1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/userfaultfd.c 4 * 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 8 * 9 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 11 */ 12 13 #include <linux/list.h> 14 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/mmu_notifier.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 #include <linux/swapops.h> 33 #include <linux/miscdevice.h> 34 35 int sysctl_unprivileged_userfaultfd __read_mostly; 36 37 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 38 39 /* 40 * Start with fault_pending_wqh and fault_wqh so they're more likely 41 * to be in the same cacheline. 42 * 43 * Locking order: 44 * fd_wqh.lock 45 * fault_pending_wqh.lock 46 * fault_wqh.lock 47 * event_wqh.lock 48 * 49 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, 50 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's 51 * also taken in IRQ context. 52 */ 53 struct userfaultfd_ctx { 54 /* waitqueue head for the pending (i.e. not read) userfaults */ 55 wait_queue_head_t fault_pending_wqh; 56 /* waitqueue head for the userfaults */ 57 wait_queue_head_t fault_wqh; 58 /* waitqueue head for the pseudo fd to wakeup poll/read */ 59 wait_queue_head_t fd_wqh; 60 /* waitqueue head for events */ 61 wait_queue_head_t event_wqh; 62 /* a refile sequence protected by fault_pending_wqh lock */ 63 seqcount_spinlock_t refile_seq; 64 /* pseudo fd refcounting */ 65 refcount_t refcount; 66 /* userfaultfd syscall flags */ 67 unsigned int flags; 68 /* features requested from the userspace */ 69 unsigned int features; 70 /* released */ 71 bool released; 72 /* memory mappings are changing because of non-cooperative event */ 73 atomic_t mmap_changing; 74 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 75 struct mm_struct *mm; 76 }; 77 78 struct userfaultfd_fork_ctx { 79 struct userfaultfd_ctx *orig; 80 struct userfaultfd_ctx *new; 81 struct list_head list; 82 }; 83 84 struct userfaultfd_unmap_ctx { 85 struct userfaultfd_ctx *ctx; 86 unsigned long start; 87 unsigned long end; 88 struct list_head list; 89 }; 90 91 struct userfaultfd_wait_queue { 92 struct uffd_msg msg; 93 wait_queue_entry_t wq; 94 struct userfaultfd_ctx *ctx; 95 bool waken; 96 }; 97 98 struct userfaultfd_wake_range { 99 unsigned long start; 100 unsigned long len; 101 }; 102 103 /* internal indication that UFFD_API ioctl was successfully executed */ 104 #define UFFD_FEATURE_INITIALIZED (1u << 31) 105 106 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx) 107 { 108 return ctx->features & UFFD_FEATURE_INITIALIZED; 109 } 110 111 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma, 112 vm_flags_t flags) 113 { 114 const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP; 115 116 vma->vm_flags = flags; 117 /* 118 * For shared mappings, we want to enable writenotify while 119 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply 120 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes. 121 */ 122 if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed) 123 vma_set_page_prot(vma); 124 } 125 126 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 127 int wake_flags, void *key) 128 { 129 struct userfaultfd_wake_range *range = key; 130 int ret; 131 struct userfaultfd_wait_queue *uwq; 132 unsigned long start, len; 133 134 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 135 ret = 0; 136 /* len == 0 means wake all */ 137 start = range->start; 138 len = range->len; 139 if (len && (start > uwq->msg.arg.pagefault.address || 140 start + len <= uwq->msg.arg.pagefault.address)) 141 goto out; 142 WRITE_ONCE(uwq->waken, true); 143 /* 144 * The Program-Order guarantees provided by the scheduler 145 * ensure uwq->waken is visible before the task is woken. 146 */ 147 ret = wake_up_state(wq->private, mode); 148 if (ret) { 149 /* 150 * Wake only once, autoremove behavior. 151 * 152 * After the effect of list_del_init is visible to the other 153 * CPUs, the waitqueue may disappear from under us, see the 154 * !list_empty_careful() in handle_userfault(). 155 * 156 * try_to_wake_up() has an implicit smp_mb(), and the 157 * wq->private is read before calling the extern function 158 * "wake_up_state" (which in turns calls try_to_wake_up). 159 */ 160 list_del_init(&wq->entry); 161 } 162 out: 163 return ret; 164 } 165 166 /** 167 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 168 * context. 169 * @ctx: [in] Pointer to the userfaultfd context. 170 */ 171 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 172 { 173 refcount_inc(&ctx->refcount); 174 } 175 176 /** 177 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 178 * context. 179 * @ctx: [in] Pointer to userfaultfd context. 180 * 181 * The userfaultfd context reference must have been previously acquired either 182 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 183 */ 184 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 185 { 186 if (refcount_dec_and_test(&ctx->refcount)) { 187 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 188 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 189 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 190 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 191 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 192 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 193 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 194 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 195 mmdrop(ctx->mm); 196 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 197 } 198 } 199 200 static inline void msg_init(struct uffd_msg *msg) 201 { 202 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 203 /* 204 * Must use memset to zero out the paddings or kernel data is 205 * leaked to userland. 206 */ 207 memset(msg, 0, sizeof(struct uffd_msg)); 208 } 209 210 static inline struct uffd_msg userfault_msg(unsigned long address, 211 unsigned long real_address, 212 unsigned int flags, 213 unsigned long reason, 214 unsigned int features) 215 { 216 struct uffd_msg msg; 217 218 msg_init(&msg); 219 msg.event = UFFD_EVENT_PAGEFAULT; 220 221 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ? 222 real_address : address; 223 224 /* 225 * These flags indicate why the userfault occurred: 226 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault. 227 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault. 228 * - Neither of these flags being set indicates a MISSING fault. 229 * 230 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write 231 * fault. Otherwise, it was a read fault. 232 */ 233 if (flags & FAULT_FLAG_WRITE) 234 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 235 if (reason & VM_UFFD_WP) 236 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 237 if (reason & VM_UFFD_MINOR) 238 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR; 239 if (features & UFFD_FEATURE_THREAD_ID) 240 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 241 return msg; 242 } 243 244 #ifdef CONFIG_HUGETLB_PAGE 245 /* 246 * Same functionality as userfaultfd_must_wait below with modifications for 247 * hugepmd ranges. 248 */ 249 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 250 struct vm_area_struct *vma, 251 unsigned long address, 252 unsigned long flags, 253 unsigned long reason) 254 { 255 struct mm_struct *mm = ctx->mm; 256 pte_t *ptep, pte; 257 bool ret = true; 258 259 mmap_assert_locked(mm); 260 261 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); 262 263 if (!ptep) 264 goto out; 265 266 ret = false; 267 pte = huge_ptep_get(ptep); 268 269 /* 270 * Lockless access: we're in a wait_event so it's ok if it 271 * changes under us. PTE markers should be handled the same as none 272 * ptes here. 273 */ 274 if (huge_pte_none_mostly(pte)) 275 ret = true; 276 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 277 ret = true; 278 out: 279 return ret; 280 } 281 #else 282 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 283 struct vm_area_struct *vma, 284 unsigned long address, 285 unsigned long flags, 286 unsigned long reason) 287 { 288 return false; /* should never get here */ 289 } 290 #endif /* CONFIG_HUGETLB_PAGE */ 291 292 /* 293 * Verify the pagetables are still not ok after having reigstered into 294 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 295 * userfault that has already been resolved, if userfaultfd_read and 296 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 297 * threads. 298 */ 299 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 300 unsigned long address, 301 unsigned long flags, 302 unsigned long reason) 303 { 304 struct mm_struct *mm = ctx->mm; 305 pgd_t *pgd; 306 p4d_t *p4d; 307 pud_t *pud; 308 pmd_t *pmd, _pmd; 309 pte_t *pte; 310 bool ret = true; 311 312 mmap_assert_locked(mm); 313 314 pgd = pgd_offset(mm, address); 315 if (!pgd_present(*pgd)) 316 goto out; 317 p4d = p4d_offset(pgd, address); 318 if (!p4d_present(*p4d)) 319 goto out; 320 pud = pud_offset(p4d, address); 321 if (!pud_present(*pud)) 322 goto out; 323 pmd = pmd_offset(pud, address); 324 /* 325 * READ_ONCE must function as a barrier with narrower scope 326 * and it must be equivalent to: 327 * _pmd = *pmd; barrier(); 328 * 329 * This is to deal with the instability (as in 330 * pmd_trans_unstable) of the pmd. 331 */ 332 _pmd = READ_ONCE(*pmd); 333 if (pmd_none(_pmd)) 334 goto out; 335 336 ret = false; 337 if (!pmd_present(_pmd)) 338 goto out; 339 340 if (pmd_trans_huge(_pmd)) { 341 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) 342 ret = true; 343 goto out; 344 } 345 346 /* 347 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 348 * and use the standard pte_offset_map() instead of parsing _pmd. 349 */ 350 pte = pte_offset_map(pmd, address); 351 /* 352 * Lockless access: we're in a wait_event so it's ok if it 353 * changes under us. PTE markers should be handled the same as none 354 * ptes here. 355 */ 356 if (pte_none_mostly(*pte)) 357 ret = true; 358 if (!pte_write(*pte) && (reason & VM_UFFD_WP)) 359 ret = true; 360 pte_unmap(pte); 361 362 out: 363 return ret; 364 } 365 366 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags) 367 { 368 if (flags & FAULT_FLAG_INTERRUPTIBLE) 369 return TASK_INTERRUPTIBLE; 370 371 if (flags & FAULT_FLAG_KILLABLE) 372 return TASK_KILLABLE; 373 374 return TASK_UNINTERRUPTIBLE; 375 } 376 377 /* 378 * The locking rules involved in returning VM_FAULT_RETRY depending on 379 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 380 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 381 * recommendation in __lock_page_or_retry is not an understatement. 382 * 383 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released 384 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 385 * not set. 386 * 387 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 388 * set, VM_FAULT_RETRY can still be returned if and only if there are 389 * fatal_signal_pending()s, and the mmap_lock must be released before 390 * returning it. 391 */ 392 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 393 { 394 struct mm_struct *mm = vmf->vma->vm_mm; 395 struct userfaultfd_ctx *ctx; 396 struct userfaultfd_wait_queue uwq; 397 vm_fault_t ret = VM_FAULT_SIGBUS; 398 bool must_wait; 399 unsigned int blocking_state; 400 401 /* 402 * We don't do userfault handling for the final child pid update. 403 * 404 * We also don't do userfault handling during 405 * coredumping. hugetlbfs has the special 406 * follow_hugetlb_page() to skip missing pages in the 407 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 408 * the no_page_table() helper in follow_page_mask(), but the 409 * shmem_vm_ops->fault method is invoked even during 410 * coredumping without mmap_lock and it ends up here. 411 */ 412 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 413 goto out; 414 415 /* 416 * Coredumping runs without mmap_lock so we can only check that 417 * the mmap_lock is held, if PF_DUMPCORE was not set. 418 */ 419 mmap_assert_locked(mm); 420 421 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 422 if (!ctx) 423 goto out; 424 425 BUG_ON(ctx->mm != mm); 426 427 /* Any unrecognized flag is a bug. */ 428 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS); 429 /* 0 or > 1 flags set is a bug; we expect exactly 1. */ 430 VM_BUG_ON(!reason || (reason & (reason - 1))); 431 432 if (ctx->features & UFFD_FEATURE_SIGBUS) 433 goto out; 434 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY)) 435 goto out; 436 437 /* 438 * If it's already released don't get it. This avoids to loop 439 * in __get_user_pages if userfaultfd_release waits on the 440 * caller of handle_userfault to release the mmap_lock. 441 */ 442 if (unlikely(READ_ONCE(ctx->released))) { 443 /* 444 * Don't return VM_FAULT_SIGBUS in this case, so a non 445 * cooperative manager can close the uffd after the 446 * last UFFDIO_COPY, without risking to trigger an 447 * involuntary SIGBUS if the process was starting the 448 * userfaultfd while the userfaultfd was still armed 449 * (but after the last UFFDIO_COPY). If the uffd 450 * wasn't already closed when the userfault reached 451 * this point, that would normally be solved by 452 * userfaultfd_must_wait returning 'false'. 453 * 454 * If we were to return VM_FAULT_SIGBUS here, the non 455 * cooperative manager would be instead forced to 456 * always call UFFDIO_UNREGISTER before it can safely 457 * close the uffd. 458 */ 459 ret = VM_FAULT_NOPAGE; 460 goto out; 461 } 462 463 /* 464 * Check that we can return VM_FAULT_RETRY. 465 * 466 * NOTE: it should become possible to return VM_FAULT_RETRY 467 * even if FAULT_FLAG_TRIED is set without leading to gup() 468 * -EBUSY failures, if the userfaultfd is to be extended for 469 * VM_UFFD_WP tracking and we intend to arm the userfault 470 * without first stopping userland access to the memory. For 471 * VM_UFFD_MISSING userfaults this is enough for now. 472 */ 473 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 474 /* 475 * Validate the invariant that nowait must allow retry 476 * to be sure not to return SIGBUS erroneously on 477 * nowait invocations. 478 */ 479 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 480 #ifdef CONFIG_DEBUG_VM 481 if (printk_ratelimit()) { 482 printk(KERN_WARNING 483 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 484 vmf->flags); 485 dump_stack(); 486 } 487 #endif 488 goto out; 489 } 490 491 /* 492 * Handle nowait, not much to do other than tell it to retry 493 * and wait. 494 */ 495 ret = VM_FAULT_RETRY; 496 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 497 goto out; 498 499 /* take the reference before dropping the mmap_lock */ 500 userfaultfd_ctx_get(ctx); 501 502 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 503 uwq.wq.private = current; 504 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags, 505 reason, ctx->features); 506 uwq.ctx = ctx; 507 uwq.waken = false; 508 509 blocking_state = userfaultfd_get_blocking_state(vmf->flags); 510 511 spin_lock_irq(&ctx->fault_pending_wqh.lock); 512 /* 513 * After the __add_wait_queue the uwq is visible to userland 514 * through poll/read(). 515 */ 516 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 517 /* 518 * The smp_mb() after __set_current_state prevents the reads 519 * following the spin_unlock to happen before the list_add in 520 * __add_wait_queue. 521 */ 522 set_current_state(blocking_state); 523 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 524 525 if (!is_vm_hugetlb_page(vmf->vma)) 526 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 527 reason); 528 else 529 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, 530 vmf->address, 531 vmf->flags, reason); 532 mmap_read_unlock(mm); 533 534 if (likely(must_wait && !READ_ONCE(ctx->released))) { 535 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 536 schedule(); 537 } 538 539 __set_current_state(TASK_RUNNING); 540 541 /* 542 * Here we race with the list_del; list_add in 543 * userfaultfd_ctx_read(), however because we don't ever run 544 * list_del_init() to refile across the two lists, the prev 545 * and next pointers will never point to self. list_add also 546 * would never let any of the two pointers to point to 547 * self. So list_empty_careful won't risk to see both pointers 548 * pointing to self at any time during the list refile. The 549 * only case where list_del_init() is called is the full 550 * removal in the wake function and there we don't re-list_add 551 * and it's fine not to block on the spinlock. The uwq on this 552 * kernel stack can be released after the list_del_init. 553 */ 554 if (!list_empty_careful(&uwq.wq.entry)) { 555 spin_lock_irq(&ctx->fault_pending_wqh.lock); 556 /* 557 * No need of list_del_init(), the uwq on the stack 558 * will be freed shortly anyway. 559 */ 560 list_del(&uwq.wq.entry); 561 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 562 } 563 564 /* 565 * ctx may go away after this if the userfault pseudo fd is 566 * already released. 567 */ 568 userfaultfd_ctx_put(ctx); 569 570 out: 571 return ret; 572 } 573 574 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 575 struct userfaultfd_wait_queue *ewq) 576 { 577 struct userfaultfd_ctx *release_new_ctx; 578 579 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 580 goto out; 581 582 ewq->ctx = ctx; 583 init_waitqueue_entry(&ewq->wq, current); 584 release_new_ctx = NULL; 585 586 spin_lock_irq(&ctx->event_wqh.lock); 587 /* 588 * After the __add_wait_queue the uwq is visible to userland 589 * through poll/read(). 590 */ 591 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 592 for (;;) { 593 set_current_state(TASK_KILLABLE); 594 if (ewq->msg.event == 0) 595 break; 596 if (READ_ONCE(ctx->released) || 597 fatal_signal_pending(current)) { 598 /* 599 * &ewq->wq may be queued in fork_event, but 600 * __remove_wait_queue ignores the head 601 * parameter. It would be a problem if it 602 * didn't. 603 */ 604 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 605 if (ewq->msg.event == UFFD_EVENT_FORK) { 606 struct userfaultfd_ctx *new; 607 608 new = (struct userfaultfd_ctx *) 609 (unsigned long) 610 ewq->msg.arg.reserved.reserved1; 611 release_new_ctx = new; 612 } 613 break; 614 } 615 616 spin_unlock_irq(&ctx->event_wqh.lock); 617 618 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 619 schedule(); 620 621 spin_lock_irq(&ctx->event_wqh.lock); 622 } 623 __set_current_state(TASK_RUNNING); 624 spin_unlock_irq(&ctx->event_wqh.lock); 625 626 if (release_new_ctx) { 627 struct vm_area_struct *vma; 628 struct mm_struct *mm = release_new_ctx->mm; 629 VMA_ITERATOR(vmi, mm, 0); 630 631 /* the various vma->vm_userfaultfd_ctx still points to it */ 632 mmap_write_lock(mm); 633 for_each_vma(vmi, vma) { 634 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 635 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 636 userfaultfd_set_vm_flags(vma, 637 vma->vm_flags & ~__VM_UFFD_FLAGS); 638 } 639 } 640 mmap_write_unlock(mm); 641 642 userfaultfd_ctx_put(release_new_ctx); 643 } 644 645 /* 646 * ctx may go away after this if the userfault pseudo fd is 647 * already released. 648 */ 649 out: 650 atomic_dec(&ctx->mmap_changing); 651 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0); 652 userfaultfd_ctx_put(ctx); 653 } 654 655 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 656 struct userfaultfd_wait_queue *ewq) 657 { 658 ewq->msg.event = 0; 659 wake_up_locked(&ctx->event_wqh); 660 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 661 } 662 663 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 664 { 665 struct userfaultfd_ctx *ctx = NULL, *octx; 666 struct userfaultfd_fork_ctx *fctx; 667 668 octx = vma->vm_userfaultfd_ctx.ctx; 669 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 670 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 671 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS); 672 return 0; 673 } 674 675 list_for_each_entry(fctx, fcs, list) 676 if (fctx->orig == octx) { 677 ctx = fctx->new; 678 break; 679 } 680 681 if (!ctx) { 682 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 683 if (!fctx) 684 return -ENOMEM; 685 686 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 687 if (!ctx) { 688 kfree(fctx); 689 return -ENOMEM; 690 } 691 692 refcount_set(&ctx->refcount, 1); 693 ctx->flags = octx->flags; 694 ctx->features = octx->features; 695 ctx->released = false; 696 atomic_set(&ctx->mmap_changing, 0); 697 ctx->mm = vma->vm_mm; 698 mmgrab(ctx->mm); 699 700 userfaultfd_ctx_get(octx); 701 atomic_inc(&octx->mmap_changing); 702 fctx->orig = octx; 703 fctx->new = ctx; 704 list_add_tail(&fctx->list, fcs); 705 } 706 707 vma->vm_userfaultfd_ctx.ctx = ctx; 708 return 0; 709 } 710 711 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 712 { 713 struct userfaultfd_ctx *ctx = fctx->orig; 714 struct userfaultfd_wait_queue ewq; 715 716 msg_init(&ewq.msg); 717 718 ewq.msg.event = UFFD_EVENT_FORK; 719 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 720 721 userfaultfd_event_wait_completion(ctx, &ewq); 722 } 723 724 void dup_userfaultfd_complete(struct list_head *fcs) 725 { 726 struct userfaultfd_fork_ctx *fctx, *n; 727 728 list_for_each_entry_safe(fctx, n, fcs, list) { 729 dup_fctx(fctx); 730 list_del(&fctx->list); 731 kfree(fctx); 732 } 733 } 734 735 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 736 struct vm_userfaultfd_ctx *vm_ctx) 737 { 738 struct userfaultfd_ctx *ctx; 739 740 ctx = vma->vm_userfaultfd_ctx.ctx; 741 742 if (!ctx) 743 return; 744 745 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 746 vm_ctx->ctx = ctx; 747 userfaultfd_ctx_get(ctx); 748 atomic_inc(&ctx->mmap_changing); 749 } else { 750 /* Drop uffd context if remap feature not enabled */ 751 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 752 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS); 753 } 754 } 755 756 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 757 unsigned long from, unsigned long to, 758 unsigned long len) 759 { 760 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 761 struct userfaultfd_wait_queue ewq; 762 763 if (!ctx) 764 return; 765 766 if (to & ~PAGE_MASK) { 767 userfaultfd_ctx_put(ctx); 768 return; 769 } 770 771 msg_init(&ewq.msg); 772 773 ewq.msg.event = UFFD_EVENT_REMAP; 774 ewq.msg.arg.remap.from = from; 775 ewq.msg.arg.remap.to = to; 776 ewq.msg.arg.remap.len = len; 777 778 userfaultfd_event_wait_completion(ctx, &ewq); 779 } 780 781 bool userfaultfd_remove(struct vm_area_struct *vma, 782 unsigned long start, unsigned long end) 783 { 784 struct mm_struct *mm = vma->vm_mm; 785 struct userfaultfd_ctx *ctx; 786 struct userfaultfd_wait_queue ewq; 787 788 ctx = vma->vm_userfaultfd_ctx.ctx; 789 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 790 return true; 791 792 userfaultfd_ctx_get(ctx); 793 atomic_inc(&ctx->mmap_changing); 794 mmap_read_unlock(mm); 795 796 msg_init(&ewq.msg); 797 798 ewq.msg.event = UFFD_EVENT_REMOVE; 799 ewq.msg.arg.remove.start = start; 800 ewq.msg.arg.remove.end = end; 801 802 userfaultfd_event_wait_completion(ctx, &ewq); 803 804 return false; 805 } 806 807 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 808 unsigned long start, unsigned long end) 809 { 810 struct userfaultfd_unmap_ctx *unmap_ctx; 811 812 list_for_each_entry(unmap_ctx, unmaps, list) 813 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 814 unmap_ctx->end == end) 815 return true; 816 817 return false; 818 } 819 820 int userfaultfd_unmap_prep(struct mm_struct *mm, unsigned long start, 821 unsigned long end, struct list_head *unmaps) 822 { 823 VMA_ITERATOR(vmi, mm, start); 824 struct vm_area_struct *vma; 825 826 for_each_vma_range(vmi, vma, end) { 827 struct userfaultfd_unmap_ctx *unmap_ctx; 828 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 829 830 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 831 has_unmap_ctx(ctx, unmaps, start, end)) 832 continue; 833 834 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 835 if (!unmap_ctx) 836 return -ENOMEM; 837 838 userfaultfd_ctx_get(ctx); 839 atomic_inc(&ctx->mmap_changing); 840 unmap_ctx->ctx = ctx; 841 unmap_ctx->start = start; 842 unmap_ctx->end = end; 843 list_add_tail(&unmap_ctx->list, unmaps); 844 } 845 846 return 0; 847 } 848 849 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 850 { 851 struct userfaultfd_unmap_ctx *ctx, *n; 852 struct userfaultfd_wait_queue ewq; 853 854 list_for_each_entry_safe(ctx, n, uf, list) { 855 msg_init(&ewq.msg); 856 857 ewq.msg.event = UFFD_EVENT_UNMAP; 858 ewq.msg.arg.remove.start = ctx->start; 859 ewq.msg.arg.remove.end = ctx->end; 860 861 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 862 863 list_del(&ctx->list); 864 kfree(ctx); 865 } 866 } 867 868 static int userfaultfd_release(struct inode *inode, struct file *file) 869 { 870 struct userfaultfd_ctx *ctx = file->private_data; 871 struct mm_struct *mm = ctx->mm; 872 struct vm_area_struct *vma, *prev; 873 /* len == 0 means wake all */ 874 struct userfaultfd_wake_range range = { .len = 0, }; 875 unsigned long new_flags; 876 MA_STATE(mas, &mm->mm_mt, 0, 0); 877 878 WRITE_ONCE(ctx->released, true); 879 880 if (!mmget_not_zero(mm)) 881 goto wakeup; 882 883 /* 884 * Flush page faults out of all CPUs. NOTE: all page faults 885 * must be retried without returning VM_FAULT_SIGBUS if 886 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 887 * changes while handle_userfault released the mmap_lock. So 888 * it's critical that released is set to true (above), before 889 * taking the mmap_lock for writing. 890 */ 891 mmap_write_lock(mm); 892 prev = NULL; 893 mas_for_each(&mas, vma, ULONG_MAX) { 894 cond_resched(); 895 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 896 !!(vma->vm_flags & __VM_UFFD_FLAGS)); 897 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 898 prev = vma; 899 continue; 900 } 901 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 902 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 903 new_flags, vma->anon_vma, 904 vma->vm_file, vma->vm_pgoff, 905 vma_policy(vma), 906 NULL_VM_UFFD_CTX, anon_vma_name(vma)); 907 if (prev) { 908 mas_pause(&mas); 909 vma = prev; 910 } else { 911 prev = vma; 912 } 913 914 userfaultfd_set_vm_flags(vma, new_flags); 915 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 916 } 917 mmap_write_unlock(mm); 918 mmput(mm); 919 wakeup: 920 /* 921 * After no new page faults can wait on this fault_*wqh, flush 922 * the last page faults that may have been already waiting on 923 * the fault_*wqh. 924 */ 925 spin_lock_irq(&ctx->fault_pending_wqh.lock); 926 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 927 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 928 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 929 930 /* Flush pending events that may still wait on event_wqh */ 931 wake_up_all(&ctx->event_wqh); 932 933 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 934 userfaultfd_ctx_put(ctx); 935 return 0; 936 } 937 938 /* fault_pending_wqh.lock must be hold by the caller */ 939 static inline struct userfaultfd_wait_queue *find_userfault_in( 940 wait_queue_head_t *wqh) 941 { 942 wait_queue_entry_t *wq; 943 struct userfaultfd_wait_queue *uwq; 944 945 lockdep_assert_held(&wqh->lock); 946 947 uwq = NULL; 948 if (!waitqueue_active(wqh)) 949 goto out; 950 /* walk in reverse to provide FIFO behavior to read userfaults */ 951 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 952 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 953 out: 954 return uwq; 955 } 956 957 static inline struct userfaultfd_wait_queue *find_userfault( 958 struct userfaultfd_ctx *ctx) 959 { 960 return find_userfault_in(&ctx->fault_pending_wqh); 961 } 962 963 static inline struct userfaultfd_wait_queue *find_userfault_evt( 964 struct userfaultfd_ctx *ctx) 965 { 966 return find_userfault_in(&ctx->event_wqh); 967 } 968 969 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 970 { 971 struct userfaultfd_ctx *ctx = file->private_data; 972 __poll_t ret; 973 974 poll_wait(file, &ctx->fd_wqh, wait); 975 976 if (!userfaultfd_is_initialized(ctx)) 977 return EPOLLERR; 978 979 /* 980 * poll() never guarantees that read won't block. 981 * userfaults can be waken before they're read(). 982 */ 983 if (unlikely(!(file->f_flags & O_NONBLOCK))) 984 return EPOLLERR; 985 /* 986 * lockless access to see if there are pending faults 987 * __pollwait last action is the add_wait_queue but 988 * the spin_unlock would allow the waitqueue_active to 989 * pass above the actual list_add inside 990 * add_wait_queue critical section. So use a full 991 * memory barrier to serialize the list_add write of 992 * add_wait_queue() with the waitqueue_active read 993 * below. 994 */ 995 ret = 0; 996 smp_mb(); 997 if (waitqueue_active(&ctx->fault_pending_wqh)) 998 ret = EPOLLIN; 999 else if (waitqueue_active(&ctx->event_wqh)) 1000 ret = EPOLLIN; 1001 1002 return ret; 1003 } 1004 1005 static const struct file_operations userfaultfd_fops; 1006 1007 static int resolve_userfault_fork(struct userfaultfd_ctx *new, 1008 struct inode *inode, 1009 struct uffd_msg *msg) 1010 { 1011 int fd; 1012 1013 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new, 1014 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode); 1015 if (fd < 0) 1016 return fd; 1017 1018 msg->arg.reserved.reserved1 = 0; 1019 msg->arg.fork.ufd = fd; 1020 return 0; 1021 } 1022 1023 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1024 struct uffd_msg *msg, struct inode *inode) 1025 { 1026 ssize_t ret; 1027 DECLARE_WAITQUEUE(wait, current); 1028 struct userfaultfd_wait_queue *uwq; 1029 /* 1030 * Handling fork event requires sleeping operations, so 1031 * we drop the event_wqh lock, then do these ops, then 1032 * lock it back and wake up the waiter. While the lock is 1033 * dropped the ewq may go away so we keep track of it 1034 * carefully. 1035 */ 1036 LIST_HEAD(fork_event); 1037 struct userfaultfd_ctx *fork_nctx = NULL; 1038 1039 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1040 spin_lock_irq(&ctx->fd_wqh.lock); 1041 __add_wait_queue(&ctx->fd_wqh, &wait); 1042 for (;;) { 1043 set_current_state(TASK_INTERRUPTIBLE); 1044 spin_lock(&ctx->fault_pending_wqh.lock); 1045 uwq = find_userfault(ctx); 1046 if (uwq) { 1047 /* 1048 * Use a seqcount to repeat the lockless check 1049 * in wake_userfault() to avoid missing 1050 * wakeups because during the refile both 1051 * waitqueue could become empty if this is the 1052 * only userfault. 1053 */ 1054 write_seqcount_begin(&ctx->refile_seq); 1055 1056 /* 1057 * The fault_pending_wqh.lock prevents the uwq 1058 * to disappear from under us. 1059 * 1060 * Refile this userfault from 1061 * fault_pending_wqh to fault_wqh, it's not 1062 * pending anymore after we read it. 1063 * 1064 * Use list_del() by hand (as 1065 * userfaultfd_wake_function also uses 1066 * list_del_init() by hand) to be sure nobody 1067 * changes __remove_wait_queue() to use 1068 * list_del_init() in turn breaking the 1069 * !list_empty_careful() check in 1070 * handle_userfault(). The uwq->wq.head list 1071 * must never be empty at any time during the 1072 * refile, or the waitqueue could disappear 1073 * from under us. The "wait_queue_head_t" 1074 * parameter of __remove_wait_queue() is unused 1075 * anyway. 1076 */ 1077 list_del(&uwq->wq.entry); 1078 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1079 1080 write_seqcount_end(&ctx->refile_seq); 1081 1082 /* careful to always initialize msg if ret == 0 */ 1083 *msg = uwq->msg; 1084 spin_unlock(&ctx->fault_pending_wqh.lock); 1085 ret = 0; 1086 break; 1087 } 1088 spin_unlock(&ctx->fault_pending_wqh.lock); 1089 1090 spin_lock(&ctx->event_wqh.lock); 1091 uwq = find_userfault_evt(ctx); 1092 if (uwq) { 1093 *msg = uwq->msg; 1094 1095 if (uwq->msg.event == UFFD_EVENT_FORK) { 1096 fork_nctx = (struct userfaultfd_ctx *) 1097 (unsigned long) 1098 uwq->msg.arg.reserved.reserved1; 1099 list_move(&uwq->wq.entry, &fork_event); 1100 /* 1101 * fork_nctx can be freed as soon as 1102 * we drop the lock, unless we take a 1103 * reference on it. 1104 */ 1105 userfaultfd_ctx_get(fork_nctx); 1106 spin_unlock(&ctx->event_wqh.lock); 1107 ret = 0; 1108 break; 1109 } 1110 1111 userfaultfd_event_complete(ctx, uwq); 1112 spin_unlock(&ctx->event_wqh.lock); 1113 ret = 0; 1114 break; 1115 } 1116 spin_unlock(&ctx->event_wqh.lock); 1117 1118 if (signal_pending(current)) { 1119 ret = -ERESTARTSYS; 1120 break; 1121 } 1122 if (no_wait) { 1123 ret = -EAGAIN; 1124 break; 1125 } 1126 spin_unlock_irq(&ctx->fd_wqh.lock); 1127 schedule(); 1128 spin_lock_irq(&ctx->fd_wqh.lock); 1129 } 1130 __remove_wait_queue(&ctx->fd_wqh, &wait); 1131 __set_current_state(TASK_RUNNING); 1132 spin_unlock_irq(&ctx->fd_wqh.lock); 1133 1134 if (!ret && msg->event == UFFD_EVENT_FORK) { 1135 ret = resolve_userfault_fork(fork_nctx, inode, msg); 1136 spin_lock_irq(&ctx->event_wqh.lock); 1137 if (!list_empty(&fork_event)) { 1138 /* 1139 * The fork thread didn't abort, so we can 1140 * drop the temporary refcount. 1141 */ 1142 userfaultfd_ctx_put(fork_nctx); 1143 1144 uwq = list_first_entry(&fork_event, 1145 typeof(*uwq), 1146 wq.entry); 1147 /* 1148 * If fork_event list wasn't empty and in turn 1149 * the event wasn't already released by fork 1150 * (the event is allocated on fork kernel 1151 * stack), put the event back to its place in 1152 * the event_wq. fork_event head will be freed 1153 * as soon as we return so the event cannot 1154 * stay queued there no matter the current 1155 * "ret" value. 1156 */ 1157 list_del(&uwq->wq.entry); 1158 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1159 1160 /* 1161 * Leave the event in the waitqueue and report 1162 * error to userland if we failed to resolve 1163 * the userfault fork. 1164 */ 1165 if (likely(!ret)) 1166 userfaultfd_event_complete(ctx, uwq); 1167 } else { 1168 /* 1169 * Here the fork thread aborted and the 1170 * refcount from the fork thread on fork_nctx 1171 * has already been released. We still hold 1172 * the reference we took before releasing the 1173 * lock above. If resolve_userfault_fork 1174 * failed we've to drop it because the 1175 * fork_nctx has to be freed in such case. If 1176 * it succeeded we'll hold it because the new 1177 * uffd references it. 1178 */ 1179 if (ret) 1180 userfaultfd_ctx_put(fork_nctx); 1181 } 1182 spin_unlock_irq(&ctx->event_wqh.lock); 1183 } 1184 1185 return ret; 1186 } 1187 1188 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1189 size_t count, loff_t *ppos) 1190 { 1191 struct userfaultfd_ctx *ctx = file->private_data; 1192 ssize_t _ret, ret = 0; 1193 struct uffd_msg msg; 1194 int no_wait = file->f_flags & O_NONBLOCK; 1195 struct inode *inode = file_inode(file); 1196 1197 if (!userfaultfd_is_initialized(ctx)) 1198 return -EINVAL; 1199 1200 for (;;) { 1201 if (count < sizeof(msg)) 1202 return ret ? ret : -EINVAL; 1203 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode); 1204 if (_ret < 0) 1205 return ret ? ret : _ret; 1206 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1207 return ret ? ret : -EFAULT; 1208 ret += sizeof(msg); 1209 buf += sizeof(msg); 1210 count -= sizeof(msg); 1211 /* 1212 * Allow to read more than one fault at time but only 1213 * block if waiting for the very first one. 1214 */ 1215 no_wait = O_NONBLOCK; 1216 } 1217 } 1218 1219 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1220 struct userfaultfd_wake_range *range) 1221 { 1222 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1223 /* wake all in the range and autoremove */ 1224 if (waitqueue_active(&ctx->fault_pending_wqh)) 1225 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1226 range); 1227 if (waitqueue_active(&ctx->fault_wqh)) 1228 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1229 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1230 } 1231 1232 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1233 struct userfaultfd_wake_range *range) 1234 { 1235 unsigned seq; 1236 bool need_wakeup; 1237 1238 /* 1239 * To be sure waitqueue_active() is not reordered by the CPU 1240 * before the pagetable update, use an explicit SMP memory 1241 * barrier here. PT lock release or mmap_read_unlock(mm) still 1242 * have release semantics that can allow the 1243 * waitqueue_active() to be reordered before the pte update. 1244 */ 1245 smp_mb(); 1246 1247 /* 1248 * Use waitqueue_active because it's very frequent to 1249 * change the address space atomically even if there are no 1250 * userfaults yet. So we take the spinlock only when we're 1251 * sure we've userfaults to wake. 1252 */ 1253 do { 1254 seq = read_seqcount_begin(&ctx->refile_seq); 1255 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1256 waitqueue_active(&ctx->fault_wqh); 1257 cond_resched(); 1258 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1259 if (need_wakeup) 1260 __wake_userfault(ctx, range); 1261 } 1262 1263 static __always_inline int validate_range(struct mm_struct *mm, 1264 __u64 start, __u64 len) 1265 { 1266 __u64 task_size = mm->task_size; 1267 1268 if (start & ~PAGE_MASK) 1269 return -EINVAL; 1270 if (len & ~PAGE_MASK) 1271 return -EINVAL; 1272 if (!len) 1273 return -EINVAL; 1274 if (start < mmap_min_addr) 1275 return -EINVAL; 1276 if (start >= task_size) 1277 return -EINVAL; 1278 if (len > task_size - start) 1279 return -EINVAL; 1280 return 0; 1281 } 1282 1283 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1284 unsigned long arg) 1285 { 1286 struct mm_struct *mm = ctx->mm; 1287 struct vm_area_struct *vma, *prev, *cur; 1288 int ret; 1289 struct uffdio_register uffdio_register; 1290 struct uffdio_register __user *user_uffdio_register; 1291 unsigned long vm_flags, new_flags; 1292 bool found; 1293 bool basic_ioctls; 1294 unsigned long start, end, vma_end; 1295 MA_STATE(mas, &mm->mm_mt, 0, 0); 1296 1297 user_uffdio_register = (struct uffdio_register __user *) arg; 1298 1299 ret = -EFAULT; 1300 if (copy_from_user(&uffdio_register, user_uffdio_register, 1301 sizeof(uffdio_register)-sizeof(__u64))) 1302 goto out; 1303 1304 ret = -EINVAL; 1305 if (!uffdio_register.mode) 1306 goto out; 1307 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES) 1308 goto out; 1309 vm_flags = 0; 1310 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1311 vm_flags |= VM_UFFD_MISSING; 1312 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1313 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1314 goto out; 1315 #endif 1316 vm_flags |= VM_UFFD_WP; 1317 } 1318 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) { 1319 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1320 goto out; 1321 #endif 1322 vm_flags |= VM_UFFD_MINOR; 1323 } 1324 1325 ret = validate_range(mm, uffdio_register.range.start, 1326 uffdio_register.range.len); 1327 if (ret) 1328 goto out; 1329 1330 start = uffdio_register.range.start; 1331 end = start + uffdio_register.range.len; 1332 1333 ret = -ENOMEM; 1334 if (!mmget_not_zero(mm)) 1335 goto out; 1336 1337 mmap_write_lock(mm); 1338 mas_set(&mas, start); 1339 vma = mas_find(&mas, ULONG_MAX); 1340 if (!vma) 1341 goto out_unlock; 1342 1343 /* check that there's at least one vma in the range */ 1344 ret = -EINVAL; 1345 if (vma->vm_start >= end) 1346 goto out_unlock; 1347 1348 /* 1349 * If the first vma contains huge pages, make sure start address 1350 * is aligned to huge page size. 1351 */ 1352 if (is_vm_hugetlb_page(vma)) { 1353 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1354 1355 if (start & (vma_hpagesize - 1)) 1356 goto out_unlock; 1357 } 1358 1359 /* 1360 * Search for not compatible vmas. 1361 */ 1362 found = false; 1363 basic_ioctls = false; 1364 for (cur = vma; cur; cur = mas_next(&mas, end - 1)) { 1365 cond_resched(); 1366 1367 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1368 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1369 1370 /* check not compatible vmas */ 1371 ret = -EINVAL; 1372 if (!vma_can_userfault(cur, vm_flags)) 1373 goto out_unlock; 1374 1375 /* 1376 * UFFDIO_COPY will fill file holes even without 1377 * PROT_WRITE. This check enforces that if this is a 1378 * MAP_SHARED, the process has write permission to the backing 1379 * file. If VM_MAYWRITE is set it also enforces that on a 1380 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1381 * F_WRITE_SEAL can be taken until the vma is destroyed. 1382 */ 1383 ret = -EPERM; 1384 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1385 goto out_unlock; 1386 1387 /* 1388 * If this vma contains ending address, and huge pages 1389 * check alignment. 1390 */ 1391 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1392 end > cur->vm_start) { 1393 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1394 1395 ret = -EINVAL; 1396 1397 if (end & (vma_hpagesize - 1)) 1398 goto out_unlock; 1399 } 1400 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) 1401 goto out_unlock; 1402 1403 /* 1404 * Check that this vma isn't already owned by a 1405 * different userfaultfd. We can't allow more than one 1406 * userfaultfd to own a single vma simultaneously or we 1407 * wouldn't know which one to deliver the userfaults to. 1408 */ 1409 ret = -EBUSY; 1410 if (cur->vm_userfaultfd_ctx.ctx && 1411 cur->vm_userfaultfd_ctx.ctx != ctx) 1412 goto out_unlock; 1413 1414 /* 1415 * Note vmas containing huge pages 1416 */ 1417 if (is_vm_hugetlb_page(cur)) 1418 basic_ioctls = true; 1419 1420 found = true; 1421 } 1422 BUG_ON(!found); 1423 1424 mas_set(&mas, start); 1425 prev = mas_prev(&mas, 0); 1426 if (prev != vma) 1427 mas_next(&mas, ULONG_MAX); 1428 1429 ret = 0; 1430 do { 1431 cond_resched(); 1432 1433 BUG_ON(!vma_can_userfault(vma, vm_flags)); 1434 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1435 vma->vm_userfaultfd_ctx.ctx != ctx); 1436 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1437 1438 /* 1439 * Nothing to do: this vma is already registered into this 1440 * userfaultfd and with the right tracking mode too. 1441 */ 1442 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1443 (vma->vm_flags & vm_flags) == vm_flags) 1444 goto skip; 1445 1446 if (vma->vm_start > start) 1447 start = vma->vm_start; 1448 vma_end = min(end, vma->vm_end); 1449 1450 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags; 1451 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1452 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1453 vma_policy(vma), 1454 ((struct vm_userfaultfd_ctx){ ctx }), 1455 anon_vma_name(vma)); 1456 if (prev) { 1457 /* vma_merge() invalidated the mas */ 1458 mas_pause(&mas); 1459 vma = prev; 1460 goto next; 1461 } 1462 if (vma->vm_start < start) { 1463 ret = split_vma(mm, vma, start, 1); 1464 if (ret) 1465 break; 1466 /* split_vma() invalidated the mas */ 1467 mas_pause(&mas); 1468 } 1469 if (vma->vm_end > end) { 1470 ret = split_vma(mm, vma, end, 0); 1471 if (ret) 1472 break; 1473 /* split_vma() invalidated the mas */ 1474 mas_pause(&mas); 1475 } 1476 next: 1477 /* 1478 * In the vma_merge() successful mprotect-like case 8: 1479 * the next vma was merged into the current one and 1480 * the current one has not been updated yet. 1481 */ 1482 userfaultfd_set_vm_flags(vma, new_flags); 1483 vma->vm_userfaultfd_ctx.ctx = ctx; 1484 1485 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma)) 1486 hugetlb_unshare_all_pmds(vma); 1487 1488 skip: 1489 prev = vma; 1490 start = vma->vm_end; 1491 vma = mas_next(&mas, end - 1); 1492 } while (vma); 1493 out_unlock: 1494 mmap_write_unlock(mm); 1495 mmput(mm); 1496 if (!ret) { 1497 __u64 ioctls_out; 1498 1499 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1500 UFFD_API_RANGE_IOCTLS; 1501 1502 /* 1503 * Declare the WP ioctl only if the WP mode is 1504 * specified and all checks passed with the range 1505 */ 1506 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) 1507 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); 1508 1509 /* CONTINUE ioctl is only supported for MINOR ranges. */ 1510 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR)) 1511 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE); 1512 1513 /* 1514 * Now that we scanned all vmas we can already tell 1515 * userland which ioctls methods are guaranteed to 1516 * succeed on this range. 1517 */ 1518 if (put_user(ioctls_out, &user_uffdio_register->ioctls)) 1519 ret = -EFAULT; 1520 } 1521 out: 1522 return ret; 1523 } 1524 1525 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1526 unsigned long arg) 1527 { 1528 struct mm_struct *mm = ctx->mm; 1529 struct vm_area_struct *vma, *prev, *cur; 1530 int ret; 1531 struct uffdio_range uffdio_unregister; 1532 unsigned long new_flags; 1533 bool found; 1534 unsigned long start, end, vma_end; 1535 const void __user *buf = (void __user *)arg; 1536 MA_STATE(mas, &mm->mm_mt, 0, 0); 1537 1538 ret = -EFAULT; 1539 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1540 goto out; 1541 1542 ret = validate_range(mm, uffdio_unregister.start, 1543 uffdio_unregister.len); 1544 if (ret) 1545 goto out; 1546 1547 start = uffdio_unregister.start; 1548 end = start + uffdio_unregister.len; 1549 1550 ret = -ENOMEM; 1551 if (!mmget_not_zero(mm)) 1552 goto out; 1553 1554 mmap_write_lock(mm); 1555 mas_set(&mas, start); 1556 vma = mas_find(&mas, ULONG_MAX); 1557 if (!vma) 1558 goto out_unlock; 1559 1560 /* check that there's at least one vma in the range */ 1561 ret = -EINVAL; 1562 if (vma->vm_start >= end) 1563 goto out_unlock; 1564 1565 /* 1566 * If the first vma contains huge pages, make sure start address 1567 * is aligned to huge page size. 1568 */ 1569 if (is_vm_hugetlb_page(vma)) { 1570 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1571 1572 if (start & (vma_hpagesize - 1)) 1573 goto out_unlock; 1574 } 1575 1576 /* 1577 * Search for not compatible vmas. 1578 */ 1579 found = false; 1580 ret = -EINVAL; 1581 for (cur = vma; cur; cur = mas_next(&mas, end - 1)) { 1582 cond_resched(); 1583 1584 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1585 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1586 1587 /* 1588 * Check not compatible vmas, not strictly required 1589 * here as not compatible vmas cannot have an 1590 * userfaultfd_ctx registered on them, but this 1591 * provides for more strict behavior to notice 1592 * unregistration errors. 1593 */ 1594 if (!vma_can_userfault(cur, cur->vm_flags)) 1595 goto out_unlock; 1596 1597 found = true; 1598 } 1599 BUG_ON(!found); 1600 1601 mas_set(&mas, start); 1602 prev = mas_prev(&mas, 0); 1603 if (prev != vma) 1604 mas_next(&mas, ULONG_MAX); 1605 1606 ret = 0; 1607 do { 1608 cond_resched(); 1609 1610 BUG_ON(!vma_can_userfault(vma, vma->vm_flags)); 1611 1612 /* 1613 * Nothing to do: this vma is already registered into this 1614 * userfaultfd and with the right tracking mode too. 1615 */ 1616 if (!vma->vm_userfaultfd_ctx.ctx) 1617 goto skip; 1618 1619 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1620 1621 if (vma->vm_start > start) 1622 start = vma->vm_start; 1623 vma_end = min(end, vma->vm_end); 1624 1625 if (userfaultfd_missing(vma)) { 1626 /* 1627 * Wake any concurrent pending userfault while 1628 * we unregister, so they will not hang 1629 * permanently and it avoids userland to call 1630 * UFFDIO_WAKE explicitly. 1631 */ 1632 struct userfaultfd_wake_range range; 1633 range.start = start; 1634 range.len = vma_end - start; 1635 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1636 } 1637 1638 /* Reset ptes for the whole vma range if wr-protected */ 1639 if (userfaultfd_wp(vma)) 1640 uffd_wp_range(mm, vma, start, vma_end - start, false); 1641 1642 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 1643 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1644 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1645 vma_policy(vma), 1646 NULL_VM_UFFD_CTX, anon_vma_name(vma)); 1647 if (prev) { 1648 vma = prev; 1649 mas_pause(&mas); 1650 goto next; 1651 } 1652 if (vma->vm_start < start) { 1653 ret = split_vma(mm, vma, start, 1); 1654 if (ret) 1655 break; 1656 mas_pause(&mas); 1657 } 1658 if (vma->vm_end > end) { 1659 ret = split_vma(mm, vma, end, 0); 1660 if (ret) 1661 break; 1662 mas_pause(&mas); 1663 } 1664 next: 1665 /* 1666 * In the vma_merge() successful mprotect-like case 8: 1667 * the next vma was merged into the current one and 1668 * the current one has not been updated yet. 1669 */ 1670 userfaultfd_set_vm_flags(vma, new_flags); 1671 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1672 1673 skip: 1674 prev = vma; 1675 start = vma->vm_end; 1676 vma = mas_next(&mas, end - 1); 1677 } while (vma); 1678 out_unlock: 1679 mmap_write_unlock(mm); 1680 mmput(mm); 1681 out: 1682 return ret; 1683 } 1684 1685 /* 1686 * userfaultfd_wake may be used in combination with the 1687 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1688 */ 1689 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1690 unsigned long arg) 1691 { 1692 int ret; 1693 struct uffdio_range uffdio_wake; 1694 struct userfaultfd_wake_range range; 1695 const void __user *buf = (void __user *)arg; 1696 1697 ret = -EFAULT; 1698 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1699 goto out; 1700 1701 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1702 if (ret) 1703 goto out; 1704 1705 range.start = uffdio_wake.start; 1706 range.len = uffdio_wake.len; 1707 1708 /* 1709 * len == 0 means wake all and we don't want to wake all here, 1710 * so check it again to be sure. 1711 */ 1712 VM_BUG_ON(!range.len); 1713 1714 wake_userfault(ctx, &range); 1715 ret = 0; 1716 1717 out: 1718 return ret; 1719 } 1720 1721 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1722 unsigned long arg) 1723 { 1724 __s64 ret; 1725 struct uffdio_copy uffdio_copy; 1726 struct uffdio_copy __user *user_uffdio_copy; 1727 struct userfaultfd_wake_range range; 1728 1729 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1730 1731 ret = -EAGAIN; 1732 if (atomic_read(&ctx->mmap_changing)) 1733 goto out; 1734 1735 ret = -EFAULT; 1736 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1737 /* don't copy "copy" last field */ 1738 sizeof(uffdio_copy)-sizeof(__s64))) 1739 goto out; 1740 1741 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1742 if (ret) 1743 goto out; 1744 /* 1745 * double check for wraparound just in case. copy_from_user() 1746 * will later check uffdio_copy.src + uffdio_copy.len to fit 1747 * in the userland range. 1748 */ 1749 ret = -EINVAL; 1750 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1751 goto out; 1752 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) 1753 goto out; 1754 if (mmget_not_zero(ctx->mm)) { 1755 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1756 uffdio_copy.len, &ctx->mmap_changing, 1757 uffdio_copy.mode); 1758 mmput(ctx->mm); 1759 } else { 1760 return -ESRCH; 1761 } 1762 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1763 return -EFAULT; 1764 if (ret < 0) 1765 goto out; 1766 BUG_ON(!ret); 1767 /* len == 0 would wake all */ 1768 range.len = ret; 1769 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1770 range.start = uffdio_copy.dst; 1771 wake_userfault(ctx, &range); 1772 } 1773 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1774 out: 1775 return ret; 1776 } 1777 1778 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1779 unsigned long arg) 1780 { 1781 __s64 ret; 1782 struct uffdio_zeropage uffdio_zeropage; 1783 struct uffdio_zeropage __user *user_uffdio_zeropage; 1784 struct userfaultfd_wake_range range; 1785 1786 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1787 1788 ret = -EAGAIN; 1789 if (atomic_read(&ctx->mmap_changing)) 1790 goto out; 1791 1792 ret = -EFAULT; 1793 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1794 /* don't copy "zeropage" last field */ 1795 sizeof(uffdio_zeropage)-sizeof(__s64))) 1796 goto out; 1797 1798 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1799 uffdio_zeropage.range.len); 1800 if (ret) 1801 goto out; 1802 ret = -EINVAL; 1803 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1804 goto out; 1805 1806 if (mmget_not_zero(ctx->mm)) { 1807 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1808 uffdio_zeropage.range.len, 1809 &ctx->mmap_changing); 1810 mmput(ctx->mm); 1811 } else { 1812 return -ESRCH; 1813 } 1814 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1815 return -EFAULT; 1816 if (ret < 0) 1817 goto out; 1818 /* len == 0 would wake all */ 1819 BUG_ON(!ret); 1820 range.len = ret; 1821 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1822 range.start = uffdio_zeropage.range.start; 1823 wake_userfault(ctx, &range); 1824 } 1825 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1826 out: 1827 return ret; 1828 } 1829 1830 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, 1831 unsigned long arg) 1832 { 1833 int ret; 1834 struct uffdio_writeprotect uffdio_wp; 1835 struct uffdio_writeprotect __user *user_uffdio_wp; 1836 struct userfaultfd_wake_range range; 1837 bool mode_wp, mode_dontwake; 1838 1839 if (atomic_read(&ctx->mmap_changing)) 1840 return -EAGAIN; 1841 1842 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; 1843 1844 if (copy_from_user(&uffdio_wp, user_uffdio_wp, 1845 sizeof(struct uffdio_writeprotect))) 1846 return -EFAULT; 1847 1848 ret = validate_range(ctx->mm, uffdio_wp.range.start, 1849 uffdio_wp.range.len); 1850 if (ret) 1851 return ret; 1852 1853 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | 1854 UFFDIO_WRITEPROTECT_MODE_WP)) 1855 return -EINVAL; 1856 1857 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; 1858 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; 1859 1860 if (mode_wp && mode_dontwake) 1861 return -EINVAL; 1862 1863 if (mmget_not_zero(ctx->mm)) { 1864 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start, 1865 uffdio_wp.range.len, mode_wp, 1866 &ctx->mmap_changing); 1867 mmput(ctx->mm); 1868 } else { 1869 return -ESRCH; 1870 } 1871 1872 if (ret) 1873 return ret; 1874 1875 if (!mode_wp && !mode_dontwake) { 1876 range.start = uffdio_wp.range.start; 1877 range.len = uffdio_wp.range.len; 1878 wake_userfault(ctx, &range); 1879 } 1880 return ret; 1881 } 1882 1883 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg) 1884 { 1885 __s64 ret; 1886 struct uffdio_continue uffdio_continue; 1887 struct uffdio_continue __user *user_uffdio_continue; 1888 struct userfaultfd_wake_range range; 1889 1890 user_uffdio_continue = (struct uffdio_continue __user *)arg; 1891 1892 ret = -EAGAIN; 1893 if (atomic_read(&ctx->mmap_changing)) 1894 goto out; 1895 1896 ret = -EFAULT; 1897 if (copy_from_user(&uffdio_continue, user_uffdio_continue, 1898 /* don't copy the output fields */ 1899 sizeof(uffdio_continue) - (sizeof(__s64)))) 1900 goto out; 1901 1902 ret = validate_range(ctx->mm, uffdio_continue.range.start, 1903 uffdio_continue.range.len); 1904 if (ret) 1905 goto out; 1906 1907 ret = -EINVAL; 1908 /* double check for wraparound just in case. */ 1909 if (uffdio_continue.range.start + uffdio_continue.range.len <= 1910 uffdio_continue.range.start) { 1911 goto out; 1912 } 1913 if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE) 1914 goto out; 1915 1916 if (mmget_not_zero(ctx->mm)) { 1917 ret = mcopy_continue(ctx->mm, uffdio_continue.range.start, 1918 uffdio_continue.range.len, 1919 &ctx->mmap_changing); 1920 mmput(ctx->mm); 1921 } else { 1922 return -ESRCH; 1923 } 1924 1925 if (unlikely(put_user(ret, &user_uffdio_continue->mapped))) 1926 return -EFAULT; 1927 if (ret < 0) 1928 goto out; 1929 1930 /* len == 0 would wake all */ 1931 BUG_ON(!ret); 1932 range.len = ret; 1933 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) { 1934 range.start = uffdio_continue.range.start; 1935 wake_userfault(ctx, &range); 1936 } 1937 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN; 1938 1939 out: 1940 return ret; 1941 } 1942 1943 static inline unsigned int uffd_ctx_features(__u64 user_features) 1944 { 1945 /* 1946 * For the current set of features the bits just coincide. Set 1947 * UFFD_FEATURE_INITIALIZED to mark the features as enabled. 1948 */ 1949 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED; 1950 } 1951 1952 /* 1953 * userland asks for a certain API version and we return which bits 1954 * and ioctl commands are implemented in this kernel for such API 1955 * version or -EINVAL if unknown. 1956 */ 1957 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1958 unsigned long arg) 1959 { 1960 struct uffdio_api uffdio_api; 1961 void __user *buf = (void __user *)arg; 1962 unsigned int ctx_features; 1963 int ret; 1964 __u64 features; 1965 1966 ret = -EFAULT; 1967 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1968 goto out; 1969 /* Ignore unsupported features (userspace built against newer kernel) */ 1970 features = uffdio_api.features & UFFD_API_FEATURES; 1971 ret = -EPERM; 1972 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) 1973 goto err_out; 1974 /* report all available features and ioctls to userland */ 1975 uffdio_api.features = UFFD_API_FEATURES; 1976 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1977 uffdio_api.features &= 1978 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM); 1979 #endif 1980 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1981 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP; 1982 #endif 1983 #ifndef CONFIG_PTE_MARKER_UFFD_WP 1984 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM; 1985 #endif 1986 uffdio_api.ioctls = UFFD_API_IOCTLS; 1987 ret = -EFAULT; 1988 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1989 goto out; 1990 1991 /* only enable the requested features for this uffd context */ 1992 ctx_features = uffd_ctx_features(features); 1993 ret = -EINVAL; 1994 if (cmpxchg(&ctx->features, 0, ctx_features) != 0) 1995 goto err_out; 1996 1997 ret = 0; 1998 out: 1999 return ret; 2000 err_out: 2001 memset(&uffdio_api, 0, sizeof(uffdio_api)); 2002 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 2003 ret = -EFAULT; 2004 goto out; 2005 } 2006 2007 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 2008 unsigned long arg) 2009 { 2010 int ret = -EINVAL; 2011 struct userfaultfd_ctx *ctx = file->private_data; 2012 2013 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx)) 2014 return -EINVAL; 2015 2016 switch(cmd) { 2017 case UFFDIO_API: 2018 ret = userfaultfd_api(ctx, arg); 2019 break; 2020 case UFFDIO_REGISTER: 2021 ret = userfaultfd_register(ctx, arg); 2022 break; 2023 case UFFDIO_UNREGISTER: 2024 ret = userfaultfd_unregister(ctx, arg); 2025 break; 2026 case UFFDIO_WAKE: 2027 ret = userfaultfd_wake(ctx, arg); 2028 break; 2029 case UFFDIO_COPY: 2030 ret = userfaultfd_copy(ctx, arg); 2031 break; 2032 case UFFDIO_ZEROPAGE: 2033 ret = userfaultfd_zeropage(ctx, arg); 2034 break; 2035 case UFFDIO_WRITEPROTECT: 2036 ret = userfaultfd_writeprotect(ctx, arg); 2037 break; 2038 case UFFDIO_CONTINUE: 2039 ret = userfaultfd_continue(ctx, arg); 2040 break; 2041 } 2042 return ret; 2043 } 2044 2045 #ifdef CONFIG_PROC_FS 2046 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 2047 { 2048 struct userfaultfd_ctx *ctx = f->private_data; 2049 wait_queue_entry_t *wq; 2050 unsigned long pending = 0, total = 0; 2051 2052 spin_lock_irq(&ctx->fault_pending_wqh.lock); 2053 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 2054 pending++; 2055 total++; 2056 } 2057 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 2058 total++; 2059 } 2060 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 2061 2062 /* 2063 * If more protocols will be added, there will be all shown 2064 * separated by a space. Like this: 2065 * protocols: aa:... bb:... 2066 */ 2067 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 2068 pending, total, UFFD_API, ctx->features, 2069 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 2070 } 2071 #endif 2072 2073 static const struct file_operations userfaultfd_fops = { 2074 #ifdef CONFIG_PROC_FS 2075 .show_fdinfo = userfaultfd_show_fdinfo, 2076 #endif 2077 .release = userfaultfd_release, 2078 .poll = userfaultfd_poll, 2079 .read = userfaultfd_read, 2080 .unlocked_ioctl = userfaultfd_ioctl, 2081 .compat_ioctl = compat_ptr_ioctl, 2082 .llseek = noop_llseek, 2083 }; 2084 2085 static void init_once_userfaultfd_ctx(void *mem) 2086 { 2087 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 2088 2089 init_waitqueue_head(&ctx->fault_pending_wqh); 2090 init_waitqueue_head(&ctx->fault_wqh); 2091 init_waitqueue_head(&ctx->event_wqh); 2092 init_waitqueue_head(&ctx->fd_wqh); 2093 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); 2094 } 2095 2096 static int new_userfaultfd(int flags) 2097 { 2098 struct userfaultfd_ctx *ctx; 2099 int fd; 2100 2101 BUG_ON(!current->mm); 2102 2103 /* Check the UFFD_* constants for consistency. */ 2104 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS); 2105 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 2106 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 2107 2108 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY)) 2109 return -EINVAL; 2110 2111 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 2112 if (!ctx) 2113 return -ENOMEM; 2114 2115 refcount_set(&ctx->refcount, 1); 2116 ctx->flags = flags; 2117 ctx->features = 0; 2118 ctx->released = false; 2119 atomic_set(&ctx->mmap_changing, 0); 2120 ctx->mm = current->mm; 2121 /* prevent the mm struct to be freed */ 2122 mmgrab(ctx->mm); 2123 2124 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx, 2125 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL); 2126 if (fd < 0) { 2127 mmdrop(ctx->mm); 2128 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 2129 } 2130 return fd; 2131 } 2132 2133 static inline bool userfaultfd_syscall_allowed(int flags) 2134 { 2135 /* Userspace-only page faults are always allowed */ 2136 if (flags & UFFD_USER_MODE_ONLY) 2137 return true; 2138 2139 /* 2140 * The user is requesting a userfaultfd which can handle kernel faults. 2141 * Privileged users are always allowed to do this. 2142 */ 2143 if (capable(CAP_SYS_PTRACE)) 2144 return true; 2145 2146 /* Otherwise, access to kernel fault handling is sysctl controlled. */ 2147 return sysctl_unprivileged_userfaultfd; 2148 } 2149 2150 SYSCALL_DEFINE1(userfaultfd, int, flags) 2151 { 2152 if (!userfaultfd_syscall_allowed(flags)) 2153 return -EPERM; 2154 2155 return new_userfaultfd(flags); 2156 } 2157 2158 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags) 2159 { 2160 if (cmd != USERFAULTFD_IOC_NEW) 2161 return -EINVAL; 2162 2163 return new_userfaultfd(flags); 2164 } 2165 2166 static const struct file_operations userfaultfd_dev_fops = { 2167 .unlocked_ioctl = userfaultfd_dev_ioctl, 2168 .compat_ioctl = userfaultfd_dev_ioctl, 2169 .owner = THIS_MODULE, 2170 .llseek = noop_llseek, 2171 }; 2172 2173 static struct miscdevice userfaultfd_misc = { 2174 .minor = MISC_DYNAMIC_MINOR, 2175 .name = "userfaultfd", 2176 .fops = &userfaultfd_dev_fops 2177 }; 2178 2179 static int __init userfaultfd_init(void) 2180 { 2181 int ret; 2182 2183 ret = misc_register(&userfaultfd_misc); 2184 if (ret) 2185 return ret; 2186 2187 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 2188 sizeof(struct userfaultfd_ctx), 2189 0, 2190 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2191 init_once_userfaultfd_ctx); 2192 return 0; 2193 } 2194 __initcall(userfaultfd_init); 2195