xref: /openbmc/linux/fs/userfaultfd.c (revision 4beec1d7)
1 /*
2  *  fs/userfaultfd.c
3  *
4  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
5  *  Copyright (C) 2008-2009 Red Hat, Inc.
6  *  Copyright (C) 2015  Red Hat, Inc.
7  *
8  *  This work is licensed under the terms of the GNU GPL, version 2. See
9  *  the COPYING file in the top-level directory.
10  *
11  *  Some part derived from fs/eventfd.c (anon inode setup) and
12  *  mm/ksm.c (mm hashing).
13  */
14 
15 #include <linux/hashtable.h>
16 #include <linux/sched.h>
17 #include <linux/mm.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/seq_file.h>
21 #include <linux/file.h>
22 #include <linux/bug.h>
23 #include <linux/anon_inodes.h>
24 #include <linux/syscalls.h>
25 #include <linux/userfaultfd_k.h>
26 #include <linux/mempolicy.h>
27 #include <linux/ioctl.h>
28 #include <linux/security.h>
29 
30 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
31 
32 enum userfaultfd_state {
33 	UFFD_STATE_WAIT_API,
34 	UFFD_STATE_RUNNING,
35 };
36 
37 /*
38  * Start with fault_pending_wqh and fault_wqh so they're more likely
39  * to be in the same cacheline.
40  */
41 struct userfaultfd_ctx {
42 	/* waitqueue head for the pending (i.e. not read) userfaults */
43 	wait_queue_head_t fault_pending_wqh;
44 	/* waitqueue head for the userfaults */
45 	wait_queue_head_t fault_wqh;
46 	/* waitqueue head for the pseudo fd to wakeup poll/read */
47 	wait_queue_head_t fd_wqh;
48 	/* a refile sequence protected by fault_pending_wqh lock */
49 	struct seqcount refile_seq;
50 	/* pseudo fd refcounting */
51 	atomic_t refcount;
52 	/* userfaultfd syscall flags */
53 	unsigned int flags;
54 	/* state machine */
55 	enum userfaultfd_state state;
56 	/* released */
57 	bool released;
58 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
59 	struct mm_struct *mm;
60 };
61 
62 struct userfaultfd_wait_queue {
63 	struct uffd_msg msg;
64 	wait_queue_t wq;
65 	struct userfaultfd_ctx *ctx;
66 	bool waken;
67 };
68 
69 struct userfaultfd_wake_range {
70 	unsigned long start;
71 	unsigned long len;
72 };
73 
74 static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
75 				     int wake_flags, void *key)
76 {
77 	struct userfaultfd_wake_range *range = key;
78 	int ret;
79 	struct userfaultfd_wait_queue *uwq;
80 	unsigned long start, len;
81 
82 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
83 	ret = 0;
84 	/* len == 0 means wake all */
85 	start = range->start;
86 	len = range->len;
87 	if (len && (start > uwq->msg.arg.pagefault.address ||
88 		    start + len <= uwq->msg.arg.pagefault.address))
89 		goto out;
90 	WRITE_ONCE(uwq->waken, true);
91 	/*
92 	 * The implicit smp_mb__before_spinlock in try_to_wake_up()
93 	 * renders uwq->waken visible to other CPUs before the task is
94 	 * waken.
95 	 */
96 	ret = wake_up_state(wq->private, mode);
97 	if (ret)
98 		/*
99 		 * Wake only once, autoremove behavior.
100 		 *
101 		 * After the effect of list_del_init is visible to the
102 		 * other CPUs, the waitqueue may disappear from under
103 		 * us, see the !list_empty_careful() in
104 		 * handle_userfault(). try_to_wake_up() has an
105 		 * implicit smp_mb__before_spinlock, and the
106 		 * wq->private is read before calling the extern
107 		 * function "wake_up_state" (which in turns calls
108 		 * try_to_wake_up). While the spin_lock;spin_unlock;
109 		 * wouldn't be enough, the smp_mb__before_spinlock is
110 		 * enough to avoid an explicit smp_mb() here.
111 		 */
112 		list_del_init(&wq->task_list);
113 out:
114 	return ret;
115 }
116 
117 /**
118  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
119  * context.
120  * @ctx: [in] Pointer to the userfaultfd context.
121  *
122  * Returns: In case of success, returns not zero.
123  */
124 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
125 {
126 	if (!atomic_inc_not_zero(&ctx->refcount))
127 		BUG();
128 }
129 
130 /**
131  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
132  * context.
133  * @ctx: [in] Pointer to userfaultfd context.
134  *
135  * The userfaultfd context reference must have been previously acquired either
136  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
137  */
138 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
139 {
140 	if (atomic_dec_and_test(&ctx->refcount)) {
141 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
142 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
143 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
144 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
145 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
146 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
147 		mmdrop(ctx->mm);
148 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
149 	}
150 }
151 
152 static inline void msg_init(struct uffd_msg *msg)
153 {
154 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
155 	/*
156 	 * Must use memset to zero out the paddings or kernel data is
157 	 * leaked to userland.
158 	 */
159 	memset(msg, 0, sizeof(struct uffd_msg));
160 }
161 
162 static inline struct uffd_msg userfault_msg(unsigned long address,
163 					    unsigned int flags,
164 					    unsigned long reason)
165 {
166 	struct uffd_msg msg;
167 	msg_init(&msg);
168 	msg.event = UFFD_EVENT_PAGEFAULT;
169 	msg.arg.pagefault.address = address;
170 	if (flags & FAULT_FLAG_WRITE)
171 		/*
172 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WRITE was set in the
173 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
174 		 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
175 		 * was a read fault, otherwise if set it means it's
176 		 * a write fault.
177 		 */
178 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
179 	if (reason & VM_UFFD_WP)
180 		/*
181 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
182 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
183 		 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
184 		 * a missing fault, otherwise if set it means it's a
185 		 * write protect fault.
186 		 */
187 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
188 	return msg;
189 }
190 
191 /*
192  * Verify the pagetables are still not ok after having reigstered into
193  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
194  * userfault that has already been resolved, if userfaultfd_read and
195  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
196  * threads.
197  */
198 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
199 					 unsigned long address,
200 					 unsigned long flags,
201 					 unsigned long reason)
202 {
203 	struct mm_struct *mm = ctx->mm;
204 	pgd_t *pgd;
205 	pud_t *pud;
206 	pmd_t *pmd, _pmd;
207 	pte_t *pte;
208 	bool ret = true;
209 
210 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
211 
212 	pgd = pgd_offset(mm, address);
213 	if (!pgd_present(*pgd))
214 		goto out;
215 	pud = pud_offset(pgd, address);
216 	if (!pud_present(*pud))
217 		goto out;
218 	pmd = pmd_offset(pud, address);
219 	/*
220 	 * READ_ONCE must function as a barrier with narrower scope
221 	 * and it must be equivalent to:
222 	 *	_pmd = *pmd; barrier();
223 	 *
224 	 * This is to deal with the instability (as in
225 	 * pmd_trans_unstable) of the pmd.
226 	 */
227 	_pmd = READ_ONCE(*pmd);
228 	if (!pmd_present(_pmd))
229 		goto out;
230 
231 	ret = false;
232 	if (pmd_trans_huge(_pmd))
233 		goto out;
234 
235 	/*
236 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
237 	 * and use the standard pte_offset_map() instead of parsing _pmd.
238 	 */
239 	pte = pte_offset_map(pmd, address);
240 	/*
241 	 * Lockless access: we're in a wait_event so it's ok if it
242 	 * changes under us.
243 	 */
244 	if (pte_none(*pte))
245 		ret = true;
246 	pte_unmap(pte);
247 
248 out:
249 	return ret;
250 }
251 
252 /*
253  * The locking rules involved in returning VM_FAULT_RETRY depending on
254  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
255  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
256  * recommendation in __lock_page_or_retry is not an understatement.
257  *
258  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
259  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
260  * not set.
261  *
262  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
263  * set, VM_FAULT_RETRY can still be returned if and only if there are
264  * fatal_signal_pending()s, and the mmap_sem must be released before
265  * returning it.
266  */
267 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
268 {
269 	struct mm_struct *mm = vmf->vma->vm_mm;
270 	struct userfaultfd_ctx *ctx;
271 	struct userfaultfd_wait_queue uwq;
272 	int ret;
273 	bool must_wait, return_to_userland;
274 	long blocking_state;
275 
276 	BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
277 
278 	ret = VM_FAULT_SIGBUS;
279 	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
280 	if (!ctx)
281 		goto out;
282 
283 	BUG_ON(ctx->mm != mm);
284 
285 	VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
286 	VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
287 
288 	/*
289 	 * If it's already released don't get it. This avoids to loop
290 	 * in __get_user_pages if userfaultfd_release waits on the
291 	 * caller of handle_userfault to release the mmap_sem.
292 	 */
293 	if (unlikely(ACCESS_ONCE(ctx->released)))
294 		goto out;
295 
296 	/*
297 	 * We don't do userfault handling for the final child pid update.
298 	 */
299 	if (current->flags & PF_EXITING)
300 		goto out;
301 
302 	/*
303 	 * Check that we can return VM_FAULT_RETRY.
304 	 *
305 	 * NOTE: it should become possible to return VM_FAULT_RETRY
306 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
307 	 * -EBUSY failures, if the userfaultfd is to be extended for
308 	 * VM_UFFD_WP tracking and we intend to arm the userfault
309 	 * without first stopping userland access to the memory. For
310 	 * VM_UFFD_MISSING userfaults this is enough for now.
311 	 */
312 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
313 		/*
314 		 * Validate the invariant that nowait must allow retry
315 		 * to be sure not to return SIGBUS erroneously on
316 		 * nowait invocations.
317 		 */
318 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
319 #ifdef CONFIG_DEBUG_VM
320 		if (printk_ratelimit()) {
321 			printk(KERN_WARNING
322 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
323 			       vmf->flags);
324 			dump_stack();
325 		}
326 #endif
327 		goto out;
328 	}
329 
330 	/*
331 	 * Handle nowait, not much to do other than tell it to retry
332 	 * and wait.
333 	 */
334 	ret = VM_FAULT_RETRY;
335 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
336 		goto out;
337 
338 	/* take the reference before dropping the mmap_sem */
339 	userfaultfd_ctx_get(ctx);
340 
341 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
342 	uwq.wq.private = current;
343 	uwq.msg = userfault_msg(vmf->address, vmf->flags, reason);
344 	uwq.ctx = ctx;
345 	uwq.waken = false;
346 
347 	return_to_userland =
348 		(vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
349 		(FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
350 	blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
351 			 TASK_KILLABLE;
352 
353 	spin_lock(&ctx->fault_pending_wqh.lock);
354 	/*
355 	 * After the __add_wait_queue the uwq is visible to userland
356 	 * through poll/read().
357 	 */
358 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
359 	/*
360 	 * The smp_mb() after __set_current_state prevents the reads
361 	 * following the spin_unlock to happen before the list_add in
362 	 * __add_wait_queue.
363 	 */
364 	set_current_state(blocking_state);
365 	spin_unlock(&ctx->fault_pending_wqh.lock);
366 
367 	must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
368 					  reason);
369 	up_read(&mm->mmap_sem);
370 
371 	if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
372 		   (return_to_userland ? !signal_pending(current) :
373 		    !fatal_signal_pending(current)))) {
374 		wake_up_poll(&ctx->fd_wqh, POLLIN);
375 		schedule();
376 		ret |= VM_FAULT_MAJOR;
377 
378 		/*
379 		 * False wakeups can orginate even from rwsem before
380 		 * up_read() however userfaults will wait either for a
381 		 * targeted wakeup on the specific uwq waitqueue from
382 		 * wake_userfault() or for signals or for uffd
383 		 * release.
384 		 */
385 		while (!READ_ONCE(uwq.waken)) {
386 			/*
387 			 * This needs the full smp_store_mb()
388 			 * guarantee as the state write must be
389 			 * visible to other CPUs before reading
390 			 * uwq.waken from other CPUs.
391 			 */
392 			set_current_state(blocking_state);
393 			if (READ_ONCE(uwq.waken) ||
394 			    READ_ONCE(ctx->released) ||
395 			    (return_to_userland ? signal_pending(current) :
396 			     fatal_signal_pending(current)))
397 				break;
398 			schedule();
399 		}
400 	}
401 
402 	__set_current_state(TASK_RUNNING);
403 
404 	if (return_to_userland) {
405 		if (signal_pending(current) &&
406 		    !fatal_signal_pending(current)) {
407 			/*
408 			 * If we got a SIGSTOP or SIGCONT and this is
409 			 * a normal userland page fault, just let
410 			 * userland return so the signal will be
411 			 * handled and gdb debugging works.  The page
412 			 * fault code immediately after we return from
413 			 * this function is going to release the
414 			 * mmap_sem and it's not depending on it
415 			 * (unlike gup would if we were not to return
416 			 * VM_FAULT_RETRY).
417 			 *
418 			 * If a fatal signal is pending we still take
419 			 * the streamlined VM_FAULT_RETRY failure path
420 			 * and there's no need to retake the mmap_sem
421 			 * in such case.
422 			 */
423 			down_read(&mm->mmap_sem);
424 			ret = 0;
425 		}
426 	}
427 
428 	/*
429 	 * Here we race with the list_del; list_add in
430 	 * userfaultfd_ctx_read(), however because we don't ever run
431 	 * list_del_init() to refile across the two lists, the prev
432 	 * and next pointers will never point to self. list_add also
433 	 * would never let any of the two pointers to point to
434 	 * self. So list_empty_careful won't risk to see both pointers
435 	 * pointing to self at any time during the list refile. The
436 	 * only case where list_del_init() is called is the full
437 	 * removal in the wake function and there we don't re-list_add
438 	 * and it's fine not to block on the spinlock. The uwq on this
439 	 * kernel stack can be released after the list_del_init.
440 	 */
441 	if (!list_empty_careful(&uwq.wq.task_list)) {
442 		spin_lock(&ctx->fault_pending_wqh.lock);
443 		/*
444 		 * No need of list_del_init(), the uwq on the stack
445 		 * will be freed shortly anyway.
446 		 */
447 		list_del(&uwq.wq.task_list);
448 		spin_unlock(&ctx->fault_pending_wqh.lock);
449 	}
450 
451 	/*
452 	 * ctx may go away after this if the userfault pseudo fd is
453 	 * already released.
454 	 */
455 	userfaultfd_ctx_put(ctx);
456 
457 out:
458 	return ret;
459 }
460 
461 static int userfaultfd_release(struct inode *inode, struct file *file)
462 {
463 	struct userfaultfd_ctx *ctx = file->private_data;
464 	struct mm_struct *mm = ctx->mm;
465 	struct vm_area_struct *vma, *prev;
466 	/* len == 0 means wake all */
467 	struct userfaultfd_wake_range range = { .len = 0, };
468 	unsigned long new_flags;
469 
470 	ACCESS_ONCE(ctx->released) = true;
471 
472 	if (!mmget_not_zero(mm))
473 		goto wakeup;
474 
475 	/*
476 	 * Flush page faults out of all CPUs. NOTE: all page faults
477 	 * must be retried without returning VM_FAULT_SIGBUS if
478 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
479 	 * changes while handle_userfault released the mmap_sem. So
480 	 * it's critical that released is set to true (above), before
481 	 * taking the mmap_sem for writing.
482 	 */
483 	down_write(&mm->mmap_sem);
484 	prev = NULL;
485 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
486 		cond_resched();
487 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
488 		       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
489 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
490 			prev = vma;
491 			continue;
492 		}
493 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
494 		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
495 				 new_flags, vma->anon_vma,
496 				 vma->vm_file, vma->vm_pgoff,
497 				 vma_policy(vma),
498 				 NULL_VM_UFFD_CTX);
499 		if (prev)
500 			vma = prev;
501 		else
502 			prev = vma;
503 		vma->vm_flags = new_flags;
504 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
505 	}
506 	up_write(&mm->mmap_sem);
507 	mmput(mm);
508 wakeup:
509 	/*
510 	 * After no new page faults can wait on this fault_*wqh, flush
511 	 * the last page faults that may have been already waiting on
512 	 * the fault_*wqh.
513 	 */
514 	spin_lock(&ctx->fault_pending_wqh.lock);
515 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
516 	__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
517 	spin_unlock(&ctx->fault_pending_wqh.lock);
518 
519 	wake_up_poll(&ctx->fd_wqh, POLLHUP);
520 	userfaultfd_ctx_put(ctx);
521 	return 0;
522 }
523 
524 /* fault_pending_wqh.lock must be hold by the caller */
525 static inline struct userfaultfd_wait_queue *find_userfault(
526 	struct userfaultfd_ctx *ctx)
527 {
528 	wait_queue_t *wq;
529 	struct userfaultfd_wait_queue *uwq;
530 
531 	VM_BUG_ON(!spin_is_locked(&ctx->fault_pending_wqh.lock));
532 
533 	uwq = NULL;
534 	if (!waitqueue_active(&ctx->fault_pending_wqh))
535 		goto out;
536 	/* walk in reverse to provide FIFO behavior to read userfaults */
537 	wq = list_last_entry(&ctx->fault_pending_wqh.task_list,
538 			     typeof(*wq), task_list);
539 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
540 out:
541 	return uwq;
542 }
543 
544 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
545 {
546 	struct userfaultfd_ctx *ctx = file->private_data;
547 	unsigned int ret;
548 
549 	poll_wait(file, &ctx->fd_wqh, wait);
550 
551 	switch (ctx->state) {
552 	case UFFD_STATE_WAIT_API:
553 		return POLLERR;
554 	case UFFD_STATE_RUNNING:
555 		/*
556 		 * poll() never guarantees that read won't block.
557 		 * userfaults can be waken before they're read().
558 		 */
559 		if (unlikely(!(file->f_flags & O_NONBLOCK)))
560 			return POLLERR;
561 		/*
562 		 * lockless access to see if there are pending faults
563 		 * __pollwait last action is the add_wait_queue but
564 		 * the spin_unlock would allow the waitqueue_active to
565 		 * pass above the actual list_add inside
566 		 * add_wait_queue critical section. So use a full
567 		 * memory barrier to serialize the list_add write of
568 		 * add_wait_queue() with the waitqueue_active read
569 		 * below.
570 		 */
571 		ret = 0;
572 		smp_mb();
573 		if (waitqueue_active(&ctx->fault_pending_wqh))
574 			ret = POLLIN;
575 		return ret;
576 	default:
577 		BUG();
578 	}
579 }
580 
581 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
582 				    struct uffd_msg *msg)
583 {
584 	ssize_t ret;
585 	DECLARE_WAITQUEUE(wait, current);
586 	struct userfaultfd_wait_queue *uwq;
587 
588 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
589 	spin_lock(&ctx->fd_wqh.lock);
590 	__add_wait_queue(&ctx->fd_wqh, &wait);
591 	for (;;) {
592 		set_current_state(TASK_INTERRUPTIBLE);
593 		spin_lock(&ctx->fault_pending_wqh.lock);
594 		uwq = find_userfault(ctx);
595 		if (uwq) {
596 			/*
597 			 * Use a seqcount to repeat the lockless check
598 			 * in wake_userfault() to avoid missing
599 			 * wakeups because during the refile both
600 			 * waitqueue could become empty if this is the
601 			 * only userfault.
602 			 */
603 			write_seqcount_begin(&ctx->refile_seq);
604 
605 			/*
606 			 * The fault_pending_wqh.lock prevents the uwq
607 			 * to disappear from under us.
608 			 *
609 			 * Refile this userfault from
610 			 * fault_pending_wqh to fault_wqh, it's not
611 			 * pending anymore after we read it.
612 			 *
613 			 * Use list_del() by hand (as
614 			 * userfaultfd_wake_function also uses
615 			 * list_del_init() by hand) to be sure nobody
616 			 * changes __remove_wait_queue() to use
617 			 * list_del_init() in turn breaking the
618 			 * !list_empty_careful() check in
619 			 * handle_userfault(). The uwq->wq.task_list
620 			 * must never be empty at any time during the
621 			 * refile, or the waitqueue could disappear
622 			 * from under us. The "wait_queue_head_t"
623 			 * parameter of __remove_wait_queue() is unused
624 			 * anyway.
625 			 */
626 			list_del(&uwq->wq.task_list);
627 			__add_wait_queue(&ctx->fault_wqh, &uwq->wq);
628 
629 			write_seqcount_end(&ctx->refile_seq);
630 
631 			/* careful to always initialize msg if ret == 0 */
632 			*msg = uwq->msg;
633 			spin_unlock(&ctx->fault_pending_wqh.lock);
634 			ret = 0;
635 			break;
636 		}
637 		spin_unlock(&ctx->fault_pending_wqh.lock);
638 		if (signal_pending(current)) {
639 			ret = -ERESTARTSYS;
640 			break;
641 		}
642 		if (no_wait) {
643 			ret = -EAGAIN;
644 			break;
645 		}
646 		spin_unlock(&ctx->fd_wqh.lock);
647 		schedule();
648 		spin_lock(&ctx->fd_wqh.lock);
649 	}
650 	__remove_wait_queue(&ctx->fd_wqh, &wait);
651 	__set_current_state(TASK_RUNNING);
652 	spin_unlock(&ctx->fd_wqh.lock);
653 
654 	return ret;
655 }
656 
657 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
658 				size_t count, loff_t *ppos)
659 {
660 	struct userfaultfd_ctx *ctx = file->private_data;
661 	ssize_t _ret, ret = 0;
662 	struct uffd_msg msg;
663 	int no_wait = file->f_flags & O_NONBLOCK;
664 
665 	if (ctx->state == UFFD_STATE_WAIT_API)
666 		return -EINVAL;
667 
668 	for (;;) {
669 		if (count < sizeof(msg))
670 			return ret ? ret : -EINVAL;
671 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
672 		if (_ret < 0)
673 			return ret ? ret : _ret;
674 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
675 			return ret ? ret : -EFAULT;
676 		ret += sizeof(msg);
677 		buf += sizeof(msg);
678 		count -= sizeof(msg);
679 		/*
680 		 * Allow to read more than one fault at time but only
681 		 * block if waiting for the very first one.
682 		 */
683 		no_wait = O_NONBLOCK;
684 	}
685 }
686 
687 static void __wake_userfault(struct userfaultfd_ctx *ctx,
688 			     struct userfaultfd_wake_range *range)
689 {
690 	unsigned long start, end;
691 
692 	start = range->start;
693 	end = range->start + range->len;
694 
695 	spin_lock(&ctx->fault_pending_wqh.lock);
696 	/* wake all in the range and autoremove */
697 	if (waitqueue_active(&ctx->fault_pending_wqh))
698 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
699 				     range);
700 	if (waitqueue_active(&ctx->fault_wqh))
701 		__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
702 	spin_unlock(&ctx->fault_pending_wqh.lock);
703 }
704 
705 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
706 					   struct userfaultfd_wake_range *range)
707 {
708 	unsigned seq;
709 	bool need_wakeup;
710 
711 	/*
712 	 * To be sure waitqueue_active() is not reordered by the CPU
713 	 * before the pagetable update, use an explicit SMP memory
714 	 * barrier here. PT lock release or up_read(mmap_sem) still
715 	 * have release semantics that can allow the
716 	 * waitqueue_active() to be reordered before the pte update.
717 	 */
718 	smp_mb();
719 
720 	/*
721 	 * Use waitqueue_active because it's very frequent to
722 	 * change the address space atomically even if there are no
723 	 * userfaults yet. So we take the spinlock only when we're
724 	 * sure we've userfaults to wake.
725 	 */
726 	do {
727 		seq = read_seqcount_begin(&ctx->refile_seq);
728 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
729 			waitqueue_active(&ctx->fault_wqh);
730 		cond_resched();
731 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
732 	if (need_wakeup)
733 		__wake_userfault(ctx, range);
734 }
735 
736 static __always_inline int validate_range(struct mm_struct *mm,
737 					  __u64 start, __u64 len)
738 {
739 	__u64 task_size = mm->task_size;
740 
741 	if (start & ~PAGE_MASK)
742 		return -EINVAL;
743 	if (len & ~PAGE_MASK)
744 		return -EINVAL;
745 	if (!len)
746 		return -EINVAL;
747 	if (start < mmap_min_addr)
748 		return -EINVAL;
749 	if (start >= task_size)
750 		return -EINVAL;
751 	if (len > task_size - start)
752 		return -EINVAL;
753 	return 0;
754 }
755 
756 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
757 				unsigned long arg)
758 {
759 	struct mm_struct *mm = ctx->mm;
760 	struct vm_area_struct *vma, *prev, *cur;
761 	int ret;
762 	struct uffdio_register uffdio_register;
763 	struct uffdio_register __user *user_uffdio_register;
764 	unsigned long vm_flags, new_flags;
765 	bool found;
766 	unsigned long start, end, vma_end;
767 
768 	user_uffdio_register = (struct uffdio_register __user *) arg;
769 
770 	ret = -EFAULT;
771 	if (copy_from_user(&uffdio_register, user_uffdio_register,
772 			   sizeof(uffdio_register)-sizeof(__u64)))
773 		goto out;
774 
775 	ret = -EINVAL;
776 	if (!uffdio_register.mode)
777 		goto out;
778 	if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
779 				     UFFDIO_REGISTER_MODE_WP))
780 		goto out;
781 	vm_flags = 0;
782 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
783 		vm_flags |= VM_UFFD_MISSING;
784 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
785 		vm_flags |= VM_UFFD_WP;
786 		/*
787 		 * FIXME: remove the below error constraint by
788 		 * implementing the wprotect tracking mode.
789 		 */
790 		ret = -EINVAL;
791 		goto out;
792 	}
793 
794 	ret = validate_range(mm, uffdio_register.range.start,
795 			     uffdio_register.range.len);
796 	if (ret)
797 		goto out;
798 
799 	start = uffdio_register.range.start;
800 	end = start + uffdio_register.range.len;
801 
802 	ret = -ENOMEM;
803 	if (!mmget_not_zero(mm))
804 		goto out;
805 
806 	down_write(&mm->mmap_sem);
807 	vma = find_vma_prev(mm, start, &prev);
808 	if (!vma)
809 		goto out_unlock;
810 
811 	/* check that there's at least one vma in the range */
812 	ret = -EINVAL;
813 	if (vma->vm_start >= end)
814 		goto out_unlock;
815 
816 	/*
817 	 * Search for not compatible vmas.
818 	 *
819 	 * FIXME: this shall be relaxed later so that it doesn't fail
820 	 * on tmpfs backed vmas (in addition to the current allowance
821 	 * on anonymous vmas).
822 	 */
823 	found = false;
824 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
825 		cond_resched();
826 
827 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
828 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
829 
830 		/* check not compatible vmas */
831 		ret = -EINVAL;
832 		if (cur->vm_ops)
833 			goto out_unlock;
834 
835 		/*
836 		 * Check that this vma isn't already owned by a
837 		 * different userfaultfd. We can't allow more than one
838 		 * userfaultfd to own a single vma simultaneously or we
839 		 * wouldn't know which one to deliver the userfaults to.
840 		 */
841 		ret = -EBUSY;
842 		if (cur->vm_userfaultfd_ctx.ctx &&
843 		    cur->vm_userfaultfd_ctx.ctx != ctx)
844 			goto out_unlock;
845 
846 		found = true;
847 	}
848 	BUG_ON(!found);
849 
850 	if (vma->vm_start < start)
851 		prev = vma;
852 
853 	ret = 0;
854 	do {
855 		cond_resched();
856 
857 		BUG_ON(vma->vm_ops);
858 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
859 		       vma->vm_userfaultfd_ctx.ctx != ctx);
860 
861 		/*
862 		 * Nothing to do: this vma is already registered into this
863 		 * userfaultfd and with the right tracking mode too.
864 		 */
865 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
866 		    (vma->vm_flags & vm_flags) == vm_flags)
867 			goto skip;
868 
869 		if (vma->vm_start > start)
870 			start = vma->vm_start;
871 		vma_end = min(end, vma->vm_end);
872 
873 		new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
874 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
875 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
876 				 vma_policy(vma),
877 				 ((struct vm_userfaultfd_ctx){ ctx }));
878 		if (prev) {
879 			vma = prev;
880 			goto next;
881 		}
882 		if (vma->vm_start < start) {
883 			ret = split_vma(mm, vma, start, 1);
884 			if (ret)
885 				break;
886 		}
887 		if (vma->vm_end > end) {
888 			ret = split_vma(mm, vma, end, 0);
889 			if (ret)
890 				break;
891 		}
892 	next:
893 		/*
894 		 * In the vma_merge() successful mprotect-like case 8:
895 		 * the next vma was merged into the current one and
896 		 * the current one has not been updated yet.
897 		 */
898 		vma->vm_flags = new_flags;
899 		vma->vm_userfaultfd_ctx.ctx = ctx;
900 
901 	skip:
902 		prev = vma;
903 		start = vma->vm_end;
904 		vma = vma->vm_next;
905 	} while (vma && vma->vm_start < end);
906 out_unlock:
907 	up_write(&mm->mmap_sem);
908 	mmput(mm);
909 	if (!ret) {
910 		/*
911 		 * Now that we scanned all vmas we can already tell
912 		 * userland which ioctls methods are guaranteed to
913 		 * succeed on this range.
914 		 */
915 		if (put_user(UFFD_API_RANGE_IOCTLS,
916 			     &user_uffdio_register->ioctls))
917 			ret = -EFAULT;
918 	}
919 out:
920 	return ret;
921 }
922 
923 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
924 				  unsigned long arg)
925 {
926 	struct mm_struct *mm = ctx->mm;
927 	struct vm_area_struct *vma, *prev, *cur;
928 	int ret;
929 	struct uffdio_range uffdio_unregister;
930 	unsigned long new_flags;
931 	bool found;
932 	unsigned long start, end, vma_end;
933 	const void __user *buf = (void __user *)arg;
934 
935 	ret = -EFAULT;
936 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
937 		goto out;
938 
939 	ret = validate_range(mm, uffdio_unregister.start,
940 			     uffdio_unregister.len);
941 	if (ret)
942 		goto out;
943 
944 	start = uffdio_unregister.start;
945 	end = start + uffdio_unregister.len;
946 
947 	ret = -ENOMEM;
948 	if (!mmget_not_zero(mm))
949 		goto out;
950 
951 	down_write(&mm->mmap_sem);
952 	vma = find_vma_prev(mm, start, &prev);
953 	if (!vma)
954 		goto out_unlock;
955 
956 	/* check that there's at least one vma in the range */
957 	ret = -EINVAL;
958 	if (vma->vm_start >= end)
959 		goto out_unlock;
960 
961 	/*
962 	 * Search for not compatible vmas.
963 	 *
964 	 * FIXME: this shall be relaxed later so that it doesn't fail
965 	 * on tmpfs backed vmas (in addition to the current allowance
966 	 * on anonymous vmas).
967 	 */
968 	found = false;
969 	ret = -EINVAL;
970 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
971 		cond_resched();
972 
973 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
974 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
975 
976 		/*
977 		 * Check not compatible vmas, not strictly required
978 		 * here as not compatible vmas cannot have an
979 		 * userfaultfd_ctx registered on them, but this
980 		 * provides for more strict behavior to notice
981 		 * unregistration errors.
982 		 */
983 		if (cur->vm_ops)
984 			goto out_unlock;
985 
986 		found = true;
987 	}
988 	BUG_ON(!found);
989 
990 	if (vma->vm_start < start)
991 		prev = vma;
992 
993 	ret = 0;
994 	do {
995 		cond_resched();
996 
997 		BUG_ON(vma->vm_ops);
998 
999 		/*
1000 		 * Nothing to do: this vma is already registered into this
1001 		 * userfaultfd and with the right tracking mode too.
1002 		 */
1003 		if (!vma->vm_userfaultfd_ctx.ctx)
1004 			goto skip;
1005 
1006 		if (vma->vm_start > start)
1007 			start = vma->vm_start;
1008 		vma_end = min(end, vma->vm_end);
1009 
1010 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1011 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1012 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1013 				 vma_policy(vma),
1014 				 NULL_VM_UFFD_CTX);
1015 		if (prev) {
1016 			vma = prev;
1017 			goto next;
1018 		}
1019 		if (vma->vm_start < start) {
1020 			ret = split_vma(mm, vma, start, 1);
1021 			if (ret)
1022 				break;
1023 		}
1024 		if (vma->vm_end > end) {
1025 			ret = split_vma(mm, vma, end, 0);
1026 			if (ret)
1027 				break;
1028 		}
1029 	next:
1030 		/*
1031 		 * In the vma_merge() successful mprotect-like case 8:
1032 		 * the next vma was merged into the current one and
1033 		 * the current one has not been updated yet.
1034 		 */
1035 		vma->vm_flags = new_flags;
1036 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1037 
1038 	skip:
1039 		prev = vma;
1040 		start = vma->vm_end;
1041 		vma = vma->vm_next;
1042 	} while (vma && vma->vm_start < end);
1043 out_unlock:
1044 	up_write(&mm->mmap_sem);
1045 	mmput(mm);
1046 out:
1047 	return ret;
1048 }
1049 
1050 /*
1051  * userfaultfd_wake may be used in combination with the
1052  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1053  */
1054 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1055 			    unsigned long arg)
1056 {
1057 	int ret;
1058 	struct uffdio_range uffdio_wake;
1059 	struct userfaultfd_wake_range range;
1060 	const void __user *buf = (void __user *)arg;
1061 
1062 	ret = -EFAULT;
1063 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1064 		goto out;
1065 
1066 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1067 	if (ret)
1068 		goto out;
1069 
1070 	range.start = uffdio_wake.start;
1071 	range.len = uffdio_wake.len;
1072 
1073 	/*
1074 	 * len == 0 means wake all and we don't want to wake all here,
1075 	 * so check it again to be sure.
1076 	 */
1077 	VM_BUG_ON(!range.len);
1078 
1079 	wake_userfault(ctx, &range);
1080 	ret = 0;
1081 
1082 out:
1083 	return ret;
1084 }
1085 
1086 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1087 			    unsigned long arg)
1088 {
1089 	__s64 ret;
1090 	struct uffdio_copy uffdio_copy;
1091 	struct uffdio_copy __user *user_uffdio_copy;
1092 	struct userfaultfd_wake_range range;
1093 
1094 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1095 
1096 	ret = -EFAULT;
1097 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1098 			   /* don't copy "copy" last field */
1099 			   sizeof(uffdio_copy)-sizeof(__s64)))
1100 		goto out;
1101 
1102 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1103 	if (ret)
1104 		goto out;
1105 	/*
1106 	 * double check for wraparound just in case. copy_from_user()
1107 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1108 	 * in the userland range.
1109 	 */
1110 	ret = -EINVAL;
1111 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1112 		goto out;
1113 	if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1114 		goto out;
1115 	if (mmget_not_zero(ctx->mm)) {
1116 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1117 				   uffdio_copy.len);
1118 		mmput(ctx->mm);
1119 	}
1120 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1121 		return -EFAULT;
1122 	if (ret < 0)
1123 		goto out;
1124 	BUG_ON(!ret);
1125 	/* len == 0 would wake all */
1126 	range.len = ret;
1127 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1128 		range.start = uffdio_copy.dst;
1129 		wake_userfault(ctx, &range);
1130 	}
1131 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1132 out:
1133 	return ret;
1134 }
1135 
1136 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1137 				unsigned long arg)
1138 {
1139 	__s64 ret;
1140 	struct uffdio_zeropage uffdio_zeropage;
1141 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1142 	struct userfaultfd_wake_range range;
1143 
1144 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1145 
1146 	ret = -EFAULT;
1147 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1148 			   /* don't copy "zeropage" last field */
1149 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1150 		goto out;
1151 
1152 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1153 			     uffdio_zeropage.range.len);
1154 	if (ret)
1155 		goto out;
1156 	ret = -EINVAL;
1157 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1158 		goto out;
1159 
1160 	if (mmget_not_zero(ctx->mm)) {
1161 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1162 				     uffdio_zeropage.range.len);
1163 		mmput(ctx->mm);
1164 	}
1165 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1166 		return -EFAULT;
1167 	if (ret < 0)
1168 		goto out;
1169 	/* len == 0 would wake all */
1170 	BUG_ON(!ret);
1171 	range.len = ret;
1172 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1173 		range.start = uffdio_zeropage.range.start;
1174 		wake_userfault(ctx, &range);
1175 	}
1176 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1177 out:
1178 	return ret;
1179 }
1180 
1181 /*
1182  * userland asks for a certain API version and we return which bits
1183  * and ioctl commands are implemented in this kernel for such API
1184  * version or -EINVAL if unknown.
1185  */
1186 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1187 			   unsigned long arg)
1188 {
1189 	struct uffdio_api uffdio_api;
1190 	void __user *buf = (void __user *)arg;
1191 	int ret;
1192 
1193 	ret = -EINVAL;
1194 	if (ctx->state != UFFD_STATE_WAIT_API)
1195 		goto out;
1196 	ret = -EFAULT;
1197 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1198 		goto out;
1199 	if (uffdio_api.api != UFFD_API || uffdio_api.features) {
1200 		memset(&uffdio_api, 0, sizeof(uffdio_api));
1201 		if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1202 			goto out;
1203 		ret = -EINVAL;
1204 		goto out;
1205 	}
1206 	uffdio_api.features = UFFD_API_FEATURES;
1207 	uffdio_api.ioctls = UFFD_API_IOCTLS;
1208 	ret = -EFAULT;
1209 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1210 		goto out;
1211 	ctx->state = UFFD_STATE_RUNNING;
1212 	ret = 0;
1213 out:
1214 	return ret;
1215 }
1216 
1217 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1218 			      unsigned long arg)
1219 {
1220 	int ret = -EINVAL;
1221 	struct userfaultfd_ctx *ctx = file->private_data;
1222 
1223 	if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1224 		return -EINVAL;
1225 
1226 	switch(cmd) {
1227 	case UFFDIO_API:
1228 		ret = userfaultfd_api(ctx, arg);
1229 		break;
1230 	case UFFDIO_REGISTER:
1231 		ret = userfaultfd_register(ctx, arg);
1232 		break;
1233 	case UFFDIO_UNREGISTER:
1234 		ret = userfaultfd_unregister(ctx, arg);
1235 		break;
1236 	case UFFDIO_WAKE:
1237 		ret = userfaultfd_wake(ctx, arg);
1238 		break;
1239 	case UFFDIO_COPY:
1240 		ret = userfaultfd_copy(ctx, arg);
1241 		break;
1242 	case UFFDIO_ZEROPAGE:
1243 		ret = userfaultfd_zeropage(ctx, arg);
1244 		break;
1245 	}
1246 	return ret;
1247 }
1248 
1249 #ifdef CONFIG_PROC_FS
1250 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1251 {
1252 	struct userfaultfd_ctx *ctx = f->private_data;
1253 	wait_queue_t *wq;
1254 	struct userfaultfd_wait_queue *uwq;
1255 	unsigned long pending = 0, total = 0;
1256 
1257 	spin_lock(&ctx->fault_pending_wqh.lock);
1258 	list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
1259 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1260 		pending++;
1261 		total++;
1262 	}
1263 	list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
1264 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1265 		total++;
1266 	}
1267 	spin_unlock(&ctx->fault_pending_wqh.lock);
1268 
1269 	/*
1270 	 * If more protocols will be added, there will be all shown
1271 	 * separated by a space. Like this:
1272 	 *	protocols: aa:... bb:...
1273 	 */
1274 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1275 		   pending, total, UFFD_API, UFFD_API_FEATURES,
1276 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1277 }
1278 #endif
1279 
1280 static const struct file_operations userfaultfd_fops = {
1281 #ifdef CONFIG_PROC_FS
1282 	.show_fdinfo	= userfaultfd_show_fdinfo,
1283 #endif
1284 	.release	= userfaultfd_release,
1285 	.poll		= userfaultfd_poll,
1286 	.read		= userfaultfd_read,
1287 	.unlocked_ioctl = userfaultfd_ioctl,
1288 	.compat_ioctl	= userfaultfd_ioctl,
1289 	.llseek		= noop_llseek,
1290 };
1291 
1292 static void init_once_userfaultfd_ctx(void *mem)
1293 {
1294 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1295 
1296 	init_waitqueue_head(&ctx->fault_pending_wqh);
1297 	init_waitqueue_head(&ctx->fault_wqh);
1298 	init_waitqueue_head(&ctx->fd_wqh);
1299 	seqcount_init(&ctx->refile_seq);
1300 }
1301 
1302 /**
1303  * userfaultfd_file_create - Creates an userfaultfd file pointer.
1304  * @flags: Flags for the userfaultfd file.
1305  *
1306  * This function creates an userfaultfd file pointer, w/out installing
1307  * it into the fd table. This is useful when the userfaultfd file is
1308  * used during the initialization of data structures that require
1309  * extra setup after the userfaultfd creation. So the userfaultfd
1310  * creation is split into the file pointer creation phase, and the
1311  * file descriptor installation phase.  In this way races with
1312  * userspace closing the newly installed file descriptor can be
1313  * avoided.  Returns an userfaultfd file pointer, or a proper error
1314  * pointer.
1315  */
1316 static struct file *userfaultfd_file_create(int flags)
1317 {
1318 	struct file *file;
1319 	struct userfaultfd_ctx *ctx;
1320 
1321 	BUG_ON(!current->mm);
1322 
1323 	/* Check the UFFD_* constants for consistency.  */
1324 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1325 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1326 
1327 	file = ERR_PTR(-EINVAL);
1328 	if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1329 		goto out;
1330 
1331 	file = ERR_PTR(-ENOMEM);
1332 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1333 	if (!ctx)
1334 		goto out;
1335 
1336 	atomic_set(&ctx->refcount, 1);
1337 	ctx->flags = flags;
1338 	ctx->state = UFFD_STATE_WAIT_API;
1339 	ctx->released = false;
1340 	ctx->mm = current->mm;
1341 	/* prevent the mm struct to be freed */
1342 	atomic_inc(&ctx->mm->mm_count);
1343 
1344 	file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1345 				  O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1346 	if (IS_ERR(file)) {
1347 		mmdrop(ctx->mm);
1348 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1349 	}
1350 out:
1351 	return file;
1352 }
1353 
1354 SYSCALL_DEFINE1(userfaultfd, int, flags)
1355 {
1356 	int fd, error;
1357 	struct file *file;
1358 
1359 	error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1360 	if (error < 0)
1361 		return error;
1362 	fd = error;
1363 
1364 	file = userfaultfd_file_create(flags);
1365 	if (IS_ERR(file)) {
1366 		error = PTR_ERR(file);
1367 		goto err_put_unused_fd;
1368 	}
1369 	fd_install(fd, file);
1370 
1371 	return fd;
1372 
1373 err_put_unused_fd:
1374 	put_unused_fd(fd);
1375 
1376 	return error;
1377 }
1378 
1379 static int __init userfaultfd_init(void)
1380 {
1381 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1382 						sizeof(struct userfaultfd_ctx),
1383 						0,
1384 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1385 						init_once_userfaultfd_ctx);
1386 	return 0;
1387 }
1388 __initcall(userfaultfd_init);
1389