (;;) { 669 if (count < sizeof(msg)) 670 return ret ? ret : -EINVAL; 671 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); 672 if (_ret < 0) 673 return ret ? ret : _ret; 674 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 675 return ret ? ret : -EFAULT; 676 ret += sizeof(msg); 677 buf += sizeof(msg); 678 count -= sizeof(msg); 679 /* 680 * Allow to read more than one fault at time but only 681 * block if waiting for the very first one. 682 */ 683 no_wait = O_NONBLOCK; 684 } 685 } 686 687 static void __wake_userfault(struct userfaultfd_ctx *ctx, 688 struct userfaultfd_wake_range *range) 689 { 690 unsigned long start, end; 691 692 start = range->start; 693 end = range->start + range->len; 694 695 spin_lock(&ctx->fault_pending_wqh.lock); 696 /* wake all in the range and autoremove */ 697 if (waitqueue_active(&ctx->fault_pending_wqh)) 698 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 699 range); 700 if (waitqueue_active(&ctx->fault_wqh)) 701 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range); 702 spin_unlock(&ctx->fault_pending_wqh.lock); 703 } 704 705 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 706 struct userfaultfd_wake_range *range) 707 { 708 unsigned seq; 709 bool need_wakeup; 710 711 /* 712 * To be sure waitqueue_active() is not reordered by the CPU 713 * before the pagetable update, use an explicit SMP memory 714 * barrier here. PT lock release or up_read(mmap_sem) still 715 * have release semantics that can allow the 716 * waitqueue_active() to be reordered before the pte update. 717 */ 718 smp_mb(); 719 720 /* 721 * Use waitqueue_active because it's very frequent to 722 * change the address space atomically even if there are no 723 * userfaults yet. So we take the spinlock only when we're 724 * sure we've userfaults to wake. 725 */ 726 do { 727 seq = read_seqcount_begin(&ctx->refile_seq); 728 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 729 waitqueue_active(&ctx->fault_wqh); 730 cond_resched(); 731 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 732 if (need_wakeup) 733 __wake_userfault(ctx, range); 734 } 735 736 static __always_inline int validate_range(struct mm_struct *mm, 737 __u64 start, __u64 len) 738 { 739 __u64 task_size = mm->task_size; 740 741 if (start & ~PAGE_MASK) 742 return -EINVAL; 743 if (len & ~PAGE_MASK) 744 return -EINVAL; 745 if (!len) 746 return -EINVAL; 747 if (start < mmap_min_addr) 748 return -EINVAL; 749 if (start >= task_size) 750 return -EINVAL; 751 if (len > task_size - start) 752 return -EINVAL; 753 return 0; 754 } 755 756 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 757 unsigned long arg) 758 { 759 struct mm_struct *mm = ctx->mm; 760 struct vm_area_struct *vma, *prev, *cur; 761 int ret; 762 struct uffdio_register uffdio_register; 763 struct uffdio_register __user *user_uffdio_register; 764 unsigned long vm_flags, new_flags; 765 bool found; 766 unsigned long start, end, vma_end; 767 768 user_uffdio_register = (struct uffdio_register __user *) arg; 769 770 ret = -EFAULT; 771 if (copy_from_user(&uffdio_register, user_uffdio_register, 772 sizeof(uffdio_register)-sizeof(__u64))) 773 goto out; 774 775 ret = -EINVAL; 776 if (!uffdio_register.mode) 777 goto out; 778 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| 779 UFFDIO_REGISTER_MODE_WP)) 780 goto out; 781 vm_flags = 0; 782 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 783 vm_flags |= VM_UFFD_MISSING; 784 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 785 vm_flags |= VM_UFFD_WP; 786 /* 787 * FIXME: remove the below error constraint by 788 * implementing the wprotect tracking mode. 789 */ 790 ret = -EINVAL; 791 goto out; 792 } 793 794 ret = validate_range(mm, uffdio_register.range.start, 795 uffdio_register.range.len); 796 if (ret) 797 goto out; 798 799 start = uffdio_register.range.start; 800 end = start + uffdio_register.range.len; 801 802 ret = -ENOMEM; 803 if (!mmget_not_zero(mm)) 804 goto out; 805 806 down_write(&mm->mmap_sem); 807 vma = find_vma_prev(mm, start, &prev); 808 if (!vma) 809 goto out_unlock; 810 811 /* check that there's at least one vma in the range */ 812 ret = -EINVAL; 813 if (vma->vm_start >= end) 814 goto out_unlock; 815 816 /* 817 * Search for not compatible vmas. 818 * 819 * FIXME: this shall be relaxed later so that it doesn't fail 820 * on tmpfs backed vmas (in addition to the current allowance 821 * on anonymous vmas). 822 */ 823 found = false; 824 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 825 cond_resched(); 826 827 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 828 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 829 830 /* check not compatible vmas */ 831 ret = -EINVAL; 832 if (cur->vm_ops) 833 goto out_unlock; 834 835 /* 836 * Check that this vma isn't already owned by a 837 * different userfaultfd. We can't allow more than one 838 * userfaultfd to own a single vma simultaneously or we 839 * wouldn't know which one to deliver the userfaults to. 840 */ 841 ret = -EBUSY; 842 if (cur->vm_userfaultfd_ctx.ctx && 843 cur->vm_userfaultfd_ctx.ctx != ctx) 844 goto out_unlock; 845 846 found = true; 847 } 848 BUG_ON(!found); 849 850 if (vma->vm_start < start) 851 prev = vma; 852 853 ret = 0; 854 do { 855 cond_resched(); 856 857 BUG_ON(vma->vm_ops); 858 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 859 vma->vm_userfaultfd_ctx.ctx != ctx); 860 861 /* 862 * Nothing to do: this vma is already registered into this 863 * userfaultfd and with the right tracking mode too. 864 */ 865 if (vma->vm_userfaultfd_ctx.ctx == ctx && 866 (vma->vm_flags & vm_flags) == vm_flags) 867 goto skip; 868 869 if (vma->vm_start > start) 870 start = vma->vm_start; 871 vma_end = min(end, vma->vm_end); 872 873 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags; 874 prev = vma_merge(mm, prev, start, vma_end, new_flags, 875 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 876 vma_policy(vma), 877 ((struct vm_userfaultfd_ctx){ ctx })); 878 if (prev) { 879 vma = prev; 880 goto next; 881 } 882 if (vma->vm_start < start) { 883 ret = split_vma(mm, vma, start, 1); 884 if (ret) 885 break; 886 } 887 if (vma->vm_end > end) { 888 ret = split_vma(mm, vma, end, 0); 889 if (ret) 890 break; 891 } 892 next: 893 /* 894 * In the vma_merge() successful mprotect-like case 8: 895 * the next vma was merged into the current one and 896 * the current one has not been updated yet. 897 */ 898 vma->vm_flags = new_flags; 899 vma->vm_userfaultfd_ctx.ctx = ctx; 900 901 skip: 902 prev = vma; 903 start = vma->vm_end; 904 vma = vma->vm_next; 905 } while (vma && vma->vm_start < end); 906 out_unlock: 907 up_write(&mm->mmap_sem); 908 mmput(mm); 909 if (!ret) { 910 /* 911 * Now that we scanned all vmas we can already tell 912 * userland which ioctls methods are guaranteed to 913 * succeed on this range. 914 */ 915 if (put_user(UFFD_API_RANGE_IOCTLS, 916 &user_uffdio_register->ioctls)) 917 ret = -EFAULT; 918 } 919 out: 920 return ret; 921 } 922 923 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 924 unsigned long arg) 925 { 926 struct mm_struct *mm = ctx->mm; 927 struct vm_area_struct *vma, *prev, *cur; 928 int ret; 929 struct uffdio_range uffdio_unregister; 930 unsigned long new_flags; 931 bool found; 932 unsigned long start, end, vma_end; 933 const void __user *buf = (void __user *)arg; 934 935 ret = -EFAULT; 936 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 937 goto out; 938 939 ret = validate_range(mm, uffdio_unregister.start, 940 uffdio_unregister.len); 941 if (ret) 942 goto out; 943 944 start = uffdio_unregister.start; 945 end = start + uffdio_unregister.len; 946 947 ret = -ENOMEM; 948 if (!mmget_not_zero(mm)) 949 goto out; 950 951 down_write(&mm->mmap_sem); 952 vma = find_vma_prev(mm, start, &prev); 953 if (!vma) 954 goto out_unlock; 955 956 /* check that there's at least one vma in the range */ 957 ret = -EINVAL; 958 if (vma->vm_start >= end) 959 goto out_unlock; 960 961 /* 962 * Search for not compatible vmas. 963 * 964 * FIXME: this shall be relaxed later so that it doesn't fail 965 * on tmpfs backed vmas (in addition to the current allowance 966 * on anonymous vmas). 967 */ 968 found = false; 969 ret = -EINVAL; 970 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 971 cond_resched(); 972 973 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 974 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 975 976 /* 977 * Check not compatible vmas, not strictly required 978 * here as not compatible vmas cannot have an 979 * userfaultfd_ctx registered on them, but this 980 * provides for more strict behavior to notice 981 * unregistration errors. 982 */ 983 if (cur->vm_ops) 984 goto out_unlock; 985 986 found = true; 987 } 988 BUG_ON(!found); 989 990 if (vma->vm_start < start) 991 prev = vma; 992 993 ret = 0; 994 do { 995 cond_resched(); 996 997 BUG_ON(vma->vm_ops); 998 999 /* 1000 * Nothing to do: this vma is already registered into this 1001 * userfaultfd and with the right tracking mode too. 1002 */ 1003 if (!vma->vm_userfaultfd_ctx.ctx) 1004 goto skip; 1005 1006 if (vma->vm_start > start) 1007 start = vma->vm_start; 1008 vma_end = min(end, vma->vm_end); 1009 1010 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 1011 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1012 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1013 vma_policy(vma), 1014 NULL_VM_UFFD_CTX); 1015 if (prev) { 1016 vma = prev; 1017 goto next; 1018 } 1019 if (vma->vm_start < start) { 1020 ret = split_vma(mm, vma, start, 1); 1021 if (ret) 1022 break; 1023 } 1024 if (vma->vm_end > end) { 1025 ret = split_vma(mm, vma, end, 0); 1026 if (ret) 1027 break; 1028 } 1029 next: 1030 /* 1031 * In the vma_merge() successful mprotect-like case 8: 1032 * the next vma was merged into the current one and 1033 * the current one has not been updated yet. 1034 */ 1035 vma->vm_flags = new_flags; 1036 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1037 1038 skip: 1039 prev = vma; 1040 start = vma->vm_end; 1041 vma = vma->vm_next; 1042 } while (vma && vma->vm_start < end); 1043 out_unlock: 1044 up_write(&mm->mmap_sem); 1045 mmput(mm); 1046 out: 1047 return ret; 1048 } 1049 1050 /* 1051 * userfaultfd_wake may be used in combination with the 1052 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1053 */ 1054 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1055 unsigned long arg) 1056 { 1057 int ret; 1058 struct uffdio_range uffdio_wake; 1059 struct userfaultfd_wake_range range; 1060 const void __user *buf = (void __user *)arg; 1061 1062 ret = -EFAULT; 1063 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1064 goto out; 1065 1066 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1067 if (ret) 1068 goto out; 1069 1070 range.start = uffdio_wake.start; 1071 range.len = uffdio_wake.len; 1072 1073 /* 1074 * len == 0 means wake all and we don't want to wake all here, 1075 * so check it again to be sure. 1076 */ 1077 VM_BUG_ON(!range.len); 1078 1079 wake_userfault(ctx, &range); 1080 ret = 0; 1081 1082 out: 1083 return ret; 1084 } 1085 1086 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1087 unsigned long arg) 1088 { 1089 __s64 ret; 1090 struct uffdio_copy uffdio_copy; 1091 struct uffdio_copy __user *user_uffdio_copy; 1092 struct userfaultfd_wake_range range; 1093 1094 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1095 1096 ret = -EFAULT; 1097 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1098 /* don't copy "copy" last field */ 1099 sizeof(uffdio_copy)-sizeof(__s64))) 1100 goto out; 1101 1102 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1103 if (ret) 1104 goto out; 1105 /* 1106 * double check for wraparound just in case. copy_from_user() 1107 * will later check uffdio_copy.src + uffdio_copy.len to fit 1108 * in the userland range. 1109 */ 1110 ret = -EINVAL; 1111 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1112 goto out; 1113 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) 1114 goto out; 1115 if (mmget_not_zero(ctx->mm)) { 1116 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1117 uffdio_copy.len); 1118 mmput(ctx->mm); 1119 } 1120 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1121 return -EFAULT; 1122 if (ret < 0) 1123 goto out; 1124 BUG_ON(!ret); 1125 /* len == 0 would wake all */ 1126 range.len = ret; 1127 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1128 range.start = uffdio_copy.dst; 1129 wake_userfault(ctx, &range); 1130 } 1131 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1132 out: 1133 return ret; 1134 } 1135 1136 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1137 unsigned long arg) 1138 { 1139 __s64 ret; 1140 struct uffdio_zeropage uffdio_zeropage; 1141 struct uffdio_zeropage __user *user_uffdio_zeropage; 1142 struct userfaultfd_wake_range range; 1143 1144 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1145 1146 ret = -EFAULT; 1147 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1148 /* don't copy "zeropage" last field */ 1149 sizeof(uffdio_zeropage)-sizeof(__s64))) 1150 goto out; 1151 1152 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1153 uffdio_zeropage.range.len); 1154 if (ret) 1155 goto out; 1156 ret = -EINVAL; 1157 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1158 goto out; 1159 1160 if (mmget_not_zero(ctx->mm)) { 1161 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1162 uffdio_zeropage.range.len); 1163 mmput(ctx->mm); 1164 } 1165 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1166 return -EFAULT; 1167 if (ret < 0) 1168 goto out; 1169 /* len == 0 would wake all */ 1170 BUG_ON(!ret); 1171 range.len = ret; 1172 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1173 range.start = uffdio_zeropage.range.start; 1174 wake_userfault(ctx, &range); 1175 } 1176 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1177 out: 1178 return ret; 1179 } 1180 1181 /* 1182 * userland asks for a certain API version and we return which bits 1183 * and ioctl commands are implemented in this kernel for such API 1184 * version or -EINVAL if unknown. 1185 */ 1186 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1187 unsigned long arg) 1188 { 1189 struct uffdio_api uffdio_api; 1190 void __user *buf = (void __user *)arg; 1191 int ret; 1192 1193 ret = -EINVAL; 1194 if (ctx->state != UFFD_STATE_WAIT_API) 1195 goto out; 1196 ret = -EFAULT; 1197 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1198 goto out; 1199 if (uffdio_api.api != UFFD_API || uffdio_api.features) { 1200 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1201 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1202 goto out; 1203 ret = -EINVAL; 1204 goto out; 1205 } 1206 uffdio_api.features = UFFD_API_FEATURES; 1207 uffdio_api.ioctls = UFFD_API_IOCTLS; 1208 ret = -EFAULT; 1209 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1210 goto out; 1211 ctx->state = UFFD_STATE_RUNNING; 1212 ret = 0; 1213 out: 1214 return ret; 1215 } 1216 1217 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1218 unsigned long arg) 1219 { 1220 int ret = -EINVAL; 1221 struct userfaultfd_ctx *ctx = file->private_data; 1222 1223 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) 1224 return -EINVAL; 1225 1226 switch(cmd) { 1227 case UFFDIO_API: 1228 ret = userfaultfd_api(ctx, arg); 1229 break; 1230 case UFFDIO_REGISTER: 1231 ret = userfaultfd_register(ctx, arg); 1232 break; 1233 case UFFDIO_UNREGISTER: 1234 ret = userfaultfd_unregister(ctx, arg); 1235 break; 1236 case UFFDIO_WAKE: 1237 ret = userfaultfd_wake(ctx, arg); 1238 break; 1239 case UFFDIO_COPY: 1240 ret = userfaultfd_copy(ctx, arg); 1241 break; 1242 case UFFDIO_ZEROPAGE: 1243 ret = userfaultfd_zeropage(ctx, arg); 1244 break; 1245 } 1246 return ret; 1247 } 1248 1249 #ifdef CONFIG_PROC_FS 1250 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 1251 { 1252 struct userfaultfd_ctx *ctx = f->private_data; 1253 wait_queue_t *wq; 1254 struct userfaultfd_wait_queue *uwq; 1255 unsigned long pending = 0, total = 0; 1256 1257 spin_lock(&ctx->fault_pending_wqh.lock); 1258 list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) { 1259 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 1260 pending++; 1261 total++; 1262 } 1263 list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) { 1264 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 1265 total++; 1266 } 1267 spin_unlock(&ctx->fault_pending_wqh.lock); 1268 1269 /* 1270 * If more protocols will be added, there will be all shown 1271 * separated by a space. Like this: 1272 * protocols: aa:... bb:... 1273 */ 1274 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 1275 pending, total, UFFD_API, UFFD_API_FEATURES, 1276 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 1277 } 1278 #endif 1279 1280 static const struct file_operations userfaultfd_fops = { 1281 #ifdef CONFIG_PROC_FS 1282 .show_fdinfo = userfaultfd_show_fdinfo, 1283 #endif 1284 .release = userfaultfd_release, 1285 .poll = userfaultfd_poll, 1286 .read = userfaultfd_read, 1287 .unlocked_ioctl = userfaultfd_ioctl, 1288 .compat_ioctl = userfaultfd_ioctl, 1289 .llseek = noop_llseek, 1290 }; 1291 1292 static void init_once_userfaultfd_ctx(void *mem) 1293 { 1294 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 1295 1296 init_waitqueue_head(&ctx->fault_pending_wqh); 1297 init_waitqueue_head(&ctx->fault_wqh); 1298 init_waitqueue_head(&ctx->fd_wqh); 1299 seqcount_init(&ctx->refile_seq); 1300 } 1301 1302 /** 1303 * userfaultfd_file_create - Creates an userfaultfd file pointer. 1304 * @flags: Flags for the userfaultfd file. 1305 * 1306 * This function creates an userfaultfd file pointer, w/out installing 1307 * it into the fd table. This is useful when the userfaultfd file is 1308 * used during the initialization of data structures that require 1309 * extra setup after the userfaultfd creation. So the userfaultfd 1310 * creation is split into the file pointer creation phase, and the 1311 * file descriptor installation phase. In this way races with 1312 * userspace closing the newly installed file descriptor can be 1313 * avoided. Returns an userfaultfd file pointer, or a proper error 1314 * pointer. 1315 */ 1316 static struct file *userfaultfd_file_create(int flags) 1317 { 1318 struct file *file; 1319 struct userfaultfd_ctx *ctx; 1320 1321 BUG_ON(!current->mm); 1322 1323 /* Check the UFFD_* constants for consistency. */ 1324 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 1325 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 1326 1327 file = ERR_PTR(-EINVAL); 1328 if (flags & ~UFFD_SHARED_FCNTL_FLAGS) 1329 goto out; 1330 1331 file = ERR_PTR(-ENOMEM); 1332 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 1333 if (!ctx) 1334 goto out; 1335 1336 atomic_set(&ctx->refcount, 1); 1337 ctx->flags = flags; 1338 ctx->state = UFFD_STATE_WAIT_API; 1339 ctx->released = false; 1340 ctx->mm = current->mm; 1341 /* prevent the mm struct to be freed */ 1342 atomic_inc(&ctx->mm->mm_count); 1343 1344 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx, 1345 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); 1346 if (IS_ERR(file)) { 1347 mmdrop(ctx->mm); 1348 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 1349 } 1350 out: 1351 return file; 1352 } 1353 1354 SYSCALL_DEFINE1(userfaultfd, int, flags) 1355 { 1356 int fd, error; 1357 struct file *file; 1358 1359 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS); 1360 if (error < 0) 1361 return error; 1362 fd = error; 1363 1364 file = userfaultfd_file_create(flags); 1365 if (IS_ERR(file)) { 1366 error = PTR_ERR(file); 1367 goto err_put_unused_fd; 1368 } 1369 fd_install(fd, file); 1370 1371 return fd; 1372 1373 err_put_unused_fd: 1374 put_unused_fd(fd); 1375 1376 return error; 1377 } 1378 1379 static int __init userfaultfd_init(void) 1380 { 1381 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 1382 sizeof(struct userfaultfd_ctx), 1383 0, 1384 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 1385 init_once_userfaultfd_ctx); 1386 return 0; 1387 } 1388 __initcall(userfaultfd_init); 1389