xref: /openbmc/linux/fs/userfaultfd.c (revision 0ad53fe3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  fs/userfaultfd.c
4  *
5  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
6  *  Copyright (C) 2008-2009 Red Hat, Inc.
7  *  Copyright (C) 2015  Red Hat, Inc.
8  *
9  *  Some part derived from fs/eventfd.c (anon inode setup) and
10  *  mm/ksm.c (mm hashing).
11  */
12 
13 #include <linux/list.h>
14 #include <linux/hashtable.h>
15 #include <linux/sched/signal.h>
16 #include <linux/sched/mm.h>
17 #include <linux/mm.h>
18 #include <linux/mmu_notifier.h>
19 #include <linux/poll.h>
20 #include <linux/slab.h>
21 #include <linux/seq_file.h>
22 #include <linux/file.h>
23 #include <linux/bug.h>
24 #include <linux/anon_inodes.h>
25 #include <linux/syscalls.h>
26 #include <linux/userfaultfd_k.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ioctl.h>
29 #include <linux/security.h>
30 #include <linux/hugetlb.h>
31 
32 int sysctl_unprivileged_userfaultfd __read_mostly;
33 
34 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
35 
36 /*
37  * Start with fault_pending_wqh and fault_wqh so they're more likely
38  * to be in the same cacheline.
39  *
40  * Locking order:
41  *	fd_wqh.lock
42  *		fault_pending_wqh.lock
43  *			fault_wqh.lock
44  *		event_wqh.lock
45  *
46  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
47  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
48  * also taken in IRQ context.
49  */
50 struct userfaultfd_ctx {
51 	/* waitqueue head for the pending (i.e. not read) userfaults */
52 	wait_queue_head_t fault_pending_wqh;
53 	/* waitqueue head for the userfaults */
54 	wait_queue_head_t fault_wqh;
55 	/* waitqueue head for the pseudo fd to wakeup poll/read */
56 	wait_queue_head_t fd_wqh;
57 	/* waitqueue head for events */
58 	wait_queue_head_t event_wqh;
59 	/* a refile sequence protected by fault_pending_wqh lock */
60 	seqcount_spinlock_t refile_seq;
61 	/* pseudo fd refcounting */
62 	refcount_t refcount;
63 	/* userfaultfd syscall flags */
64 	unsigned int flags;
65 	/* features requested from the userspace */
66 	unsigned int features;
67 	/* released */
68 	bool released;
69 	/* memory mappings are changing because of non-cooperative event */
70 	atomic_t mmap_changing;
71 	/* mm with one ore more vmas attached to this userfaultfd_ctx */
72 	struct mm_struct *mm;
73 };
74 
75 struct userfaultfd_fork_ctx {
76 	struct userfaultfd_ctx *orig;
77 	struct userfaultfd_ctx *new;
78 	struct list_head list;
79 };
80 
81 struct userfaultfd_unmap_ctx {
82 	struct userfaultfd_ctx *ctx;
83 	unsigned long start;
84 	unsigned long end;
85 	struct list_head list;
86 };
87 
88 struct userfaultfd_wait_queue {
89 	struct uffd_msg msg;
90 	wait_queue_entry_t wq;
91 	struct userfaultfd_ctx *ctx;
92 	bool waken;
93 };
94 
95 struct userfaultfd_wake_range {
96 	unsigned long start;
97 	unsigned long len;
98 };
99 
100 /* internal indication that UFFD_API ioctl was successfully executed */
101 #define UFFD_FEATURE_INITIALIZED		(1u << 31)
102 
103 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
104 {
105 	return ctx->features & UFFD_FEATURE_INITIALIZED;
106 }
107 
108 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
109 				     int wake_flags, void *key)
110 {
111 	struct userfaultfd_wake_range *range = key;
112 	int ret;
113 	struct userfaultfd_wait_queue *uwq;
114 	unsigned long start, len;
115 
116 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
117 	ret = 0;
118 	/* len == 0 means wake all */
119 	start = range->start;
120 	len = range->len;
121 	if (len && (start > uwq->msg.arg.pagefault.address ||
122 		    start + len <= uwq->msg.arg.pagefault.address))
123 		goto out;
124 	WRITE_ONCE(uwq->waken, true);
125 	/*
126 	 * The Program-Order guarantees provided by the scheduler
127 	 * ensure uwq->waken is visible before the task is woken.
128 	 */
129 	ret = wake_up_state(wq->private, mode);
130 	if (ret) {
131 		/*
132 		 * Wake only once, autoremove behavior.
133 		 *
134 		 * After the effect of list_del_init is visible to the other
135 		 * CPUs, the waitqueue may disappear from under us, see the
136 		 * !list_empty_careful() in handle_userfault().
137 		 *
138 		 * try_to_wake_up() has an implicit smp_mb(), and the
139 		 * wq->private is read before calling the extern function
140 		 * "wake_up_state" (which in turns calls try_to_wake_up).
141 		 */
142 		list_del_init(&wq->entry);
143 	}
144 out:
145 	return ret;
146 }
147 
148 /**
149  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
150  * context.
151  * @ctx: [in] Pointer to the userfaultfd context.
152  */
153 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
154 {
155 	refcount_inc(&ctx->refcount);
156 }
157 
158 /**
159  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
160  * context.
161  * @ctx: [in] Pointer to userfaultfd context.
162  *
163  * The userfaultfd context reference must have been previously acquired either
164  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
165  */
166 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
167 {
168 	if (refcount_dec_and_test(&ctx->refcount)) {
169 		VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
170 		VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
171 		VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
172 		VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
173 		VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
174 		VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
175 		VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
176 		VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
177 		mmdrop(ctx->mm);
178 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
179 	}
180 }
181 
182 static inline void msg_init(struct uffd_msg *msg)
183 {
184 	BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
185 	/*
186 	 * Must use memset to zero out the paddings or kernel data is
187 	 * leaked to userland.
188 	 */
189 	memset(msg, 0, sizeof(struct uffd_msg));
190 }
191 
192 static inline struct uffd_msg userfault_msg(unsigned long address,
193 					    unsigned int flags,
194 					    unsigned long reason,
195 					    unsigned int features)
196 {
197 	struct uffd_msg msg;
198 	msg_init(&msg);
199 	msg.event = UFFD_EVENT_PAGEFAULT;
200 	msg.arg.pagefault.address = address;
201 	/*
202 	 * These flags indicate why the userfault occurred:
203 	 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
204 	 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
205 	 * - Neither of these flags being set indicates a MISSING fault.
206 	 *
207 	 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
208 	 * fault. Otherwise, it was a read fault.
209 	 */
210 	if (flags & FAULT_FLAG_WRITE)
211 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
212 	if (reason & VM_UFFD_WP)
213 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
214 	if (reason & VM_UFFD_MINOR)
215 		msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
216 	if (features & UFFD_FEATURE_THREAD_ID)
217 		msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
218 	return msg;
219 }
220 
221 #ifdef CONFIG_HUGETLB_PAGE
222 /*
223  * Same functionality as userfaultfd_must_wait below with modifications for
224  * hugepmd ranges.
225  */
226 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
227 					 struct vm_area_struct *vma,
228 					 unsigned long address,
229 					 unsigned long flags,
230 					 unsigned long reason)
231 {
232 	struct mm_struct *mm = ctx->mm;
233 	pte_t *ptep, pte;
234 	bool ret = true;
235 
236 	mmap_assert_locked(mm);
237 
238 	ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
239 
240 	if (!ptep)
241 		goto out;
242 
243 	ret = false;
244 	pte = huge_ptep_get(ptep);
245 
246 	/*
247 	 * Lockless access: we're in a wait_event so it's ok if it
248 	 * changes under us.
249 	 */
250 	if (huge_pte_none(pte))
251 		ret = true;
252 	if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
253 		ret = true;
254 out:
255 	return ret;
256 }
257 #else
258 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
259 					 struct vm_area_struct *vma,
260 					 unsigned long address,
261 					 unsigned long flags,
262 					 unsigned long reason)
263 {
264 	return false;	/* should never get here */
265 }
266 #endif /* CONFIG_HUGETLB_PAGE */
267 
268 /*
269  * Verify the pagetables are still not ok after having reigstered into
270  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
271  * userfault that has already been resolved, if userfaultfd_read and
272  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
273  * threads.
274  */
275 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
276 					 unsigned long address,
277 					 unsigned long flags,
278 					 unsigned long reason)
279 {
280 	struct mm_struct *mm = ctx->mm;
281 	pgd_t *pgd;
282 	p4d_t *p4d;
283 	pud_t *pud;
284 	pmd_t *pmd, _pmd;
285 	pte_t *pte;
286 	bool ret = true;
287 
288 	mmap_assert_locked(mm);
289 
290 	pgd = pgd_offset(mm, address);
291 	if (!pgd_present(*pgd))
292 		goto out;
293 	p4d = p4d_offset(pgd, address);
294 	if (!p4d_present(*p4d))
295 		goto out;
296 	pud = pud_offset(p4d, address);
297 	if (!pud_present(*pud))
298 		goto out;
299 	pmd = pmd_offset(pud, address);
300 	/*
301 	 * READ_ONCE must function as a barrier with narrower scope
302 	 * and it must be equivalent to:
303 	 *	_pmd = *pmd; barrier();
304 	 *
305 	 * This is to deal with the instability (as in
306 	 * pmd_trans_unstable) of the pmd.
307 	 */
308 	_pmd = READ_ONCE(*pmd);
309 	if (pmd_none(_pmd))
310 		goto out;
311 
312 	ret = false;
313 	if (!pmd_present(_pmd))
314 		goto out;
315 
316 	if (pmd_trans_huge(_pmd)) {
317 		if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
318 			ret = true;
319 		goto out;
320 	}
321 
322 	/*
323 	 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
324 	 * and use the standard pte_offset_map() instead of parsing _pmd.
325 	 */
326 	pte = pte_offset_map(pmd, address);
327 	/*
328 	 * Lockless access: we're in a wait_event so it's ok if it
329 	 * changes under us.
330 	 */
331 	if (pte_none(*pte))
332 		ret = true;
333 	if (!pte_write(*pte) && (reason & VM_UFFD_WP))
334 		ret = true;
335 	pte_unmap(pte);
336 
337 out:
338 	return ret;
339 }
340 
341 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
342 {
343 	if (flags & FAULT_FLAG_INTERRUPTIBLE)
344 		return TASK_INTERRUPTIBLE;
345 
346 	if (flags & FAULT_FLAG_KILLABLE)
347 		return TASK_KILLABLE;
348 
349 	return TASK_UNINTERRUPTIBLE;
350 }
351 
352 /*
353  * The locking rules involved in returning VM_FAULT_RETRY depending on
354  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
355  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
356  * recommendation in __lock_page_or_retry is not an understatement.
357  *
358  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
359  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
360  * not set.
361  *
362  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
363  * set, VM_FAULT_RETRY can still be returned if and only if there are
364  * fatal_signal_pending()s, and the mmap_lock must be released before
365  * returning it.
366  */
367 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
368 {
369 	struct mm_struct *mm = vmf->vma->vm_mm;
370 	struct userfaultfd_ctx *ctx;
371 	struct userfaultfd_wait_queue uwq;
372 	vm_fault_t ret = VM_FAULT_SIGBUS;
373 	bool must_wait;
374 	unsigned int blocking_state;
375 
376 	/*
377 	 * We don't do userfault handling for the final child pid update.
378 	 *
379 	 * We also don't do userfault handling during
380 	 * coredumping. hugetlbfs has the special
381 	 * follow_hugetlb_page() to skip missing pages in the
382 	 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
383 	 * the no_page_table() helper in follow_page_mask(), but the
384 	 * shmem_vm_ops->fault method is invoked even during
385 	 * coredumping without mmap_lock and it ends up here.
386 	 */
387 	if (current->flags & (PF_EXITING|PF_DUMPCORE))
388 		goto out;
389 
390 	/*
391 	 * Coredumping runs without mmap_lock so we can only check that
392 	 * the mmap_lock is held, if PF_DUMPCORE was not set.
393 	 */
394 	mmap_assert_locked(mm);
395 
396 	ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
397 	if (!ctx)
398 		goto out;
399 
400 	BUG_ON(ctx->mm != mm);
401 
402 	/* Any unrecognized flag is a bug. */
403 	VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
404 	/* 0 or > 1 flags set is a bug; we expect exactly 1. */
405 	VM_BUG_ON(!reason || (reason & (reason - 1)));
406 
407 	if (ctx->features & UFFD_FEATURE_SIGBUS)
408 		goto out;
409 	if ((vmf->flags & FAULT_FLAG_USER) == 0 &&
410 	    ctx->flags & UFFD_USER_MODE_ONLY) {
411 		printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
412 			"sysctl knob to 1 if kernel faults must be handled "
413 			"without obtaining CAP_SYS_PTRACE capability\n");
414 		goto out;
415 	}
416 
417 	/*
418 	 * If it's already released don't get it. This avoids to loop
419 	 * in __get_user_pages if userfaultfd_release waits on the
420 	 * caller of handle_userfault to release the mmap_lock.
421 	 */
422 	if (unlikely(READ_ONCE(ctx->released))) {
423 		/*
424 		 * Don't return VM_FAULT_SIGBUS in this case, so a non
425 		 * cooperative manager can close the uffd after the
426 		 * last UFFDIO_COPY, without risking to trigger an
427 		 * involuntary SIGBUS if the process was starting the
428 		 * userfaultfd while the userfaultfd was still armed
429 		 * (but after the last UFFDIO_COPY). If the uffd
430 		 * wasn't already closed when the userfault reached
431 		 * this point, that would normally be solved by
432 		 * userfaultfd_must_wait returning 'false'.
433 		 *
434 		 * If we were to return VM_FAULT_SIGBUS here, the non
435 		 * cooperative manager would be instead forced to
436 		 * always call UFFDIO_UNREGISTER before it can safely
437 		 * close the uffd.
438 		 */
439 		ret = VM_FAULT_NOPAGE;
440 		goto out;
441 	}
442 
443 	/*
444 	 * Check that we can return VM_FAULT_RETRY.
445 	 *
446 	 * NOTE: it should become possible to return VM_FAULT_RETRY
447 	 * even if FAULT_FLAG_TRIED is set without leading to gup()
448 	 * -EBUSY failures, if the userfaultfd is to be extended for
449 	 * VM_UFFD_WP tracking and we intend to arm the userfault
450 	 * without first stopping userland access to the memory. For
451 	 * VM_UFFD_MISSING userfaults this is enough for now.
452 	 */
453 	if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
454 		/*
455 		 * Validate the invariant that nowait must allow retry
456 		 * to be sure not to return SIGBUS erroneously on
457 		 * nowait invocations.
458 		 */
459 		BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
460 #ifdef CONFIG_DEBUG_VM
461 		if (printk_ratelimit()) {
462 			printk(KERN_WARNING
463 			       "FAULT_FLAG_ALLOW_RETRY missing %x\n",
464 			       vmf->flags);
465 			dump_stack();
466 		}
467 #endif
468 		goto out;
469 	}
470 
471 	/*
472 	 * Handle nowait, not much to do other than tell it to retry
473 	 * and wait.
474 	 */
475 	ret = VM_FAULT_RETRY;
476 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
477 		goto out;
478 
479 	/* take the reference before dropping the mmap_lock */
480 	userfaultfd_ctx_get(ctx);
481 
482 	init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
483 	uwq.wq.private = current;
484 	uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
485 			ctx->features);
486 	uwq.ctx = ctx;
487 	uwq.waken = false;
488 
489 	blocking_state = userfaultfd_get_blocking_state(vmf->flags);
490 
491 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
492 	/*
493 	 * After the __add_wait_queue the uwq is visible to userland
494 	 * through poll/read().
495 	 */
496 	__add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
497 	/*
498 	 * The smp_mb() after __set_current_state prevents the reads
499 	 * following the spin_unlock to happen before the list_add in
500 	 * __add_wait_queue.
501 	 */
502 	set_current_state(blocking_state);
503 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
504 
505 	if (!is_vm_hugetlb_page(vmf->vma))
506 		must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
507 						  reason);
508 	else
509 		must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
510 						       vmf->address,
511 						       vmf->flags, reason);
512 	mmap_read_unlock(mm);
513 
514 	if (likely(must_wait && !READ_ONCE(ctx->released))) {
515 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
516 		schedule();
517 	}
518 
519 	__set_current_state(TASK_RUNNING);
520 
521 	/*
522 	 * Here we race with the list_del; list_add in
523 	 * userfaultfd_ctx_read(), however because we don't ever run
524 	 * list_del_init() to refile across the two lists, the prev
525 	 * and next pointers will never point to self. list_add also
526 	 * would never let any of the two pointers to point to
527 	 * self. So list_empty_careful won't risk to see both pointers
528 	 * pointing to self at any time during the list refile. The
529 	 * only case where list_del_init() is called is the full
530 	 * removal in the wake function and there we don't re-list_add
531 	 * and it's fine not to block on the spinlock. The uwq on this
532 	 * kernel stack can be released after the list_del_init.
533 	 */
534 	if (!list_empty_careful(&uwq.wq.entry)) {
535 		spin_lock_irq(&ctx->fault_pending_wqh.lock);
536 		/*
537 		 * No need of list_del_init(), the uwq on the stack
538 		 * will be freed shortly anyway.
539 		 */
540 		list_del(&uwq.wq.entry);
541 		spin_unlock_irq(&ctx->fault_pending_wqh.lock);
542 	}
543 
544 	/*
545 	 * ctx may go away after this if the userfault pseudo fd is
546 	 * already released.
547 	 */
548 	userfaultfd_ctx_put(ctx);
549 
550 out:
551 	return ret;
552 }
553 
554 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
555 					      struct userfaultfd_wait_queue *ewq)
556 {
557 	struct userfaultfd_ctx *release_new_ctx;
558 
559 	if (WARN_ON_ONCE(current->flags & PF_EXITING))
560 		goto out;
561 
562 	ewq->ctx = ctx;
563 	init_waitqueue_entry(&ewq->wq, current);
564 	release_new_ctx = NULL;
565 
566 	spin_lock_irq(&ctx->event_wqh.lock);
567 	/*
568 	 * After the __add_wait_queue the uwq is visible to userland
569 	 * through poll/read().
570 	 */
571 	__add_wait_queue(&ctx->event_wqh, &ewq->wq);
572 	for (;;) {
573 		set_current_state(TASK_KILLABLE);
574 		if (ewq->msg.event == 0)
575 			break;
576 		if (READ_ONCE(ctx->released) ||
577 		    fatal_signal_pending(current)) {
578 			/*
579 			 * &ewq->wq may be queued in fork_event, but
580 			 * __remove_wait_queue ignores the head
581 			 * parameter. It would be a problem if it
582 			 * didn't.
583 			 */
584 			__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
585 			if (ewq->msg.event == UFFD_EVENT_FORK) {
586 				struct userfaultfd_ctx *new;
587 
588 				new = (struct userfaultfd_ctx *)
589 					(unsigned long)
590 					ewq->msg.arg.reserved.reserved1;
591 				release_new_ctx = new;
592 			}
593 			break;
594 		}
595 
596 		spin_unlock_irq(&ctx->event_wqh.lock);
597 
598 		wake_up_poll(&ctx->fd_wqh, EPOLLIN);
599 		schedule();
600 
601 		spin_lock_irq(&ctx->event_wqh.lock);
602 	}
603 	__set_current_state(TASK_RUNNING);
604 	spin_unlock_irq(&ctx->event_wqh.lock);
605 
606 	if (release_new_ctx) {
607 		struct vm_area_struct *vma;
608 		struct mm_struct *mm = release_new_ctx->mm;
609 
610 		/* the various vma->vm_userfaultfd_ctx still points to it */
611 		mmap_write_lock(mm);
612 		for (vma = mm->mmap; vma; vma = vma->vm_next)
613 			if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
614 				vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
615 				vma->vm_flags &= ~__VM_UFFD_FLAGS;
616 			}
617 		mmap_write_unlock(mm);
618 
619 		userfaultfd_ctx_put(release_new_ctx);
620 	}
621 
622 	/*
623 	 * ctx may go away after this if the userfault pseudo fd is
624 	 * already released.
625 	 */
626 out:
627 	atomic_dec(&ctx->mmap_changing);
628 	VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
629 	userfaultfd_ctx_put(ctx);
630 }
631 
632 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
633 				       struct userfaultfd_wait_queue *ewq)
634 {
635 	ewq->msg.event = 0;
636 	wake_up_locked(&ctx->event_wqh);
637 	__remove_wait_queue(&ctx->event_wqh, &ewq->wq);
638 }
639 
640 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
641 {
642 	struct userfaultfd_ctx *ctx = NULL, *octx;
643 	struct userfaultfd_fork_ctx *fctx;
644 
645 	octx = vma->vm_userfaultfd_ctx.ctx;
646 	if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
647 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
648 		vma->vm_flags &= ~__VM_UFFD_FLAGS;
649 		return 0;
650 	}
651 
652 	list_for_each_entry(fctx, fcs, list)
653 		if (fctx->orig == octx) {
654 			ctx = fctx->new;
655 			break;
656 		}
657 
658 	if (!ctx) {
659 		fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
660 		if (!fctx)
661 			return -ENOMEM;
662 
663 		ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
664 		if (!ctx) {
665 			kfree(fctx);
666 			return -ENOMEM;
667 		}
668 
669 		refcount_set(&ctx->refcount, 1);
670 		ctx->flags = octx->flags;
671 		ctx->features = octx->features;
672 		ctx->released = false;
673 		atomic_set(&ctx->mmap_changing, 0);
674 		ctx->mm = vma->vm_mm;
675 		mmgrab(ctx->mm);
676 
677 		userfaultfd_ctx_get(octx);
678 		atomic_inc(&octx->mmap_changing);
679 		fctx->orig = octx;
680 		fctx->new = ctx;
681 		list_add_tail(&fctx->list, fcs);
682 	}
683 
684 	vma->vm_userfaultfd_ctx.ctx = ctx;
685 	return 0;
686 }
687 
688 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
689 {
690 	struct userfaultfd_ctx *ctx = fctx->orig;
691 	struct userfaultfd_wait_queue ewq;
692 
693 	msg_init(&ewq.msg);
694 
695 	ewq.msg.event = UFFD_EVENT_FORK;
696 	ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
697 
698 	userfaultfd_event_wait_completion(ctx, &ewq);
699 }
700 
701 void dup_userfaultfd_complete(struct list_head *fcs)
702 {
703 	struct userfaultfd_fork_ctx *fctx, *n;
704 
705 	list_for_each_entry_safe(fctx, n, fcs, list) {
706 		dup_fctx(fctx);
707 		list_del(&fctx->list);
708 		kfree(fctx);
709 	}
710 }
711 
712 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
713 			     struct vm_userfaultfd_ctx *vm_ctx)
714 {
715 	struct userfaultfd_ctx *ctx;
716 
717 	ctx = vma->vm_userfaultfd_ctx.ctx;
718 
719 	if (!ctx)
720 		return;
721 
722 	if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
723 		vm_ctx->ctx = ctx;
724 		userfaultfd_ctx_get(ctx);
725 		atomic_inc(&ctx->mmap_changing);
726 	} else {
727 		/* Drop uffd context if remap feature not enabled */
728 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
729 		vma->vm_flags &= ~__VM_UFFD_FLAGS;
730 	}
731 }
732 
733 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
734 				 unsigned long from, unsigned long to,
735 				 unsigned long len)
736 {
737 	struct userfaultfd_ctx *ctx = vm_ctx->ctx;
738 	struct userfaultfd_wait_queue ewq;
739 
740 	if (!ctx)
741 		return;
742 
743 	if (to & ~PAGE_MASK) {
744 		userfaultfd_ctx_put(ctx);
745 		return;
746 	}
747 
748 	msg_init(&ewq.msg);
749 
750 	ewq.msg.event = UFFD_EVENT_REMAP;
751 	ewq.msg.arg.remap.from = from;
752 	ewq.msg.arg.remap.to = to;
753 	ewq.msg.arg.remap.len = len;
754 
755 	userfaultfd_event_wait_completion(ctx, &ewq);
756 }
757 
758 bool userfaultfd_remove(struct vm_area_struct *vma,
759 			unsigned long start, unsigned long end)
760 {
761 	struct mm_struct *mm = vma->vm_mm;
762 	struct userfaultfd_ctx *ctx;
763 	struct userfaultfd_wait_queue ewq;
764 
765 	ctx = vma->vm_userfaultfd_ctx.ctx;
766 	if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
767 		return true;
768 
769 	userfaultfd_ctx_get(ctx);
770 	atomic_inc(&ctx->mmap_changing);
771 	mmap_read_unlock(mm);
772 
773 	msg_init(&ewq.msg);
774 
775 	ewq.msg.event = UFFD_EVENT_REMOVE;
776 	ewq.msg.arg.remove.start = start;
777 	ewq.msg.arg.remove.end = end;
778 
779 	userfaultfd_event_wait_completion(ctx, &ewq);
780 
781 	return false;
782 }
783 
784 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
785 			  unsigned long start, unsigned long end)
786 {
787 	struct userfaultfd_unmap_ctx *unmap_ctx;
788 
789 	list_for_each_entry(unmap_ctx, unmaps, list)
790 		if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
791 		    unmap_ctx->end == end)
792 			return true;
793 
794 	return false;
795 }
796 
797 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
798 			   unsigned long start, unsigned long end,
799 			   struct list_head *unmaps)
800 {
801 	for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
802 		struct userfaultfd_unmap_ctx *unmap_ctx;
803 		struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
804 
805 		if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
806 		    has_unmap_ctx(ctx, unmaps, start, end))
807 			continue;
808 
809 		unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
810 		if (!unmap_ctx)
811 			return -ENOMEM;
812 
813 		userfaultfd_ctx_get(ctx);
814 		atomic_inc(&ctx->mmap_changing);
815 		unmap_ctx->ctx = ctx;
816 		unmap_ctx->start = start;
817 		unmap_ctx->end = end;
818 		list_add_tail(&unmap_ctx->list, unmaps);
819 	}
820 
821 	return 0;
822 }
823 
824 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
825 {
826 	struct userfaultfd_unmap_ctx *ctx, *n;
827 	struct userfaultfd_wait_queue ewq;
828 
829 	list_for_each_entry_safe(ctx, n, uf, list) {
830 		msg_init(&ewq.msg);
831 
832 		ewq.msg.event = UFFD_EVENT_UNMAP;
833 		ewq.msg.arg.remove.start = ctx->start;
834 		ewq.msg.arg.remove.end = ctx->end;
835 
836 		userfaultfd_event_wait_completion(ctx->ctx, &ewq);
837 
838 		list_del(&ctx->list);
839 		kfree(ctx);
840 	}
841 }
842 
843 static int userfaultfd_release(struct inode *inode, struct file *file)
844 {
845 	struct userfaultfd_ctx *ctx = file->private_data;
846 	struct mm_struct *mm = ctx->mm;
847 	struct vm_area_struct *vma, *prev;
848 	/* len == 0 means wake all */
849 	struct userfaultfd_wake_range range = { .len = 0, };
850 	unsigned long new_flags;
851 
852 	WRITE_ONCE(ctx->released, true);
853 
854 	if (!mmget_not_zero(mm))
855 		goto wakeup;
856 
857 	/*
858 	 * Flush page faults out of all CPUs. NOTE: all page faults
859 	 * must be retried without returning VM_FAULT_SIGBUS if
860 	 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
861 	 * changes while handle_userfault released the mmap_lock. So
862 	 * it's critical that released is set to true (above), before
863 	 * taking the mmap_lock for writing.
864 	 */
865 	mmap_write_lock(mm);
866 	prev = NULL;
867 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
868 		cond_resched();
869 		BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
870 		       !!(vma->vm_flags & __VM_UFFD_FLAGS));
871 		if (vma->vm_userfaultfd_ctx.ctx != ctx) {
872 			prev = vma;
873 			continue;
874 		}
875 		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
876 		prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
877 				 new_flags, vma->anon_vma,
878 				 vma->vm_file, vma->vm_pgoff,
879 				 vma_policy(vma),
880 				 NULL_VM_UFFD_CTX);
881 		if (prev)
882 			vma = prev;
883 		else
884 			prev = vma;
885 		vma->vm_flags = new_flags;
886 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
887 	}
888 	mmap_write_unlock(mm);
889 	mmput(mm);
890 wakeup:
891 	/*
892 	 * After no new page faults can wait on this fault_*wqh, flush
893 	 * the last page faults that may have been already waiting on
894 	 * the fault_*wqh.
895 	 */
896 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
897 	__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
898 	__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
899 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
900 
901 	/* Flush pending events that may still wait on event_wqh */
902 	wake_up_all(&ctx->event_wqh);
903 
904 	wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
905 	userfaultfd_ctx_put(ctx);
906 	return 0;
907 }
908 
909 /* fault_pending_wqh.lock must be hold by the caller */
910 static inline struct userfaultfd_wait_queue *find_userfault_in(
911 		wait_queue_head_t *wqh)
912 {
913 	wait_queue_entry_t *wq;
914 	struct userfaultfd_wait_queue *uwq;
915 
916 	lockdep_assert_held(&wqh->lock);
917 
918 	uwq = NULL;
919 	if (!waitqueue_active(wqh))
920 		goto out;
921 	/* walk in reverse to provide FIFO behavior to read userfaults */
922 	wq = list_last_entry(&wqh->head, typeof(*wq), entry);
923 	uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
924 out:
925 	return uwq;
926 }
927 
928 static inline struct userfaultfd_wait_queue *find_userfault(
929 		struct userfaultfd_ctx *ctx)
930 {
931 	return find_userfault_in(&ctx->fault_pending_wqh);
932 }
933 
934 static inline struct userfaultfd_wait_queue *find_userfault_evt(
935 		struct userfaultfd_ctx *ctx)
936 {
937 	return find_userfault_in(&ctx->event_wqh);
938 }
939 
940 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
941 {
942 	struct userfaultfd_ctx *ctx = file->private_data;
943 	__poll_t ret;
944 
945 	poll_wait(file, &ctx->fd_wqh, wait);
946 
947 	if (!userfaultfd_is_initialized(ctx))
948 		return EPOLLERR;
949 
950 	/*
951 	 * poll() never guarantees that read won't block.
952 	 * userfaults can be waken before they're read().
953 	 */
954 	if (unlikely(!(file->f_flags & O_NONBLOCK)))
955 		return EPOLLERR;
956 	/*
957 	 * lockless access to see if there are pending faults
958 	 * __pollwait last action is the add_wait_queue but
959 	 * the spin_unlock would allow the waitqueue_active to
960 	 * pass above the actual list_add inside
961 	 * add_wait_queue critical section. So use a full
962 	 * memory barrier to serialize the list_add write of
963 	 * add_wait_queue() with the waitqueue_active read
964 	 * below.
965 	 */
966 	ret = 0;
967 	smp_mb();
968 	if (waitqueue_active(&ctx->fault_pending_wqh))
969 		ret = EPOLLIN;
970 	else if (waitqueue_active(&ctx->event_wqh))
971 		ret = EPOLLIN;
972 
973 	return ret;
974 }
975 
976 static const struct file_operations userfaultfd_fops;
977 
978 static int resolve_userfault_fork(struct userfaultfd_ctx *new,
979 				  struct inode *inode,
980 				  struct uffd_msg *msg)
981 {
982 	int fd;
983 
984 	fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
985 			O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
986 	if (fd < 0)
987 		return fd;
988 
989 	msg->arg.reserved.reserved1 = 0;
990 	msg->arg.fork.ufd = fd;
991 	return 0;
992 }
993 
994 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
995 				    struct uffd_msg *msg, struct inode *inode)
996 {
997 	ssize_t ret;
998 	DECLARE_WAITQUEUE(wait, current);
999 	struct userfaultfd_wait_queue *uwq;
1000 	/*
1001 	 * Handling fork event requires sleeping operations, so
1002 	 * we drop the event_wqh lock, then do these ops, then
1003 	 * lock it back and wake up the waiter. While the lock is
1004 	 * dropped the ewq may go away so we keep track of it
1005 	 * carefully.
1006 	 */
1007 	LIST_HEAD(fork_event);
1008 	struct userfaultfd_ctx *fork_nctx = NULL;
1009 
1010 	/* always take the fd_wqh lock before the fault_pending_wqh lock */
1011 	spin_lock_irq(&ctx->fd_wqh.lock);
1012 	__add_wait_queue(&ctx->fd_wqh, &wait);
1013 	for (;;) {
1014 		set_current_state(TASK_INTERRUPTIBLE);
1015 		spin_lock(&ctx->fault_pending_wqh.lock);
1016 		uwq = find_userfault(ctx);
1017 		if (uwq) {
1018 			/*
1019 			 * Use a seqcount to repeat the lockless check
1020 			 * in wake_userfault() to avoid missing
1021 			 * wakeups because during the refile both
1022 			 * waitqueue could become empty if this is the
1023 			 * only userfault.
1024 			 */
1025 			write_seqcount_begin(&ctx->refile_seq);
1026 
1027 			/*
1028 			 * The fault_pending_wqh.lock prevents the uwq
1029 			 * to disappear from under us.
1030 			 *
1031 			 * Refile this userfault from
1032 			 * fault_pending_wqh to fault_wqh, it's not
1033 			 * pending anymore after we read it.
1034 			 *
1035 			 * Use list_del() by hand (as
1036 			 * userfaultfd_wake_function also uses
1037 			 * list_del_init() by hand) to be sure nobody
1038 			 * changes __remove_wait_queue() to use
1039 			 * list_del_init() in turn breaking the
1040 			 * !list_empty_careful() check in
1041 			 * handle_userfault(). The uwq->wq.head list
1042 			 * must never be empty at any time during the
1043 			 * refile, or the waitqueue could disappear
1044 			 * from under us. The "wait_queue_head_t"
1045 			 * parameter of __remove_wait_queue() is unused
1046 			 * anyway.
1047 			 */
1048 			list_del(&uwq->wq.entry);
1049 			add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1050 
1051 			write_seqcount_end(&ctx->refile_seq);
1052 
1053 			/* careful to always initialize msg if ret == 0 */
1054 			*msg = uwq->msg;
1055 			spin_unlock(&ctx->fault_pending_wqh.lock);
1056 			ret = 0;
1057 			break;
1058 		}
1059 		spin_unlock(&ctx->fault_pending_wqh.lock);
1060 
1061 		spin_lock(&ctx->event_wqh.lock);
1062 		uwq = find_userfault_evt(ctx);
1063 		if (uwq) {
1064 			*msg = uwq->msg;
1065 
1066 			if (uwq->msg.event == UFFD_EVENT_FORK) {
1067 				fork_nctx = (struct userfaultfd_ctx *)
1068 					(unsigned long)
1069 					uwq->msg.arg.reserved.reserved1;
1070 				list_move(&uwq->wq.entry, &fork_event);
1071 				/*
1072 				 * fork_nctx can be freed as soon as
1073 				 * we drop the lock, unless we take a
1074 				 * reference on it.
1075 				 */
1076 				userfaultfd_ctx_get(fork_nctx);
1077 				spin_unlock(&ctx->event_wqh.lock);
1078 				ret = 0;
1079 				break;
1080 			}
1081 
1082 			userfaultfd_event_complete(ctx, uwq);
1083 			spin_unlock(&ctx->event_wqh.lock);
1084 			ret = 0;
1085 			break;
1086 		}
1087 		spin_unlock(&ctx->event_wqh.lock);
1088 
1089 		if (signal_pending(current)) {
1090 			ret = -ERESTARTSYS;
1091 			break;
1092 		}
1093 		if (no_wait) {
1094 			ret = -EAGAIN;
1095 			break;
1096 		}
1097 		spin_unlock_irq(&ctx->fd_wqh.lock);
1098 		schedule();
1099 		spin_lock_irq(&ctx->fd_wqh.lock);
1100 	}
1101 	__remove_wait_queue(&ctx->fd_wqh, &wait);
1102 	__set_current_state(TASK_RUNNING);
1103 	spin_unlock_irq(&ctx->fd_wqh.lock);
1104 
1105 	if (!ret && msg->event == UFFD_EVENT_FORK) {
1106 		ret = resolve_userfault_fork(fork_nctx, inode, msg);
1107 		spin_lock_irq(&ctx->event_wqh.lock);
1108 		if (!list_empty(&fork_event)) {
1109 			/*
1110 			 * The fork thread didn't abort, so we can
1111 			 * drop the temporary refcount.
1112 			 */
1113 			userfaultfd_ctx_put(fork_nctx);
1114 
1115 			uwq = list_first_entry(&fork_event,
1116 					       typeof(*uwq),
1117 					       wq.entry);
1118 			/*
1119 			 * If fork_event list wasn't empty and in turn
1120 			 * the event wasn't already released by fork
1121 			 * (the event is allocated on fork kernel
1122 			 * stack), put the event back to its place in
1123 			 * the event_wq. fork_event head will be freed
1124 			 * as soon as we return so the event cannot
1125 			 * stay queued there no matter the current
1126 			 * "ret" value.
1127 			 */
1128 			list_del(&uwq->wq.entry);
1129 			__add_wait_queue(&ctx->event_wqh, &uwq->wq);
1130 
1131 			/*
1132 			 * Leave the event in the waitqueue and report
1133 			 * error to userland if we failed to resolve
1134 			 * the userfault fork.
1135 			 */
1136 			if (likely(!ret))
1137 				userfaultfd_event_complete(ctx, uwq);
1138 		} else {
1139 			/*
1140 			 * Here the fork thread aborted and the
1141 			 * refcount from the fork thread on fork_nctx
1142 			 * has already been released. We still hold
1143 			 * the reference we took before releasing the
1144 			 * lock above. If resolve_userfault_fork
1145 			 * failed we've to drop it because the
1146 			 * fork_nctx has to be freed in such case. If
1147 			 * it succeeded we'll hold it because the new
1148 			 * uffd references it.
1149 			 */
1150 			if (ret)
1151 				userfaultfd_ctx_put(fork_nctx);
1152 		}
1153 		spin_unlock_irq(&ctx->event_wqh.lock);
1154 	}
1155 
1156 	return ret;
1157 }
1158 
1159 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1160 				size_t count, loff_t *ppos)
1161 {
1162 	struct userfaultfd_ctx *ctx = file->private_data;
1163 	ssize_t _ret, ret = 0;
1164 	struct uffd_msg msg;
1165 	int no_wait = file->f_flags & O_NONBLOCK;
1166 	struct inode *inode = file_inode(file);
1167 
1168 	if (!userfaultfd_is_initialized(ctx))
1169 		return -EINVAL;
1170 
1171 	for (;;) {
1172 		if (count < sizeof(msg))
1173 			return ret ? ret : -EINVAL;
1174 		_ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1175 		if (_ret < 0)
1176 			return ret ? ret : _ret;
1177 		if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1178 			return ret ? ret : -EFAULT;
1179 		ret += sizeof(msg);
1180 		buf += sizeof(msg);
1181 		count -= sizeof(msg);
1182 		/*
1183 		 * Allow to read more than one fault at time but only
1184 		 * block if waiting for the very first one.
1185 		 */
1186 		no_wait = O_NONBLOCK;
1187 	}
1188 }
1189 
1190 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1191 			     struct userfaultfd_wake_range *range)
1192 {
1193 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
1194 	/* wake all in the range and autoremove */
1195 	if (waitqueue_active(&ctx->fault_pending_wqh))
1196 		__wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1197 				     range);
1198 	if (waitqueue_active(&ctx->fault_wqh))
1199 		__wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1200 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1201 }
1202 
1203 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1204 					   struct userfaultfd_wake_range *range)
1205 {
1206 	unsigned seq;
1207 	bool need_wakeup;
1208 
1209 	/*
1210 	 * To be sure waitqueue_active() is not reordered by the CPU
1211 	 * before the pagetable update, use an explicit SMP memory
1212 	 * barrier here. PT lock release or mmap_read_unlock(mm) still
1213 	 * have release semantics that can allow the
1214 	 * waitqueue_active() to be reordered before the pte update.
1215 	 */
1216 	smp_mb();
1217 
1218 	/*
1219 	 * Use waitqueue_active because it's very frequent to
1220 	 * change the address space atomically even if there are no
1221 	 * userfaults yet. So we take the spinlock only when we're
1222 	 * sure we've userfaults to wake.
1223 	 */
1224 	do {
1225 		seq = read_seqcount_begin(&ctx->refile_seq);
1226 		need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1227 			waitqueue_active(&ctx->fault_wqh);
1228 		cond_resched();
1229 	} while (read_seqcount_retry(&ctx->refile_seq, seq));
1230 	if (need_wakeup)
1231 		__wake_userfault(ctx, range);
1232 }
1233 
1234 static __always_inline int validate_range(struct mm_struct *mm,
1235 					  __u64 start, __u64 len)
1236 {
1237 	__u64 task_size = mm->task_size;
1238 
1239 	if (start & ~PAGE_MASK)
1240 		return -EINVAL;
1241 	if (len & ~PAGE_MASK)
1242 		return -EINVAL;
1243 	if (!len)
1244 		return -EINVAL;
1245 	if (start < mmap_min_addr)
1246 		return -EINVAL;
1247 	if (start >= task_size)
1248 		return -EINVAL;
1249 	if (len > task_size - start)
1250 		return -EINVAL;
1251 	return 0;
1252 }
1253 
1254 static inline bool vma_can_userfault(struct vm_area_struct *vma,
1255 				     unsigned long vm_flags)
1256 {
1257 	/* FIXME: add WP support to hugetlbfs and shmem */
1258 	if (vm_flags & VM_UFFD_WP) {
1259 		if (is_vm_hugetlb_page(vma) || vma_is_shmem(vma))
1260 			return false;
1261 	}
1262 
1263 	if (vm_flags & VM_UFFD_MINOR) {
1264 		if (!(is_vm_hugetlb_page(vma) || vma_is_shmem(vma)))
1265 			return false;
1266 	}
1267 
1268 	return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1269 	       vma_is_shmem(vma);
1270 }
1271 
1272 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1273 				unsigned long arg)
1274 {
1275 	struct mm_struct *mm = ctx->mm;
1276 	struct vm_area_struct *vma, *prev, *cur;
1277 	int ret;
1278 	struct uffdio_register uffdio_register;
1279 	struct uffdio_register __user *user_uffdio_register;
1280 	unsigned long vm_flags, new_flags;
1281 	bool found;
1282 	bool basic_ioctls;
1283 	unsigned long start, end, vma_end;
1284 
1285 	user_uffdio_register = (struct uffdio_register __user *) arg;
1286 
1287 	ret = -EFAULT;
1288 	if (copy_from_user(&uffdio_register, user_uffdio_register,
1289 			   sizeof(uffdio_register)-sizeof(__u64)))
1290 		goto out;
1291 
1292 	ret = -EINVAL;
1293 	if (!uffdio_register.mode)
1294 		goto out;
1295 	if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1296 		goto out;
1297 	vm_flags = 0;
1298 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1299 		vm_flags |= VM_UFFD_MISSING;
1300 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1301 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1302 		goto out;
1303 #endif
1304 		vm_flags |= VM_UFFD_WP;
1305 	}
1306 	if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1307 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1308 		goto out;
1309 #endif
1310 		vm_flags |= VM_UFFD_MINOR;
1311 	}
1312 
1313 	ret = validate_range(mm, uffdio_register.range.start,
1314 			     uffdio_register.range.len);
1315 	if (ret)
1316 		goto out;
1317 
1318 	start = uffdio_register.range.start;
1319 	end = start + uffdio_register.range.len;
1320 
1321 	ret = -ENOMEM;
1322 	if (!mmget_not_zero(mm))
1323 		goto out;
1324 
1325 	mmap_write_lock(mm);
1326 	vma = find_vma_prev(mm, start, &prev);
1327 	if (!vma)
1328 		goto out_unlock;
1329 
1330 	/* check that there's at least one vma in the range */
1331 	ret = -EINVAL;
1332 	if (vma->vm_start >= end)
1333 		goto out_unlock;
1334 
1335 	/*
1336 	 * If the first vma contains huge pages, make sure start address
1337 	 * is aligned to huge page size.
1338 	 */
1339 	if (is_vm_hugetlb_page(vma)) {
1340 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1341 
1342 		if (start & (vma_hpagesize - 1))
1343 			goto out_unlock;
1344 	}
1345 
1346 	/*
1347 	 * Search for not compatible vmas.
1348 	 */
1349 	found = false;
1350 	basic_ioctls = false;
1351 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1352 		cond_resched();
1353 
1354 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1355 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1356 
1357 		/* check not compatible vmas */
1358 		ret = -EINVAL;
1359 		if (!vma_can_userfault(cur, vm_flags))
1360 			goto out_unlock;
1361 
1362 		/*
1363 		 * UFFDIO_COPY will fill file holes even without
1364 		 * PROT_WRITE. This check enforces that if this is a
1365 		 * MAP_SHARED, the process has write permission to the backing
1366 		 * file. If VM_MAYWRITE is set it also enforces that on a
1367 		 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1368 		 * F_WRITE_SEAL can be taken until the vma is destroyed.
1369 		 */
1370 		ret = -EPERM;
1371 		if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1372 			goto out_unlock;
1373 
1374 		/*
1375 		 * If this vma contains ending address, and huge pages
1376 		 * check alignment.
1377 		 */
1378 		if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1379 		    end > cur->vm_start) {
1380 			unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1381 
1382 			ret = -EINVAL;
1383 
1384 			if (end & (vma_hpagesize - 1))
1385 				goto out_unlock;
1386 		}
1387 		if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1388 			goto out_unlock;
1389 
1390 		/*
1391 		 * Check that this vma isn't already owned by a
1392 		 * different userfaultfd. We can't allow more than one
1393 		 * userfaultfd to own a single vma simultaneously or we
1394 		 * wouldn't know which one to deliver the userfaults to.
1395 		 */
1396 		ret = -EBUSY;
1397 		if (cur->vm_userfaultfd_ctx.ctx &&
1398 		    cur->vm_userfaultfd_ctx.ctx != ctx)
1399 			goto out_unlock;
1400 
1401 		/*
1402 		 * Note vmas containing huge pages
1403 		 */
1404 		if (is_vm_hugetlb_page(cur))
1405 			basic_ioctls = true;
1406 
1407 		found = true;
1408 	}
1409 	BUG_ON(!found);
1410 
1411 	if (vma->vm_start < start)
1412 		prev = vma;
1413 
1414 	ret = 0;
1415 	do {
1416 		cond_resched();
1417 
1418 		BUG_ON(!vma_can_userfault(vma, vm_flags));
1419 		BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1420 		       vma->vm_userfaultfd_ctx.ctx != ctx);
1421 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1422 
1423 		/*
1424 		 * Nothing to do: this vma is already registered into this
1425 		 * userfaultfd and with the right tracking mode too.
1426 		 */
1427 		if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1428 		    (vma->vm_flags & vm_flags) == vm_flags)
1429 			goto skip;
1430 
1431 		if (vma->vm_start > start)
1432 			start = vma->vm_start;
1433 		vma_end = min(end, vma->vm_end);
1434 
1435 		new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1436 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1437 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1438 				 vma_policy(vma),
1439 				 ((struct vm_userfaultfd_ctx){ ctx }));
1440 		if (prev) {
1441 			vma = prev;
1442 			goto next;
1443 		}
1444 		if (vma->vm_start < start) {
1445 			ret = split_vma(mm, vma, start, 1);
1446 			if (ret)
1447 				break;
1448 		}
1449 		if (vma->vm_end > end) {
1450 			ret = split_vma(mm, vma, end, 0);
1451 			if (ret)
1452 				break;
1453 		}
1454 	next:
1455 		/*
1456 		 * In the vma_merge() successful mprotect-like case 8:
1457 		 * the next vma was merged into the current one and
1458 		 * the current one has not been updated yet.
1459 		 */
1460 		vma->vm_flags = new_flags;
1461 		vma->vm_userfaultfd_ctx.ctx = ctx;
1462 
1463 		if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1464 			hugetlb_unshare_all_pmds(vma);
1465 
1466 	skip:
1467 		prev = vma;
1468 		start = vma->vm_end;
1469 		vma = vma->vm_next;
1470 	} while (vma && vma->vm_start < end);
1471 out_unlock:
1472 	mmap_write_unlock(mm);
1473 	mmput(mm);
1474 	if (!ret) {
1475 		__u64 ioctls_out;
1476 
1477 		ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1478 		    UFFD_API_RANGE_IOCTLS;
1479 
1480 		/*
1481 		 * Declare the WP ioctl only if the WP mode is
1482 		 * specified and all checks passed with the range
1483 		 */
1484 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1485 			ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1486 
1487 		/* CONTINUE ioctl is only supported for MINOR ranges. */
1488 		if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1489 			ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1490 
1491 		/*
1492 		 * Now that we scanned all vmas we can already tell
1493 		 * userland which ioctls methods are guaranteed to
1494 		 * succeed on this range.
1495 		 */
1496 		if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1497 			ret = -EFAULT;
1498 	}
1499 out:
1500 	return ret;
1501 }
1502 
1503 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1504 				  unsigned long arg)
1505 {
1506 	struct mm_struct *mm = ctx->mm;
1507 	struct vm_area_struct *vma, *prev, *cur;
1508 	int ret;
1509 	struct uffdio_range uffdio_unregister;
1510 	unsigned long new_flags;
1511 	bool found;
1512 	unsigned long start, end, vma_end;
1513 	const void __user *buf = (void __user *)arg;
1514 
1515 	ret = -EFAULT;
1516 	if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1517 		goto out;
1518 
1519 	ret = validate_range(mm, uffdio_unregister.start,
1520 			     uffdio_unregister.len);
1521 	if (ret)
1522 		goto out;
1523 
1524 	start = uffdio_unregister.start;
1525 	end = start + uffdio_unregister.len;
1526 
1527 	ret = -ENOMEM;
1528 	if (!mmget_not_zero(mm))
1529 		goto out;
1530 
1531 	mmap_write_lock(mm);
1532 	vma = find_vma_prev(mm, start, &prev);
1533 	if (!vma)
1534 		goto out_unlock;
1535 
1536 	/* check that there's at least one vma in the range */
1537 	ret = -EINVAL;
1538 	if (vma->vm_start >= end)
1539 		goto out_unlock;
1540 
1541 	/*
1542 	 * If the first vma contains huge pages, make sure start address
1543 	 * is aligned to huge page size.
1544 	 */
1545 	if (is_vm_hugetlb_page(vma)) {
1546 		unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1547 
1548 		if (start & (vma_hpagesize - 1))
1549 			goto out_unlock;
1550 	}
1551 
1552 	/*
1553 	 * Search for not compatible vmas.
1554 	 */
1555 	found = false;
1556 	ret = -EINVAL;
1557 	for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1558 		cond_resched();
1559 
1560 		BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1561 		       !!(cur->vm_flags & __VM_UFFD_FLAGS));
1562 
1563 		/*
1564 		 * Check not compatible vmas, not strictly required
1565 		 * here as not compatible vmas cannot have an
1566 		 * userfaultfd_ctx registered on them, but this
1567 		 * provides for more strict behavior to notice
1568 		 * unregistration errors.
1569 		 */
1570 		if (!vma_can_userfault(cur, cur->vm_flags))
1571 			goto out_unlock;
1572 
1573 		found = true;
1574 	}
1575 	BUG_ON(!found);
1576 
1577 	if (vma->vm_start < start)
1578 		prev = vma;
1579 
1580 	ret = 0;
1581 	do {
1582 		cond_resched();
1583 
1584 		BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1585 
1586 		/*
1587 		 * Nothing to do: this vma is already registered into this
1588 		 * userfaultfd and with the right tracking mode too.
1589 		 */
1590 		if (!vma->vm_userfaultfd_ctx.ctx)
1591 			goto skip;
1592 
1593 		WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1594 
1595 		if (vma->vm_start > start)
1596 			start = vma->vm_start;
1597 		vma_end = min(end, vma->vm_end);
1598 
1599 		if (userfaultfd_missing(vma)) {
1600 			/*
1601 			 * Wake any concurrent pending userfault while
1602 			 * we unregister, so they will not hang
1603 			 * permanently and it avoids userland to call
1604 			 * UFFDIO_WAKE explicitly.
1605 			 */
1606 			struct userfaultfd_wake_range range;
1607 			range.start = start;
1608 			range.len = vma_end - start;
1609 			wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1610 		}
1611 
1612 		new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1613 		prev = vma_merge(mm, prev, start, vma_end, new_flags,
1614 				 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1615 				 vma_policy(vma),
1616 				 NULL_VM_UFFD_CTX);
1617 		if (prev) {
1618 			vma = prev;
1619 			goto next;
1620 		}
1621 		if (vma->vm_start < start) {
1622 			ret = split_vma(mm, vma, start, 1);
1623 			if (ret)
1624 				break;
1625 		}
1626 		if (vma->vm_end > end) {
1627 			ret = split_vma(mm, vma, end, 0);
1628 			if (ret)
1629 				break;
1630 		}
1631 	next:
1632 		/*
1633 		 * In the vma_merge() successful mprotect-like case 8:
1634 		 * the next vma was merged into the current one and
1635 		 * the current one has not been updated yet.
1636 		 */
1637 		vma->vm_flags = new_flags;
1638 		vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1639 
1640 	skip:
1641 		prev = vma;
1642 		start = vma->vm_end;
1643 		vma = vma->vm_next;
1644 	} while (vma && vma->vm_start < end);
1645 out_unlock:
1646 	mmap_write_unlock(mm);
1647 	mmput(mm);
1648 out:
1649 	return ret;
1650 }
1651 
1652 /*
1653  * userfaultfd_wake may be used in combination with the
1654  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1655  */
1656 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1657 			    unsigned long arg)
1658 {
1659 	int ret;
1660 	struct uffdio_range uffdio_wake;
1661 	struct userfaultfd_wake_range range;
1662 	const void __user *buf = (void __user *)arg;
1663 
1664 	ret = -EFAULT;
1665 	if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1666 		goto out;
1667 
1668 	ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1669 	if (ret)
1670 		goto out;
1671 
1672 	range.start = uffdio_wake.start;
1673 	range.len = uffdio_wake.len;
1674 
1675 	/*
1676 	 * len == 0 means wake all and we don't want to wake all here,
1677 	 * so check it again to be sure.
1678 	 */
1679 	VM_BUG_ON(!range.len);
1680 
1681 	wake_userfault(ctx, &range);
1682 	ret = 0;
1683 
1684 out:
1685 	return ret;
1686 }
1687 
1688 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1689 			    unsigned long arg)
1690 {
1691 	__s64 ret;
1692 	struct uffdio_copy uffdio_copy;
1693 	struct uffdio_copy __user *user_uffdio_copy;
1694 	struct userfaultfd_wake_range range;
1695 
1696 	user_uffdio_copy = (struct uffdio_copy __user *) arg;
1697 
1698 	ret = -EAGAIN;
1699 	if (atomic_read(&ctx->mmap_changing))
1700 		goto out;
1701 
1702 	ret = -EFAULT;
1703 	if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1704 			   /* don't copy "copy" last field */
1705 			   sizeof(uffdio_copy)-sizeof(__s64)))
1706 		goto out;
1707 
1708 	ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1709 	if (ret)
1710 		goto out;
1711 	/*
1712 	 * double check for wraparound just in case. copy_from_user()
1713 	 * will later check uffdio_copy.src + uffdio_copy.len to fit
1714 	 * in the userland range.
1715 	 */
1716 	ret = -EINVAL;
1717 	if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1718 		goto out;
1719 	if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1720 		goto out;
1721 	if (mmget_not_zero(ctx->mm)) {
1722 		ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1723 				   uffdio_copy.len, &ctx->mmap_changing,
1724 				   uffdio_copy.mode);
1725 		mmput(ctx->mm);
1726 	} else {
1727 		return -ESRCH;
1728 	}
1729 	if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1730 		return -EFAULT;
1731 	if (ret < 0)
1732 		goto out;
1733 	BUG_ON(!ret);
1734 	/* len == 0 would wake all */
1735 	range.len = ret;
1736 	if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1737 		range.start = uffdio_copy.dst;
1738 		wake_userfault(ctx, &range);
1739 	}
1740 	ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1741 out:
1742 	return ret;
1743 }
1744 
1745 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1746 				unsigned long arg)
1747 {
1748 	__s64 ret;
1749 	struct uffdio_zeropage uffdio_zeropage;
1750 	struct uffdio_zeropage __user *user_uffdio_zeropage;
1751 	struct userfaultfd_wake_range range;
1752 
1753 	user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1754 
1755 	ret = -EAGAIN;
1756 	if (atomic_read(&ctx->mmap_changing))
1757 		goto out;
1758 
1759 	ret = -EFAULT;
1760 	if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1761 			   /* don't copy "zeropage" last field */
1762 			   sizeof(uffdio_zeropage)-sizeof(__s64)))
1763 		goto out;
1764 
1765 	ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1766 			     uffdio_zeropage.range.len);
1767 	if (ret)
1768 		goto out;
1769 	ret = -EINVAL;
1770 	if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1771 		goto out;
1772 
1773 	if (mmget_not_zero(ctx->mm)) {
1774 		ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1775 				     uffdio_zeropage.range.len,
1776 				     &ctx->mmap_changing);
1777 		mmput(ctx->mm);
1778 	} else {
1779 		return -ESRCH;
1780 	}
1781 	if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1782 		return -EFAULT;
1783 	if (ret < 0)
1784 		goto out;
1785 	/* len == 0 would wake all */
1786 	BUG_ON(!ret);
1787 	range.len = ret;
1788 	if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1789 		range.start = uffdio_zeropage.range.start;
1790 		wake_userfault(ctx, &range);
1791 	}
1792 	ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1793 out:
1794 	return ret;
1795 }
1796 
1797 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1798 				    unsigned long arg)
1799 {
1800 	int ret;
1801 	struct uffdio_writeprotect uffdio_wp;
1802 	struct uffdio_writeprotect __user *user_uffdio_wp;
1803 	struct userfaultfd_wake_range range;
1804 	bool mode_wp, mode_dontwake;
1805 
1806 	if (atomic_read(&ctx->mmap_changing))
1807 		return -EAGAIN;
1808 
1809 	user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1810 
1811 	if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1812 			   sizeof(struct uffdio_writeprotect)))
1813 		return -EFAULT;
1814 
1815 	ret = validate_range(ctx->mm, uffdio_wp.range.start,
1816 			     uffdio_wp.range.len);
1817 	if (ret)
1818 		return ret;
1819 
1820 	if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1821 			       UFFDIO_WRITEPROTECT_MODE_WP))
1822 		return -EINVAL;
1823 
1824 	mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1825 	mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1826 
1827 	if (mode_wp && mode_dontwake)
1828 		return -EINVAL;
1829 
1830 	ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1831 				  uffdio_wp.range.len, mode_wp,
1832 				  &ctx->mmap_changing);
1833 	if (ret)
1834 		return ret;
1835 
1836 	if (!mode_wp && !mode_dontwake) {
1837 		range.start = uffdio_wp.range.start;
1838 		range.len = uffdio_wp.range.len;
1839 		wake_userfault(ctx, &range);
1840 	}
1841 	return ret;
1842 }
1843 
1844 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1845 {
1846 	__s64 ret;
1847 	struct uffdio_continue uffdio_continue;
1848 	struct uffdio_continue __user *user_uffdio_continue;
1849 	struct userfaultfd_wake_range range;
1850 
1851 	user_uffdio_continue = (struct uffdio_continue __user *)arg;
1852 
1853 	ret = -EAGAIN;
1854 	if (atomic_read(&ctx->mmap_changing))
1855 		goto out;
1856 
1857 	ret = -EFAULT;
1858 	if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1859 			   /* don't copy the output fields */
1860 			   sizeof(uffdio_continue) - (sizeof(__s64))))
1861 		goto out;
1862 
1863 	ret = validate_range(ctx->mm, uffdio_continue.range.start,
1864 			     uffdio_continue.range.len);
1865 	if (ret)
1866 		goto out;
1867 
1868 	ret = -EINVAL;
1869 	/* double check for wraparound just in case. */
1870 	if (uffdio_continue.range.start + uffdio_continue.range.len <=
1871 	    uffdio_continue.range.start) {
1872 		goto out;
1873 	}
1874 	if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE)
1875 		goto out;
1876 
1877 	if (mmget_not_zero(ctx->mm)) {
1878 		ret = mcopy_continue(ctx->mm, uffdio_continue.range.start,
1879 				     uffdio_continue.range.len,
1880 				     &ctx->mmap_changing);
1881 		mmput(ctx->mm);
1882 	} else {
1883 		return -ESRCH;
1884 	}
1885 
1886 	if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1887 		return -EFAULT;
1888 	if (ret < 0)
1889 		goto out;
1890 
1891 	/* len == 0 would wake all */
1892 	BUG_ON(!ret);
1893 	range.len = ret;
1894 	if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1895 		range.start = uffdio_continue.range.start;
1896 		wake_userfault(ctx, &range);
1897 	}
1898 	ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1899 
1900 out:
1901 	return ret;
1902 }
1903 
1904 static inline unsigned int uffd_ctx_features(__u64 user_features)
1905 {
1906 	/*
1907 	 * For the current set of features the bits just coincide. Set
1908 	 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1909 	 */
1910 	return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1911 }
1912 
1913 /*
1914  * userland asks for a certain API version and we return which bits
1915  * and ioctl commands are implemented in this kernel for such API
1916  * version or -EINVAL if unknown.
1917  */
1918 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1919 			   unsigned long arg)
1920 {
1921 	struct uffdio_api uffdio_api;
1922 	void __user *buf = (void __user *)arg;
1923 	unsigned int ctx_features;
1924 	int ret;
1925 	__u64 features;
1926 
1927 	ret = -EFAULT;
1928 	if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1929 		goto out;
1930 	features = uffdio_api.features;
1931 	ret = -EINVAL;
1932 	if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1933 		goto err_out;
1934 	ret = -EPERM;
1935 	if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1936 		goto err_out;
1937 	/* report all available features and ioctls to userland */
1938 	uffdio_api.features = UFFD_API_FEATURES;
1939 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1940 	uffdio_api.features &=
1941 		~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
1942 #endif
1943 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1944 	uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
1945 #endif
1946 	uffdio_api.ioctls = UFFD_API_IOCTLS;
1947 	ret = -EFAULT;
1948 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1949 		goto out;
1950 
1951 	/* only enable the requested features for this uffd context */
1952 	ctx_features = uffd_ctx_features(features);
1953 	ret = -EINVAL;
1954 	if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
1955 		goto err_out;
1956 
1957 	ret = 0;
1958 out:
1959 	return ret;
1960 err_out:
1961 	memset(&uffdio_api, 0, sizeof(uffdio_api));
1962 	if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1963 		ret = -EFAULT;
1964 	goto out;
1965 }
1966 
1967 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1968 			      unsigned long arg)
1969 {
1970 	int ret = -EINVAL;
1971 	struct userfaultfd_ctx *ctx = file->private_data;
1972 
1973 	if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
1974 		return -EINVAL;
1975 
1976 	switch(cmd) {
1977 	case UFFDIO_API:
1978 		ret = userfaultfd_api(ctx, arg);
1979 		break;
1980 	case UFFDIO_REGISTER:
1981 		ret = userfaultfd_register(ctx, arg);
1982 		break;
1983 	case UFFDIO_UNREGISTER:
1984 		ret = userfaultfd_unregister(ctx, arg);
1985 		break;
1986 	case UFFDIO_WAKE:
1987 		ret = userfaultfd_wake(ctx, arg);
1988 		break;
1989 	case UFFDIO_COPY:
1990 		ret = userfaultfd_copy(ctx, arg);
1991 		break;
1992 	case UFFDIO_ZEROPAGE:
1993 		ret = userfaultfd_zeropage(ctx, arg);
1994 		break;
1995 	case UFFDIO_WRITEPROTECT:
1996 		ret = userfaultfd_writeprotect(ctx, arg);
1997 		break;
1998 	case UFFDIO_CONTINUE:
1999 		ret = userfaultfd_continue(ctx, arg);
2000 		break;
2001 	}
2002 	return ret;
2003 }
2004 
2005 #ifdef CONFIG_PROC_FS
2006 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2007 {
2008 	struct userfaultfd_ctx *ctx = f->private_data;
2009 	wait_queue_entry_t *wq;
2010 	unsigned long pending = 0, total = 0;
2011 
2012 	spin_lock_irq(&ctx->fault_pending_wqh.lock);
2013 	list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2014 		pending++;
2015 		total++;
2016 	}
2017 	list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2018 		total++;
2019 	}
2020 	spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2021 
2022 	/*
2023 	 * If more protocols will be added, there will be all shown
2024 	 * separated by a space. Like this:
2025 	 *	protocols: aa:... bb:...
2026 	 */
2027 	seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2028 		   pending, total, UFFD_API, ctx->features,
2029 		   UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2030 }
2031 #endif
2032 
2033 static const struct file_operations userfaultfd_fops = {
2034 #ifdef CONFIG_PROC_FS
2035 	.show_fdinfo	= userfaultfd_show_fdinfo,
2036 #endif
2037 	.release	= userfaultfd_release,
2038 	.poll		= userfaultfd_poll,
2039 	.read		= userfaultfd_read,
2040 	.unlocked_ioctl = userfaultfd_ioctl,
2041 	.compat_ioctl	= compat_ptr_ioctl,
2042 	.llseek		= noop_llseek,
2043 };
2044 
2045 static void init_once_userfaultfd_ctx(void *mem)
2046 {
2047 	struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2048 
2049 	init_waitqueue_head(&ctx->fault_pending_wqh);
2050 	init_waitqueue_head(&ctx->fault_wqh);
2051 	init_waitqueue_head(&ctx->event_wqh);
2052 	init_waitqueue_head(&ctx->fd_wqh);
2053 	seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2054 }
2055 
2056 SYSCALL_DEFINE1(userfaultfd, int, flags)
2057 {
2058 	struct userfaultfd_ctx *ctx;
2059 	int fd;
2060 
2061 	if (!sysctl_unprivileged_userfaultfd &&
2062 	    (flags & UFFD_USER_MODE_ONLY) == 0 &&
2063 	    !capable(CAP_SYS_PTRACE)) {
2064 		printk_once(KERN_WARNING "uffd: Set unprivileged_userfaultfd "
2065 			"sysctl knob to 1 if kernel faults must be handled "
2066 			"without obtaining CAP_SYS_PTRACE capability\n");
2067 		return -EPERM;
2068 	}
2069 
2070 	BUG_ON(!current->mm);
2071 
2072 	/* Check the UFFD_* constants for consistency.  */
2073 	BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2074 	BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2075 	BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2076 
2077 	if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2078 		return -EINVAL;
2079 
2080 	ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2081 	if (!ctx)
2082 		return -ENOMEM;
2083 
2084 	refcount_set(&ctx->refcount, 1);
2085 	ctx->flags = flags;
2086 	ctx->features = 0;
2087 	ctx->released = false;
2088 	atomic_set(&ctx->mmap_changing, 0);
2089 	ctx->mm = current->mm;
2090 	/* prevent the mm struct to be freed */
2091 	mmgrab(ctx->mm);
2092 
2093 	fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2094 			O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2095 	if (fd < 0) {
2096 		mmdrop(ctx->mm);
2097 		kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2098 	}
2099 	return fd;
2100 }
2101 
2102 static int __init userfaultfd_init(void)
2103 {
2104 	userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2105 						sizeof(struct userfaultfd_ctx),
2106 						0,
2107 						SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2108 						init_once_userfaultfd_ctx);
2109 	return 0;
2110 }
2111 __initcall(userfaultfd_init);
2112