xref: /openbmc/linux/fs/userfaultfd.c (revision 133f9794)
1 /*
2  *  fs/userfaultfd.c
3  *
4  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
5  *  Copyright (C) 2008-2009 Red Hat, Inc.
6  *  Copyright (C) 2015  Red Hat, Inc.
7  *
8  *  This work is licensed under the terms of the GNU GPL, version 2. See
9  *  the COPYING file in the top-level directory.
10  *
11  *  Some part derived from fs/eventfd.c (anon inode setup) and
12  *  mm/ksm.c (mm hashing).
13  */
14 
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32 
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34 
35 enum userfaultfd_state {
36 	UFFD_STATE_WAIT_API,
37 	UFFD_STATE_RUNNING,
38 };
39 
40 /*
41  * Start with fault_pending_wqh and fault_wqh so they're more likely
42  * to be in the same cacheline.
43  */
44 struct userfaultfd_ctx {
45 	/* waitqueue head for the pending (i.e. not read) userfaults */
46 	wait_queue_head_t fault_pending_wqh;
47 	/* waitqueue head for the userfaults */
48 	wait_queue_head_t fault_wqh;
49 	/* waitqueue head for the pseudo fd to wakeup poll/read */
50 	wait_queue_head_t fd_wqh;
51 	/* waitqueue head for events */
52 	wait_queue_head_t event_wqh;
53 	/* a refile sequence protected by fault_pending_wqh lock */
54 	struct seqcount refile_seq;
55 	/* pseudo fd refcounting */
56 	atomic_t refcount;
57 	/* userfaultfd syscall flags */
58 	unsigned int flags;
59 	/* features requested from the userspace */
60 	unsigned int features;
61 	/* state machine */
62 	enum userfaultfd_state state;
63 	/* released */
64 	bool released;
65 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
66 	struct mm_struct *mm;
67 };
68 
69 struct userfaultfd_fork_ctx {
70 	struct userfaultfd_ctx *orig;
71 	struct userfaultfd_ctx *new;
72 	struct list_head list;
73 };
74 
75 struct userfaultfd_unmap_ctx {
76 	struct userfaultfd_ctx *ctx;
77 	unsigned long start;
78 	unsigned long end;
79 	struct list_head list;
80 };
81 
82 struct userfaultfd_wait_queue {
83 	struct uffd_msg msg;
84 	wait_queue_entry_t wq;
85 	struct userfaultfd_ctx *ctx;
86 	bool waken;
87 };
88 
89 struct userfaultfd_wake_range {
90 	unsigned long start;
91 	unsigned long len;
92 };
93 
94 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
95 				     int wake_flags, void *key)
96 {
97 	struct userfaultfd_wake_range *range = key;
98 	int ret;
99 	struct userfaultfd_wait_queue *uwq;
100 	unsigned long start, len;
101 
102 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
103 	ret = 0;
104 	/* len == 0 means wake all */
105 	start = range->start;
106 	len = range->len;
107 	if (len && (start > uwq->msg.arg.pagefault.address ||
108 		    start + len <= uwq->msg.arg.pagefault.address))
109 		goto out;
110 	WRITE_ONCE(uwq->waken, true);
111 	/*
112 	 * The Program-Order guarantees provided by the scheduler
113 	 * ensure uwq->waken is visible before the task is woken.
114 	 */
115 	ret = wake_up_state(wq->private, mode);
116 	if (ret) {
117 		/*
118 		 * Wake only once, autoremove behavior.
119 		 *
120 		 * After the effect of list_del_init is visible to the other
121 		 * CPUs, the waitqueue may disappear from under us, see the
122 		 * !list_empty_careful() in handle_userfault().
123 		 *
124 		 * try_to_wake_up() has an implicit smp_mb(), and the
125 		 * wq->private is read before calling the extern function
126 		 * "wake_up_state" (which in turns calls try_to_wake_up).
127 		 */
128 		list_del_init(&wq->entry);
129 	}
130 out:
131 	return ret;
132 }
133 
134 /**
135  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
136  * context.
137  * @ctx: [in] Pointer to the userfaultfd context.
138  */
139 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
140 {
141 	if (!atomic_inc_not_zero(&ctx->refcount))
142 		BUG();
143 }
144 
145 /**
146  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
147  * context.
148  * @ctx: [in] Pointer to userfaultfd context.
149  *
150  * The userfaultfd context reference must have been previously acquired either
151  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
152  */
153 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
154 {
155 	if (atomic_dec_and_test(&ctx->refcount)) {
156 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
157 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
158 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
159 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
160 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
161 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
162 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
163 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
164 		mmdrop(ctx->mm);
165 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
166 	}
167 }
168 
169 static inline void msg_init(struct uffd_msg *msg)
170 {
171 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
172 	/*
173 	 * Must use memset to zero out the paddings or kernel data is
174 	 * leaked to userland.
175 	 */
176 	memset(msg, 0, sizeof(struct uffd_msg));
177 }
178 
179 static inline struct uffd_msg userfault_msg(unsigned long address,
180 					    unsigned int flags,
181 					    unsigned long reason,
182 					    unsigned int features)
183 {
184 	struct uffd_msg msg;
185 	msg_init(&msg);
186 	msg.event = UFFD_EVENT_PAGEFAULT;
187 	msg.arg.pagefault.address = address;
188 	if (flags & FAULT_FLAG_WRITE)
189 		/*
190 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
191 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
192 		 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
193 		 * was a read fault, otherwise if set it means it's
194 		 * a write fault.
195 		 */
196 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
197 	if (reason & VM_UFFD_WP)
198 		/*
199 		 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
200 		 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
201 		 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
202 		 * a missing fault, otherwise if set it means it's a
203 		 * write protect fault.
204 		 */
205 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
206 	if (features & UFFD_FEATURE_THREAD_ID)
207 		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
208 	return msg;
209 }
210 
211 #ifdef CONFIG_HUGETLB_PAGE
212 /*
213  * Same functionality as userfaultfd_must_wait below with modifications for
214  * hugepmd ranges.
215  */
216 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
217 					 struct vm_area_struct *vma,
218 					 unsigned long address,
219 					 unsigned long flags,
220 					 unsigned long reason)
221 {
222 	struct mm_struct *mm = ctx->mm;
223 	pte_t *pte;
224 	bool ret = true;
225 
226 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
227 
228 	pte = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
229 	if (!pte)
230 		goto out;
231 
232 	ret = false;
233 
234 	/*
235 	 * Lockless access: we're in a wait_event so it's ok if it
236 	 * changes under us.
237 	 */
238 	if (huge_pte_none(*pte))
239 		ret = true;
240 	if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP))
241 		ret = true;
242 out:
243 	return ret;
244 }
245 #else
246 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
247 					 struct vm_area_struct *vma,
248 					 unsigned long address,
249 					 unsigned long flags,
250 					 unsigned long reason)
251 {
252 	return false;	/* should never get here */
253 }
254 #endif /* CONFIG_HUGETLB_PAGE */
255 
256 /*
257  * Verify the pagetables are still not ok after having reigstered into
258  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
259  * userfault that has already been resolved, if userfaultfd_read and
260  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
261  * threads.
262  */
263 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
264 					 unsigned long address,
265 					 unsigned long flags,
266 					 unsigned long reason)
267 {
268 	struct mm_struct *mm = ctx->mm;
269 	pgd_t *pgd;
270 	p4d_t *p4d;
271 	pud_t *pud;
272 	pmd_t *pmd, _pmd;
273 	pte_t *pte;
274 	bool ret = true;
275 
276 	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
277 
278 	pgd = pgd_offset(mm, address);
279 	if (!pgd_present(*pgd))
280 		goto out;
281 	p4d = p4d_offset(pgd, address);
282 	if (!p4d_present(*p4d))
283 		goto out;
284 	pud = pud_offset(p4d, address);
285 	if (!pud_present(*pud))
286 		goto out;
287 	pmd = pmd_offset(pud, address);
288 	/*
289 	 * READ_ONCE must function as a barrier with narrower scope
290 	 * and it must be equivalent to:
291 	 *	_pmd = *pmd; barrier();
292 	 *
293 	 * This is to deal with the instability (as in
294 	 * pmd_trans_unstable) of the pmd.
295 	 */
296 	_pmd = READ_ONCE(*pmd);
297 	if (pmd_none(_pmd))
298 		goto out;
299 
300 	ret = false;
301 	if (!pmd_present(_pmd))
302 		goto out;
303 
304 	if (pmd_trans_huge(_pmd))
305 		goto out;
306 
307 	/*
308 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
309 	 * and use the standard pte_offset_map() instead of parsing _pmd.
310 	 */
311 	pte = pte_offset_map(pmd, address);
312 	/*
313 	 * Lockless access: we're in a wait_event so it's ok if it
314 	 * changes under us.
315 	 */
316 	if (pte_none(*pte))
317 		ret = true;
318 	pte_unmap(pte);
319 
320 out:
321 	return ret;
322 }
323 
324 /*
325  * The locking rules involved in returning VM_FAULT_RETRY depending on
326  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
327  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
328  * recommendation in __lock_page_or_retry is not an understatement.
329  *
330  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
331  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
332  * not set.
333  *
334  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
335  * set, VM_FAULT_RETRY can still be returned if and only if there are
336  * fatal_signal_pending()s, and the mmap_sem must be released before
337  * returning it.
338  */
339 int handle_userfault(struct vm_fault *vmf, unsigned long reason)
340 {
341 	struct mm_struct *mm = vmf->vma->vm_mm;
342 	struct userfaultfd_ctx *ctx;
343 	struct userfaultfd_wait_queue uwq;
344 	int ret;
345 	bool must_wait, return_to_userland;
346 	long blocking_state;
347 
348 	ret = VM_FAULT_SIGBUS;
349 
350 	/*
351 	 * We don't do userfault handling for the final child pid update.
352 	 *
353 	 * We also don't do userfault handling during
354 	 * coredumping. hugetlbfs has the special
355 	 * follow_hugetlb_page() to skip missing pages in the
356 	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
357 	 * the no_page_table() helper in follow_page_mask(), but the
358 	 * shmem_vm_ops->fault method is invoked even during
359 	 * coredumping without mmap_sem and it ends up here.
360 	 */
361 	if (current->flags & (PF_EXITING|PF_DUMPCORE))
362 		goto out;
363 
364 	/*
365 	 * Coredumping runs without mmap_sem so we can only check that
366 	 * the mmap_sem is held, if PF_DUMPCORE was not set.
367 	 */
368 	WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
369 
370 	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
371 	if (!ctx)
372 		goto out;
373 
374 	BUG_ON(ctx->mm != mm);
375 
376 	VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
377 	VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
378 
379 	if (ctx->features & UFFD_FEATURE_SIGBUS)
380 		goto out;
381 
382 	/*
383 	 * If it's already released don't get it. This avoids to loop
384 	 * in __get_user_pages if userfaultfd_release waits on the
385 	 * caller of handle_userfault to release the mmap_sem.
386 	 */
387 	if (unlikely(READ_ONCE(ctx->released))) {
388 		/*
389 		 * Don't return VM_FAULT_SIGBUS in this case, so a non
390 		 * cooperative manager can close the uffd after the
391 		 * last UFFDIO_COPY, without risking to trigger an
392 		 * involuntary SIGBUS if the process was starting the
393 		 * userfaultfd while the userfaultfd was still armed
394 		 * (but after the last UFFDIO_COPY). If the uffd
395 		 * wasn't already closed when the userfault reached
396 		 * this point, that would normally be solved by
397 		 * userfaultfd_must_wait returning 'false'.
398 		 *
399 		 * If we were to return VM_FAULT_SIGBUS here, the non
400 		 * cooperative manager would be instead forced to
401 		 * always call UFFDIO_UNREGISTER before it can safely
402 		 * close the uffd.
403 		 */
404 		ret = VM_FAULT_NOPAGE;
405 		goto out;
406 	}
407 
408 	/*
409 	 * Check that we can return VM_FAULT_RETRY.
410 	 *
411 	 * NOTE: it should become possible to return VM_FAULT_RETRY
412 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
413 	 * -EBUSY failures, if the userfaultfd is to be extended for
414 	 * VM_UFFD_WP tracking and we intend to arm the userfault
415 	 * without first stopping userland access to the memory. For
416 	 * VM_UFFD_MISSING userfaults this is enough for now.
417 	 */
418 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
419 		/*
420 		 * Validate the invariant that nowait must allow retry
421 		 * to be sure not to return SIGBUS erroneously on
422 		 * nowait invocations.
423 		 */
424 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
425 #ifdef CONFIG_DEBUG_VM
426 		if (printk_ratelimit()) {
427 			printk(KERN_WARNING
428 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
429 			       vmf->flags);
430 			dump_stack();
431 		}
432 #endif
433 		goto out;
434 	}
435 
436 	/*
437 	 * Handle nowait, not much to do other than tell it to retry
438 	 * and wait.
439 	 */
440 	ret = VM_FAULT_RETRY;
441 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
442 		goto out;
443 
444 	/* take the reference before dropping the mmap_sem */
445 	userfaultfd_ctx_get(ctx);
446 
447 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
448 	uwq.wq.private = current;
449 	uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
450 			ctx->features);
451 	uwq.ctx = ctx;
452 	uwq.waken = false;
453 
454 	return_to_userland =
455 		(vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
456 		(FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
457 	blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
458 			 TASK_KILLABLE;
459 
460 	spin_lock(&ctx->fault_pending_wqh.lock);
461 	/*
462 	 * After the __add_wait_queue the uwq is visible to userland
463 	 * through poll/read().
464 	 */
465 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
466 	/*
467 	 * The smp_mb() after __set_current_state prevents the reads
468 	 * following the spin_unlock to happen before the list_add in
469 	 * __add_wait_queue.
470 	 */
471 	set_current_state(blocking_state);
472 	spin_unlock(&ctx->fault_pending_wqh.lock);
473 
474 	if (!is_vm_hugetlb_page(vmf->vma))
475 		must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
476 						  reason);
477 	else
478 		must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
479 						       vmf->address,
480 						       vmf->flags, reason);
481 	up_read(&mm->mmap_sem);
482 
483 	if (likely(must_wait && !READ_ONCE(ctx->released) &&
484 		   (return_to_userland ? !signal_pending(current) :
485 		    !fatal_signal_pending(current)))) {
486 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
487 		schedule();
488 		ret |= VM_FAULT_MAJOR;
489 
490 		/*
491 		 * False wakeups can orginate even from rwsem before
492 		 * up_read() however userfaults will wait either for a
493 		 * targeted wakeup on the specific uwq waitqueue from
494 		 * wake_userfault() or for signals or for uffd
495 		 * release.
496 		 */
497 		while (!READ_ONCE(uwq.waken)) {
498 			/*
499 			 * This needs the full smp_store_mb()
500 			 * guarantee as the state write must be
501 			 * visible to other CPUs before reading
502 			 * uwq.waken from other CPUs.
503 			 */
504 			set_current_state(blocking_state);
505 			if (READ_ONCE(uwq.waken) ||
506 			    READ_ONCE(ctx->released) ||
507 			    (return_to_userland ? signal_pending(current) :
508 			     fatal_signal_pending(current)))
509 				break;
510 			schedule();
511 		}
512 	}
513 
514 	__set_current_state(TASK_RUNNING);
515 
516 	if (return_to_userland) {
517 		if (signal_pending(current) &&
518 		    !fatal_signal_pending(current)) {
519 			/*
520 			 * If we got a SIGSTOP or SIGCONT and this is
521 			 * a normal userland page fault, just let
522 			 * userland return so the signal will be
523 			 * handled and gdb debugging works.  The page
524 			 * fault code immediately after we return from
525 			 * this function is going to release the
526 			 * mmap_sem and it's not depending on it
527 			 * (unlike gup would if we were not to return
528 			 * VM_FAULT_RETRY).
529 			 *
530 			 * If a fatal signal is pending we still take
531 			 * the streamlined VM_FAULT_RETRY failure path
532 			 * and there's no need to retake the mmap_sem
533 			 * in such case.
534 			 */
535 			down_read(&mm->mmap_sem);
536 			ret = VM_FAULT_NOPAGE;
537 		}
538 	}
539 
540 	/*
541 	 * Here we race with the list_del; list_add in
542 	 * userfaultfd_ctx_read(), however because we don't ever run
543 	 * list_del_init() to refile across the two lists, the prev
544 	 * and next pointers will never point to self. list_add also
545 	 * would never let any of the two pointers to point to
546 	 * self. So list_empty_careful won't risk to see both pointers
547 	 * pointing to self at any time during the list refile. The
548 	 * only case where list_del_init() is called is the full
549 	 * removal in the wake function and there we don't re-list_add
550 	 * and it's fine not to block on the spinlock. The uwq on this
551 	 * kernel stack can be released after the list_del_init.
552 	 */
553 	if (!list_empty_careful(&uwq.wq.entry)) {
554 		spin_lock(&ctx->fault_pending_wqh.lock);
555 		/*
556 		 * No need of list_del_init(), the uwq on the stack
557 		 * will be freed shortly anyway.
558 		 */
559 		list_del(&uwq.wq.entry);
560 		spin_unlock(&ctx->fault_pending_wqh.lock);
561 	}
562 
563 	/*
564 	 * ctx may go away after this if the userfault pseudo fd is
565 	 * already released.
566 	 */
567 	userfaultfd_ctx_put(ctx);
568 
569 out:
570 	return ret;
571 }
572 
573 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
574 					      struct userfaultfd_wait_queue *ewq)
575 {
576 	struct userfaultfd_ctx *release_new_ctx;
577 
578 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
579 		goto out;
580 
581 	ewq->ctx = ctx;
582 	init_waitqueue_entry(&ewq->wq, current);
583 	release_new_ctx = NULL;
584 
585 	spin_lock(&ctx->event_wqh.lock);
586 	/*
587 	 * After the __add_wait_queue the uwq is visible to userland
588 	 * through poll/read().
589 	 */
590 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
591 	for (;;) {
592 		set_current_state(TASK_KILLABLE);
593 		if (ewq->msg.event == 0)
594 			break;
595 		if (READ_ONCE(ctx->released) ||
596 		    fatal_signal_pending(current)) {
597 			/*
598 			 * &ewq->wq may be queued in fork_event, but
599 			 * __remove_wait_queue ignores the head
600 			 * parameter. It would be a problem if it
601 			 * didn't.
602 			 */
603 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
604 			if (ewq->msg.event == UFFD_EVENT_FORK) {
605 				struct userfaultfd_ctx *new;
606 
607 				new = (struct userfaultfd_ctx *)
608 					(unsigned long)
609 					ewq->msg.arg.reserved.reserved1;
610 				release_new_ctx = new;
611 			}
612 			break;
613 		}
614 
615 		spin_unlock(&ctx->event_wqh.lock);
616 
617 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
618 		schedule();
619 
620 		spin_lock(&ctx->event_wqh.lock);
621 	}
622 	__set_current_state(TASK_RUNNING);
623 	spin_unlock(&ctx->event_wqh.lock);
624 
625 	if (release_new_ctx) {
626 		struct vm_area_struct *vma;
627 		struct mm_struct *mm = release_new_ctx->mm;
628 
629 		/* the various vma->vm_userfaultfd_ctx still points to it */
630 		down_write(&mm->mmap_sem);
631 		for (vma = mm->mmap; vma; vma = vma->vm_next)
632 			if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx)
633 				vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
634 		up_write(&mm->mmap_sem);
635 
636 		userfaultfd_ctx_put(release_new_ctx);
637 	}
638 
639 	/*
640 	 * ctx may go away after this if the userfault pseudo fd is
641 	 * already released.
642 	 */
643 out:
644 	userfaultfd_ctx_put(ctx);
645 }
646 
647 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
648 				       struct userfaultfd_wait_queue *ewq)
649 {
650 	ewq->msg.event = 0;
651 	wake_up_locked(&ctx->event_wqh);
652 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
653 }
654 
655 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
656 {
657 	struct userfaultfd_ctx *ctx = NULL, *octx;
658 	struct userfaultfd_fork_ctx *fctx;
659 
660 	octx = vma->vm_userfaultfd_ctx.ctx;
661 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
662 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
663 		vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
664 		return 0;
665 	}
666 
667 	list_for_each_entry(fctx, fcs, list)
668 		if (fctx->orig == octx) {
669 			ctx = fctx->new;
670 			break;
671 		}
672 
673 	if (!ctx) {
674 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
675 		if (!fctx)
676 			return -ENOMEM;
677 
678 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
679 		if (!ctx) {
680 			kfree(fctx);
681 			return -ENOMEM;
682 		}
683 
684 		atomic_set(&ctx->refcount, 1);
685 		ctx->flags = octx->flags;
686 		ctx->state = UFFD_STATE_RUNNING;
687 		ctx->features = octx->features;
688 		ctx->released = false;
689 		ctx->mm = vma->vm_mm;
690 		mmgrab(ctx->mm);
691 
692 		userfaultfd_ctx_get(octx);
693 		fctx->orig = octx;
694 		fctx->new = ctx;
695 		list_add_tail(&fctx->list, fcs);
696 	}
697 
698 	vma->vm_userfaultfd_ctx.ctx = ctx;
699 	return 0;
700 }
701 
702 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
703 {
704 	struct userfaultfd_ctx *ctx = fctx->orig;
705 	struct userfaultfd_wait_queue ewq;
706 
707 	msg_init(&ewq.msg);
708 
709 	ewq.msg.event = UFFD_EVENT_FORK;
710 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
711 
712 	userfaultfd_event_wait_completion(ctx, &ewq);
713 }
714 
715 void dup_userfaultfd_complete(struct list_head *fcs)
716 {
717 	struct userfaultfd_fork_ctx *fctx, *n;
718 
719 	list_for_each_entry_safe(fctx, n, fcs, list) {
720 		dup_fctx(fctx);
721 		list_del(&fctx->list);
722 		kfree(fctx);
723 	}
724 }
725 
726 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
727 			     struct vm_userfaultfd_ctx *vm_ctx)
728 {
729 	struct userfaultfd_ctx *ctx;
730 
731 	ctx = vma->vm_userfaultfd_ctx.ctx;
732 	if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) {
733 		vm_ctx->ctx = ctx;
734 		userfaultfd_ctx_get(ctx);
735 	}
736 }
737 
738 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
739 				 unsigned long from, unsigned long to,
740 				 unsigned long len)
741 {
742 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
743 	struct userfaultfd_wait_queue ewq;
744 
745 	if (!ctx)
746 		return;
747 
748 	if (to & ~PAGE_MASK) {
749 		userfaultfd_ctx_put(ctx);
750 		return;
751 	}
752 
753 	msg_init(&ewq.msg);
754 
755 	ewq.msg.event = UFFD_EVENT_REMAP;
756 	ewq.msg.arg.remap.from = from;
757 	ewq.msg.arg.remap.to = to;
758 	ewq.msg.arg.remap.len = len;
759 
760 	userfaultfd_event_wait_completion(ctx, &ewq);
761 }
762 
763 bool userfaultfd_remove(struct vm_area_struct *vma,
764 			unsigned long start, unsigned long end)
765 {
766 	struct mm_struct *mm = vma->vm_mm;
767 	struct userfaultfd_ctx *ctx;
768 	struct userfaultfd_wait_queue ewq;
769 
770 	ctx = vma->vm_userfaultfd_ctx.ctx;
771 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
772 		return true;
773 
774 	userfaultfd_ctx_get(ctx);
775 	up_read(&mm->mmap_sem);
776 
777 	msg_init(&ewq.msg);
778 
779 	ewq.msg.event = UFFD_EVENT_REMOVE;
780 	ewq.msg.arg.remove.start = start;
781 	ewq.msg.arg.remove.end = end;
782 
783 	userfaultfd_event_wait_completion(ctx, &ewq);
784 
785 	return false;
786 }
787 
788 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
789 			  unsigned long start, unsigned long end)
790 {
791 	struct userfaultfd_unmap_ctx *unmap_ctx;
792 
793 	list_for_each_entry(unmap_ctx, unmaps, list)
794 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
795 		    unmap_ctx->end == end)
796 			return true;
797 
798 	return false;
799 }
800 
801 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
802 			   unsigned long start, unsigned long end,
803 			   struct list_head *unmaps)
804 {
805 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
806 		struct userfaultfd_unmap_ctx *unmap_ctx;
807 		struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
808 
809 		if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
810 		    has_unmap_ctx(ctx, unmaps, start, end))
811 			continue;
812 
813 		unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
814 		if (!unmap_ctx)
815 			return -ENOMEM;
816 
817 		userfaultfd_ctx_get(ctx);
818 		unmap_ctx->ctx = ctx;
819 		unmap_ctx->start = start;
820 		unmap_ctx->end = end;
821 		list_add_tail(&unmap_ctx->list, unmaps);
822 	}
823 
824 	return 0;
825 }
826 
827 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
828 {
829 	struct userfaultfd_unmap_ctx *ctx, *n;
830 	struct userfaultfd_wait_queue ewq;
831 
832 	list_for_each_entry_safe(ctx, n, uf, list) {
833 		msg_init(&ewq.msg);
834 
835 		ewq.msg.event = UFFD_EVENT_UNMAP;
836 		ewq.msg.arg.remove.start = ctx->start;
837 		ewq.msg.arg.remove.end = ctx->end;
838 
839 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
840 
841 		list_del(&ctx->list);
842 		kfree(ctx);
843 	}
844 }
845 
846 static int userfaultfd_release(struct inode *inode, struct file *file)
847 {
848 	struct userfaultfd_ctx *ctx = file->private_data;
849 	struct mm_struct *mm = ctx->mm;
850 	struct vm_area_struct *vma, *prev;
851 	/* len == 0 means wake all */
852 	struct userfaultfd_wake_range range = { .len = 0, };
853 	unsigned long new_flags;
854 
855 	WRITE_ONCE(ctx->released, true);
856 
857 	if (!mmget_not_zero(mm))
858 		goto wakeup;
859 
860 	/*
861 	 * Flush page faults out of all CPUs. NOTE: all page faults
862 	 * must be retried without returning VM_FAULT_SIGBUS if
863 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
864 	 * changes while handle_userfault released the mmap_sem. So
865 	 * it's critical that released is set to true (above), before
866 	 * taking the mmap_sem for writing.
867 	 */
868 	down_write(&mm->mmap_sem);
869 	prev = NULL;
870 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
871 		cond_resched();
872 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
873 		       !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
874 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
875 			prev = vma;
876 			continue;
877 		}
878 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
879 		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
880 				 new_flags, vma->anon_vma,
881 				 vma->vm_file, vma->vm_pgoff,
882 				 vma_policy(vma),
883 				 NULL_VM_UFFD_CTX);
884 		if (prev)
885 			vma = prev;
886 		else
887 			prev = vma;
888 		vma->vm_flags = new_flags;
889 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
890 	}
891 	up_write(&mm->mmap_sem);
892 	mmput(mm);
893 wakeup:
894 	/*
895 	 * After no new page faults can wait on this fault_*wqh, flush
896 	 * the last page faults that may have been already waiting on
897 	 * the fault_*wqh.
898 	 */
899 	spin_lock(&ctx->fault_pending_wqh.lock);
900 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
901 	__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
902 	spin_unlock(&ctx->fault_pending_wqh.lock);
903 
904 	/* Flush pending events that may still wait on event_wqh */
905 	wake_up_all(&ctx->event_wqh);
906 
907 	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
908 	userfaultfd_ctx_put(ctx);
909 	return 0;
910 }
911 
912 /* fault_pending_wqh.lock must be hold by the caller */
913 static inline struct userfaultfd_wait_queue *find_userfault_in(
914 		wait_queue_head_t *wqh)
915 {
916 	wait_queue_entry_t *wq;
917 	struct userfaultfd_wait_queue *uwq;
918 
919 	VM_BUG_ON(!spin_is_locked(&wqh->lock));
920 
921 	uwq = NULL;
922 	if (!waitqueue_active(wqh))
923 		goto out;
924 	/* walk in reverse to provide FIFO behavior to read userfaults */
925 	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
926 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
927 out:
928 	return uwq;
929 }
930 
931 static inline struct userfaultfd_wait_queue *find_userfault(
932 		struct userfaultfd_ctx *ctx)
933 {
934 	return find_userfault_in(&ctx->fault_pending_wqh);
935 }
936 
937 static inline struct userfaultfd_wait_queue *find_userfault_evt(
938 		struct userfaultfd_ctx *ctx)
939 {
940 	return find_userfault_in(&ctx->event_wqh);
941 }
942 
943 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
944 {
945 	struct userfaultfd_ctx *ctx = file->private_data;
946 	__poll_t ret;
947 
948 	poll_wait(file, &ctx->fd_wqh, wait);
949 
950 	switch (ctx->state) {
951 	case UFFD_STATE_WAIT_API:
952 		return EPOLLERR;
953 	case UFFD_STATE_RUNNING:
954 		/*
955 		 * poll() never guarantees that read won't block.
956 		 * userfaults can be waken before they're read().
957 		 */
958 		if (unlikely(!(file->f_flags & O_NONBLOCK)))
959 			return EPOLLERR;
960 		/*
961 		 * lockless access to see if there are pending faults
962 		 * __pollwait last action is the add_wait_queue but
963 		 * the spin_unlock would allow the waitqueue_active to
964 		 * pass above the actual list_add inside
965 		 * add_wait_queue critical section. So use a full
966 		 * memory barrier to serialize the list_add write of
967 		 * add_wait_queue() with the waitqueue_active read
968 		 * below.
969 		 */
970 		ret = 0;
971 		smp_mb();
972 		if (waitqueue_active(&ctx->fault_pending_wqh))
973 			ret = EPOLLIN;
974 		else if (waitqueue_active(&ctx->event_wqh))
975 			ret = EPOLLIN;
976 
977 		return ret;
978 	default:
979 		WARN_ON_ONCE(1);
980 		return EPOLLERR;
981 	}
982 }
983 
984 static const struct file_operations userfaultfd_fops;
985 
986 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
987 				  struct userfaultfd_ctx *new,
988 				  struct uffd_msg *msg)
989 {
990 	int fd;
991 
992 	fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
993 			      O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
994 	if (fd < 0)
995 		return fd;
996 
997 	msg->arg.reserved.reserved1 = 0;
998 	msg->arg.fork.ufd = fd;
999 	return 0;
1000 }
1001 
1002 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1003 				    struct uffd_msg *msg)
1004 {
1005 	ssize_t ret;
1006 	DECLARE_WAITQUEUE(wait, current);
1007 	struct userfaultfd_wait_queue *uwq;
1008 	/*
1009 	 * Handling fork event requires sleeping operations, so
1010 	 * we drop the event_wqh lock, then do these ops, then
1011 	 * lock it back and wake up the waiter. While the lock is
1012 	 * dropped the ewq may go away so we keep track of it
1013 	 * carefully.
1014 	 */
1015 	LIST_HEAD(fork_event);
1016 	struct userfaultfd_ctx *fork_nctx = NULL;
1017 
1018 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1019 	spin_lock(&ctx->fd_wqh.lock);
1020 	__add_wait_queue(&ctx->fd_wqh, &wait);
1021 	for (;;) {
1022 		set_current_state(TASK_INTERRUPTIBLE);
1023 		spin_lock(&ctx->fault_pending_wqh.lock);
1024 		uwq = find_userfault(ctx);
1025 		if (uwq) {
1026 			/*
1027 			 * Use a seqcount to repeat the lockless check
1028 			 * in wake_userfault() to avoid missing
1029 			 * wakeups because during the refile both
1030 			 * waitqueue could become empty if this is the
1031 			 * only userfault.
1032 			 */
1033 			write_seqcount_begin(&ctx->refile_seq);
1034 
1035 			/*
1036 			 * The fault_pending_wqh.lock prevents the uwq
1037 			 * to disappear from under us.
1038 			 *
1039 			 * Refile this userfault from
1040 			 * fault_pending_wqh to fault_wqh, it's not
1041 			 * pending anymore after we read it.
1042 			 *
1043 			 * Use list_del() by hand (as
1044 			 * userfaultfd_wake_function also uses
1045 			 * list_del_init() by hand) to be sure nobody
1046 			 * changes __remove_wait_queue() to use
1047 			 * list_del_init() in turn breaking the
1048 			 * !list_empty_careful() check in
1049 			 * handle_userfault(). The uwq->wq.head list
1050 			 * must never be empty at any time during the
1051 			 * refile, or the waitqueue could disappear
1052 			 * from under us. The "wait_queue_head_t"
1053 			 * parameter of __remove_wait_queue() is unused
1054 			 * anyway.
1055 			 */
1056 			list_del(&uwq->wq.entry);
1057 			__add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1058 
1059 			write_seqcount_end(&ctx->refile_seq);
1060 
1061 			/* careful to always initialize msg if ret == 0 */
1062 			*msg = uwq->msg;
1063 			spin_unlock(&ctx->fault_pending_wqh.lock);
1064 			ret = 0;
1065 			break;
1066 		}
1067 		spin_unlock(&ctx->fault_pending_wqh.lock);
1068 
1069 		spin_lock(&ctx->event_wqh.lock);
1070 		uwq = find_userfault_evt(ctx);
1071 		if (uwq) {
1072 			*msg = uwq->msg;
1073 
1074 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1075 				fork_nctx = (struct userfaultfd_ctx *)
1076 					(unsigned long)
1077 					uwq->msg.arg.reserved.reserved1;
1078 				list_move(&uwq->wq.entry, &fork_event);
1079 				/*
1080 				 * fork_nctx can be freed as soon as
1081 				 * we drop the lock, unless we take a
1082 				 * reference on it.
1083 				 */
1084 				userfaultfd_ctx_get(fork_nctx);
1085 				spin_unlock(&ctx->event_wqh.lock);
1086 				ret = 0;
1087 				break;
1088 			}
1089 
1090 			userfaultfd_event_complete(ctx, uwq);
1091 			spin_unlock(&ctx->event_wqh.lock);
1092 			ret = 0;
1093 			break;
1094 		}
1095 		spin_unlock(&ctx->event_wqh.lock);
1096 
1097 		if (signal_pending(current)) {
1098 			ret = -ERESTARTSYS;
1099 			break;
1100 		}
1101 		if (no_wait) {
1102 			ret = -EAGAIN;
1103 			break;
1104 		}
1105 		spin_unlock(&ctx->fd_wqh.lock);
1106 		schedule();
1107 		spin_lock(&ctx->fd_wqh.lock);
1108 	}
1109 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1110 	__set_current_state(TASK_RUNNING);
1111 	spin_unlock(&ctx->fd_wqh.lock);
1112 
1113 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1114 		ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1115 		spin_lock(&ctx->event_wqh.lock);
1116 		if (!list_empty(&fork_event)) {
1117 			/*
1118 			 * The fork thread didn't abort, so we can
1119 			 * drop the temporary refcount.
1120 			 */
1121 			userfaultfd_ctx_put(fork_nctx);
1122 
1123 			uwq = list_first_entry(&fork_event,
1124 					       typeof(*uwq),
1125 					       wq.entry);
1126 			/*
1127 			 * If fork_event list wasn't empty and in turn
1128 			 * the event wasn't already released by fork
1129 			 * (the event is allocated on fork kernel
1130 			 * stack), put the event back to its place in
1131 			 * the event_wq. fork_event head will be freed
1132 			 * as soon as we return so the event cannot
1133 			 * stay queued there no matter the current
1134 			 * "ret" value.
1135 			 */
1136 			list_del(&uwq->wq.entry);
1137 			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1138 
1139 			/*
1140 			 * Leave the event in the waitqueue and report
1141 			 * error to userland if we failed to resolve
1142 			 * the userfault fork.
1143 			 */
1144 			if (likely(!ret))
1145 				userfaultfd_event_complete(ctx, uwq);
1146 		} else {
1147 			/*
1148 			 * Here the fork thread aborted and the
1149 			 * refcount from the fork thread on fork_nctx
1150 			 * has already been released. We still hold
1151 			 * the reference we took before releasing the
1152 			 * lock above. If resolve_userfault_fork
1153 			 * failed we've to drop it because the
1154 			 * fork_nctx has to be freed in such case. If
1155 			 * it succeeded we'll hold it because the new
1156 			 * uffd references it.
1157 			 */
1158 			if (ret)
1159 				userfaultfd_ctx_put(fork_nctx);
1160 		}
1161 		spin_unlock(&ctx->event_wqh.lock);
1162 	}
1163 
1164 	return ret;
1165 }
1166 
1167 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1168 				size_t count, loff_t *ppos)
1169 {
1170 	struct userfaultfd_ctx *ctx = file->private_data;
1171 	ssize_t _ret, ret = 0;
1172 	struct uffd_msg msg;
1173 	int no_wait = file->f_flags & O_NONBLOCK;
1174 
1175 	if (ctx->state == UFFD_STATE_WAIT_API)
1176 		return -EINVAL;
1177 
1178 	for (;;) {
1179 		if (count < sizeof(msg))
1180 			return ret ? ret : -EINVAL;
1181 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1182 		if (_ret < 0)
1183 			return ret ? ret : _ret;
1184 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1185 			return ret ? ret : -EFAULT;
1186 		ret += sizeof(msg);
1187 		buf += sizeof(msg);
1188 		count -= sizeof(msg);
1189 		/*
1190 		 * Allow to read more than one fault at time but only
1191 		 * block if waiting for the very first one.
1192 		 */
1193 		no_wait = O_NONBLOCK;
1194 	}
1195 }
1196 
1197 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1198 			     struct userfaultfd_wake_range *range)
1199 {
1200 	spin_lock(&ctx->fault_pending_wqh.lock);
1201 	/* wake all in the range and autoremove */
1202 	if (waitqueue_active(&ctx->fault_pending_wqh))
1203 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1204 				     range);
1205 	if (waitqueue_active(&ctx->fault_wqh))
1206 		__wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
1207 	spin_unlock(&ctx->fault_pending_wqh.lock);
1208 }
1209 
1210 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1211 					   struct userfaultfd_wake_range *range)
1212 {
1213 	unsigned seq;
1214 	bool need_wakeup;
1215 
1216 	/*
1217 	 * To be sure waitqueue_active() is not reordered by the CPU
1218 	 * before the pagetable update, use an explicit SMP memory
1219 	 * barrier here. PT lock release or up_read(mmap_sem) still
1220 	 * have release semantics that can allow the
1221 	 * waitqueue_active() to be reordered before the pte update.
1222 	 */
1223 	smp_mb();
1224 
1225 	/*
1226 	 * Use waitqueue_active because it's very frequent to
1227 	 * change the address space atomically even if there are no
1228 	 * userfaults yet. So we take the spinlock only when we're
1229 	 * sure we've userfaults to wake.
1230 	 */
1231 	do {
1232 		seq = read_seqcount_begin(&ctx->refile_seq);
1233 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1234 			waitqueue_active(&ctx->fault_wqh);
1235 		cond_resched();
1236 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1237 	if (need_wakeup)
1238 		__wake_userfault(ctx, range);
1239 }
1240 
1241 static __always_inline int validate_range(struct mm_struct *mm,
1242 					  __u64 start, __u64 len)
1243 {
1244 	__u64 task_size = mm->task_size;
1245 
1246 	if (start & ~PAGE_MASK)
1247 		return -EINVAL;
1248 	if (len & ~PAGE_MASK)
1249 		return -EINVAL;
1250 	if (!len)
1251 		return -EINVAL;
1252 	if (start < mmap_min_addr)
1253 		return -EINVAL;
1254 	if (start >= task_size)
1255 		return -EINVAL;
1256 	if (len > task_size - start)
1257 		return -EINVAL;
1258 	return 0;
1259 }
1260 
1261 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1262 {
1263 	return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1264 		vma_is_shmem(vma);
1265 }
1266 
1267 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1268 				unsigned long arg)
1269 {
1270 	struct mm_struct *mm = ctx->mm;
1271 	struct vm_area_struct *vma, *prev, *cur;
1272 	int ret;
1273 	struct uffdio_register uffdio_register;
1274 	struct uffdio_register __user *user_uffdio_register;
1275 	unsigned long vm_flags, new_flags;
1276 	bool found;
1277 	bool basic_ioctls;
1278 	unsigned long start, end, vma_end;
1279 
1280 	user_uffdio_register = (struct uffdio_register __user *) arg;
1281 
1282 	ret = -EFAULT;
1283 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1284 			   sizeof(uffdio_register)-sizeof(__u64)))
1285 		goto out;
1286 
1287 	ret = -EINVAL;
1288 	if (!uffdio_register.mode)
1289 		goto out;
1290 	if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1291 				     UFFDIO_REGISTER_MODE_WP))
1292 		goto out;
1293 	vm_flags = 0;
1294 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1295 		vm_flags |= VM_UFFD_MISSING;
1296 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1297 		vm_flags |= VM_UFFD_WP;
1298 		/*
1299 		 * FIXME: remove the below error constraint by
1300 		 * implementing the wprotect tracking mode.
1301 		 */
1302 		ret = -EINVAL;
1303 		goto out;
1304 	}
1305 
1306 	ret = validate_range(mm, uffdio_register.range.start,
1307 			     uffdio_register.range.len);
1308 	if (ret)
1309 		goto out;
1310 
1311 	start = uffdio_register.range.start;
1312 	end = start + uffdio_register.range.len;
1313 
1314 	ret = -ENOMEM;
1315 	if (!mmget_not_zero(mm))
1316 		goto out;
1317 
1318 	down_write(&mm->mmap_sem);
1319 	vma = find_vma_prev(mm, start, &prev);
1320 	if (!vma)
1321 		goto out_unlock;
1322 
1323 	/* check that there's at least one vma in the range */
1324 	ret = -EINVAL;
1325 	if (vma->vm_start >= end)
1326 		goto out_unlock;
1327 
1328 	/*
1329 	 * If the first vma contains huge pages, make sure start address
1330 	 * is aligned to huge page size.
1331 	 */
1332 	if (is_vm_hugetlb_page(vma)) {
1333 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1334 
1335 		if (start & (vma_hpagesize - 1))
1336 			goto out_unlock;
1337 	}
1338 
1339 	/*
1340 	 * Search for not compatible vmas.
1341 	 */
1342 	found = false;
1343 	basic_ioctls = false;
1344 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1345 		cond_resched();
1346 
1347 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1348 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1349 
1350 		/* check not compatible vmas */
1351 		ret = -EINVAL;
1352 		if (!vma_can_userfault(cur))
1353 			goto out_unlock;
1354 		/*
1355 		 * If this vma contains ending address, and huge pages
1356 		 * check alignment.
1357 		 */
1358 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1359 		    end > cur->vm_start) {
1360 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1361 
1362 			ret = -EINVAL;
1363 
1364 			if (end & (vma_hpagesize - 1))
1365 				goto out_unlock;
1366 		}
1367 
1368 		/*
1369 		 * Check that this vma isn't already owned by a
1370 		 * different userfaultfd. We can't allow more than one
1371 		 * userfaultfd to own a single vma simultaneously or we
1372 		 * wouldn't know which one to deliver the userfaults to.
1373 		 */
1374 		ret = -EBUSY;
1375 		if (cur->vm_userfaultfd_ctx.ctx &&
1376 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1377 			goto out_unlock;
1378 
1379 		/*
1380 		 * Note vmas containing huge pages
1381 		 */
1382 		if (is_vm_hugetlb_page(cur))
1383 			basic_ioctls = true;
1384 
1385 		found = true;
1386 	}
1387 	BUG_ON(!found);
1388 
1389 	if (vma->vm_start < start)
1390 		prev = vma;
1391 
1392 	ret = 0;
1393 	do {
1394 		cond_resched();
1395 
1396 		BUG_ON(!vma_can_userfault(vma));
1397 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1398 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1399 
1400 		/*
1401 		 * Nothing to do: this vma is already registered into this
1402 		 * userfaultfd and with the right tracking mode too.
1403 		 */
1404 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1405 		    (vma->vm_flags & vm_flags) == vm_flags)
1406 			goto skip;
1407 
1408 		if (vma->vm_start > start)
1409 			start = vma->vm_start;
1410 		vma_end = min(end, vma->vm_end);
1411 
1412 		new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1413 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1414 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1415 				 vma_policy(vma),
1416 				 ((struct vm_userfaultfd_ctx){ ctx }));
1417 		if (prev) {
1418 			vma = prev;
1419 			goto next;
1420 		}
1421 		if (vma->vm_start < start) {
1422 			ret = split_vma(mm, vma, start, 1);
1423 			if (ret)
1424 				break;
1425 		}
1426 		if (vma->vm_end > end) {
1427 			ret = split_vma(mm, vma, end, 0);
1428 			if (ret)
1429 				break;
1430 		}
1431 	next:
1432 		/*
1433 		 * In the vma_merge() successful mprotect-like case 8:
1434 		 * the next vma was merged into the current one and
1435 		 * the current one has not been updated yet.
1436 		 */
1437 		vma->vm_flags = new_flags;
1438 		vma->vm_userfaultfd_ctx.ctx = ctx;
1439 
1440 	skip:
1441 		prev = vma;
1442 		start = vma->vm_end;
1443 		vma = vma->vm_next;
1444 	} while (vma && vma->vm_start < end);
1445 out_unlock:
1446 	up_write(&mm->mmap_sem);
1447 	mmput(mm);
1448 	if (!ret) {
1449 		/*
1450 		 * Now that we scanned all vmas we can already tell
1451 		 * userland which ioctls methods are guaranteed to
1452 		 * succeed on this range.
1453 		 */
1454 		if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1455 			     UFFD_API_RANGE_IOCTLS,
1456 			     &user_uffdio_register->ioctls))
1457 			ret = -EFAULT;
1458 	}
1459 out:
1460 	return ret;
1461 }
1462 
1463 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1464 				  unsigned long arg)
1465 {
1466 	struct mm_struct *mm = ctx->mm;
1467 	struct vm_area_struct *vma, *prev, *cur;
1468 	int ret;
1469 	struct uffdio_range uffdio_unregister;
1470 	unsigned long new_flags;
1471 	bool found;
1472 	unsigned long start, end, vma_end;
1473 	const void __user *buf = (void __user *)arg;
1474 
1475 	ret = -EFAULT;
1476 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1477 		goto out;
1478 
1479 	ret = validate_range(mm, uffdio_unregister.start,
1480 			     uffdio_unregister.len);
1481 	if (ret)
1482 		goto out;
1483 
1484 	start = uffdio_unregister.start;
1485 	end = start + uffdio_unregister.len;
1486 
1487 	ret = -ENOMEM;
1488 	if (!mmget_not_zero(mm))
1489 		goto out;
1490 
1491 	down_write(&mm->mmap_sem);
1492 	vma = find_vma_prev(mm, start, &prev);
1493 	if (!vma)
1494 		goto out_unlock;
1495 
1496 	/* check that there's at least one vma in the range */
1497 	ret = -EINVAL;
1498 	if (vma->vm_start >= end)
1499 		goto out_unlock;
1500 
1501 	/*
1502 	 * If the first vma contains huge pages, make sure start address
1503 	 * is aligned to huge page size.
1504 	 */
1505 	if (is_vm_hugetlb_page(vma)) {
1506 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1507 
1508 		if (start & (vma_hpagesize - 1))
1509 			goto out_unlock;
1510 	}
1511 
1512 	/*
1513 	 * Search for not compatible vmas.
1514 	 */
1515 	found = false;
1516 	ret = -EINVAL;
1517 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1518 		cond_resched();
1519 
1520 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1521 		       !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1522 
1523 		/*
1524 		 * Check not compatible vmas, not strictly required
1525 		 * here as not compatible vmas cannot have an
1526 		 * userfaultfd_ctx registered on them, but this
1527 		 * provides for more strict behavior to notice
1528 		 * unregistration errors.
1529 		 */
1530 		if (!vma_can_userfault(cur))
1531 			goto out_unlock;
1532 
1533 		found = true;
1534 	}
1535 	BUG_ON(!found);
1536 
1537 	if (vma->vm_start < start)
1538 		prev = vma;
1539 
1540 	ret = 0;
1541 	do {
1542 		cond_resched();
1543 
1544 		BUG_ON(!vma_can_userfault(vma));
1545 
1546 		/*
1547 		 * Nothing to do: this vma is already registered into this
1548 		 * userfaultfd and with the right tracking mode too.
1549 		 */
1550 		if (!vma->vm_userfaultfd_ctx.ctx)
1551 			goto skip;
1552 
1553 		if (vma->vm_start > start)
1554 			start = vma->vm_start;
1555 		vma_end = min(end, vma->vm_end);
1556 
1557 		if (userfaultfd_missing(vma)) {
1558 			/*
1559 			 * Wake any concurrent pending userfault while
1560 			 * we unregister, so they will not hang
1561 			 * permanently and it avoids userland to call
1562 			 * UFFDIO_WAKE explicitly.
1563 			 */
1564 			struct userfaultfd_wake_range range;
1565 			range.start = start;
1566 			range.len = vma_end - start;
1567 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1568 		}
1569 
1570 		new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1571 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1572 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1573 				 vma_policy(vma),
1574 				 NULL_VM_UFFD_CTX);
1575 		if (prev) {
1576 			vma = prev;
1577 			goto next;
1578 		}
1579 		if (vma->vm_start < start) {
1580 			ret = split_vma(mm, vma, start, 1);
1581 			if (ret)
1582 				break;
1583 		}
1584 		if (vma->vm_end > end) {
1585 			ret = split_vma(mm, vma, end, 0);
1586 			if (ret)
1587 				break;
1588 		}
1589 	next:
1590 		/*
1591 		 * In the vma_merge() successful mprotect-like case 8:
1592 		 * the next vma was merged into the current one and
1593 		 * the current one has not been updated yet.
1594 		 */
1595 		vma->vm_flags = new_flags;
1596 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1597 
1598 	skip:
1599 		prev = vma;
1600 		start = vma->vm_end;
1601 		vma = vma->vm_next;
1602 	} while (vma && vma->vm_start < end);
1603 out_unlock:
1604 	up_write(&mm->mmap_sem);
1605 	mmput(mm);
1606 out:
1607 	return ret;
1608 }
1609 
1610 /*
1611  * userfaultfd_wake may be used in combination with the
1612  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1613  */
1614 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1615 			    unsigned long arg)
1616 {
1617 	int ret;
1618 	struct uffdio_range uffdio_wake;
1619 	struct userfaultfd_wake_range range;
1620 	const void __user *buf = (void __user *)arg;
1621 
1622 	ret = -EFAULT;
1623 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1624 		goto out;
1625 
1626 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1627 	if (ret)
1628 		goto out;
1629 
1630 	range.start = uffdio_wake.start;
1631 	range.len = uffdio_wake.len;
1632 
1633 	/*
1634 	 * len == 0 means wake all and we don't want to wake all here,
1635 	 * so check it again to be sure.
1636 	 */
1637 	VM_BUG_ON(!range.len);
1638 
1639 	wake_userfault(ctx, &range);
1640 	ret = 0;
1641 
1642 out:
1643 	return ret;
1644 }
1645 
1646 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1647 			    unsigned long arg)
1648 {
1649 	__s64 ret;
1650 	struct uffdio_copy uffdio_copy;
1651 	struct uffdio_copy __user *user_uffdio_copy;
1652 	struct userfaultfd_wake_range range;
1653 
1654 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1655 
1656 	ret = -EFAULT;
1657 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1658 			   /* don't copy "copy" last field */
1659 			   sizeof(uffdio_copy)-sizeof(__s64)))
1660 		goto out;
1661 
1662 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1663 	if (ret)
1664 		goto out;
1665 	/*
1666 	 * double check for wraparound just in case. copy_from_user()
1667 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1668 	 * in the userland range.
1669 	 */
1670 	ret = -EINVAL;
1671 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1672 		goto out;
1673 	if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1674 		goto out;
1675 	if (mmget_not_zero(ctx->mm)) {
1676 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1677 				   uffdio_copy.len);
1678 		mmput(ctx->mm);
1679 	} else {
1680 		return -ESRCH;
1681 	}
1682 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1683 		return -EFAULT;
1684 	if (ret < 0)
1685 		goto out;
1686 	BUG_ON(!ret);
1687 	/* len == 0 would wake all */
1688 	range.len = ret;
1689 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1690 		range.start = uffdio_copy.dst;
1691 		wake_userfault(ctx, &range);
1692 	}
1693 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1694 out:
1695 	return ret;
1696 }
1697 
1698 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1699 				unsigned long arg)
1700 {
1701 	__s64 ret;
1702 	struct uffdio_zeropage uffdio_zeropage;
1703 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1704 	struct userfaultfd_wake_range range;
1705 
1706 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1707 
1708 	ret = -EFAULT;
1709 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1710 			   /* don't copy "zeropage" last field */
1711 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1712 		goto out;
1713 
1714 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1715 			     uffdio_zeropage.range.len);
1716 	if (ret)
1717 		goto out;
1718 	ret = -EINVAL;
1719 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1720 		goto out;
1721 
1722 	if (mmget_not_zero(ctx->mm)) {
1723 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1724 				     uffdio_zeropage.range.len);
1725 		mmput(ctx->mm);
1726 	} else {
1727 		return -ESRCH;
1728 	}
1729 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1730 		return -EFAULT;
1731 	if (ret < 0)
1732 		goto out;
1733 	/* len == 0 would wake all */
1734 	BUG_ON(!ret);
1735 	range.len = ret;
1736 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1737 		range.start = uffdio_zeropage.range.start;
1738 		wake_userfault(ctx, &range);
1739 	}
1740 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1741 out:
1742 	return ret;
1743 }
1744 
1745 static inline unsigned int uffd_ctx_features(__u64 user_features)
1746 {
1747 	/*
1748 	 * For the current set of features the bits just coincide
1749 	 */
1750 	return (unsigned int)user_features;
1751 }
1752 
1753 /*
1754  * userland asks for a certain API version and we return which bits
1755  * and ioctl commands are implemented in this kernel for such API
1756  * version or -EINVAL if unknown.
1757  */
1758 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1759 			   unsigned long arg)
1760 {
1761 	struct uffdio_api uffdio_api;
1762 	void __user *buf = (void __user *)arg;
1763 	int ret;
1764 	__u64 features;
1765 
1766 	ret = -EINVAL;
1767 	if (ctx->state != UFFD_STATE_WAIT_API)
1768 		goto out;
1769 	ret = -EFAULT;
1770 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1771 		goto out;
1772 	features = uffdio_api.features;
1773 	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
1774 		memset(&uffdio_api, 0, sizeof(uffdio_api));
1775 		if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1776 			goto out;
1777 		ret = -EINVAL;
1778 		goto out;
1779 	}
1780 	/* report all available features and ioctls to userland */
1781 	uffdio_api.features = UFFD_API_FEATURES;
1782 	uffdio_api.ioctls = UFFD_API_IOCTLS;
1783 	ret = -EFAULT;
1784 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1785 		goto out;
1786 	ctx->state = UFFD_STATE_RUNNING;
1787 	/* only enable the requested features for this uffd context */
1788 	ctx->features = uffd_ctx_features(features);
1789 	ret = 0;
1790 out:
1791 	return ret;
1792 }
1793 
1794 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1795 			      unsigned long arg)
1796 {
1797 	int ret = -EINVAL;
1798 	struct userfaultfd_ctx *ctx = file->private_data;
1799 
1800 	if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1801 		return -EINVAL;
1802 
1803 	switch(cmd) {
1804 	case UFFDIO_API:
1805 		ret = userfaultfd_api(ctx, arg);
1806 		break;
1807 	case UFFDIO_REGISTER:
1808 		ret = userfaultfd_register(ctx, arg);
1809 		break;
1810 	case UFFDIO_UNREGISTER:
1811 		ret = userfaultfd_unregister(ctx, arg);
1812 		break;
1813 	case UFFDIO_WAKE:
1814 		ret = userfaultfd_wake(ctx, arg);
1815 		break;
1816 	case UFFDIO_COPY:
1817 		ret = userfaultfd_copy(ctx, arg);
1818 		break;
1819 	case UFFDIO_ZEROPAGE:
1820 		ret = userfaultfd_zeropage(ctx, arg);
1821 		break;
1822 	}
1823 	return ret;
1824 }
1825 
1826 #ifdef CONFIG_PROC_FS
1827 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1828 {
1829 	struct userfaultfd_ctx *ctx = f->private_data;
1830 	wait_queue_entry_t *wq;
1831 	struct userfaultfd_wait_queue *uwq;
1832 	unsigned long pending = 0, total = 0;
1833 
1834 	spin_lock(&ctx->fault_pending_wqh.lock);
1835 	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1836 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1837 		pending++;
1838 		total++;
1839 	}
1840 	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1841 		uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1842 		total++;
1843 	}
1844 	spin_unlock(&ctx->fault_pending_wqh.lock);
1845 
1846 	/*
1847 	 * If more protocols will be added, there will be all shown
1848 	 * separated by a space. Like this:
1849 	 *	protocols: aa:... bb:...
1850 	 */
1851 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1852 		   pending, total, UFFD_API, ctx->features,
1853 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1854 }
1855 #endif
1856 
1857 static const struct file_operations userfaultfd_fops = {
1858 #ifdef CONFIG_PROC_FS
1859 	.show_fdinfo	= userfaultfd_show_fdinfo,
1860 #endif
1861 	.release	= userfaultfd_release,
1862 	.poll		= userfaultfd_poll,
1863 	.read		= userfaultfd_read,
1864 	.unlocked_ioctl = userfaultfd_ioctl,
1865 	.compat_ioctl	= userfaultfd_ioctl,
1866 	.llseek		= noop_llseek,
1867 };
1868 
1869 static void init_once_userfaultfd_ctx(void *mem)
1870 {
1871 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1872 
1873 	init_waitqueue_head(&ctx->fault_pending_wqh);
1874 	init_waitqueue_head(&ctx->fault_wqh);
1875 	init_waitqueue_head(&ctx->event_wqh);
1876 	init_waitqueue_head(&ctx->fd_wqh);
1877 	seqcount_init(&ctx->refile_seq);
1878 }
1879 
1880 SYSCALL_DEFINE1(userfaultfd, int, flags)
1881 {
1882 	struct userfaultfd_ctx *ctx;
1883 	int fd;
1884 
1885 	BUG_ON(!current->mm);
1886 
1887 	/* Check the UFFD_* constants for consistency.  */
1888 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1889 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1890 
1891 	if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1892 		return -EINVAL;
1893 
1894 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1895 	if (!ctx)
1896 		return -ENOMEM;
1897 
1898 	atomic_set(&ctx->refcount, 1);
1899 	ctx->flags = flags;
1900 	ctx->features = 0;
1901 	ctx->state = UFFD_STATE_WAIT_API;
1902 	ctx->released = false;
1903 	ctx->mm = current->mm;
1904 	/* prevent the mm struct to be freed */
1905 	mmgrab(ctx->mm);
1906 
1907 	fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1908 			      O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1909 	if (fd < 0) {
1910 		mmdrop(ctx->mm);
1911 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1912 	}
1913 	return fd;
1914 }
1915 
1916 static int __init userfaultfd_init(void)
1917 {
1918 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1919 						sizeof(struct userfaultfd_ctx),
1920 						0,
1921 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1922 						init_once_userfaultfd_ctx);
1923 	return 0;
1924 }
1925 __initcall(userfaultfd_init);
1926