1 /* 2 * fs/userfaultfd.c 3 * 4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 5 * Copyright (C) 2008-2009 Red Hat, Inc. 6 * Copyright (C) 2015 Red Hat, Inc. 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2. See 9 * the COPYING file in the top-level directory. 10 * 11 * Some part derived from fs/eventfd.c (anon inode setup) and 12 * mm/ksm.c (mm hashing). 13 */ 14 15 #include <linux/hashtable.h> 16 #include <linux/sched.h> 17 #include <linux/mm.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/seq_file.h> 21 #include <linux/file.h> 22 #include <linux/bug.h> 23 #include <linux/anon_inodes.h> 24 #include <linux/syscalls.h> 25 #include <linux/userfaultfd_k.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ioctl.h> 28 #include <linux/security.h> 29 30 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 31 32 enum userfaultfd_state { 33 UFFD_STATE_WAIT_API, 34 UFFD_STATE_RUNNING, 35 }; 36 37 /* 38 * Start with fault_pending_wqh and fault_wqh so they're more likely 39 * to be in the same cacheline. 40 */ 41 struct userfaultfd_ctx { 42 /* waitqueue head for the pending (i.e. not read) userfaults */ 43 wait_queue_head_t fault_pending_wqh; 44 /* waitqueue head for the userfaults */ 45 wait_queue_head_t fault_wqh; 46 /* waitqueue head for the pseudo fd to wakeup poll/read */ 47 wait_queue_head_t fd_wqh; 48 /* a refile sequence protected by fault_pending_wqh lock */ 49 struct seqcount refile_seq; 50 /* pseudo fd refcounting */ 51 atomic_t refcount; 52 /* userfaultfd syscall flags */ 53 unsigned int flags; 54 /* state machine */ 55 enum userfaultfd_state state; 56 /* released */ 57 bool released; 58 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 59 struct mm_struct *mm; 60 }; 61 62 struct userfaultfd_wait_queue { 63 struct uffd_msg msg; 64 wait_queue_t wq; 65 struct userfaultfd_ctx *ctx; 66 }; 67 68 struct userfaultfd_wake_range { 69 unsigned long start; 70 unsigned long len; 71 }; 72 73 static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode, 74 int wake_flags, void *key) 75 { 76 struct userfaultfd_wake_range *range = key; 77 int ret; 78 struct userfaultfd_wait_queue *uwq; 79 unsigned long start, len; 80 81 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 82 ret = 0; 83 /* len == 0 means wake all */ 84 start = range->start; 85 len = range->len; 86 if (len && (start > uwq->msg.arg.pagefault.address || 87 start + len <= uwq->msg.arg.pagefault.address)) 88 goto out; 89 ret = wake_up_state(wq->private, mode); 90 if (ret) 91 /* 92 * Wake only once, autoremove behavior. 93 * 94 * After the effect of list_del_init is visible to the 95 * other CPUs, the waitqueue may disappear from under 96 * us, see the !list_empty_careful() in 97 * handle_userfault(). try_to_wake_up() has an 98 * implicit smp_mb__before_spinlock, and the 99 * wq->private is read before calling the extern 100 * function "wake_up_state" (which in turns calls 101 * try_to_wake_up). While the spin_lock;spin_unlock; 102 * wouldn't be enough, the smp_mb__before_spinlock is 103 * enough to avoid an explicit smp_mb() here. 104 */ 105 list_del_init(&wq->task_list); 106 out: 107 return ret; 108 } 109 110 /** 111 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 112 * context. 113 * @ctx: [in] Pointer to the userfaultfd context. 114 * 115 * Returns: In case of success, returns not zero. 116 */ 117 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 118 { 119 if (!atomic_inc_not_zero(&ctx->refcount)) 120 BUG(); 121 } 122 123 /** 124 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 125 * context. 126 * @ctx: [in] Pointer to userfaultfd context. 127 * 128 * The userfaultfd context reference must have been previously acquired either 129 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 130 */ 131 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 132 { 133 if (atomic_dec_and_test(&ctx->refcount)) { 134 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 135 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 136 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 137 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 138 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 139 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 140 mmdrop(ctx->mm); 141 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 142 } 143 } 144 145 static inline void msg_init(struct uffd_msg *msg) 146 { 147 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 148 /* 149 * Must use memset to zero out the paddings or kernel data is 150 * leaked to userland. 151 */ 152 memset(msg, 0, sizeof(struct uffd_msg)); 153 } 154 155 static inline struct uffd_msg userfault_msg(unsigned long address, 156 unsigned int flags, 157 unsigned long reason) 158 { 159 struct uffd_msg msg; 160 msg_init(&msg); 161 msg.event = UFFD_EVENT_PAGEFAULT; 162 msg.arg.pagefault.address = address; 163 if (flags & FAULT_FLAG_WRITE) 164 /* 165 * If UFFD_FEATURE_PAGEFAULT_FLAG_WRITE was set in the 166 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE 167 * was not set in a UFFD_EVENT_PAGEFAULT, it means it 168 * was a read fault, otherwise if set it means it's 169 * a write fault. 170 */ 171 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 172 if (reason & VM_UFFD_WP) 173 /* 174 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 175 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was 176 * not set in a UFFD_EVENT_PAGEFAULT, it means it was 177 * a missing fault, otherwise if set it means it's a 178 * write protect fault. 179 */ 180 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 181 return msg; 182 } 183 184 /* 185 * Verify the pagetables are still not ok after having reigstered into 186 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 187 * userfault that has already been resolved, if userfaultfd_read and 188 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 189 * threads. 190 */ 191 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 192 unsigned long address, 193 unsigned long flags, 194 unsigned long reason) 195 { 196 struct mm_struct *mm = ctx->mm; 197 pgd_t *pgd; 198 pud_t *pud; 199 pmd_t *pmd, _pmd; 200 pte_t *pte; 201 bool ret = true; 202 203 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 204 205 pgd = pgd_offset(mm, address); 206 if (!pgd_present(*pgd)) 207 goto out; 208 pud = pud_offset(pgd, address); 209 if (!pud_present(*pud)) 210 goto out; 211 pmd = pmd_offset(pud, address); 212 /* 213 * READ_ONCE must function as a barrier with narrower scope 214 * and it must be equivalent to: 215 * _pmd = *pmd; barrier(); 216 * 217 * This is to deal with the instability (as in 218 * pmd_trans_unstable) of the pmd. 219 */ 220 _pmd = READ_ONCE(*pmd); 221 if (!pmd_present(_pmd)) 222 goto out; 223 224 ret = false; 225 if (pmd_trans_huge(_pmd)) 226 goto out; 227 228 /* 229 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 230 * and use the standard pte_offset_map() instead of parsing _pmd. 231 */ 232 pte = pte_offset_map(pmd, address); 233 /* 234 * Lockless access: we're in a wait_event so it's ok if it 235 * changes under us. 236 */ 237 if (pte_none(*pte)) 238 ret = true; 239 pte_unmap(pte); 240 241 out: 242 return ret; 243 } 244 245 /* 246 * The locking rules involved in returning VM_FAULT_RETRY depending on 247 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 248 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 249 * recommendation in __lock_page_or_retry is not an understatement. 250 * 251 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released 252 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 253 * not set. 254 * 255 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 256 * set, VM_FAULT_RETRY can still be returned if and only if there are 257 * fatal_signal_pending()s, and the mmap_sem must be released before 258 * returning it. 259 */ 260 int handle_userfault(struct vm_area_struct *vma, unsigned long address, 261 unsigned int flags, unsigned long reason) 262 { 263 struct mm_struct *mm = vma->vm_mm; 264 struct userfaultfd_ctx *ctx; 265 struct userfaultfd_wait_queue uwq; 266 int ret; 267 bool must_wait, return_to_userland; 268 269 BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 270 271 ret = VM_FAULT_SIGBUS; 272 ctx = vma->vm_userfaultfd_ctx.ctx; 273 if (!ctx) 274 goto out; 275 276 BUG_ON(ctx->mm != mm); 277 278 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); 279 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); 280 281 /* 282 * If it's already released don't get it. This avoids to loop 283 * in __get_user_pages if userfaultfd_release waits on the 284 * caller of handle_userfault to release the mmap_sem. 285 */ 286 if (unlikely(ACCESS_ONCE(ctx->released))) 287 goto out; 288 289 /* 290 * We don't do userfault handling for the final child pid update. 291 */ 292 if (current->flags & PF_EXITING) 293 goto out; 294 295 /* 296 * Check that we can return VM_FAULT_RETRY. 297 * 298 * NOTE: it should become possible to return VM_FAULT_RETRY 299 * even if FAULT_FLAG_TRIED is set without leading to gup() 300 * -EBUSY failures, if the userfaultfd is to be extended for 301 * VM_UFFD_WP tracking and we intend to arm the userfault 302 * without first stopping userland access to the memory. For 303 * VM_UFFD_MISSING userfaults this is enough for now. 304 */ 305 if (unlikely(!(flags & FAULT_FLAG_ALLOW_RETRY))) { 306 /* 307 * Validate the invariant that nowait must allow retry 308 * to be sure not to return SIGBUS erroneously on 309 * nowait invocations. 310 */ 311 BUG_ON(flags & FAULT_FLAG_RETRY_NOWAIT); 312 #ifdef CONFIG_DEBUG_VM 313 if (printk_ratelimit()) { 314 printk(KERN_WARNING 315 "FAULT_FLAG_ALLOW_RETRY missing %x\n", flags); 316 dump_stack(); 317 } 318 #endif 319 goto out; 320 } 321 322 /* 323 * Handle nowait, not much to do other than tell it to retry 324 * and wait. 325 */ 326 ret = VM_FAULT_RETRY; 327 if (flags & FAULT_FLAG_RETRY_NOWAIT) 328 goto out; 329 330 /* take the reference before dropping the mmap_sem */ 331 userfaultfd_ctx_get(ctx); 332 333 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 334 uwq.wq.private = current; 335 uwq.msg = userfault_msg(address, flags, reason); 336 uwq.ctx = ctx; 337 338 return_to_userland = (flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) == 339 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE); 340 341 spin_lock(&ctx->fault_pending_wqh.lock); 342 /* 343 * After the __add_wait_queue the uwq is visible to userland 344 * through poll/read(). 345 */ 346 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 347 /* 348 * The smp_mb() after __set_current_state prevents the reads 349 * following the spin_unlock to happen before the list_add in 350 * __add_wait_queue. 351 */ 352 set_current_state(return_to_userland ? TASK_INTERRUPTIBLE : 353 TASK_KILLABLE); 354 spin_unlock(&ctx->fault_pending_wqh.lock); 355 356 must_wait = userfaultfd_must_wait(ctx, address, flags, reason); 357 up_read(&mm->mmap_sem); 358 359 if (likely(must_wait && !ACCESS_ONCE(ctx->released) && 360 (return_to_userland ? !signal_pending(current) : 361 !fatal_signal_pending(current)))) { 362 wake_up_poll(&ctx->fd_wqh, POLLIN); 363 schedule(); 364 ret |= VM_FAULT_MAJOR; 365 } 366 367 __set_current_state(TASK_RUNNING); 368 369 if (return_to_userland) { 370 if (signal_pending(current) && 371 !fatal_signal_pending(current)) { 372 /* 373 * If we got a SIGSTOP or SIGCONT and this is 374 * a normal userland page fault, just let 375 * userland return so the signal will be 376 * handled and gdb debugging works. The page 377 * fault code immediately after we return from 378 * this function is going to release the 379 * mmap_sem and it's not depending on it 380 * (unlike gup would if we were not to return 381 * VM_FAULT_RETRY). 382 * 383 * If a fatal signal is pending we still take 384 * the streamlined VM_FAULT_RETRY failure path 385 * and there's no need to retake the mmap_sem 386 * in such case. 387 */ 388 down_read(&mm->mmap_sem); 389 ret = 0; 390 } 391 } 392 393 /* 394 * Here we race with the list_del; list_add in 395 * userfaultfd_ctx_read(), however because we don't ever run 396 * list_del_init() to refile across the two lists, the prev 397 * and next pointers will never point to self. list_add also 398 * would never let any of the two pointers to point to 399 * self. So list_empty_careful won't risk to see both pointers 400 * pointing to self at any time during the list refile. The 401 * only case where list_del_init() is called is the full 402 * removal in the wake function and there we don't re-list_add 403 * and it's fine not to block on the spinlock. The uwq on this 404 * kernel stack can be released after the list_del_init. 405 */ 406 if (!list_empty_careful(&uwq.wq.task_list)) { 407 spin_lock(&ctx->fault_pending_wqh.lock); 408 /* 409 * No need of list_del_init(), the uwq on the stack 410 * will be freed shortly anyway. 411 */ 412 list_del(&uwq.wq.task_list); 413 spin_unlock(&ctx->fault_pending_wqh.lock); 414 } 415 416 /* 417 * ctx may go away after this if the userfault pseudo fd is 418 * already released. 419 */ 420 userfaultfd_ctx_put(ctx); 421 422 out: 423 return ret; 424 } 425 426 static int userfaultfd_release(struct inode *inode, struct file *file) 427 { 428 struct userfaultfd_ctx *ctx = file->private_data; 429 struct mm_struct *mm = ctx->mm; 430 struct vm_area_struct *vma, *prev; 431 /* len == 0 means wake all */ 432 struct userfaultfd_wake_range range = { .len = 0, }; 433 unsigned long new_flags; 434 435 ACCESS_ONCE(ctx->released) = true; 436 437 if (!mmget_not_zero(mm)) 438 goto wakeup; 439 440 /* 441 * Flush page faults out of all CPUs. NOTE: all page faults 442 * must be retried without returning VM_FAULT_SIGBUS if 443 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 444 * changes while handle_userfault released the mmap_sem. So 445 * it's critical that released is set to true (above), before 446 * taking the mmap_sem for writing. 447 */ 448 down_write(&mm->mmap_sem); 449 prev = NULL; 450 for (vma = mm->mmap; vma; vma = vma->vm_next) { 451 cond_resched(); 452 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 453 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 454 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 455 prev = vma; 456 continue; 457 } 458 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 459 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 460 new_flags, vma->anon_vma, 461 vma->vm_file, vma->vm_pgoff, 462 vma_policy(vma), 463 NULL_VM_UFFD_CTX); 464 if (prev) 465 vma = prev; 466 else 467 prev = vma; 468 vma->vm_flags = new_flags; 469 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 470 } 471 up_write(&mm->mmap_sem); 472 mmput(mm); 473 wakeup: 474 /* 475 * After no new page faults can wait on this fault_*wqh, flush 476 * the last page faults that may have been already waiting on 477 * the fault_*wqh. 478 */ 479 spin_lock(&ctx->fault_pending_wqh.lock); 480 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 481 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range); 482 spin_unlock(&ctx->fault_pending_wqh.lock); 483 484 wake_up_poll(&ctx->fd_wqh, POLLHUP); 485 userfaultfd_ctx_put(ctx); 486 return 0; 487 } 488 489 /* fault_pending_wqh.lock must be hold by the caller */ 490 static inline struct userfaultfd_wait_queue *find_userfault( 491 struct userfaultfd_ctx *ctx) 492 { 493 wait_queue_t *wq; 494 struct userfaultfd_wait_queue *uwq; 495 496 VM_BUG_ON(!spin_is_locked(&ctx->fault_pending_wqh.lock)); 497 498 uwq = NULL; 499 if (!waitqueue_active(&ctx->fault_pending_wqh)) 500 goto out; 501 /* walk in reverse to provide FIFO behavior to read userfaults */ 502 wq = list_last_entry(&ctx->fault_pending_wqh.task_list, 503 typeof(*wq), task_list); 504 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 505 out: 506 return uwq; 507 } 508 509 static unsigned int userfaultfd_poll(struct file *file, poll_table *wait) 510 { 511 struct userfaultfd_ctx *ctx = file->private_data; 512 unsigned int ret; 513 514 poll_wait(file, &ctx->fd_wqh, wait); 515 516 switch (ctx->state) { 517 case UFFD_STATE_WAIT_API: 518 return POLLERR; 519 case UFFD_STATE_RUNNING: 520 /* 521 * poll() never guarantees that read won't block. 522 * userfaults can be waken before they're read(). 523 */ 524 if (unlikely(!(file->f_flags & O_NONBLOCK))) 525 return POLLERR; 526 /* 527 * lockless access to see if there are pending faults 528 * __pollwait last action is the add_wait_queue but 529 * the spin_unlock would allow the waitqueue_active to 530 * pass above the actual list_add inside 531 * add_wait_queue critical section. So use a full 532 * memory barrier to serialize the list_add write of 533 * add_wait_queue() with the waitqueue_active read 534 * below. 535 */ 536 ret = 0; 537 smp_mb(); 538 if (waitqueue_active(&ctx->fault_pending_wqh)) 539 ret = POLLIN; 540 return ret; 541 default: 542 BUG(); 543 } 544 } 545 546 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 547 struct uffd_msg *msg) 548 { 549 ssize_t ret; 550 DECLARE_WAITQUEUE(wait, current); 551 struct userfaultfd_wait_queue *uwq; 552 553 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 554 spin_lock(&ctx->fd_wqh.lock); 555 __add_wait_queue(&ctx->fd_wqh, &wait); 556 for (;;) { 557 set_current_state(TASK_INTERRUPTIBLE); 558 spin_lock(&ctx->fault_pending_wqh.lock); 559 uwq = find_userfault(ctx); 560 if (uwq) { 561 /* 562 * Use a seqcount to repeat the lockless check 563 * in wake_userfault() to avoid missing 564 * wakeups because during the refile both 565 * waitqueue could become empty if this is the 566 * only userfault. 567 */ 568 write_seqcount_begin(&ctx->refile_seq); 569 570 /* 571 * The fault_pending_wqh.lock prevents the uwq 572 * to disappear from under us. 573 * 574 * Refile this userfault from 575 * fault_pending_wqh to fault_wqh, it's not 576 * pending anymore after we read it. 577 * 578 * Use list_del() by hand (as 579 * userfaultfd_wake_function also uses 580 * list_del_init() by hand) to be sure nobody 581 * changes __remove_wait_queue() to use 582 * list_del_init() in turn breaking the 583 * !list_empty_careful() check in 584 * handle_userfault(). The uwq->wq.task_list 585 * must never be empty at any time during the 586 * refile, or the waitqueue could disappear 587 * from under us. The "wait_queue_head_t" 588 * parameter of __remove_wait_queue() is unused 589 * anyway. 590 */ 591 list_del(&uwq->wq.task_list); 592 __add_wait_queue(&ctx->fault_wqh, &uwq->wq); 593 594 write_seqcount_end(&ctx->refile_seq); 595 596 /* careful to always initialize msg if ret == 0 */ 597 *msg = uwq->msg; 598 spin_unlock(&ctx->fault_pending_wqh.lock); 599 ret = 0; 600 break; 601 } 602 spin_unlock(&ctx->fault_pending_wqh.lock); 603 if (signal_pending(current)) { 604 ret = -ERESTARTSYS; 605 break; 606 } 607 if (no_wait) { 608 ret = -EAGAIN; 609 break; 610 } 611 spin_unlock(&ctx->fd_wqh.lock); 612 schedule(); 613 spin_lock(&ctx->fd_wqh.lock); 614 } 615 __remove_wait_queue(&ctx->fd_wqh, &wait); 616 __set_current_state(TASK_RUNNING); 617 spin_unlock(&ctx->fd_wqh.lock); 618 619 return ret; 620 } 621 622 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 623 size_t count, loff_t *ppos) 624 { 625 struct userfaultfd_ctx *ctx = file->private_data; 626 ssize_t _ret, ret = 0; 627 struct uffd_msg msg; 628 int no_wait = file->f_flags & O_NONBLOCK; 629 630 if (ctx->state == UFFD_STATE_WAIT_API) 631 return -EINVAL; 632 633 for (;;) { 634 if (count < sizeof(msg)) 635 return ret ? ret : -EINVAL; 636 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); 637 if (_ret < 0) 638 return ret ? ret : _ret; 639 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 640 return ret ? ret : -EFAULT; 641 ret += sizeof(msg); 642 buf += sizeof(msg); 643 count -= sizeof(msg); 644 /* 645 * Allow to read more than one fault at time but only 646 * block if waiting for the very first one. 647 */ 648 no_wait = O_NONBLOCK; 649 } 650 } 651 652 static void __wake_userfault(struct userfaultfd_ctx *ctx, 653 struct userfaultfd_wake_range *range) 654 { 655 unsigned long start, end; 656 657 start = range->start; 658 end = range->start + range->len; 659 660 spin_lock(&ctx->fault_pending_wqh.lock); 661 /* wake all in the range and autoremove */ 662 if (waitqueue_active(&ctx->fault_pending_wqh)) 663 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 664 range); 665 if (waitqueue_active(&ctx->fault_wqh)) 666 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range); 667 spin_unlock(&ctx->fault_pending_wqh.lock); 668 } 669 670 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 671 struct userfaultfd_wake_range *range) 672 { 673 unsigned seq; 674 bool need_wakeup; 675 676 /* 677 * To be sure waitqueue_active() is not reordered by the CPU 678 * before the pagetable update, use an explicit SMP memory 679 * barrier here. PT lock release or up_read(mmap_sem) still 680 * have release semantics that can allow the 681 * waitqueue_active() to be reordered before the pte update. 682 */ 683 smp_mb(); 684 685 /* 686 * Use waitqueue_active because it's very frequent to 687 * change the address space atomically even if there are no 688 * userfaults yet. So we take the spinlock only when we're 689 * sure we've userfaults to wake. 690 */ 691 do { 692 seq = read_seqcount_begin(&ctx->refile_seq); 693 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 694 waitqueue_active(&ctx->fault_wqh); 695 cond_resched(); 696 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 697 if (need_wakeup) 698 __wake_userfault(ctx, range); 699 } 700 701 static __always_inline int validate_range(struct mm_struct *mm, 702 __u64 start, __u64 len) 703 { 704 __u64 task_size = mm->task_size; 705 706 if (start & ~PAGE_MASK) 707 return -EINVAL; 708 if (len & ~PAGE_MASK) 709 return -EINVAL; 710 if (!len) 711 return -EINVAL; 712 if (start < mmap_min_addr) 713 return -EINVAL; 714 if (start >= task_size) 715 return -EINVAL; 716 if (len > task_size - start) 717 return -EINVAL; 718 return 0; 719 } 720 721 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 722 unsigned long arg) 723 { 724 struct mm_struct *mm = ctx->mm; 725 struct vm_area_struct *vma, *prev, *cur; 726 int ret; 727 struct uffdio_register uffdio_register; 728 struct uffdio_register __user *user_uffdio_register; 729 unsigned long vm_flags, new_flags; 730 bool found; 731 unsigned long start, end, vma_end; 732 733 user_uffdio_register = (struct uffdio_register __user *) arg; 734 735 ret = -EFAULT; 736 if (copy_from_user(&uffdio_register, user_uffdio_register, 737 sizeof(uffdio_register)-sizeof(__u64))) 738 goto out; 739 740 ret = -EINVAL; 741 if (!uffdio_register.mode) 742 goto out; 743 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| 744 UFFDIO_REGISTER_MODE_WP)) 745 goto out; 746 vm_flags = 0; 747 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 748 vm_flags |= VM_UFFD_MISSING; 749 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 750 vm_flags |= VM_UFFD_WP; 751 /* 752 * FIXME: remove the below error constraint by 753 * implementing the wprotect tracking mode. 754 */ 755 ret = -EINVAL; 756 goto out; 757 } 758 759 ret = validate_range(mm, uffdio_register.range.start, 760 uffdio_register.range.len); 761 if (ret) 762 goto out; 763 764 start = uffdio_register.range.start; 765 end = start + uffdio_register.range.len; 766 767 ret = -ENOMEM; 768 if (!mmget_not_zero(mm)) 769 goto out; 770 771 down_write(&mm->mmap_sem); 772 vma = find_vma_prev(mm, start, &prev); 773 if (!vma) 774 goto out_unlock; 775 776 /* check that there's at least one vma in the range */ 777 ret = -EINVAL; 778 if (vma->vm_start >= end) 779 goto out_unlock; 780 781 /* 782 * Search for not compatible vmas. 783 * 784 * FIXME: this shall be relaxed later so that it doesn't fail 785 * on tmpfs backed vmas (in addition to the current allowance 786 * on anonymous vmas). 787 */ 788 found = false; 789 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 790 cond_resched(); 791 792 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 793 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 794 795 /* check not compatible vmas */ 796 ret = -EINVAL; 797 if (cur->vm_ops) 798 goto out_unlock; 799 800 /* 801 * Check that this vma isn't already owned by a 802 * different userfaultfd. We can't allow more than one 803 * userfaultfd to own a single vma simultaneously or we 804 * wouldn't know which one to deliver the userfaults to. 805 */ 806 ret = -EBUSY; 807 if (cur->vm_userfaultfd_ctx.ctx && 808 cur->vm_userfaultfd_ctx.ctx != ctx) 809 goto out_unlock; 810 811 found = true; 812 } 813 BUG_ON(!found); 814 815 if (vma->vm_start < start) 816 prev = vma; 817 818 ret = 0; 819 do { 820 cond_resched(); 821 822 BUG_ON(vma->vm_ops); 823 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 824 vma->vm_userfaultfd_ctx.ctx != ctx); 825 826 /* 827 * Nothing to do: this vma is already registered into this 828 * userfaultfd and with the right tracking mode too. 829 */ 830 if (vma->vm_userfaultfd_ctx.ctx == ctx && 831 (vma->vm_flags & vm_flags) == vm_flags) 832 goto skip; 833 834 if (vma->vm_start > start) 835 start = vma->vm_start; 836 vma_end = min(end, vma->vm_end); 837 838 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags; 839 prev = vma_merge(mm, prev, start, vma_end, new_flags, 840 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 841 vma_policy(vma), 842 ((struct vm_userfaultfd_ctx){ ctx })); 843 if (prev) { 844 vma = prev; 845 goto next; 846 } 847 if (vma->vm_start < start) { 848 ret = split_vma(mm, vma, start, 1); 849 if (ret) 850 break; 851 } 852 if (vma->vm_end > end) { 853 ret = split_vma(mm, vma, end, 0); 854 if (ret) 855 break; 856 } 857 next: 858 /* 859 * In the vma_merge() successful mprotect-like case 8: 860 * the next vma was merged into the current one and 861 * the current one has not been updated yet. 862 */ 863 vma->vm_flags = new_flags; 864 vma->vm_userfaultfd_ctx.ctx = ctx; 865 866 skip: 867 prev = vma; 868 start = vma->vm_end; 869 vma = vma->vm_next; 870 } while (vma && vma->vm_start < end); 871 out_unlock: 872 up_write(&mm->mmap_sem); 873 mmput(mm); 874 if (!ret) { 875 /* 876 * Now that we scanned all vmas we can already tell 877 * userland which ioctls methods are guaranteed to 878 * succeed on this range. 879 */ 880 if (put_user(UFFD_API_RANGE_IOCTLS, 881 &user_uffdio_register->ioctls)) 882 ret = -EFAULT; 883 } 884 out: 885 return ret; 886 } 887 888 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 889 unsigned long arg) 890 { 891 struct mm_struct *mm = ctx->mm; 892 struct vm_area_struct *vma, *prev, *cur; 893 int ret; 894 struct uffdio_range uffdio_unregister; 895 unsigned long new_flags; 896 bool found; 897 unsigned long start, end, vma_end; 898 const void __user *buf = (void __user *)arg; 899 900 ret = -EFAULT; 901 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 902 goto out; 903 904 ret = validate_range(mm, uffdio_unregister.start, 905 uffdio_unregister.len); 906 if (ret) 907 goto out; 908 909 start = uffdio_unregister.start; 910 end = start + uffdio_unregister.len; 911 912 ret = -ENOMEM; 913 if (!mmget_not_zero(mm)) 914 goto out; 915 916 down_write(&mm->mmap_sem); 917 vma = find_vma_prev(mm, start, &prev); 918 if (!vma) 919 goto out_unlock; 920 921 /* check that there's at least one vma in the range */ 922 ret = -EINVAL; 923 if (vma->vm_start >= end) 924 goto out_unlock; 925 926 /* 927 * Search for not compatible vmas. 928 * 929 * FIXME: this shall be relaxed later so that it doesn't fail 930 * on tmpfs backed vmas (in addition to the current allowance 931 * on anonymous vmas). 932 */ 933 found = false; 934 ret = -EINVAL; 935 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 936 cond_resched(); 937 938 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 939 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 940 941 /* 942 * Check not compatible vmas, not strictly required 943 * here as not compatible vmas cannot have an 944 * userfaultfd_ctx registered on them, but this 945 * provides for more strict behavior to notice 946 * unregistration errors. 947 */ 948 if (cur->vm_ops) 949 goto out_unlock; 950 951 found = true; 952 } 953 BUG_ON(!found); 954 955 if (vma->vm_start < start) 956 prev = vma; 957 958 ret = 0; 959 do { 960 cond_resched(); 961 962 BUG_ON(vma->vm_ops); 963 964 /* 965 * Nothing to do: this vma is already registered into this 966 * userfaultfd and with the right tracking mode too. 967 */ 968 if (!vma->vm_userfaultfd_ctx.ctx) 969 goto skip; 970 971 if (vma->vm_start > start) 972 start = vma->vm_start; 973 vma_end = min(end, vma->vm_end); 974 975 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 976 prev = vma_merge(mm, prev, start, vma_end, new_flags, 977 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 978 vma_policy(vma), 979 NULL_VM_UFFD_CTX); 980 if (prev) { 981 vma = prev; 982 goto next; 983 } 984 if (vma->vm_start < start) { 985 ret = split_vma(mm, vma, start, 1); 986 if (ret) 987 break; 988 } 989 if (vma->vm_end > end) { 990 ret = split_vma(mm, vma, end, 0); 991 if (ret) 992 break; 993 } 994 next: 995 /* 996 * In the vma_merge() successful mprotect-like case 8: 997 * the next vma was merged into the current one and 998 * the current one has not been updated yet. 999 */ 1000 vma->vm_flags = new_flags; 1001 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1002 1003 skip: 1004 prev = vma; 1005 start = vma->vm_end; 1006 vma = vma->vm_next; 1007 } while (vma && vma->vm_start < end); 1008 out_unlock: 1009 up_write(&mm->mmap_sem); 1010 mmput(mm); 1011 out: 1012 return ret; 1013 } 1014 1015 /* 1016 * userfaultfd_wake may be used in combination with the 1017 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1018 */ 1019 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1020 unsigned long arg) 1021 { 1022 int ret; 1023 struct uffdio_range uffdio_wake; 1024 struct userfaultfd_wake_range range; 1025 const void __user *buf = (void __user *)arg; 1026 1027 ret = -EFAULT; 1028 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1029 goto out; 1030 1031 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1032 if (ret) 1033 goto out; 1034 1035 range.start = uffdio_wake.start; 1036 range.len = uffdio_wake.len; 1037 1038 /* 1039 * len == 0 means wake all and we don't want to wake all here, 1040 * so check it again to be sure. 1041 */ 1042 VM_BUG_ON(!range.len); 1043 1044 wake_userfault(ctx, &range); 1045 ret = 0; 1046 1047 out: 1048 return ret; 1049 } 1050 1051 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1052 unsigned long arg) 1053 { 1054 __s64 ret; 1055 struct uffdio_copy uffdio_copy; 1056 struct uffdio_copy __user *user_uffdio_copy; 1057 struct userfaultfd_wake_range range; 1058 1059 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1060 1061 ret = -EFAULT; 1062 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1063 /* don't copy "copy" last field */ 1064 sizeof(uffdio_copy)-sizeof(__s64))) 1065 goto out; 1066 1067 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1068 if (ret) 1069 goto out; 1070 /* 1071 * double check for wraparound just in case. copy_from_user() 1072 * will later check uffdio_copy.src + uffdio_copy.len to fit 1073 * in the userland range. 1074 */ 1075 ret = -EINVAL; 1076 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1077 goto out; 1078 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) 1079 goto out; 1080 if (mmget_not_zero(ctx->mm)) { 1081 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1082 uffdio_copy.len); 1083 mmput(ctx->mm); 1084 } 1085 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1086 return -EFAULT; 1087 if (ret < 0) 1088 goto out; 1089 BUG_ON(!ret); 1090 /* len == 0 would wake all */ 1091 range.len = ret; 1092 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1093 range.start = uffdio_copy.dst; 1094 wake_userfault(ctx, &range); 1095 } 1096 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1097 out: 1098 return ret; 1099 } 1100 1101 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1102 unsigned long arg) 1103 { 1104 __s64 ret; 1105 struct uffdio_zeropage uffdio_zeropage; 1106 struct uffdio_zeropage __user *user_uffdio_zeropage; 1107 struct userfaultfd_wake_range range; 1108 1109 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1110 1111 ret = -EFAULT; 1112 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1113 /* don't copy "zeropage" last field */ 1114 sizeof(uffdio_zeropage)-sizeof(__s64))) 1115 goto out; 1116 1117 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1118 uffdio_zeropage.range.len); 1119 if (ret) 1120 goto out; 1121 ret = -EINVAL; 1122 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1123 goto out; 1124 1125 if (mmget_not_zero(ctx->mm)) { 1126 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1127 uffdio_zeropage.range.len); 1128 mmput(ctx->mm); 1129 } 1130 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1131 return -EFAULT; 1132 if (ret < 0) 1133 goto out; 1134 /* len == 0 would wake all */ 1135 BUG_ON(!ret); 1136 range.len = ret; 1137 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1138 range.start = uffdio_zeropage.range.start; 1139 wake_userfault(ctx, &range); 1140 } 1141 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1142 out: 1143 return ret; 1144 } 1145 1146 /* 1147 * userland asks for a certain API version and we return which bits 1148 * and ioctl commands are implemented in this kernel for such API 1149 * version or -EINVAL if unknown. 1150 */ 1151 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1152 unsigned long arg) 1153 { 1154 struct uffdio_api uffdio_api; 1155 void __user *buf = (void __user *)arg; 1156 int ret; 1157 1158 ret = -EINVAL; 1159 if (ctx->state != UFFD_STATE_WAIT_API) 1160 goto out; 1161 ret = -EFAULT; 1162 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1163 goto out; 1164 if (uffdio_api.api != UFFD_API || uffdio_api.features) { 1165 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1166 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1167 goto out; 1168 ret = -EINVAL; 1169 goto out; 1170 } 1171 uffdio_api.features = UFFD_API_FEATURES; 1172 uffdio_api.ioctls = UFFD_API_IOCTLS; 1173 ret = -EFAULT; 1174 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1175 goto out; 1176 ctx->state = UFFD_STATE_RUNNING; 1177 ret = 0; 1178 out: 1179 return ret; 1180 } 1181 1182 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1183 unsigned long arg) 1184 { 1185 int ret = -EINVAL; 1186 struct userfaultfd_ctx *ctx = file->private_data; 1187 1188 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) 1189 return -EINVAL; 1190 1191 switch(cmd) { 1192 case UFFDIO_API: 1193 ret = userfaultfd_api(ctx, arg); 1194 break; 1195 case UFFDIO_REGISTER: 1196 ret = userfaultfd_register(ctx, arg); 1197 break; 1198 case UFFDIO_UNREGISTER: 1199 ret = userfaultfd_unregister(ctx, arg); 1200 break; 1201 case UFFDIO_WAKE: 1202 ret = userfaultfd_wake(ctx, arg); 1203 break; 1204 case UFFDIO_COPY: 1205 ret = userfaultfd_copy(ctx, arg); 1206 break; 1207 case UFFDIO_ZEROPAGE: 1208 ret = userfaultfd_zeropage(ctx, arg); 1209 break; 1210 } 1211 return ret; 1212 } 1213 1214 #ifdef CONFIG_PROC_FS 1215 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 1216 { 1217 struct userfaultfd_ctx *ctx = f->private_data; 1218 wait_queue_t *wq; 1219 struct userfaultfd_wait_queue *uwq; 1220 unsigned long pending = 0, total = 0; 1221 1222 spin_lock(&ctx->fault_pending_wqh.lock); 1223 list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) { 1224 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 1225 pending++; 1226 total++; 1227 } 1228 list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) { 1229 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 1230 total++; 1231 } 1232 spin_unlock(&ctx->fault_pending_wqh.lock); 1233 1234 /* 1235 * If more protocols will be added, there will be all shown 1236 * separated by a space. Like this: 1237 * protocols: aa:... bb:... 1238 */ 1239 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 1240 pending, total, UFFD_API, UFFD_API_FEATURES, 1241 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 1242 } 1243 #endif 1244 1245 static const struct file_operations userfaultfd_fops = { 1246 #ifdef CONFIG_PROC_FS 1247 .show_fdinfo = userfaultfd_show_fdinfo, 1248 #endif 1249 .release = userfaultfd_release, 1250 .poll = userfaultfd_poll, 1251 .read = userfaultfd_read, 1252 .unlocked_ioctl = userfaultfd_ioctl, 1253 .compat_ioctl = userfaultfd_ioctl, 1254 .llseek = noop_llseek, 1255 }; 1256 1257 static void init_once_userfaultfd_ctx(void *mem) 1258 { 1259 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 1260 1261 init_waitqueue_head(&ctx->fault_pending_wqh); 1262 init_waitqueue_head(&ctx->fault_wqh); 1263 init_waitqueue_head(&ctx->fd_wqh); 1264 seqcount_init(&ctx->refile_seq); 1265 } 1266 1267 /** 1268 * userfaultfd_file_create - Creates an userfaultfd file pointer. 1269 * @flags: Flags for the userfaultfd file. 1270 * 1271 * This function creates an userfaultfd file pointer, w/out installing 1272 * it into the fd table. This is useful when the userfaultfd file is 1273 * used during the initialization of data structures that require 1274 * extra setup after the userfaultfd creation. So the userfaultfd 1275 * creation is split into the file pointer creation phase, and the 1276 * file descriptor installation phase. In this way races with 1277 * userspace closing the newly installed file descriptor can be 1278 * avoided. Returns an userfaultfd file pointer, or a proper error 1279 * pointer. 1280 */ 1281 static struct file *userfaultfd_file_create(int flags) 1282 { 1283 struct file *file; 1284 struct userfaultfd_ctx *ctx; 1285 1286 BUG_ON(!current->mm); 1287 1288 /* Check the UFFD_* constants for consistency. */ 1289 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 1290 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 1291 1292 file = ERR_PTR(-EINVAL); 1293 if (flags & ~UFFD_SHARED_FCNTL_FLAGS) 1294 goto out; 1295 1296 file = ERR_PTR(-ENOMEM); 1297 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 1298 if (!ctx) 1299 goto out; 1300 1301 atomic_set(&ctx->refcount, 1); 1302 ctx->flags = flags; 1303 ctx->state = UFFD_STATE_WAIT_API; 1304 ctx->released = false; 1305 ctx->mm = current->mm; 1306 /* prevent the mm struct to be freed */ 1307 atomic_inc(&ctx->mm->mm_count); 1308 1309 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx, 1310 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); 1311 if (IS_ERR(file)) { 1312 mmdrop(ctx->mm); 1313 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 1314 } 1315 out: 1316 return file; 1317 } 1318 1319 SYSCALL_DEFINE1(userfaultfd, int, flags) 1320 { 1321 int fd, error; 1322 struct file *file; 1323 1324 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS); 1325 if (error < 0) 1326 return error; 1327 fd = error; 1328 1329 file = userfaultfd_file_create(flags); 1330 if (IS_ERR(file)) { 1331 error = PTR_ERR(file); 1332 goto err_put_unused_fd; 1333 } 1334 fd_install(fd, file); 1335 1336 return fd; 1337 1338 err_put_unused_fd: 1339 put_unused_fd(fd); 1340 1341 return error; 1342 } 1343 1344 static int __init userfaultfd_init(void) 1345 { 1346 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 1347 sizeof(struct userfaultfd_ctx), 1348 0, 1349 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 1350 init_once_userfaultfd_ctx); 1351 return 0; 1352 } 1353 __initcall(userfaultfd_init); 1354