1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/userfaultfd.c 4 * 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 8 * 9 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 11 */ 12 13 #include <linux/list.h> 14 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/mmu_notifier.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 #include <linux/swapops.h> 33 #include <linux/miscdevice.h> 34 35 static int sysctl_unprivileged_userfaultfd __read_mostly; 36 37 #ifdef CONFIG_SYSCTL 38 static struct ctl_table vm_userfaultfd_table[] = { 39 { 40 .procname = "unprivileged_userfaultfd", 41 .data = &sysctl_unprivileged_userfaultfd, 42 .maxlen = sizeof(sysctl_unprivileged_userfaultfd), 43 .mode = 0644, 44 .proc_handler = proc_dointvec_minmax, 45 .extra1 = SYSCTL_ZERO, 46 .extra2 = SYSCTL_ONE, 47 }, 48 { } 49 }; 50 #endif 51 52 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 53 54 /* 55 * Start with fault_pending_wqh and fault_wqh so they're more likely 56 * to be in the same cacheline. 57 * 58 * Locking order: 59 * fd_wqh.lock 60 * fault_pending_wqh.lock 61 * fault_wqh.lock 62 * event_wqh.lock 63 * 64 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, 65 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's 66 * also taken in IRQ context. 67 */ 68 struct userfaultfd_ctx { 69 /* waitqueue head for the pending (i.e. not read) userfaults */ 70 wait_queue_head_t fault_pending_wqh; 71 /* waitqueue head for the userfaults */ 72 wait_queue_head_t fault_wqh; 73 /* waitqueue head for the pseudo fd to wakeup poll/read */ 74 wait_queue_head_t fd_wqh; 75 /* waitqueue head for events */ 76 wait_queue_head_t event_wqh; 77 /* a refile sequence protected by fault_pending_wqh lock */ 78 seqcount_spinlock_t refile_seq; 79 /* pseudo fd refcounting */ 80 refcount_t refcount; 81 /* userfaultfd syscall flags */ 82 unsigned int flags; 83 /* features requested from the userspace */ 84 unsigned int features; 85 /* released */ 86 bool released; 87 /* memory mappings are changing because of non-cooperative event */ 88 atomic_t mmap_changing; 89 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 90 struct mm_struct *mm; 91 }; 92 93 struct userfaultfd_fork_ctx { 94 struct userfaultfd_ctx *orig; 95 struct userfaultfd_ctx *new; 96 struct list_head list; 97 }; 98 99 struct userfaultfd_unmap_ctx { 100 struct userfaultfd_ctx *ctx; 101 unsigned long start; 102 unsigned long end; 103 struct list_head list; 104 }; 105 106 struct userfaultfd_wait_queue { 107 struct uffd_msg msg; 108 wait_queue_entry_t wq; 109 struct userfaultfd_ctx *ctx; 110 bool waken; 111 }; 112 113 struct userfaultfd_wake_range { 114 unsigned long start; 115 unsigned long len; 116 }; 117 118 /* internal indication that UFFD_API ioctl was successfully executed */ 119 #define UFFD_FEATURE_INITIALIZED (1u << 31) 120 121 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx) 122 { 123 return ctx->features & UFFD_FEATURE_INITIALIZED; 124 } 125 126 /* 127 * Whether WP_UNPOPULATED is enabled on the uffd context. It is only 128 * meaningful when userfaultfd_wp()==true on the vma and when it's 129 * anonymous. 130 */ 131 bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma) 132 { 133 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 134 135 if (!ctx) 136 return false; 137 138 return ctx->features & UFFD_FEATURE_WP_UNPOPULATED; 139 } 140 141 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma, 142 vm_flags_t flags) 143 { 144 const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP; 145 146 vm_flags_reset(vma, flags); 147 /* 148 * For shared mappings, we want to enable writenotify while 149 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply 150 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes. 151 */ 152 if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed) 153 vma_set_page_prot(vma); 154 } 155 156 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 157 int wake_flags, void *key) 158 { 159 struct userfaultfd_wake_range *range = key; 160 int ret; 161 struct userfaultfd_wait_queue *uwq; 162 unsigned long start, len; 163 164 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 165 ret = 0; 166 /* len == 0 means wake all */ 167 start = range->start; 168 len = range->len; 169 if (len && (start > uwq->msg.arg.pagefault.address || 170 start + len <= uwq->msg.arg.pagefault.address)) 171 goto out; 172 WRITE_ONCE(uwq->waken, true); 173 /* 174 * The Program-Order guarantees provided by the scheduler 175 * ensure uwq->waken is visible before the task is woken. 176 */ 177 ret = wake_up_state(wq->private, mode); 178 if (ret) { 179 /* 180 * Wake only once, autoremove behavior. 181 * 182 * After the effect of list_del_init is visible to the other 183 * CPUs, the waitqueue may disappear from under us, see the 184 * !list_empty_careful() in handle_userfault(). 185 * 186 * try_to_wake_up() has an implicit smp_mb(), and the 187 * wq->private is read before calling the extern function 188 * "wake_up_state" (which in turns calls try_to_wake_up). 189 */ 190 list_del_init(&wq->entry); 191 } 192 out: 193 return ret; 194 } 195 196 /** 197 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 198 * context. 199 * @ctx: [in] Pointer to the userfaultfd context. 200 */ 201 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 202 { 203 refcount_inc(&ctx->refcount); 204 } 205 206 /** 207 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 208 * context. 209 * @ctx: [in] Pointer to userfaultfd context. 210 * 211 * The userfaultfd context reference must have been previously acquired either 212 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 213 */ 214 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 215 { 216 if (refcount_dec_and_test(&ctx->refcount)) { 217 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 218 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 219 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 220 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 221 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 222 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 223 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 224 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 225 mmdrop(ctx->mm); 226 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 227 } 228 } 229 230 static inline void msg_init(struct uffd_msg *msg) 231 { 232 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 233 /* 234 * Must use memset to zero out the paddings or kernel data is 235 * leaked to userland. 236 */ 237 memset(msg, 0, sizeof(struct uffd_msg)); 238 } 239 240 static inline struct uffd_msg userfault_msg(unsigned long address, 241 unsigned long real_address, 242 unsigned int flags, 243 unsigned long reason, 244 unsigned int features) 245 { 246 struct uffd_msg msg; 247 248 msg_init(&msg); 249 msg.event = UFFD_EVENT_PAGEFAULT; 250 251 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ? 252 real_address : address; 253 254 /* 255 * These flags indicate why the userfault occurred: 256 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault. 257 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault. 258 * - Neither of these flags being set indicates a MISSING fault. 259 * 260 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write 261 * fault. Otherwise, it was a read fault. 262 */ 263 if (flags & FAULT_FLAG_WRITE) 264 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 265 if (reason & VM_UFFD_WP) 266 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 267 if (reason & VM_UFFD_MINOR) 268 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR; 269 if (features & UFFD_FEATURE_THREAD_ID) 270 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 271 return msg; 272 } 273 274 #ifdef CONFIG_HUGETLB_PAGE 275 /* 276 * Same functionality as userfaultfd_must_wait below with modifications for 277 * hugepmd ranges. 278 */ 279 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 280 struct vm_area_struct *vma, 281 unsigned long address, 282 unsigned long flags, 283 unsigned long reason) 284 { 285 pte_t *ptep, pte; 286 bool ret = true; 287 288 mmap_assert_locked(ctx->mm); 289 290 ptep = hugetlb_walk(vma, address, vma_mmu_pagesize(vma)); 291 if (!ptep) 292 goto out; 293 294 ret = false; 295 pte = huge_ptep_get(ptep); 296 297 /* 298 * Lockless access: we're in a wait_event so it's ok if it 299 * changes under us. PTE markers should be handled the same as none 300 * ptes here. 301 */ 302 if (huge_pte_none_mostly(pte)) 303 ret = true; 304 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 305 ret = true; 306 out: 307 return ret; 308 } 309 #else 310 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 311 struct vm_area_struct *vma, 312 unsigned long address, 313 unsigned long flags, 314 unsigned long reason) 315 { 316 return false; /* should never get here */ 317 } 318 #endif /* CONFIG_HUGETLB_PAGE */ 319 320 /* 321 * Verify the pagetables are still not ok after having reigstered into 322 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 323 * userfault that has already been resolved, if userfaultfd_read and 324 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 325 * threads. 326 */ 327 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 328 unsigned long address, 329 unsigned long flags, 330 unsigned long reason) 331 { 332 struct mm_struct *mm = ctx->mm; 333 pgd_t *pgd; 334 p4d_t *p4d; 335 pud_t *pud; 336 pmd_t *pmd, _pmd; 337 pte_t *pte; 338 pte_t ptent; 339 bool ret = true; 340 341 mmap_assert_locked(mm); 342 343 pgd = pgd_offset(mm, address); 344 if (!pgd_present(*pgd)) 345 goto out; 346 p4d = p4d_offset(pgd, address); 347 if (!p4d_present(*p4d)) 348 goto out; 349 pud = pud_offset(p4d, address); 350 if (!pud_present(*pud)) 351 goto out; 352 pmd = pmd_offset(pud, address); 353 again: 354 _pmd = pmdp_get_lockless(pmd); 355 if (pmd_none(_pmd)) 356 goto out; 357 358 ret = false; 359 if (!pmd_present(_pmd) || pmd_devmap(_pmd)) 360 goto out; 361 362 if (pmd_trans_huge(_pmd)) { 363 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) 364 ret = true; 365 goto out; 366 } 367 368 pte = pte_offset_map(pmd, address); 369 if (!pte) { 370 ret = true; 371 goto again; 372 } 373 /* 374 * Lockless access: we're in a wait_event so it's ok if it 375 * changes under us. PTE markers should be handled the same as none 376 * ptes here. 377 */ 378 ptent = ptep_get(pte); 379 if (pte_none_mostly(ptent)) 380 ret = true; 381 if (!pte_write(ptent) && (reason & VM_UFFD_WP)) 382 ret = true; 383 pte_unmap(pte); 384 385 out: 386 return ret; 387 } 388 389 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags) 390 { 391 if (flags & FAULT_FLAG_INTERRUPTIBLE) 392 return TASK_INTERRUPTIBLE; 393 394 if (flags & FAULT_FLAG_KILLABLE) 395 return TASK_KILLABLE; 396 397 return TASK_UNINTERRUPTIBLE; 398 } 399 400 /* 401 * The locking rules involved in returning VM_FAULT_RETRY depending on 402 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 403 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 404 * recommendation in __lock_page_or_retry is not an understatement. 405 * 406 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released 407 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 408 * not set. 409 * 410 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 411 * set, VM_FAULT_RETRY can still be returned if and only if there are 412 * fatal_signal_pending()s, and the mmap_lock must be released before 413 * returning it. 414 */ 415 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 416 { 417 struct vm_area_struct *vma = vmf->vma; 418 struct mm_struct *mm = vma->vm_mm; 419 struct userfaultfd_ctx *ctx; 420 struct userfaultfd_wait_queue uwq; 421 vm_fault_t ret = VM_FAULT_SIGBUS; 422 bool must_wait; 423 unsigned int blocking_state; 424 425 /* 426 * We don't do userfault handling for the final child pid update. 427 * 428 * We also don't do userfault handling during 429 * coredumping. hugetlbfs has the special 430 * hugetlb_follow_page_mask() to skip missing pages in the 431 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 432 * the no_page_table() helper in follow_page_mask(), but the 433 * shmem_vm_ops->fault method is invoked even during 434 * coredumping without mmap_lock and it ends up here. 435 */ 436 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 437 goto out; 438 439 /* 440 * Coredumping runs without mmap_lock so we can only check that 441 * the mmap_lock is held, if PF_DUMPCORE was not set. 442 */ 443 mmap_assert_locked(mm); 444 445 ctx = vma->vm_userfaultfd_ctx.ctx; 446 if (!ctx) 447 goto out; 448 449 BUG_ON(ctx->mm != mm); 450 451 /* Any unrecognized flag is a bug. */ 452 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS); 453 /* 0 or > 1 flags set is a bug; we expect exactly 1. */ 454 VM_BUG_ON(!reason || (reason & (reason - 1))); 455 456 if (ctx->features & UFFD_FEATURE_SIGBUS) 457 goto out; 458 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY)) 459 goto out; 460 461 /* 462 * If it's already released don't get it. This avoids to loop 463 * in __get_user_pages if userfaultfd_release waits on the 464 * caller of handle_userfault to release the mmap_lock. 465 */ 466 if (unlikely(READ_ONCE(ctx->released))) { 467 /* 468 * Don't return VM_FAULT_SIGBUS in this case, so a non 469 * cooperative manager can close the uffd after the 470 * last UFFDIO_COPY, without risking to trigger an 471 * involuntary SIGBUS if the process was starting the 472 * userfaultfd while the userfaultfd was still armed 473 * (but after the last UFFDIO_COPY). If the uffd 474 * wasn't already closed when the userfault reached 475 * this point, that would normally be solved by 476 * userfaultfd_must_wait returning 'false'. 477 * 478 * If we were to return VM_FAULT_SIGBUS here, the non 479 * cooperative manager would be instead forced to 480 * always call UFFDIO_UNREGISTER before it can safely 481 * close the uffd. 482 */ 483 ret = VM_FAULT_NOPAGE; 484 goto out; 485 } 486 487 /* 488 * Check that we can return VM_FAULT_RETRY. 489 * 490 * NOTE: it should become possible to return VM_FAULT_RETRY 491 * even if FAULT_FLAG_TRIED is set without leading to gup() 492 * -EBUSY failures, if the userfaultfd is to be extended for 493 * VM_UFFD_WP tracking and we intend to arm the userfault 494 * without first stopping userland access to the memory. For 495 * VM_UFFD_MISSING userfaults this is enough for now. 496 */ 497 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 498 /* 499 * Validate the invariant that nowait must allow retry 500 * to be sure not to return SIGBUS erroneously on 501 * nowait invocations. 502 */ 503 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 504 #ifdef CONFIG_DEBUG_VM 505 if (printk_ratelimit()) { 506 printk(KERN_WARNING 507 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 508 vmf->flags); 509 dump_stack(); 510 } 511 #endif 512 goto out; 513 } 514 515 /* 516 * Handle nowait, not much to do other than tell it to retry 517 * and wait. 518 */ 519 ret = VM_FAULT_RETRY; 520 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 521 goto out; 522 523 /* take the reference before dropping the mmap_lock */ 524 userfaultfd_ctx_get(ctx); 525 526 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 527 uwq.wq.private = current; 528 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags, 529 reason, ctx->features); 530 uwq.ctx = ctx; 531 uwq.waken = false; 532 533 blocking_state = userfaultfd_get_blocking_state(vmf->flags); 534 535 /* 536 * Take the vma lock now, in order to safely call 537 * userfaultfd_huge_must_wait() later. Since acquiring the 538 * (sleepable) vma lock can modify the current task state, that 539 * must be before explicitly calling set_current_state(). 540 */ 541 if (is_vm_hugetlb_page(vma)) 542 hugetlb_vma_lock_read(vma); 543 544 spin_lock_irq(&ctx->fault_pending_wqh.lock); 545 /* 546 * After the __add_wait_queue the uwq is visible to userland 547 * through poll/read(). 548 */ 549 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 550 /* 551 * The smp_mb() after __set_current_state prevents the reads 552 * following the spin_unlock to happen before the list_add in 553 * __add_wait_queue. 554 */ 555 set_current_state(blocking_state); 556 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 557 558 if (!is_vm_hugetlb_page(vma)) 559 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 560 reason); 561 else 562 must_wait = userfaultfd_huge_must_wait(ctx, vma, 563 vmf->address, 564 vmf->flags, reason); 565 if (is_vm_hugetlb_page(vma)) 566 hugetlb_vma_unlock_read(vma); 567 mmap_read_unlock(mm); 568 569 if (likely(must_wait && !READ_ONCE(ctx->released))) { 570 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 571 schedule(); 572 } 573 574 __set_current_state(TASK_RUNNING); 575 576 /* 577 * Here we race with the list_del; list_add in 578 * userfaultfd_ctx_read(), however because we don't ever run 579 * list_del_init() to refile across the two lists, the prev 580 * and next pointers will never point to self. list_add also 581 * would never let any of the two pointers to point to 582 * self. So list_empty_careful won't risk to see both pointers 583 * pointing to self at any time during the list refile. The 584 * only case where list_del_init() is called is the full 585 * removal in the wake function and there we don't re-list_add 586 * and it's fine not to block on the spinlock. The uwq on this 587 * kernel stack can be released after the list_del_init. 588 */ 589 if (!list_empty_careful(&uwq.wq.entry)) { 590 spin_lock_irq(&ctx->fault_pending_wqh.lock); 591 /* 592 * No need of list_del_init(), the uwq on the stack 593 * will be freed shortly anyway. 594 */ 595 list_del(&uwq.wq.entry); 596 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 597 } 598 599 /* 600 * ctx may go away after this if the userfault pseudo fd is 601 * already released. 602 */ 603 userfaultfd_ctx_put(ctx); 604 605 out: 606 return ret; 607 } 608 609 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 610 struct userfaultfd_wait_queue *ewq) 611 { 612 struct userfaultfd_ctx *release_new_ctx; 613 614 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 615 goto out; 616 617 ewq->ctx = ctx; 618 init_waitqueue_entry(&ewq->wq, current); 619 release_new_ctx = NULL; 620 621 spin_lock_irq(&ctx->event_wqh.lock); 622 /* 623 * After the __add_wait_queue the uwq is visible to userland 624 * through poll/read(). 625 */ 626 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 627 for (;;) { 628 set_current_state(TASK_KILLABLE); 629 if (ewq->msg.event == 0) 630 break; 631 if (READ_ONCE(ctx->released) || 632 fatal_signal_pending(current)) { 633 /* 634 * &ewq->wq may be queued in fork_event, but 635 * __remove_wait_queue ignores the head 636 * parameter. It would be a problem if it 637 * didn't. 638 */ 639 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 640 if (ewq->msg.event == UFFD_EVENT_FORK) { 641 struct userfaultfd_ctx *new; 642 643 new = (struct userfaultfd_ctx *) 644 (unsigned long) 645 ewq->msg.arg.reserved.reserved1; 646 release_new_ctx = new; 647 } 648 break; 649 } 650 651 spin_unlock_irq(&ctx->event_wqh.lock); 652 653 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 654 schedule(); 655 656 spin_lock_irq(&ctx->event_wqh.lock); 657 } 658 __set_current_state(TASK_RUNNING); 659 spin_unlock_irq(&ctx->event_wqh.lock); 660 661 if (release_new_ctx) { 662 struct vm_area_struct *vma; 663 struct mm_struct *mm = release_new_ctx->mm; 664 VMA_ITERATOR(vmi, mm, 0); 665 666 /* the various vma->vm_userfaultfd_ctx still points to it */ 667 mmap_write_lock(mm); 668 for_each_vma(vmi, vma) { 669 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 670 vma_start_write(vma); 671 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 672 userfaultfd_set_vm_flags(vma, 673 vma->vm_flags & ~__VM_UFFD_FLAGS); 674 } 675 } 676 mmap_write_unlock(mm); 677 678 userfaultfd_ctx_put(release_new_ctx); 679 } 680 681 /* 682 * ctx may go away after this if the userfault pseudo fd is 683 * already released. 684 */ 685 out: 686 atomic_dec(&ctx->mmap_changing); 687 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0); 688 userfaultfd_ctx_put(ctx); 689 } 690 691 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 692 struct userfaultfd_wait_queue *ewq) 693 { 694 ewq->msg.event = 0; 695 wake_up_locked(&ctx->event_wqh); 696 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 697 } 698 699 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 700 { 701 struct userfaultfd_ctx *ctx = NULL, *octx; 702 struct userfaultfd_fork_ctx *fctx; 703 704 octx = vma->vm_userfaultfd_ctx.ctx; 705 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 706 vma_start_write(vma); 707 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 708 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS); 709 return 0; 710 } 711 712 list_for_each_entry(fctx, fcs, list) 713 if (fctx->orig == octx) { 714 ctx = fctx->new; 715 break; 716 } 717 718 if (!ctx) { 719 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 720 if (!fctx) 721 return -ENOMEM; 722 723 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 724 if (!ctx) { 725 kfree(fctx); 726 return -ENOMEM; 727 } 728 729 refcount_set(&ctx->refcount, 1); 730 ctx->flags = octx->flags; 731 ctx->features = octx->features; 732 ctx->released = false; 733 atomic_set(&ctx->mmap_changing, 0); 734 ctx->mm = vma->vm_mm; 735 mmgrab(ctx->mm); 736 737 userfaultfd_ctx_get(octx); 738 atomic_inc(&octx->mmap_changing); 739 fctx->orig = octx; 740 fctx->new = ctx; 741 list_add_tail(&fctx->list, fcs); 742 } 743 744 vma->vm_userfaultfd_ctx.ctx = ctx; 745 return 0; 746 } 747 748 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 749 { 750 struct userfaultfd_ctx *ctx = fctx->orig; 751 struct userfaultfd_wait_queue ewq; 752 753 msg_init(&ewq.msg); 754 755 ewq.msg.event = UFFD_EVENT_FORK; 756 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 757 758 userfaultfd_event_wait_completion(ctx, &ewq); 759 } 760 761 void dup_userfaultfd_complete(struct list_head *fcs) 762 { 763 struct userfaultfd_fork_ctx *fctx, *n; 764 765 list_for_each_entry_safe(fctx, n, fcs, list) { 766 dup_fctx(fctx); 767 list_del(&fctx->list); 768 kfree(fctx); 769 } 770 } 771 772 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 773 struct vm_userfaultfd_ctx *vm_ctx) 774 { 775 struct userfaultfd_ctx *ctx; 776 777 ctx = vma->vm_userfaultfd_ctx.ctx; 778 779 if (!ctx) 780 return; 781 782 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 783 vm_ctx->ctx = ctx; 784 userfaultfd_ctx_get(ctx); 785 atomic_inc(&ctx->mmap_changing); 786 } else { 787 /* Drop uffd context if remap feature not enabled */ 788 vma_start_write(vma); 789 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 790 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS); 791 } 792 } 793 794 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 795 unsigned long from, unsigned long to, 796 unsigned long len) 797 { 798 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 799 struct userfaultfd_wait_queue ewq; 800 801 if (!ctx) 802 return; 803 804 if (to & ~PAGE_MASK) { 805 userfaultfd_ctx_put(ctx); 806 return; 807 } 808 809 msg_init(&ewq.msg); 810 811 ewq.msg.event = UFFD_EVENT_REMAP; 812 ewq.msg.arg.remap.from = from; 813 ewq.msg.arg.remap.to = to; 814 ewq.msg.arg.remap.len = len; 815 816 userfaultfd_event_wait_completion(ctx, &ewq); 817 } 818 819 bool userfaultfd_remove(struct vm_area_struct *vma, 820 unsigned long start, unsigned long end) 821 { 822 struct mm_struct *mm = vma->vm_mm; 823 struct userfaultfd_ctx *ctx; 824 struct userfaultfd_wait_queue ewq; 825 826 ctx = vma->vm_userfaultfd_ctx.ctx; 827 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 828 return true; 829 830 userfaultfd_ctx_get(ctx); 831 atomic_inc(&ctx->mmap_changing); 832 mmap_read_unlock(mm); 833 834 msg_init(&ewq.msg); 835 836 ewq.msg.event = UFFD_EVENT_REMOVE; 837 ewq.msg.arg.remove.start = start; 838 ewq.msg.arg.remove.end = end; 839 840 userfaultfd_event_wait_completion(ctx, &ewq); 841 842 return false; 843 } 844 845 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 846 unsigned long start, unsigned long end) 847 { 848 struct userfaultfd_unmap_ctx *unmap_ctx; 849 850 list_for_each_entry(unmap_ctx, unmaps, list) 851 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 852 unmap_ctx->end == end) 853 return true; 854 855 return false; 856 } 857 858 int userfaultfd_unmap_prep(struct vm_area_struct *vma, unsigned long start, 859 unsigned long end, struct list_head *unmaps) 860 { 861 struct userfaultfd_unmap_ctx *unmap_ctx; 862 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 863 864 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 865 has_unmap_ctx(ctx, unmaps, start, end)) 866 return 0; 867 868 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 869 if (!unmap_ctx) 870 return -ENOMEM; 871 872 userfaultfd_ctx_get(ctx); 873 atomic_inc(&ctx->mmap_changing); 874 unmap_ctx->ctx = ctx; 875 unmap_ctx->start = start; 876 unmap_ctx->end = end; 877 list_add_tail(&unmap_ctx->list, unmaps); 878 879 return 0; 880 } 881 882 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 883 { 884 struct userfaultfd_unmap_ctx *ctx, *n; 885 struct userfaultfd_wait_queue ewq; 886 887 list_for_each_entry_safe(ctx, n, uf, list) { 888 msg_init(&ewq.msg); 889 890 ewq.msg.event = UFFD_EVENT_UNMAP; 891 ewq.msg.arg.remove.start = ctx->start; 892 ewq.msg.arg.remove.end = ctx->end; 893 894 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 895 896 list_del(&ctx->list); 897 kfree(ctx); 898 } 899 } 900 901 static int userfaultfd_release(struct inode *inode, struct file *file) 902 { 903 struct userfaultfd_ctx *ctx = file->private_data; 904 struct mm_struct *mm = ctx->mm; 905 struct vm_area_struct *vma, *prev; 906 /* len == 0 means wake all */ 907 struct userfaultfd_wake_range range = { .len = 0, }; 908 unsigned long new_flags; 909 VMA_ITERATOR(vmi, mm, 0); 910 911 WRITE_ONCE(ctx->released, true); 912 913 if (!mmget_not_zero(mm)) 914 goto wakeup; 915 916 /* 917 * Flush page faults out of all CPUs. NOTE: all page faults 918 * must be retried without returning VM_FAULT_SIGBUS if 919 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 920 * changes while handle_userfault released the mmap_lock. So 921 * it's critical that released is set to true (above), before 922 * taking the mmap_lock for writing. 923 */ 924 mmap_write_lock(mm); 925 prev = NULL; 926 for_each_vma(vmi, vma) { 927 cond_resched(); 928 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 929 !!(vma->vm_flags & __VM_UFFD_FLAGS)); 930 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 931 prev = vma; 932 continue; 933 } 934 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 935 prev = vma_merge(&vmi, mm, prev, vma->vm_start, vma->vm_end, 936 new_flags, vma->anon_vma, 937 vma->vm_file, vma->vm_pgoff, 938 vma_policy(vma), 939 NULL_VM_UFFD_CTX, anon_vma_name(vma)); 940 if (prev) { 941 vma = prev; 942 } else { 943 prev = vma; 944 } 945 946 vma_start_write(vma); 947 userfaultfd_set_vm_flags(vma, new_flags); 948 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 949 } 950 mmap_write_unlock(mm); 951 mmput(mm); 952 wakeup: 953 /* 954 * After no new page faults can wait on this fault_*wqh, flush 955 * the last page faults that may have been already waiting on 956 * the fault_*wqh. 957 */ 958 spin_lock_irq(&ctx->fault_pending_wqh.lock); 959 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 960 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 961 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 962 963 /* Flush pending events that may still wait on event_wqh */ 964 wake_up_all(&ctx->event_wqh); 965 966 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 967 userfaultfd_ctx_put(ctx); 968 return 0; 969 } 970 971 /* fault_pending_wqh.lock must be hold by the caller */ 972 static inline struct userfaultfd_wait_queue *find_userfault_in( 973 wait_queue_head_t *wqh) 974 { 975 wait_queue_entry_t *wq; 976 struct userfaultfd_wait_queue *uwq; 977 978 lockdep_assert_held(&wqh->lock); 979 980 uwq = NULL; 981 if (!waitqueue_active(wqh)) 982 goto out; 983 /* walk in reverse to provide FIFO behavior to read userfaults */ 984 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 985 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 986 out: 987 return uwq; 988 } 989 990 static inline struct userfaultfd_wait_queue *find_userfault( 991 struct userfaultfd_ctx *ctx) 992 { 993 return find_userfault_in(&ctx->fault_pending_wqh); 994 } 995 996 static inline struct userfaultfd_wait_queue *find_userfault_evt( 997 struct userfaultfd_ctx *ctx) 998 { 999 return find_userfault_in(&ctx->event_wqh); 1000 } 1001 1002 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 1003 { 1004 struct userfaultfd_ctx *ctx = file->private_data; 1005 __poll_t ret; 1006 1007 poll_wait(file, &ctx->fd_wqh, wait); 1008 1009 if (!userfaultfd_is_initialized(ctx)) 1010 return EPOLLERR; 1011 1012 /* 1013 * poll() never guarantees that read won't block. 1014 * userfaults can be waken before they're read(). 1015 */ 1016 if (unlikely(!(file->f_flags & O_NONBLOCK))) 1017 return EPOLLERR; 1018 /* 1019 * lockless access to see if there are pending faults 1020 * __pollwait last action is the add_wait_queue but 1021 * the spin_unlock would allow the waitqueue_active to 1022 * pass above the actual list_add inside 1023 * add_wait_queue critical section. So use a full 1024 * memory barrier to serialize the list_add write of 1025 * add_wait_queue() with the waitqueue_active read 1026 * below. 1027 */ 1028 ret = 0; 1029 smp_mb(); 1030 if (waitqueue_active(&ctx->fault_pending_wqh)) 1031 ret = EPOLLIN; 1032 else if (waitqueue_active(&ctx->event_wqh)) 1033 ret = EPOLLIN; 1034 1035 return ret; 1036 } 1037 1038 static const struct file_operations userfaultfd_fops; 1039 1040 static int resolve_userfault_fork(struct userfaultfd_ctx *new, 1041 struct inode *inode, 1042 struct uffd_msg *msg) 1043 { 1044 int fd; 1045 1046 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new, 1047 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode); 1048 if (fd < 0) 1049 return fd; 1050 1051 msg->arg.reserved.reserved1 = 0; 1052 msg->arg.fork.ufd = fd; 1053 return 0; 1054 } 1055 1056 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1057 struct uffd_msg *msg, struct inode *inode) 1058 { 1059 ssize_t ret; 1060 DECLARE_WAITQUEUE(wait, current); 1061 struct userfaultfd_wait_queue *uwq; 1062 /* 1063 * Handling fork event requires sleeping operations, so 1064 * we drop the event_wqh lock, then do these ops, then 1065 * lock it back and wake up the waiter. While the lock is 1066 * dropped the ewq may go away so we keep track of it 1067 * carefully. 1068 */ 1069 LIST_HEAD(fork_event); 1070 struct userfaultfd_ctx *fork_nctx = NULL; 1071 1072 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1073 spin_lock_irq(&ctx->fd_wqh.lock); 1074 __add_wait_queue(&ctx->fd_wqh, &wait); 1075 for (;;) { 1076 set_current_state(TASK_INTERRUPTIBLE); 1077 spin_lock(&ctx->fault_pending_wqh.lock); 1078 uwq = find_userfault(ctx); 1079 if (uwq) { 1080 /* 1081 * Use a seqcount to repeat the lockless check 1082 * in wake_userfault() to avoid missing 1083 * wakeups because during the refile both 1084 * waitqueue could become empty if this is the 1085 * only userfault. 1086 */ 1087 write_seqcount_begin(&ctx->refile_seq); 1088 1089 /* 1090 * The fault_pending_wqh.lock prevents the uwq 1091 * to disappear from under us. 1092 * 1093 * Refile this userfault from 1094 * fault_pending_wqh to fault_wqh, it's not 1095 * pending anymore after we read it. 1096 * 1097 * Use list_del() by hand (as 1098 * userfaultfd_wake_function also uses 1099 * list_del_init() by hand) to be sure nobody 1100 * changes __remove_wait_queue() to use 1101 * list_del_init() in turn breaking the 1102 * !list_empty_careful() check in 1103 * handle_userfault(). The uwq->wq.head list 1104 * must never be empty at any time during the 1105 * refile, or the waitqueue could disappear 1106 * from under us. The "wait_queue_head_t" 1107 * parameter of __remove_wait_queue() is unused 1108 * anyway. 1109 */ 1110 list_del(&uwq->wq.entry); 1111 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1112 1113 write_seqcount_end(&ctx->refile_seq); 1114 1115 /* careful to always initialize msg if ret == 0 */ 1116 *msg = uwq->msg; 1117 spin_unlock(&ctx->fault_pending_wqh.lock); 1118 ret = 0; 1119 break; 1120 } 1121 spin_unlock(&ctx->fault_pending_wqh.lock); 1122 1123 spin_lock(&ctx->event_wqh.lock); 1124 uwq = find_userfault_evt(ctx); 1125 if (uwq) { 1126 *msg = uwq->msg; 1127 1128 if (uwq->msg.event == UFFD_EVENT_FORK) { 1129 fork_nctx = (struct userfaultfd_ctx *) 1130 (unsigned long) 1131 uwq->msg.arg.reserved.reserved1; 1132 list_move(&uwq->wq.entry, &fork_event); 1133 /* 1134 * fork_nctx can be freed as soon as 1135 * we drop the lock, unless we take a 1136 * reference on it. 1137 */ 1138 userfaultfd_ctx_get(fork_nctx); 1139 spin_unlock(&ctx->event_wqh.lock); 1140 ret = 0; 1141 break; 1142 } 1143 1144 userfaultfd_event_complete(ctx, uwq); 1145 spin_unlock(&ctx->event_wqh.lock); 1146 ret = 0; 1147 break; 1148 } 1149 spin_unlock(&ctx->event_wqh.lock); 1150 1151 if (signal_pending(current)) { 1152 ret = -ERESTARTSYS; 1153 break; 1154 } 1155 if (no_wait) { 1156 ret = -EAGAIN; 1157 break; 1158 } 1159 spin_unlock_irq(&ctx->fd_wqh.lock); 1160 schedule(); 1161 spin_lock_irq(&ctx->fd_wqh.lock); 1162 } 1163 __remove_wait_queue(&ctx->fd_wqh, &wait); 1164 __set_current_state(TASK_RUNNING); 1165 spin_unlock_irq(&ctx->fd_wqh.lock); 1166 1167 if (!ret && msg->event == UFFD_EVENT_FORK) { 1168 ret = resolve_userfault_fork(fork_nctx, inode, msg); 1169 spin_lock_irq(&ctx->event_wqh.lock); 1170 if (!list_empty(&fork_event)) { 1171 /* 1172 * The fork thread didn't abort, so we can 1173 * drop the temporary refcount. 1174 */ 1175 userfaultfd_ctx_put(fork_nctx); 1176 1177 uwq = list_first_entry(&fork_event, 1178 typeof(*uwq), 1179 wq.entry); 1180 /* 1181 * If fork_event list wasn't empty and in turn 1182 * the event wasn't already released by fork 1183 * (the event is allocated on fork kernel 1184 * stack), put the event back to its place in 1185 * the event_wq. fork_event head will be freed 1186 * as soon as we return so the event cannot 1187 * stay queued there no matter the current 1188 * "ret" value. 1189 */ 1190 list_del(&uwq->wq.entry); 1191 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1192 1193 /* 1194 * Leave the event in the waitqueue and report 1195 * error to userland if we failed to resolve 1196 * the userfault fork. 1197 */ 1198 if (likely(!ret)) 1199 userfaultfd_event_complete(ctx, uwq); 1200 } else { 1201 /* 1202 * Here the fork thread aborted and the 1203 * refcount from the fork thread on fork_nctx 1204 * has already been released. We still hold 1205 * the reference we took before releasing the 1206 * lock above. If resolve_userfault_fork 1207 * failed we've to drop it because the 1208 * fork_nctx has to be freed in such case. If 1209 * it succeeded we'll hold it because the new 1210 * uffd references it. 1211 */ 1212 if (ret) 1213 userfaultfd_ctx_put(fork_nctx); 1214 } 1215 spin_unlock_irq(&ctx->event_wqh.lock); 1216 } 1217 1218 return ret; 1219 } 1220 1221 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1222 size_t count, loff_t *ppos) 1223 { 1224 struct userfaultfd_ctx *ctx = file->private_data; 1225 ssize_t _ret, ret = 0; 1226 struct uffd_msg msg; 1227 int no_wait = file->f_flags & O_NONBLOCK; 1228 struct inode *inode = file_inode(file); 1229 1230 if (!userfaultfd_is_initialized(ctx)) 1231 return -EINVAL; 1232 1233 for (;;) { 1234 if (count < sizeof(msg)) 1235 return ret ? ret : -EINVAL; 1236 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode); 1237 if (_ret < 0) 1238 return ret ? ret : _ret; 1239 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1240 return ret ? ret : -EFAULT; 1241 ret += sizeof(msg); 1242 buf += sizeof(msg); 1243 count -= sizeof(msg); 1244 /* 1245 * Allow to read more than one fault at time but only 1246 * block if waiting for the very first one. 1247 */ 1248 no_wait = O_NONBLOCK; 1249 } 1250 } 1251 1252 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1253 struct userfaultfd_wake_range *range) 1254 { 1255 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1256 /* wake all in the range and autoremove */ 1257 if (waitqueue_active(&ctx->fault_pending_wqh)) 1258 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1259 range); 1260 if (waitqueue_active(&ctx->fault_wqh)) 1261 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1262 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1263 } 1264 1265 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1266 struct userfaultfd_wake_range *range) 1267 { 1268 unsigned seq; 1269 bool need_wakeup; 1270 1271 /* 1272 * To be sure waitqueue_active() is not reordered by the CPU 1273 * before the pagetable update, use an explicit SMP memory 1274 * barrier here. PT lock release or mmap_read_unlock(mm) still 1275 * have release semantics that can allow the 1276 * waitqueue_active() to be reordered before the pte update. 1277 */ 1278 smp_mb(); 1279 1280 /* 1281 * Use waitqueue_active because it's very frequent to 1282 * change the address space atomically even if there are no 1283 * userfaults yet. So we take the spinlock only when we're 1284 * sure we've userfaults to wake. 1285 */ 1286 do { 1287 seq = read_seqcount_begin(&ctx->refile_seq); 1288 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1289 waitqueue_active(&ctx->fault_wqh); 1290 cond_resched(); 1291 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1292 if (need_wakeup) 1293 __wake_userfault(ctx, range); 1294 } 1295 1296 static __always_inline int validate_unaligned_range( 1297 struct mm_struct *mm, __u64 start, __u64 len) 1298 { 1299 __u64 task_size = mm->task_size; 1300 1301 if (len & ~PAGE_MASK) 1302 return -EINVAL; 1303 if (!len) 1304 return -EINVAL; 1305 if (start < mmap_min_addr) 1306 return -EINVAL; 1307 if (start >= task_size) 1308 return -EINVAL; 1309 if (len > task_size - start) 1310 return -EINVAL; 1311 if (start + len <= start) 1312 return -EINVAL; 1313 return 0; 1314 } 1315 1316 static __always_inline int validate_range(struct mm_struct *mm, 1317 __u64 start, __u64 len) 1318 { 1319 if (start & ~PAGE_MASK) 1320 return -EINVAL; 1321 1322 return validate_unaligned_range(mm, start, len); 1323 } 1324 1325 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1326 unsigned long arg) 1327 { 1328 struct mm_struct *mm = ctx->mm; 1329 struct vm_area_struct *vma, *prev, *cur; 1330 int ret; 1331 struct uffdio_register uffdio_register; 1332 struct uffdio_register __user *user_uffdio_register; 1333 unsigned long vm_flags, new_flags; 1334 bool found; 1335 bool basic_ioctls; 1336 unsigned long start, end, vma_end; 1337 struct vma_iterator vmi; 1338 pgoff_t pgoff; 1339 1340 user_uffdio_register = (struct uffdio_register __user *) arg; 1341 1342 ret = -EFAULT; 1343 if (copy_from_user(&uffdio_register, user_uffdio_register, 1344 sizeof(uffdio_register)-sizeof(__u64))) 1345 goto out; 1346 1347 ret = -EINVAL; 1348 if (!uffdio_register.mode) 1349 goto out; 1350 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES) 1351 goto out; 1352 vm_flags = 0; 1353 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1354 vm_flags |= VM_UFFD_MISSING; 1355 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1356 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1357 goto out; 1358 #endif 1359 vm_flags |= VM_UFFD_WP; 1360 } 1361 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) { 1362 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1363 goto out; 1364 #endif 1365 vm_flags |= VM_UFFD_MINOR; 1366 } 1367 1368 ret = validate_range(mm, uffdio_register.range.start, 1369 uffdio_register.range.len); 1370 if (ret) 1371 goto out; 1372 1373 start = uffdio_register.range.start; 1374 end = start + uffdio_register.range.len; 1375 1376 ret = -ENOMEM; 1377 if (!mmget_not_zero(mm)) 1378 goto out; 1379 1380 ret = -EINVAL; 1381 mmap_write_lock(mm); 1382 vma_iter_init(&vmi, mm, start); 1383 vma = vma_find(&vmi, end); 1384 if (!vma) 1385 goto out_unlock; 1386 1387 /* 1388 * If the first vma contains huge pages, make sure start address 1389 * is aligned to huge page size. 1390 */ 1391 if (is_vm_hugetlb_page(vma)) { 1392 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1393 1394 if (start & (vma_hpagesize - 1)) 1395 goto out_unlock; 1396 } 1397 1398 /* 1399 * Search for not compatible vmas. 1400 */ 1401 found = false; 1402 basic_ioctls = false; 1403 cur = vma; 1404 do { 1405 cond_resched(); 1406 1407 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1408 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1409 1410 /* check not compatible vmas */ 1411 ret = -EINVAL; 1412 if (!vma_can_userfault(cur, vm_flags)) 1413 goto out_unlock; 1414 1415 /* 1416 * UFFDIO_COPY will fill file holes even without 1417 * PROT_WRITE. This check enforces that if this is a 1418 * MAP_SHARED, the process has write permission to the backing 1419 * file. If VM_MAYWRITE is set it also enforces that on a 1420 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1421 * F_WRITE_SEAL can be taken until the vma is destroyed. 1422 */ 1423 ret = -EPERM; 1424 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1425 goto out_unlock; 1426 1427 /* 1428 * If this vma contains ending address, and huge pages 1429 * check alignment. 1430 */ 1431 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1432 end > cur->vm_start) { 1433 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1434 1435 ret = -EINVAL; 1436 1437 if (end & (vma_hpagesize - 1)) 1438 goto out_unlock; 1439 } 1440 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) 1441 goto out_unlock; 1442 1443 /* 1444 * Check that this vma isn't already owned by a 1445 * different userfaultfd. We can't allow more than one 1446 * userfaultfd to own a single vma simultaneously or we 1447 * wouldn't know which one to deliver the userfaults to. 1448 */ 1449 ret = -EBUSY; 1450 if (cur->vm_userfaultfd_ctx.ctx && 1451 cur->vm_userfaultfd_ctx.ctx != ctx) 1452 goto out_unlock; 1453 1454 /* 1455 * Note vmas containing huge pages 1456 */ 1457 if (is_vm_hugetlb_page(cur)) 1458 basic_ioctls = true; 1459 1460 found = true; 1461 } for_each_vma_range(vmi, cur, end); 1462 BUG_ON(!found); 1463 1464 vma_iter_set(&vmi, start); 1465 prev = vma_prev(&vmi); 1466 if (vma->vm_start < start) 1467 prev = vma; 1468 1469 ret = 0; 1470 for_each_vma_range(vmi, vma, end) { 1471 cond_resched(); 1472 1473 BUG_ON(!vma_can_userfault(vma, vm_flags)); 1474 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1475 vma->vm_userfaultfd_ctx.ctx != ctx); 1476 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1477 1478 /* 1479 * Nothing to do: this vma is already registered into this 1480 * userfaultfd and with the right tracking mode too. 1481 */ 1482 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1483 (vma->vm_flags & vm_flags) == vm_flags) 1484 goto skip; 1485 1486 if (vma->vm_start > start) 1487 start = vma->vm_start; 1488 vma_end = min(end, vma->vm_end); 1489 1490 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags; 1491 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 1492 prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags, 1493 vma->anon_vma, vma->vm_file, pgoff, 1494 vma_policy(vma), 1495 ((struct vm_userfaultfd_ctx){ ctx }), 1496 anon_vma_name(vma)); 1497 if (prev) { 1498 /* vma_merge() invalidated the mas */ 1499 vma = prev; 1500 goto next; 1501 } 1502 if (vma->vm_start < start) { 1503 ret = split_vma(&vmi, vma, start, 1); 1504 if (ret) 1505 break; 1506 } 1507 if (vma->vm_end > end) { 1508 ret = split_vma(&vmi, vma, end, 0); 1509 if (ret) 1510 break; 1511 } 1512 next: 1513 /* 1514 * In the vma_merge() successful mprotect-like case 8: 1515 * the next vma was merged into the current one and 1516 * the current one has not been updated yet. 1517 */ 1518 vma_start_write(vma); 1519 userfaultfd_set_vm_flags(vma, new_flags); 1520 vma->vm_userfaultfd_ctx.ctx = ctx; 1521 1522 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma)) 1523 hugetlb_unshare_all_pmds(vma); 1524 1525 skip: 1526 prev = vma; 1527 start = vma->vm_end; 1528 } 1529 1530 out_unlock: 1531 mmap_write_unlock(mm); 1532 mmput(mm); 1533 if (!ret) { 1534 __u64 ioctls_out; 1535 1536 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1537 UFFD_API_RANGE_IOCTLS; 1538 1539 /* 1540 * Declare the WP ioctl only if the WP mode is 1541 * specified and all checks passed with the range 1542 */ 1543 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) 1544 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); 1545 1546 /* CONTINUE ioctl is only supported for MINOR ranges. */ 1547 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR)) 1548 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE); 1549 1550 /* 1551 * Now that we scanned all vmas we can already tell 1552 * userland which ioctls methods are guaranteed to 1553 * succeed on this range. 1554 */ 1555 if (put_user(ioctls_out, &user_uffdio_register->ioctls)) 1556 ret = -EFAULT; 1557 } 1558 out: 1559 return ret; 1560 } 1561 1562 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1563 unsigned long arg) 1564 { 1565 struct mm_struct *mm = ctx->mm; 1566 struct vm_area_struct *vma, *prev, *cur; 1567 int ret; 1568 struct uffdio_range uffdio_unregister; 1569 unsigned long new_flags; 1570 bool found; 1571 unsigned long start, end, vma_end; 1572 const void __user *buf = (void __user *)arg; 1573 struct vma_iterator vmi; 1574 pgoff_t pgoff; 1575 1576 ret = -EFAULT; 1577 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1578 goto out; 1579 1580 ret = validate_range(mm, uffdio_unregister.start, 1581 uffdio_unregister.len); 1582 if (ret) 1583 goto out; 1584 1585 start = uffdio_unregister.start; 1586 end = start + uffdio_unregister.len; 1587 1588 ret = -ENOMEM; 1589 if (!mmget_not_zero(mm)) 1590 goto out; 1591 1592 mmap_write_lock(mm); 1593 ret = -EINVAL; 1594 vma_iter_init(&vmi, mm, start); 1595 vma = vma_find(&vmi, end); 1596 if (!vma) 1597 goto out_unlock; 1598 1599 /* 1600 * If the first vma contains huge pages, make sure start address 1601 * is aligned to huge page size. 1602 */ 1603 if (is_vm_hugetlb_page(vma)) { 1604 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1605 1606 if (start & (vma_hpagesize - 1)) 1607 goto out_unlock; 1608 } 1609 1610 /* 1611 * Search for not compatible vmas. 1612 */ 1613 found = false; 1614 cur = vma; 1615 do { 1616 cond_resched(); 1617 1618 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1619 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1620 1621 /* 1622 * Check not compatible vmas, not strictly required 1623 * here as not compatible vmas cannot have an 1624 * userfaultfd_ctx registered on them, but this 1625 * provides for more strict behavior to notice 1626 * unregistration errors. 1627 */ 1628 if (!vma_can_userfault(cur, cur->vm_flags)) 1629 goto out_unlock; 1630 1631 found = true; 1632 } for_each_vma_range(vmi, cur, end); 1633 BUG_ON(!found); 1634 1635 vma_iter_set(&vmi, start); 1636 prev = vma_prev(&vmi); 1637 if (vma->vm_start < start) 1638 prev = vma; 1639 1640 ret = 0; 1641 for_each_vma_range(vmi, vma, end) { 1642 cond_resched(); 1643 1644 BUG_ON(!vma_can_userfault(vma, vma->vm_flags)); 1645 1646 /* 1647 * Nothing to do: this vma is already registered into this 1648 * userfaultfd and with the right tracking mode too. 1649 */ 1650 if (!vma->vm_userfaultfd_ctx.ctx) 1651 goto skip; 1652 1653 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1654 1655 if (vma->vm_start > start) 1656 start = vma->vm_start; 1657 vma_end = min(end, vma->vm_end); 1658 1659 if (userfaultfd_missing(vma)) { 1660 /* 1661 * Wake any concurrent pending userfault while 1662 * we unregister, so they will not hang 1663 * permanently and it avoids userland to call 1664 * UFFDIO_WAKE explicitly. 1665 */ 1666 struct userfaultfd_wake_range range; 1667 range.start = start; 1668 range.len = vma_end - start; 1669 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1670 } 1671 1672 /* Reset ptes for the whole vma range if wr-protected */ 1673 if (userfaultfd_wp(vma)) 1674 uffd_wp_range(vma, start, vma_end - start, false); 1675 1676 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 1677 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT); 1678 prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags, 1679 vma->anon_vma, vma->vm_file, pgoff, 1680 vma_policy(vma), 1681 NULL_VM_UFFD_CTX, anon_vma_name(vma)); 1682 if (prev) { 1683 vma = prev; 1684 goto next; 1685 } 1686 if (vma->vm_start < start) { 1687 ret = split_vma(&vmi, vma, start, 1); 1688 if (ret) 1689 break; 1690 } 1691 if (vma->vm_end > end) { 1692 ret = split_vma(&vmi, vma, end, 0); 1693 if (ret) 1694 break; 1695 } 1696 next: 1697 /* 1698 * In the vma_merge() successful mprotect-like case 8: 1699 * the next vma was merged into the current one and 1700 * the current one has not been updated yet. 1701 */ 1702 vma_start_write(vma); 1703 userfaultfd_set_vm_flags(vma, new_flags); 1704 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1705 1706 skip: 1707 prev = vma; 1708 start = vma->vm_end; 1709 } 1710 1711 out_unlock: 1712 mmap_write_unlock(mm); 1713 mmput(mm); 1714 out: 1715 return ret; 1716 } 1717 1718 /* 1719 * userfaultfd_wake may be used in combination with the 1720 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1721 */ 1722 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1723 unsigned long arg) 1724 { 1725 int ret; 1726 struct uffdio_range uffdio_wake; 1727 struct userfaultfd_wake_range range; 1728 const void __user *buf = (void __user *)arg; 1729 1730 ret = -EFAULT; 1731 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1732 goto out; 1733 1734 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1735 if (ret) 1736 goto out; 1737 1738 range.start = uffdio_wake.start; 1739 range.len = uffdio_wake.len; 1740 1741 /* 1742 * len == 0 means wake all and we don't want to wake all here, 1743 * so check it again to be sure. 1744 */ 1745 VM_BUG_ON(!range.len); 1746 1747 wake_userfault(ctx, &range); 1748 ret = 0; 1749 1750 out: 1751 return ret; 1752 } 1753 1754 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1755 unsigned long arg) 1756 { 1757 __s64 ret; 1758 struct uffdio_copy uffdio_copy; 1759 struct uffdio_copy __user *user_uffdio_copy; 1760 struct userfaultfd_wake_range range; 1761 uffd_flags_t flags = 0; 1762 1763 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1764 1765 ret = -EAGAIN; 1766 if (atomic_read(&ctx->mmap_changing)) 1767 goto out; 1768 1769 ret = -EFAULT; 1770 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1771 /* don't copy "copy" last field */ 1772 sizeof(uffdio_copy)-sizeof(__s64))) 1773 goto out; 1774 1775 ret = validate_unaligned_range(ctx->mm, uffdio_copy.src, 1776 uffdio_copy.len); 1777 if (ret) 1778 goto out; 1779 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1780 if (ret) 1781 goto out; 1782 1783 ret = -EINVAL; 1784 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) 1785 goto out; 1786 if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP) 1787 flags |= MFILL_ATOMIC_WP; 1788 if (mmget_not_zero(ctx->mm)) { 1789 ret = mfill_atomic_copy(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1790 uffdio_copy.len, &ctx->mmap_changing, 1791 flags); 1792 mmput(ctx->mm); 1793 } else { 1794 return -ESRCH; 1795 } 1796 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1797 return -EFAULT; 1798 if (ret < 0) 1799 goto out; 1800 BUG_ON(!ret); 1801 /* len == 0 would wake all */ 1802 range.len = ret; 1803 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1804 range.start = uffdio_copy.dst; 1805 wake_userfault(ctx, &range); 1806 } 1807 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1808 out: 1809 return ret; 1810 } 1811 1812 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1813 unsigned long arg) 1814 { 1815 __s64 ret; 1816 struct uffdio_zeropage uffdio_zeropage; 1817 struct uffdio_zeropage __user *user_uffdio_zeropage; 1818 struct userfaultfd_wake_range range; 1819 1820 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1821 1822 ret = -EAGAIN; 1823 if (atomic_read(&ctx->mmap_changing)) 1824 goto out; 1825 1826 ret = -EFAULT; 1827 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1828 /* don't copy "zeropage" last field */ 1829 sizeof(uffdio_zeropage)-sizeof(__s64))) 1830 goto out; 1831 1832 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1833 uffdio_zeropage.range.len); 1834 if (ret) 1835 goto out; 1836 ret = -EINVAL; 1837 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1838 goto out; 1839 1840 if (mmget_not_zero(ctx->mm)) { 1841 ret = mfill_atomic_zeropage(ctx->mm, uffdio_zeropage.range.start, 1842 uffdio_zeropage.range.len, 1843 &ctx->mmap_changing); 1844 mmput(ctx->mm); 1845 } else { 1846 return -ESRCH; 1847 } 1848 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1849 return -EFAULT; 1850 if (ret < 0) 1851 goto out; 1852 /* len == 0 would wake all */ 1853 BUG_ON(!ret); 1854 range.len = ret; 1855 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1856 range.start = uffdio_zeropage.range.start; 1857 wake_userfault(ctx, &range); 1858 } 1859 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1860 out: 1861 return ret; 1862 } 1863 1864 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, 1865 unsigned long arg) 1866 { 1867 int ret; 1868 struct uffdio_writeprotect uffdio_wp; 1869 struct uffdio_writeprotect __user *user_uffdio_wp; 1870 struct userfaultfd_wake_range range; 1871 bool mode_wp, mode_dontwake; 1872 1873 if (atomic_read(&ctx->mmap_changing)) 1874 return -EAGAIN; 1875 1876 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; 1877 1878 if (copy_from_user(&uffdio_wp, user_uffdio_wp, 1879 sizeof(struct uffdio_writeprotect))) 1880 return -EFAULT; 1881 1882 ret = validate_range(ctx->mm, uffdio_wp.range.start, 1883 uffdio_wp.range.len); 1884 if (ret) 1885 return ret; 1886 1887 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | 1888 UFFDIO_WRITEPROTECT_MODE_WP)) 1889 return -EINVAL; 1890 1891 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; 1892 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; 1893 1894 if (mode_wp && mode_dontwake) 1895 return -EINVAL; 1896 1897 if (mmget_not_zero(ctx->mm)) { 1898 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start, 1899 uffdio_wp.range.len, mode_wp, 1900 &ctx->mmap_changing); 1901 mmput(ctx->mm); 1902 } else { 1903 return -ESRCH; 1904 } 1905 1906 if (ret) 1907 return ret; 1908 1909 if (!mode_wp && !mode_dontwake) { 1910 range.start = uffdio_wp.range.start; 1911 range.len = uffdio_wp.range.len; 1912 wake_userfault(ctx, &range); 1913 } 1914 return ret; 1915 } 1916 1917 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg) 1918 { 1919 __s64 ret; 1920 struct uffdio_continue uffdio_continue; 1921 struct uffdio_continue __user *user_uffdio_continue; 1922 struct userfaultfd_wake_range range; 1923 uffd_flags_t flags = 0; 1924 1925 user_uffdio_continue = (struct uffdio_continue __user *)arg; 1926 1927 ret = -EAGAIN; 1928 if (atomic_read(&ctx->mmap_changing)) 1929 goto out; 1930 1931 ret = -EFAULT; 1932 if (copy_from_user(&uffdio_continue, user_uffdio_continue, 1933 /* don't copy the output fields */ 1934 sizeof(uffdio_continue) - (sizeof(__s64)))) 1935 goto out; 1936 1937 ret = validate_range(ctx->mm, uffdio_continue.range.start, 1938 uffdio_continue.range.len); 1939 if (ret) 1940 goto out; 1941 1942 ret = -EINVAL; 1943 if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE | 1944 UFFDIO_CONTINUE_MODE_WP)) 1945 goto out; 1946 if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP) 1947 flags |= MFILL_ATOMIC_WP; 1948 1949 if (mmget_not_zero(ctx->mm)) { 1950 ret = mfill_atomic_continue(ctx->mm, uffdio_continue.range.start, 1951 uffdio_continue.range.len, 1952 &ctx->mmap_changing, flags); 1953 mmput(ctx->mm); 1954 } else { 1955 return -ESRCH; 1956 } 1957 1958 if (unlikely(put_user(ret, &user_uffdio_continue->mapped))) 1959 return -EFAULT; 1960 if (ret < 0) 1961 goto out; 1962 1963 /* len == 0 would wake all */ 1964 BUG_ON(!ret); 1965 range.len = ret; 1966 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) { 1967 range.start = uffdio_continue.range.start; 1968 wake_userfault(ctx, &range); 1969 } 1970 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN; 1971 1972 out: 1973 return ret; 1974 } 1975 1976 static inline int userfaultfd_poison(struct userfaultfd_ctx *ctx, unsigned long arg) 1977 { 1978 __s64 ret; 1979 struct uffdio_poison uffdio_poison; 1980 struct uffdio_poison __user *user_uffdio_poison; 1981 struct userfaultfd_wake_range range; 1982 1983 user_uffdio_poison = (struct uffdio_poison __user *)arg; 1984 1985 ret = -EAGAIN; 1986 if (atomic_read(&ctx->mmap_changing)) 1987 goto out; 1988 1989 ret = -EFAULT; 1990 if (copy_from_user(&uffdio_poison, user_uffdio_poison, 1991 /* don't copy the output fields */ 1992 sizeof(uffdio_poison) - (sizeof(__s64)))) 1993 goto out; 1994 1995 ret = validate_range(ctx->mm, uffdio_poison.range.start, 1996 uffdio_poison.range.len); 1997 if (ret) 1998 goto out; 1999 2000 ret = -EINVAL; 2001 if (uffdio_poison.mode & ~UFFDIO_POISON_MODE_DONTWAKE) 2002 goto out; 2003 2004 if (mmget_not_zero(ctx->mm)) { 2005 ret = mfill_atomic_poison(ctx->mm, uffdio_poison.range.start, 2006 uffdio_poison.range.len, 2007 &ctx->mmap_changing, 0); 2008 mmput(ctx->mm); 2009 } else { 2010 return -ESRCH; 2011 } 2012 2013 if (unlikely(put_user(ret, &user_uffdio_poison->updated))) 2014 return -EFAULT; 2015 if (ret < 0) 2016 goto out; 2017 2018 /* len == 0 would wake all */ 2019 BUG_ON(!ret); 2020 range.len = ret; 2021 if (!(uffdio_poison.mode & UFFDIO_POISON_MODE_DONTWAKE)) { 2022 range.start = uffdio_poison.range.start; 2023 wake_userfault(ctx, &range); 2024 } 2025 ret = range.len == uffdio_poison.range.len ? 0 : -EAGAIN; 2026 2027 out: 2028 return ret; 2029 } 2030 2031 static inline unsigned int uffd_ctx_features(__u64 user_features) 2032 { 2033 /* 2034 * For the current set of features the bits just coincide. Set 2035 * UFFD_FEATURE_INITIALIZED to mark the features as enabled. 2036 */ 2037 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED; 2038 } 2039 2040 /* 2041 * userland asks for a certain API version and we return which bits 2042 * and ioctl commands are implemented in this kernel for such API 2043 * version or -EINVAL if unknown. 2044 */ 2045 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 2046 unsigned long arg) 2047 { 2048 struct uffdio_api uffdio_api; 2049 void __user *buf = (void __user *)arg; 2050 unsigned int ctx_features; 2051 int ret; 2052 __u64 features; 2053 2054 ret = -EFAULT; 2055 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 2056 goto out; 2057 features = uffdio_api.features; 2058 ret = -EINVAL; 2059 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) 2060 goto err_out; 2061 ret = -EPERM; 2062 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) 2063 goto err_out; 2064 /* report all available features and ioctls to userland */ 2065 uffdio_api.features = UFFD_API_FEATURES; 2066 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 2067 uffdio_api.features &= 2068 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM); 2069 #endif 2070 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 2071 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP; 2072 #endif 2073 #ifndef CONFIG_PTE_MARKER_UFFD_WP 2074 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM; 2075 uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED; 2076 #endif 2077 uffdio_api.ioctls = UFFD_API_IOCTLS; 2078 ret = -EFAULT; 2079 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2080 goto out; 2081 2082 /* only enable the requested features for this uffd context */ 2083 ctx_features = uffd_ctx_features(features); 2084 ret = -EINVAL; 2085 if (cmpxchg(&ctx->features, 0, ctx_features) != 0) 2086 goto err_out; 2087 2088 ret = 0; 2089 out: 2090 return ret; 2091 err_out: 2092 memset(&uffdio_api, 0, sizeof(uffdio_api)); 2093 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2094 ret = -EFAULT; 2095 goto out; 2096 } 2097 2098 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 2099 unsigned long arg) 2100 { 2101 int ret = -EINVAL; 2102 struct userfaultfd_ctx *ctx = file->private_data; 2103 2104 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx)) 2105 return -EINVAL; 2106 2107 switch(cmd) { 2108 case UFFDIO_API: 2109 ret = userfaultfd_api(ctx, arg); 2110 break; 2111 case UFFDIO_REGISTER: 2112 ret = userfaultfd_register(ctx, arg); 2113 break; 2114 case UFFDIO_UNREGISTER: 2115 ret = userfaultfd_unregister(ctx, arg); 2116 break; 2117 case UFFDIO_WAKE: 2118 ret = userfaultfd_wake(ctx, arg); 2119 break; 2120 case UFFDIO_COPY: 2121 ret = userfaultfd_copy(ctx, arg); 2122 break; 2123 case UFFDIO_ZEROPAGE: 2124 ret = userfaultfd_zeropage(ctx, arg); 2125 break; 2126 case UFFDIO_WRITEPROTECT: 2127 ret = userfaultfd_writeprotect(ctx, arg); 2128 break; 2129 case UFFDIO_CONTINUE: 2130 ret = userfaultfd_continue(ctx, arg); 2131 break; 2132 case UFFDIO_POISON: 2133 ret = userfaultfd_poison(ctx, arg); 2134 break; 2135 } 2136 return ret; 2137 } 2138 2139 #ifdef CONFIG_PROC_FS 2140 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 2141 { 2142 struct userfaultfd_ctx *ctx = f->private_data; 2143 wait_queue_entry_t *wq; 2144 unsigned long pending = 0, total = 0; 2145 2146 spin_lock_irq(&ctx->fault_pending_wqh.lock); 2147 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 2148 pending++; 2149 total++; 2150 } 2151 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 2152 total++; 2153 } 2154 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 2155 2156 /* 2157 * If more protocols will be added, there will be all shown 2158 * separated by a space. Like this: 2159 * protocols: aa:... bb:... 2160 */ 2161 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 2162 pending, total, UFFD_API, ctx->features, 2163 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 2164 } 2165 #endif 2166 2167 static const struct file_operations userfaultfd_fops = { 2168 #ifdef CONFIG_PROC_FS 2169 .show_fdinfo = userfaultfd_show_fdinfo, 2170 #endif 2171 .release = userfaultfd_release, 2172 .poll = userfaultfd_poll, 2173 .read = userfaultfd_read, 2174 .unlocked_ioctl = userfaultfd_ioctl, 2175 .compat_ioctl = compat_ptr_ioctl, 2176 .llseek = noop_llseek, 2177 }; 2178 2179 static void init_once_userfaultfd_ctx(void *mem) 2180 { 2181 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 2182 2183 init_waitqueue_head(&ctx->fault_pending_wqh); 2184 init_waitqueue_head(&ctx->fault_wqh); 2185 init_waitqueue_head(&ctx->event_wqh); 2186 init_waitqueue_head(&ctx->fd_wqh); 2187 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); 2188 } 2189 2190 static int new_userfaultfd(int flags) 2191 { 2192 struct userfaultfd_ctx *ctx; 2193 int fd; 2194 2195 BUG_ON(!current->mm); 2196 2197 /* Check the UFFD_* constants for consistency. */ 2198 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS); 2199 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 2200 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 2201 2202 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY)) 2203 return -EINVAL; 2204 2205 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 2206 if (!ctx) 2207 return -ENOMEM; 2208 2209 refcount_set(&ctx->refcount, 1); 2210 ctx->flags = flags; 2211 ctx->features = 0; 2212 ctx->released = false; 2213 atomic_set(&ctx->mmap_changing, 0); 2214 ctx->mm = current->mm; 2215 /* prevent the mm struct to be freed */ 2216 mmgrab(ctx->mm); 2217 2218 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx, 2219 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL); 2220 if (fd < 0) { 2221 mmdrop(ctx->mm); 2222 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 2223 } 2224 return fd; 2225 } 2226 2227 static inline bool userfaultfd_syscall_allowed(int flags) 2228 { 2229 /* Userspace-only page faults are always allowed */ 2230 if (flags & UFFD_USER_MODE_ONLY) 2231 return true; 2232 2233 /* 2234 * The user is requesting a userfaultfd which can handle kernel faults. 2235 * Privileged users are always allowed to do this. 2236 */ 2237 if (capable(CAP_SYS_PTRACE)) 2238 return true; 2239 2240 /* Otherwise, access to kernel fault handling is sysctl controlled. */ 2241 return sysctl_unprivileged_userfaultfd; 2242 } 2243 2244 SYSCALL_DEFINE1(userfaultfd, int, flags) 2245 { 2246 if (!userfaultfd_syscall_allowed(flags)) 2247 return -EPERM; 2248 2249 return new_userfaultfd(flags); 2250 } 2251 2252 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags) 2253 { 2254 if (cmd != USERFAULTFD_IOC_NEW) 2255 return -EINVAL; 2256 2257 return new_userfaultfd(flags); 2258 } 2259 2260 static const struct file_operations userfaultfd_dev_fops = { 2261 .unlocked_ioctl = userfaultfd_dev_ioctl, 2262 .compat_ioctl = userfaultfd_dev_ioctl, 2263 .owner = THIS_MODULE, 2264 .llseek = noop_llseek, 2265 }; 2266 2267 static struct miscdevice userfaultfd_misc = { 2268 .minor = MISC_DYNAMIC_MINOR, 2269 .name = "userfaultfd", 2270 .fops = &userfaultfd_dev_fops 2271 }; 2272 2273 static int __init userfaultfd_init(void) 2274 { 2275 int ret; 2276 2277 ret = misc_register(&userfaultfd_misc); 2278 if (ret) 2279 return ret; 2280 2281 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 2282 sizeof(struct userfaultfd_ctx), 2283 0, 2284 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2285 init_once_userfaultfd_ctx); 2286 #ifdef CONFIG_SYSCTL 2287 register_sysctl_init("vm", vm_userfaultfd_table); 2288 #endif 2289 return 0; 2290 } 2291 __initcall(userfaultfd_init); 2292