1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/userfaultfd.c 4 * 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 8 * 9 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 11 */ 12 13 #include <linux/list.h> 14 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 18 #include <linux/poll.h> 19 #include <linux/slab.h> 20 #include <linux/seq_file.h> 21 #include <linux/file.h> 22 #include <linux/bug.h> 23 #include <linux/anon_inodes.h> 24 #include <linux/syscalls.h> 25 #include <linux/userfaultfd_k.h> 26 #include <linux/mempolicy.h> 27 #include <linux/ioctl.h> 28 #include <linux/security.h> 29 #include <linux/hugetlb.h> 30 31 int sysctl_unprivileged_userfaultfd __read_mostly = 1; 32 33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 34 35 enum userfaultfd_state { 36 UFFD_STATE_WAIT_API, 37 UFFD_STATE_RUNNING, 38 }; 39 40 /* 41 * Start with fault_pending_wqh and fault_wqh so they're more likely 42 * to be in the same cacheline. 43 * 44 * Locking order: 45 * fd_wqh.lock 46 * fault_pending_wqh.lock 47 * fault_wqh.lock 48 * event_wqh.lock 49 * 50 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, 51 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's 52 * also taken in IRQ context. 53 */ 54 struct userfaultfd_ctx { 55 /* waitqueue head for the pending (i.e. not read) userfaults */ 56 wait_queue_head_t fault_pending_wqh; 57 /* waitqueue head for the userfaults */ 58 wait_queue_head_t fault_wqh; 59 /* waitqueue head for the pseudo fd to wakeup poll/read */ 60 wait_queue_head_t fd_wqh; 61 /* waitqueue head for events */ 62 wait_queue_head_t event_wqh; 63 /* a refile sequence protected by fault_pending_wqh lock */ 64 seqcount_spinlock_t refile_seq; 65 /* pseudo fd refcounting */ 66 refcount_t refcount; 67 /* userfaultfd syscall flags */ 68 unsigned int flags; 69 /* features requested from the userspace */ 70 unsigned int features; 71 /* state machine */ 72 enum userfaultfd_state state; 73 /* released */ 74 bool released; 75 /* memory mappings are changing because of non-cooperative event */ 76 bool mmap_changing; 77 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 78 struct mm_struct *mm; 79 }; 80 81 struct userfaultfd_fork_ctx { 82 struct userfaultfd_ctx *orig; 83 struct userfaultfd_ctx *new; 84 struct list_head list; 85 }; 86 87 struct userfaultfd_unmap_ctx { 88 struct userfaultfd_ctx *ctx; 89 unsigned long start; 90 unsigned long end; 91 struct list_head list; 92 }; 93 94 struct userfaultfd_wait_queue { 95 struct uffd_msg msg; 96 wait_queue_entry_t wq; 97 struct userfaultfd_ctx *ctx; 98 bool waken; 99 }; 100 101 struct userfaultfd_wake_range { 102 unsigned long start; 103 unsigned long len; 104 }; 105 106 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 107 int wake_flags, void *key) 108 { 109 struct userfaultfd_wake_range *range = key; 110 int ret; 111 struct userfaultfd_wait_queue *uwq; 112 unsigned long start, len; 113 114 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 115 ret = 0; 116 /* len == 0 means wake all */ 117 start = range->start; 118 len = range->len; 119 if (len && (start > uwq->msg.arg.pagefault.address || 120 start + len <= uwq->msg.arg.pagefault.address)) 121 goto out; 122 WRITE_ONCE(uwq->waken, true); 123 /* 124 * The Program-Order guarantees provided by the scheduler 125 * ensure uwq->waken is visible before the task is woken. 126 */ 127 ret = wake_up_state(wq->private, mode); 128 if (ret) { 129 /* 130 * Wake only once, autoremove behavior. 131 * 132 * After the effect of list_del_init is visible to the other 133 * CPUs, the waitqueue may disappear from under us, see the 134 * !list_empty_careful() in handle_userfault(). 135 * 136 * try_to_wake_up() has an implicit smp_mb(), and the 137 * wq->private is read before calling the extern function 138 * "wake_up_state" (which in turns calls try_to_wake_up). 139 */ 140 list_del_init(&wq->entry); 141 } 142 out: 143 return ret; 144 } 145 146 /** 147 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 148 * context. 149 * @ctx: [in] Pointer to the userfaultfd context. 150 */ 151 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 152 { 153 refcount_inc(&ctx->refcount); 154 } 155 156 /** 157 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 158 * context. 159 * @ctx: [in] Pointer to userfaultfd context. 160 * 161 * The userfaultfd context reference must have been previously acquired either 162 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 163 */ 164 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 165 { 166 if (refcount_dec_and_test(&ctx->refcount)) { 167 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 168 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 169 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 170 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 171 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 172 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 173 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 174 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 175 mmdrop(ctx->mm); 176 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 177 } 178 } 179 180 static inline void msg_init(struct uffd_msg *msg) 181 { 182 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 183 /* 184 * Must use memset to zero out the paddings or kernel data is 185 * leaked to userland. 186 */ 187 memset(msg, 0, sizeof(struct uffd_msg)); 188 } 189 190 static inline struct uffd_msg userfault_msg(unsigned long address, 191 unsigned int flags, 192 unsigned long reason, 193 unsigned int features) 194 { 195 struct uffd_msg msg; 196 msg_init(&msg); 197 msg.event = UFFD_EVENT_PAGEFAULT; 198 msg.arg.pagefault.address = address; 199 if (flags & FAULT_FLAG_WRITE) 200 /* 201 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 202 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE 203 * was not set in a UFFD_EVENT_PAGEFAULT, it means it 204 * was a read fault, otherwise if set it means it's 205 * a write fault. 206 */ 207 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 208 if (reason & VM_UFFD_WP) 209 /* 210 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 211 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was 212 * not set in a UFFD_EVENT_PAGEFAULT, it means it was 213 * a missing fault, otherwise if set it means it's a 214 * write protect fault. 215 */ 216 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 217 if (features & UFFD_FEATURE_THREAD_ID) 218 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 219 return msg; 220 } 221 222 #ifdef CONFIG_HUGETLB_PAGE 223 /* 224 * Same functionality as userfaultfd_must_wait below with modifications for 225 * hugepmd ranges. 226 */ 227 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 228 struct vm_area_struct *vma, 229 unsigned long address, 230 unsigned long flags, 231 unsigned long reason) 232 { 233 struct mm_struct *mm = ctx->mm; 234 pte_t *ptep, pte; 235 bool ret = true; 236 237 mmap_assert_locked(mm); 238 239 ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); 240 241 if (!ptep) 242 goto out; 243 244 ret = false; 245 pte = huge_ptep_get(ptep); 246 247 /* 248 * Lockless access: we're in a wait_event so it's ok if it 249 * changes under us. 250 */ 251 if (huge_pte_none(pte)) 252 ret = true; 253 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 254 ret = true; 255 out: 256 return ret; 257 } 258 #else 259 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 260 struct vm_area_struct *vma, 261 unsigned long address, 262 unsigned long flags, 263 unsigned long reason) 264 { 265 return false; /* should never get here */ 266 } 267 #endif /* CONFIG_HUGETLB_PAGE */ 268 269 /* 270 * Verify the pagetables are still not ok after having reigstered into 271 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 272 * userfault that has already been resolved, if userfaultfd_read and 273 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 274 * threads. 275 */ 276 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 277 unsigned long address, 278 unsigned long flags, 279 unsigned long reason) 280 { 281 struct mm_struct *mm = ctx->mm; 282 pgd_t *pgd; 283 p4d_t *p4d; 284 pud_t *pud; 285 pmd_t *pmd, _pmd; 286 pte_t *pte; 287 bool ret = true; 288 289 mmap_assert_locked(mm); 290 291 pgd = pgd_offset(mm, address); 292 if (!pgd_present(*pgd)) 293 goto out; 294 p4d = p4d_offset(pgd, address); 295 if (!p4d_present(*p4d)) 296 goto out; 297 pud = pud_offset(p4d, address); 298 if (!pud_present(*pud)) 299 goto out; 300 pmd = pmd_offset(pud, address); 301 /* 302 * READ_ONCE must function as a barrier with narrower scope 303 * and it must be equivalent to: 304 * _pmd = *pmd; barrier(); 305 * 306 * This is to deal with the instability (as in 307 * pmd_trans_unstable) of the pmd. 308 */ 309 _pmd = READ_ONCE(*pmd); 310 if (pmd_none(_pmd)) 311 goto out; 312 313 ret = false; 314 if (!pmd_present(_pmd)) 315 goto out; 316 317 if (pmd_trans_huge(_pmd)) { 318 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) 319 ret = true; 320 goto out; 321 } 322 323 /* 324 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 325 * and use the standard pte_offset_map() instead of parsing _pmd. 326 */ 327 pte = pte_offset_map(pmd, address); 328 /* 329 * Lockless access: we're in a wait_event so it's ok if it 330 * changes under us. 331 */ 332 if (pte_none(*pte)) 333 ret = true; 334 if (!pte_write(*pte) && (reason & VM_UFFD_WP)) 335 ret = true; 336 pte_unmap(pte); 337 338 out: 339 return ret; 340 } 341 342 static inline long userfaultfd_get_blocking_state(unsigned int flags) 343 { 344 if (flags & FAULT_FLAG_INTERRUPTIBLE) 345 return TASK_INTERRUPTIBLE; 346 347 if (flags & FAULT_FLAG_KILLABLE) 348 return TASK_KILLABLE; 349 350 return TASK_UNINTERRUPTIBLE; 351 } 352 353 /* 354 * The locking rules involved in returning VM_FAULT_RETRY depending on 355 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 356 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 357 * recommendation in __lock_page_or_retry is not an understatement. 358 * 359 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released 360 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 361 * not set. 362 * 363 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 364 * set, VM_FAULT_RETRY can still be returned if and only if there are 365 * fatal_signal_pending()s, and the mmap_lock must be released before 366 * returning it. 367 */ 368 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 369 { 370 struct mm_struct *mm = vmf->vma->vm_mm; 371 struct userfaultfd_ctx *ctx; 372 struct userfaultfd_wait_queue uwq; 373 vm_fault_t ret = VM_FAULT_SIGBUS; 374 bool must_wait; 375 long blocking_state; 376 377 /* 378 * We don't do userfault handling for the final child pid update. 379 * 380 * We also don't do userfault handling during 381 * coredumping. hugetlbfs has the special 382 * follow_hugetlb_page() to skip missing pages in the 383 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 384 * the no_page_table() helper in follow_page_mask(), but the 385 * shmem_vm_ops->fault method is invoked even during 386 * coredumping without mmap_lock and it ends up here. 387 */ 388 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 389 goto out; 390 391 /* 392 * Coredumping runs without mmap_lock so we can only check that 393 * the mmap_lock is held, if PF_DUMPCORE was not set. 394 */ 395 mmap_assert_locked(mm); 396 397 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 398 if (!ctx) 399 goto out; 400 401 BUG_ON(ctx->mm != mm); 402 403 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); 404 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); 405 406 if (ctx->features & UFFD_FEATURE_SIGBUS) 407 goto out; 408 409 /* 410 * If it's already released don't get it. This avoids to loop 411 * in __get_user_pages if userfaultfd_release waits on the 412 * caller of handle_userfault to release the mmap_lock. 413 */ 414 if (unlikely(READ_ONCE(ctx->released))) { 415 /* 416 * Don't return VM_FAULT_SIGBUS in this case, so a non 417 * cooperative manager can close the uffd after the 418 * last UFFDIO_COPY, without risking to trigger an 419 * involuntary SIGBUS if the process was starting the 420 * userfaultfd while the userfaultfd was still armed 421 * (but after the last UFFDIO_COPY). If the uffd 422 * wasn't already closed when the userfault reached 423 * this point, that would normally be solved by 424 * userfaultfd_must_wait returning 'false'. 425 * 426 * If we were to return VM_FAULT_SIGBUS here, the non 427 * cooperative manager would be instead forced to 428 * always call UFFDIO_UNREGISTER before it can safely 429 * close the uffd. 430 */ 431 ret = VM_FAULT_NOPAGE; 432 goto out; 433 } 434 435 /* 436 * Check that we can return VM_FAULT_RETRY. 437 * 438 * NOTE: it should become possible to return VM_FAULT_RETRY 439 * even if FAULT_FLAG_TRIED is set without leading to gup() 440 * -EBUSY failures, if the userfaultfd is to be extended for 441 * VM_UFFD_WP tracking and we intend to arm the userfault 442 * without first stopping userland access to the memory. For 443 * VM_UFFD_MISSING userfaults this is enough for now. 444 */ 445 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 446 /* 447 * Validate the invariant that nowait must allow retry 448 * to be sure not to return SIGBUS erroneously on 449 * nowait invocations. 450 */ 451 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 452 #ifdef CONFIG_DEBUG_VM 453 if (printk_ratelimit()) { 454 printk(KERN_WARNING 455 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 456 vmf->flags); 457 dump_stack(); 458 } 459 #endif 460 goto out; 461 } 462 463 /* 464 * Handle nowait, not much to do other than tell it to retry 465 * and wait. 466 */ 467 ret = VM_FAULT_RETRY; 468 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 469 goto out; 470 471 /* take the reference before dropping the mmap_lock */ 472 userfaultfd_ctx_get(ctx); 473 474 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 475 uwq.wq.private = current; 476 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason, 477 ctx->features); 478 uwq.ctx = ctx; 479 uwq.waken = false; 480 481 blocking_state = userfaultfd_get_blocking_state(vmf->flags); 482 483 spin_lock_irq(&ctx->fault_pending_wqh.lock); 484 /* 485 * After the __add_wait_queue the uwq is visible to userland 486 * through poll/read(). 487 */ 488 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 489 /* 490 * The smp_mb() after __set_current_state prevents the reads 491 * following the spin_unlock to happen before the list_add in 492 * __add_wait_queue. 493 */ 494 set_current_state(blocking_state); 495 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 496 497 if (!is_vm_hugetlb_page(vmf->vma)) 498 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 499 reason); 500 else 501 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, 502 vmf->address, 503 vmf->flags, reason); 504 mmap_read_unlock(mm); 505 506 if (likely(must_wait && !READ_ONCE(ctx->released))) { 507 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 508 schedule(); 509 } 510 511 __set_current_state(TASK_RUNNING); 512 513 /* 514 * Here we race with the list_del; list_add in 515 * userfaultfd_ctx_read(), however because we don't ever run 516 * list_del_init() to refile across the two lists, the prev 517 * and next pointers will never point to self. list_add also 518 * would never let any of the two pointers to point to 519 * self. So list_empty_careful won't risk to see both pointers 520 * pointing to self at any time during the list refile. The 521 * only case where list_del_init() is called is the full 522 * removal in the wake function and there we don't re-list_add 523 * and it's fine not to block on the spinlock. The uwq on this 524 * kernel stack can be released after the list_del_init. 525 */ 526 if (!list_empty_careful(&uwq.wq.entry)) { 527 spin_lock_irq(&ctx->fault_pending_wqh.lock); 528 /* 529 * No need of list_del_init(), the uwq on the stack 530 * will be freed shortly anyway. 531 */ 532 list_del(&uwq.wq.entry); 533 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 534 } 535 536 /* 537 * ctx may go away after this if the userfault pseudo fd is 538 * already released. 539 */ 540 userfaultfd_ctx_put(ctx); 541 542 out: 543 return ret; 544 } 545 546 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 547 struct userfaultfd_wait_queue *ewq) 548 { 549 struct userfaultfd_ctx *release_new_ctx; 550 551 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 552 goto out; 553 554 ewq->ctx = ctx; 555 init_waitqueue_entry(&ewq->wq, current); 556 release_new_ctx = NULL; 557 558 spin_lock_irq(&ctx->event_wqh.lock); 559 /* 560 * After the __add_wait_queue the uwq is visible to userland 561 * through poll/read(). 562 */ 563 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 564 for (;;) { 565 set_current_state(TASK_KILLABLE); 566 if (ewq->msg.event == 0) 567 break; 568 if (READ_ONCE(ctx->released) || 569 fatal_signal_pending(current)) { 570 /* 571 * &ewq->wq may be queued in fork_event, but 572 * __remove_wait_queue ignores the head 573 * parameter. It would be a problem if it 574 * didn't. 575 */ 576 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 577 if (ewq->msg.event == UFFD_EVENT_FORK) { 578 struct userfaultfd_ctx *new; 579 580 new = (struct userfaultfd_ctx *) 581 (unsigned long) 582 ewq->msg.arg.reserved.reserved1; 583 release_new_ctx = new; 584 } 585 break; 586 } 587 588 spin_unlock_irq(&ctx->event_wqh.lock); 589 590 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 591 schedule(); 592 593 spin_lock_irq(&ctx->event_wqh.lock); 594 } 595 __set_current_state(TASK_RUNNING); 596 spin_unlock_irq(&ctx->event_wqh.lock); 597 598 if (release_new_ctx) { 599 struct vm_area_struct *vma; 600 struct mm_struct *mm = release_new_ctx->mm; 601 602 /* the various vma->vm_userfaultfd_ctx still points to it */ 603 mmap_write_lock(mm); 604 for (vma = mm->mmap; vma; vma = vma->vm_next) 605 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 606 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 607 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 608 } 609 mmap_write_unlock(mm); 610 611 userfaultfd_ctx_put(release_new_ctx); 612 } 613 614 /* 615 * ctx may go away after this if the userfault pseudo fd is 616 * already released. 617 */ 618 out: 619 WRITE_ONCE(ctx->mmap_changing, false); 620 userfaultfd_ctx_put(ctx); 621 } 622 623 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 624 struct userfaultfd_wait_queue *ewq) 625 { 626 ewq->msg.event = 0; 627 wake_up_locked(&ctx->event_wqh); 628 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 629 } 630 631 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 632 { 633 struct userfaultfd_ctx *ctx = NULL, *octx; 634 struct userfaultfd_fork_ctx *fctx; 635 636 octx = vma->vm_userfaultfd_ctx.ctx; 637 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 638 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 639 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 640 return 0; 641 } 642 643 list_for_each_entry(fctx, fcs, list) 644 if (fctx->orig == octx) { 645 ctx = fctx->new; 646 break; 647 } 648 649 if (!ctx) { 650 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 651 if (!fctx) 652 return -ENOMEM; 653 654 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 655 if (!ctx) { 656 kfree(fctx); 657 return -ENOMEM; 658 } 659 660 refcount_set(&ctx->refcount, 1); 661 ctx->flags = octx->flags; 662 ctx->state = UFFD_STATE_RUNNING; 663 ctx->features = octx->features; 664 ctx->released = false; 665 ctx->mmap_changing = false; 666 ctx->mm = vma->vm_mm; 667 mmgrab(ctx->mm); 668 669 userfaultfd_ctx_get(octx); 670 WRITE_ONCE(octx->mmap_changing, true); 671 fctx->orig = octx; 672 fctx->new = ctx; 673 list_add_tail(&fctx->list, fcs); 674 } 675 676 vma->vm_userfaultfd_ctx.ctx = ctx; 677 return 0; 678 } 679 680 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 681 { 682 struct userfaultfd_ctx *ctx = fctx->orig; 683 struct userfaultfd_wait_queue ewq; 684 685 msg_init(&ewq.msg); 686 687 ewq.msg.event = UFFD_EVENT_FORK; 688 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 689 690 userfaultfd_event_wait_completion(ctx, &ewq); 691 } 692 693 void dup_userfaultfd_complete(struct list_head *fcs) 694 { 695 struct userfaultfd_fork_ctx *fctx, *n; 696 697 list_for_each_entry_safe(fctx, n, fcs, list) { 698 dup_fctx(fctx); 699 list_del(&fctx->list); 700 kfree(fctx); 701 } 702 } 703 704 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 705 struct vm_userfaultfd_ctx *vm_ctx) 706 { 707 struct userfaultfd_ctx *ctx; 708 709 ctx = vma->vm_userfaultfd_ctx.ctx; 710 711 if (!ctx) 712 return; 713 714 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 715 vm_ctx->ctx = ctx; 716 userfaultfd_ctx_get(ctx); 717 WRITE_ONCE(ctx->mmap_changing, true); 718 } else { 719 /* Drop uffd context if remap feature not enabled */ 720 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 721 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 722 } 723 } 724 725 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 726 unsigned long from, unsigned long to, 727 unsigned long len) 728 { 729 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 730 struct userfaultfd_wait_queue ewq; 731 732 if (!ctx) 733 return; 734 735 if (to & ~PAGE_MASK) { 736 userfaultfd_ctx_put(ctx); 737 return; 738 } 739 740 msg_init(&ewq.msg); 741 742 ewq.msg.event = UFFD_EVENT_REMAP; 743 ewq.msg.arg.remap.from = from; 744 ewq.msg.arg.remap.to = to; 745 ewq.msg.arg.remap.len = len; 746 747 userfaultfd_event_wait_completion(ctx, &ewq); 748 } 749 750 bool userfaultfd_remove(struct vm_area_struct *vma, 751 unsigned long start, unsigned long end) 752 { 753 struct mm_struct *mm = vma->vm_mm; 754 struct userfaultfd_ctx *ctx; 755 struct userfaultfd_wait_queue ewq; 756 757 ctx = vma->vm_userfaultfd_ctx.ctx; 758 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 759 return true; 760 761 userfaultfd_ctx_get(ctx); 762 WRITE_ONCE(ctx->mmap_changing, true); 763 mmap_read_unlock(mm); 764 765 msg_init(&ewq.msg); 766 767 ewq.msg.event = UFFD_EVENT_REMOVE; 768 ewq.msg.arg.remove.start = start; 769 ewq.msg.arg.remove.end = end; 770 771 userfaultfd_event_wait_completion(ctx, &ewq); 772 773 return false; 774 } 775 776 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 777 unsigned long start, unsigned long end) 778 { 779 struct userfaultfd_unmap_ctx *unmap_ctx; 780 781 list_for_each_entry(unmap_ctx, unmaps, list) 782 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 783 unmap_ctx->end == end) 784 return true; 785 786 return false; 787 } 788 789 int userfaultfd_unmap_prep(struct vm_area_struct *vma, 790 unsigned long start, unsigned long end, 791 struct list_head *unmaps) 792 { 793 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 794 struct userfaultfd_unmap_ctx *unmap_ctx; 795 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 796 797 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 798 has_unmap_ctx(ctx, unmaps, start, end)) 799 continue; 800 801 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 802 if (!unmap_ctx) 803 return -ENOMEM; 804 805 userfaultfd_ctx_get(ctx); 806 WRITE_ONCE(ctx->mmap_changing, true); 807 unmap_ctx->ctx = ctx; 808 unmap_ctx->start = start; 809 unmap_ctx->end = end; 810 list_add_tail(&unmap_ctx->list, unmaps); 811 } 812 813 return 0; 814 } 815 816 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 817 { 818 struct userfaultfd_unmap_ctx *ctx, *n; 819 struct userfaultfd_wait_queue ewq; 820 821 list_for_each_entry_safe(ctx, n, uf, list) { 822 msg_init(&ewq.msg); 823 824 ewq.msg.event = UFFD_EVENT_UNMAP; 825 ewq.msg.arg.remove.start = ctx->start; 826 ewq.msg.arg.remove.end = ctx->end; 827 828 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 829 830 list_del(&ctx->list); 831 kfree(ctx); 832 } 833 } 834 835 static int userfaultfd_release(struct inode *inode, struct file *file) 836 { 837 struct userfaultfd_ctx *ctx = file->private_data; 838 struct mm_struct *mm = ctx->mm; 839 struct vm_area_struct *vma, *prev; 840 /* len == 0 means wake all */ 841 struct userfaultfd_wake_range range = { .len = 0, }; 842 unsigned long new_flags; 843 844 WRITE_ONCE(ctx->released, true); 845 846 if (!mmget_not_zero(mm)) 847 goto wakeup; 848 849 /* 850 * Flush page faults out of all CPUs. NOTE: all page faults 851 * must be retried without returning VM_FAULT_SIGBUS if 852 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 853 * changes while handle_userfault released the mmap_lock. So 854 * it's critical that released is set to true (above), before 855 * taking the mmap_lock for writing. 856 */ 857 mmap_write_lock(mm); 858 prev = NULL; 859 for (vma = mm->mmap; vma; vma = vma->vm_next) { 860 cond_resched(); 861 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 862 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 863 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 864 prev = vma; 865 continue; 866 } 867 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 868 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 869 new_flags, vma->anon_vma, 870 vma->vm_file, vma->vm_pgoff, 871 vma_policy(vma), 872 NULL_VM_UFFD_CTX); 873 if (prev) 874 vma = prev; 875 else 876 prev = vma; 877 vma->vm_flags = new_flags; 878 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 879 } 880 mmap_write_unlock(mm); 881 mmput(mm); 882 wakeup: 883 /* 884 * After no new page faults can wait on this fault_*wqh, flush 885 * the last page faults that may have been already waiting on 886 * the fault_*wqh. 887 */ 888 spin_lock_irq(&ctx->fault_pending_wqh.lock); 889 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 890 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 891 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 892 893 /* Flush pending events that may still wait on event_wqh */ 894 wake_up_all(&ctx->event_wqh); 895 896 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 897 userfaultfd_ctx_put(ctx); 898 return 0; 899 } 900 901 /* fault_pending_wqh.lock must be hold by the caller */ 902 static inline struct userfaultfd_wait_queue *find_userfault_in( 903 wait_queue_head_t *wqh) 904 { 905 wait_queue_entry_t *wq; 906 struct userfaultfd_wait_queue *uwq; 907 908 lockdep_assert_held(&wqh->lock); 909 910 uwq = NULL; 911 if (!waitqueue_active(wqh)) 912 goto out; 913 /* walk in reverse to provide FIFO behavior to read userfaults */ 914 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 915 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 916 out: 917 return uwq; 918 } 919 920 static inline struct userfaultfd_wait_queue *find_userfault( 921 struct userfaultfd_ctx *ctx) 922 { 923 return find_userfault_in(&ctx->fault_pending_wqh); 924 } 925 926 static inline struct userfaultfd_wait_queue *find_userfault_evt( 927 struct userfaultfd_ctx *ctx) 928 { 929 return find_userfault_in(&ctx->event_wqh); 930 } 931 932 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 933 { 934 struct userfaultfd_ctx *ctx = file->private_data; 935 __poll_t ret; 936 937 poll_wait(file, &ctx->fd_wqh, wait); 938 939 switch (ctx->state) { 940 case UFFD_STATE_WAIT_API: 941 return EPOLLERR; 942 case UFFD_STATE_RUNNING: 943 /* 944 * poll() never guarantees that read won't block. 945 * userfaults can be waken before they're read(). 946 */ 947 if (unlikely(!(file->f_flags & O_NONBLOCK))) 948 return EPOLLERR; 949 /* 950 * lockless access to see if there are pending faults 951 * __pollwait last action is the add_wait_queue but 952 * the spin_unlock would allow the waitqueue_active to 953 * pass above the actual list_add inside 954 * add_wait_queue critical section. So use a full 955 * memory barrier to serialize the list_add write of 956 * add_wait_queue() with the waitqueue_active read 957 * below. 958 */ 959 ret = 0; 960 smp_mb(); 961 if (waitqueue_active(&ctx->fault_pending_wqh)) 962 ret = EPOLLIN; 963 else if (waitqueue_active(&ctx->event_wqh)) 964 ret = EPOLLIN; 965 966 return ret; 967 default: 968 WARN_ON_ONCE(1); 969 return EPOLLERR; 970 } 971 } 972 973 static const struct file_operations userfaultfd_fops; 974 975 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, 976 struct userfaultfd_ctx *new, 977 struct uffd_msg *msg) 978 { 979 int fd; 980 981 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new, 982 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS)); 983 if (fd < 0) 984 return fd; 985 986 msg->arg.reserved.reserved1 = 0; 987 msg->arg.fork.ufd = fd; 988 return 0; 989 } 990 991 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 992 struct uffd_msg *msg) 993 { 994 ssize_t ret; 995 DECLARE_WAITQUEUE(wait, current); 996 struct userfaultfd_wait_queue *uwq; 997 /* 998 * Handling fork event requires sleeping operations, so 999 * we drop the event_wqh lock, then do these ops, then 1000 * lock it back and wake up the waiter. While the lock is 1001 * dropped the ewq may go away so we keep track of it 1002 * carefully. 1003 */ 1004 LIST_HEAD(fork_event); 1005 struct userfaultfd_ctx *fork_nctx = NULL; 1006 1007 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1008 spin_lock_irq(&ctx->fd_wqh.lock); 1009 __add_wait_queue(&ctx->fd_wqh, &wait); 1010 for (;;) { 1011 set_current_state(TASK_INTERRUPTIBLE); 1012 spin_lock(&ctx->fault_pending_wqh.lock); 1013 uwq = find_userfault(ctx); 1014 if (uwq) { 1015 /* 1016 * Use a seqcount to repeat the lockless check 1017 * in wake_userfault() to avoid missing 1018 * wakeups because during the refile both 1019 * waitqueue could become empty if this is the 1020 * only userfault. 1021 */ 1022 write_seqcount_begin(&ctx->refile_seq); 1023 1024 /* 1025 * The fault_pending_wqh.lock prevents the uwq 1026 * to disappear from under us. 1027 * 1028 * Refile this userfault from 1029 * fault_pending_wqh to fault_wqh, it's not 1030 * pending anymore after we read it. 1031 * 1032 * Use list_del() by hand (as 1033 * userfaultfd_wake_function also uses 1034 * list_del_init() by hand) to be sure nobody 1035 * changes __remove_wait_queue() to use 1036 * list_del_init() in turn breaking the 1037 * !list_empty_careful() check in 1038 * handle_userfault(). The uwq->wq.head list 1039 * must never be empty at any time during the 1040 * refile, or the waitqueue could disappear 1041 * from under us. The "wait_queue_head_t" 1042 * parameter of __remove_wait_queue() is unused 1043 * anyway. 1044 */ 1045 list_del(&uwq->wq.entry); 1046 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1047 1048 write_seqcount_end(&ctx->refile_seq); 1049 1050 /* careful to always initialize msg if ret == 0 */ 1051 *msg = uwq->msg; 1052 spin_unlock(&ctx->fault_pending_wqh.lock); 1053 ret = 0; 1054 break; 1055 } 1056 spin_unlock(&ctx->fault_pending_wqh.lock); 1057 1058 spin_lock(&ctx->event_wqh.lock); 1059 uwq = find_userfault_evt(ctx); 1060 if (uwq) { 1061 *msg = uwq->msg; 1062 1063 if (uwq->msg.event == UFFD_EVENT_FORK) { 1064 fork_nctx = (struct userfaultfd_ctx *) 1065 (unsigned long) 1066 uwq->msg.arg.reserved.reserved1; 1067 list_move(&uwq->wq.entry, &fork_event); 1068 /* 1069 * fork_nctx can be freed as soon as 1070 * we drop the lock, unless we take a 1071 * reference on it. 1072 */ 1073 userfaultfd_ctx_get(fork_nctx); 1074 spin_unlock(&ctx->event_wqh.lock); 1075 ret = 0; 1076 break; 1077 } 1078 1079 userfaultfd_event_complete(ctx, uwq); 1080 spin_unlock(&ctx->event_wqh.lock); 1081 ret = 0; 1082 break; 1083 } 1084 spin_unlock(&ctx->event_wqh.lock); 1085 1086 if (signal_pending(current)) { 1087 ret = -ERESTARTSYS; 1088 break; 1089 } 1090 if (no_wait) { 1091 ret = -EAGAIN; 1092 break; 1093 } 1094 spin_unlock_irq(&ctx->fd_wqh.lock); 1095 schedule(); 1096 spin_lock_irq(&ctx->fd_wqh.lock); 1097 } 1098 __remove_wait_queue(&ctx->fd_wqh, &wait); 1099 __set_current_state(TASK_RUNNING); 1100 spin_unlock_irq(&ctx->fd_wqh.lock); 1101 1102 if (!ret && msg->event == UFFD_EVENT_FORK) { 1103 ret = resolve_userfault_fork(ctx, fork_nctx, msg); 1104 spin_lock_irq(&ctx->event_wqh.lock); 1105 if (!list_empty(&fork_event)) { 1106 /* 1107 * The fork thread didn't abort, so we can 1108 * drop the temporary refcount. 1109 */ 1110 userfaultfd_ctx_put(fork_nctx); 1111 1112 uwq = list_first_entry(&fork_event, 1113 typeof(*uwq), 1114 wq.entry); 1115 /* 1116 * If fork_event list wasn't empty and in turn 1117 * the event wasn't already released by fork 1118 * (the event is allocated on fork kernel 1119 * stack), put the event back to its place in 1120 * the event_wq. fork_event head will be freed 1121 * as soon as we return so the event cannot 1122 * stay queued there no matter the current 1123 * "ret" value. 1124 */ 1125 list_del(&uwq->wq.entry); 1126 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1127 1128 /* 1129 * Leave the event in the waitqueue and report 1130 * error to userland if we failed to resolve 1131 * the userfault fork. 1132 */ 1133 if (likely(!ret)) 1134 userfaultfd_event_complete(ctx, uwq); 1135 } else { 1136 /* 1137 * Here the fork thread aborted and the 1138 * refcount from the fork thread on fork_nctx 1139 * has already been released. We still hold 1140 * the reference we took before releasing the 1141 * lock above. If resolve_userfault_fork 1142 * failed we've to drop it because the 1143 * fork_nctx has to be freed in such case. If 1144 * it succeeded we'll hold it because the new 1145 * uffd references it. 1146 */ 1147 if (ret) 1148 userfaultfd_ctx_put(fork_nctx); 1149 } 1150 spin_unlock_irq(&ctx->event_wqh.lock); 1151 } 1152 1153 return ret; 1154 } 1155 1156 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1157 size_t count, loff_t *ppos) 1158 { 1159 struct userfaultfd_ctx *ctx = file->private_data; 1160 ssize_t _ret, ret = 0; 1161 struct uffd_msg msg; 1162 int no_wait = file->f_flags & O_NONBLOCK; 1163 1164 if (ctx->state == UFFD_STATE_WAIT_API) 1165 return -EINVAL; 1166 1167 for (;;) { 1168 if (count < sizeof(msg)) 1169 return ret ? ret : -EINVAL; 1170 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); 1171 if (_ret < 0) 1172 return ret ? ret : _ret; 1173 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1174 return ret ? ret : -EFAULT; 1175 ret += sizeof(msg); 1176 buf += sizeof(msg); 1177 count -= sizeof(msg); 1178 /* 1179 * Allow to read more than one fault at time but only 1180 * block if waiting for the very first one. 1181 */ 1182 no_wait = O_NONBLOCK; 1183 } 1184 } 1185 1186 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1187 struct userfaultfd_wake_range *range) 1188 { 1189 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1190 /* wake all in the range and autoremove */ 1191 if (waitqueue_active(&ctx->fault_pending_wqh)) 1192 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1193 range); 1194 if (waitqueue_active(&ctx->fault_wqh)) 1195 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1196 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1197 } 1198 1199 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1200 struct userfaultfd_wake_range *range) 1201 { 1202 unsigned seq; 1203 bool need_wakeup; 1204 1205 /* 1206 * To be sure waitqueue_active() is not reordered by the CPU 1207 * before the pagetable update, use an explicit SMP memory 1208 * barrier here. PT lock release or mmap_read_unlock(mm) still 1209 * have release semantics that can allow the 1210 * waitqueue_active() to be reordered before the pte update. 1211 */ 1212 smp_mb(); 1213 1214 /* 1215 * Use waitqueue_active because it's very frequent to 1216 * change the address space atomically even if there are no 1217 * userfaults yet. So we take the spinlock only when we're 1218 * sure we've userfaults to wake. 1219 */ 1220 do { 1221 seq = read_seqcount_begin(&ctx->refile_seq); 1222 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1223 waitqueue_active(&ctx->fault_wqh); 1224 cond_resched(); 1225 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1226 if (need_wakeup) 1227 __wake_userfault(ctx, range); 1228 } 1229 1230 static __always_inline int validate_range(struct mm_struct *mm, 1231 __u64 *start, __u64 len) 1232 { 1233 __u64 task_size = mm->task_size; 1234 1235 *start = untagged_addr(*start); 1236 1237 if (*start & ~PAGE_MASK) 1238 return -EINVAL; 1239 if (len & ~PAGE_MASK) 1240 return -EINVAL; 1241 if (!len) 1242 return -EINVAL; 1243 if (*start < mmap_min_addr) 1244 return -EINVAL; 1245 if (*start >= task_size) 1246 return -EINVAL; 1247 if (len > task_size - *start) 1248 return -EINVAL; 1249 return 0; 1250 } 1251 1252 static inline bool vma_can_userfault(struct vm_area_struct *vma, 1253 unsigned long vm_flags) 1254 { 1255 /* FIXME: add WP support to hugetlbfs and shmem */ 1256 return vma_is_anonymous(vma) || 1257 ((is_vm_hugetlb_page(vma) || vma_is_shmem(vma)) && 1258 !(vm_flags & VM_UFFD_WP)); 1259 } 1260 1261 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1262 unsigned long arg) 1263 { 1264 struct mm_struct *mm = ctx->mm; 1265 struct vm_area_struct *vma, *prev, *cur; 1266 int ret; 1267 struct uffdio_register uffdio_register; 1268 struct uffdio_register __user *user_uffdio_register; 1269 unsigned long vm_flags, new_flags; 1270 bool found; 1271 bool basic_ioctls; 1272 unsigned long start, end, vma_end; 1273 1274 user_uffdio_register = (struct uffdio_register __user *) arg; 1275 1276 ret = -EFAULT; 1277 if (copy_from_user(&uffdio_register, user_uffdio_register, 1278 sizeof(uffdio_register)-sizeof(__u64))) 1279 goto out; 1280 1281 ret = -EINVAL; 1282 if (!uffdio_register.mode) 1283 goto out; 1284 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| 1285 UFFDIO_REGISTER_MODE_WP)) 1286 goto out; 1287 vm_flags = 0; 1288 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1289 vm_flags |= VM_UFFD_MISSING; 1290 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) 1291 vm_flags |= VM_UFFD_WP; 1292 1293 ret = validate_range(mm, &uffdio_register.range.start, 1294 uffdio_register.range.len); 1295 if (ret) 1296 goto out; 1297 1298 start = uffdio_register.range.start; 1299 end = start + uffdio_register.range.len; 1300 1301 ret = -ENOMEM; 1302 if (!mmget_not_zero(mm)) 1303 goto out; 1304 1305 mmap_write_lock(mm); 1306 vma = find_vma_prev(mm, start, &prev); 1307 if (!vma) 1308 goto out_unlock; 1309 1310 /* check that there's at least one vma in the range */ 1311 ret = -EINVAL; 1312 if (vma->vm_start >= end) 1313 goto out_unlock; 1314 1315 /* 1316 * If the first vma contains huge pages, make sure start address 1317 * is aligned to huge page size. 1318 */ 1319 if (is_vm_hugetlb_page(vma)) { 1320 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1321 1322 if (start & (vma_hpagesize - 1)) 1323 goto out_unlock; 1324 } 1325 1326 /* 1327 * Search for not compatible vmas. 1328 */ 1329 found = false; 1330 basic_ioctls = false; 1331 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1332 cond_resched(); 1333 1334 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1335 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1336 1337 /* check not compatible vmas */ 1338 ret = -EINVAL; 1339 if (!vma_can_userfault(cur, vm_flags)) 1340 goto out_unlock; 1341 1342 /* 1343 * UFFDIO_COPY will fill file holes even without 1344 * PROT_WRITE. This check enforces that if this is a 1345 * MAP_SHARED, the process has write permission to the backing 1346 * file. If VM_MAYWRITE is set it also enforces that on a 1347 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1348 * F_WRITE_SEAL can be taken until the vma is destroyed. 1349 */ 1350 ret = -EPERM; 1351 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1352 goto out_unlock; 1353 1354 /* 1355 * If this vma contains ending address, and huge pages 1356 * check alignment. 1357 */ 1358 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1359 end > cur->vm_start) { 1360 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1361 1362 ret = -EINVAL; 1363 1364 if (end & (vma_hpagesize - 1)) 1365 goto out_unlock; 1366 } 1367 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) 1368 goto out_unlock; 1369 1370 /* 1371 * Check that this vma isn't already owned by a 1372 * different userfaultfd. We can't allow more than one 1373 * userfaultfd to own a single vma simultaneously or we 1374 * wouldn't know which one to deliver the userfaults to. 1375 */ 1376 ret = -EBUSY; 1377 if (cur->vm_userfaultfd_ctx.ctx && 1378 cur->vm_userfaultfd_ctx.ctx != ctx) 1379 goto out_unlock; 1380 1381 /* 1382 * Note vmas containing huge pages 1383 */ 1384 if (is_vm_hugetlb_page(cur)) 1385 basic_ioctls = true; 1386 1387 found = true; 1388 } 1389 BUG_ON(!found); 1390 1391 if (vma->vm_start < start) 1392 prev = vma; 1393 1394 ret = 0; 1395 do { 1396 cond_resched(); 1397 1398 BUG_ON(!vma_can_userfault(vma, vm_flags)); 1399 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1400 vma->vm_userfaultfd_ctx.ctx != ctx); 1401 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1402 1403 /* 1404 * Nothing to do: this vma is already registered into this 1405 * userfaultfd and with the right tracking mode too. 1406 */ 1407 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1408 (vma->vm_flags & vm_flags) == vm_flags) 1409 goto skip; 1410 1411 if (vma->vm_start > start) 1412 start = vma->vm_start; 1413 vma_end = min(end, vma->vm_end); 1414 1415 new_flags = (vma->vm_flags & 1416 ~(VM_UFFD_MISSING|VM_UFFD_WP)) | vm_flags; 1417 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1418 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1419 vma_policy(vma), 1420 ((struct vm_userfaultfd_ctx){ ctx })); 1421 if (prev) { 1422 vma = prev; 1423 goto next; 1424 } 1425 if (vma->vm_start < start) { 1426 ret = split_vma(mm, vma, start, 1); 1427 if (ret) 1428 break; 1429 } 1430 if (vma->vm_end > end) { 1431 ret = split_vma(mm, vma, end, 0); 1432 if (ret) 1433 break; 1434 } 1435 next: 1436 /* 1437 * In the vma_merge() successful mprotect-like case 8: 1438 * the next vma was merged into the current one and 1439 * the current one has not been updated yet. 1440 */ 1441 vma->vm_flags = new_flags; 1442 vma->vm_userfaultfd_ctx.ctx = ctx; 1443 1444 skip: 1445 prev = vma; 1446 start = vma->vm_end; 1447 vma = vma->vm_next; 1448 } while (vma && vma->vm_start < end); 1449 out_unlock: 1450 mmap_write_unlock(mm); 1451 mmput(mm); 1452 if (!ret) { 1453 __u64 ioctls_out; 1454 1455 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1456 UFFD_API_RANGE_IOCTLS; 1457 1458 /* 1459 * Declare the WP ioctl only if the WP mode is 1460 * specified and all checks passed with the range 1461 */ 1462 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) 1463 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); 1464 1465 /* 1466 * Now that we scanned all vmas we can already tell 1467 * userland which ioctls methods are guaranteed to 1468 * succeed on this range. 1469 */ 1470 if (put_user(ioctls_out, &user_uffdio_register->ioctls)) 1471 ret = -EFAULT; 1472 } 1473 out: 1474 return ret; 1475 } 1476 1477 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1478 unsigned long arg) 1479 { 1480 struct mm_struct *mm = ctx->mm; 1481 struct vm_area_struct *vma, *prev, *cur; 1482 int ret; 1483 struct uffdio_range uffdio_unregister; 1484 unsigned long new_flags; 1485 bool found; 1486 unsigned long start, end, vma_end; 1487 const void __user *buf = (void __user *)arg; 1488 1489 ret = -EFAULT; 1490 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1491 goto out; 1492 1493 ret = validate_range(mm, &uffdio_unregister.start, 1494 uffdio_unregister.len); 1495 if (ret) 1496 goto out; 1497 1498 start = uffdio_unregister.start; 1499 end = start + uffdio_unregister.len; 1500 1501 ret = -ENOMEM; 1502 if (!mmget_not_zero(mm)) 1503 goto out; 1504 1505 mmap_write_lock(mm); 1506 vma = find_vma_prev(mm, start, &prev); 1507 if (!vma) 1508 goto out_unlock; 1509 1510 /* check that there's at least one vma in the range */ 1511 ret = -EINVAL; 1512 if (vma->vm_start >= end) 1513 goto out_unlock; 1514 1515 /* 1516 * If the first vma contains huge pages, make sure start address 1517 * is aligned to huge page size. 1518 */ 1519 if (is_vm_hugetlb_page(vma)) { 1520 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1521 1522 if (start & (vma_hpagesize - 1)) 1523 goto out_unlock; 1524 } 1525 1526 /* 1527 * Search for not compatible vmas. 1528 */ 1529 found = false; 1530 ret = -EINVAL; 1531 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1532 cond_resched(); 1533 1534 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1535 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1536 1537 /* 1538 * Check not compatible vmas, not strictly required 1539 * here as not compatible vmas cannot have an 1540 * userfaultfd_ctx registered on them, but this 1541 * provides for more strict behavior to notice 1542 * unregistration errors. 1543 */ 1544 if (!vma_can_userfault(cur, cur->vm_flags)) 1545 goto out_unlock; 1546 1547 found = true; 1548 } 1549 BUG_ON(!found); 1550 1551 if (vma->vm_start < start) 1552 prev = vma; 1553 1554 ret = 0; 1555 do { 1556 cond_resched(); 1557 1558 BUG_ON(!vma_can_userfault(vma, vma->vm_flags)); 1559 1560 /* 1561 * Nothing to do: this vma is already registered into this 1562 * userfaultfd and with the right tracking mode too. 1563 */ 1564 if (!vma->vm_userfaultfd_ctx.ctx) 1565 goto skip; 1566 1567 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1568 1569 if (vma->vm_start > start) 1570 start = vma->vm_start; 1571 vma_end = min(end, vma->vm_end); 1572 1573 if (userfaultfd_missing(vma)) { 1574 /* 1575 * Wake any concurrent pending userfault while 1576 * we unregister, so they will not hang 1577 * permanently and it avoids userland to call 1578 * UFFDIO_WAKE explicitly. 1579 */ 1580 struct userfaultfd_wake_range range; 1581 range.start = start; 1582 range.len = vma_end - start; 1583 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1584 } 1585 1586 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 1587 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1588 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1589 vma_policy(vma), 1590 NULL_VM_UFFD_CTX); 1591 if (prev) { 1592 vma = prev; 1593 goto next; 1594 } 1595 if (vma->vm_start < start) { 1596 ret = split_vma(mm, vma, start, 1); 1597 if (ret) 1598 break; 1599 } 1600 if (vma->vm_end > end) { 1601 ret = split_vma(mm, vma, end, 0); 1602 if (ret) 1603 break; 1604 } 1605 next: 1606 /* 1607 * In the vma_merge() successful mprotect-like case 8: 1608 * the next vma was merged into the current one and 1609 * the current one has not been updated yet. 1610 */ 1611 vma->vm_flags = new_flags; 1612 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1613 1614 skip: 1615 prev = vma; 1616 start = vma->vm_end; 1617 vma = vma->vm_next; 1618 } while (vma && vma->vm_start < end); 1619 out_unlock: 1620 mmap_write_unlock(mm); 1621 mmput(mm); 1622 out: 1623 return ret; 1624 } 1625 1626 /* 1627 * userfaultfd_wake may be used in combination with the 1628 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1629 */ 1630 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1631 unsigned long arg) 1632 { 1633 int ret; 1634 struct uffdio_range uffdio_wake; 1635 struct userfaultfd_wake_range range; 1636 const void __user *buf = (void __user *)arg; 1637 1638 ret = -EFAULT; 1639 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1640 goto out; 1641 1642 ret = validate_range(ctx->mm, &uffdio_wake.start, uffdio_wake.len); 1643 if (ret) 1644 goto out; 1645 1646 range.start = uffdio_wake.start; 1647 range.len = uffdio_wake.len; 1648 1649 /* 1650 * len == 0 means wake all and we don't want to wake all here, 1651 * so check it again to be sure. 1652 */ 1653 VM_BUG_ON(!range.len); 1654 1655 wake_userfault(ctx, &range); 1656 ret = 0; 1657 1658 out: 1659 return ret; 1660 } 1661 1662 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1663 unsigned long arg) 1664 { 1665 __s64 ret; 1666 struct uffdio_copy uffdio_copy; 1667 struct uffdio_copy __user *user_uffdio_copy; 1668 struct userfaultfd_wake_range range; 1669 1670 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1671 1672 ret = -EAGAIN; 1673 if (READ_ONCE(ctx->mmap_changing)) 1674 goto out; 1675 1676 ret = -EFAULT; 1677 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1678 /* don't copy "copy" last field */ 1679 sizeof(uffdio_copy)-sizeof(__s64))) 1680 goto out; 1681 1682 ret = validate_range(ctx->mm, &uffdio_copy.dst, uffdio_copy.len); 1683 if (ret) 1684 goto out; 1685 /* 1686 * double check for wraparound just in case. copy_from_user() 1687 * will later check uffdio_copy.src + uffdio_copy.len to fit 1688 * in the userland range. 1689 */ 1690 ret = -EINVAL; 1691 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1692 goto out; 1693 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) 1694 goto out; 1695 if (mmget_not_zero(ctx->mm)) { 1696 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1697 uffdio_copy.len, &ctx->mmap_changing, 1698 uffdio_copy.mode); 1699 mmput(ctx->mm); 1700 } else { 1701 return -ESRCH; 1702 } 1703 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1704 return -EFAULT; 1705 if (ret < 0) 1706 goto out; 1707 BUG_ON(!ret); 1708 /* len == 0 would wake all */ 1709 range.len = ret; 1710 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1711 range.start = uffdio_copy.dst; 1712 wake_userfault(ctx, &range); 1713 } 1714 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1715 out: 1716 return ret; 1717 } 1718 1719 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1720 unsigned long arg) 1721 { 1722 __s64 ret; 1723 struct uffdio_zeropage uffdio_zeropage; 1724 struct uffdio_zeropage __user *user_uffdio_zeropage; 1725 struct userfaultfd_wake_range range; 1726 1727 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1728 1729 ret = -EAGAIN; 1730 if (READ_ONCE(ctx->mmap_changing)) 1731 goto out; 1732 1733 ret = -EFAULT; 1734 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1735 /* don't copy "zeropage" last field */ 1736 sizeof(uffdio_zeropage)-sizeof(__s64))) 1737 goto out; 1738 1739 ret = validate_range(ctx->mm, &uffdio_zeropage.range.start, 1740 uffdio_zeropage.range.len); 1741 if (ret) 1742 goto out; 1743 ret = -EINVAL; 1744 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1745 goto out; 1746 1747 if (mmget_not_zero(ctx->mm)) { 1748 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1749 uffdio_zeropage.range.len, 1750 &ctx->mmap_changing); 1751 mmput(ctx->mm); 1752 } else { 1753 return -ESRCH; 1754 } 1755 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1756 return -EFAULT; 1757 if (ret < 0) 1758 goto out; 1759 /* len == 0 would wake all */ 1760 BUG_ON(!ret); 1761 range.len = ret; 1762 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1763 range.start = uffdio_zeropage.range.start; 1764 wake_userfault(ctx, &range); 1765 } 1766 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1767 out: 1768 return ret; 1769 } 1770 1771 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, 1772 unsigned long arg) 1773 { 1774 int ret; 1775 struct uffdio_writeprotect uffdio_wp; 1776 struct uffdio_writeprotect __user *user_uffdio_wp; 1777 struct userfaultfd_wake_range range; 1778 bool mode_wp, mode_dontwake; 1779 1780 if (READ_ONCE(ctx->mmap_changing)) 1781 return -EAGAIN; 1782 1783 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; 1784 1785 if (copy_from_user(&uffdio_wp, user_uffdio_wp, 1786 sizeof(struct uffdio_writeprotect))) 1787 return -EFAULT; 1788 1789 ret = validate_range(ctx->mm, &uffdio_wp.range.start, 1790 uffdio_wp.range.len); 1791 if (ret) 1792 return ret; 1793 1794 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | 1795 UFFDIO_WRITEPROTECT_MODE_WP)) 1796 return -EINVAL; 1797 1798 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; 1799 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; 1800 1801 if (mode_wp && mode_dontwake) 1802 return -EINVAL; 1803 1804 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start, 1805 uffdio_wp.range.len, mode_wp, 1806 &ctx->mmap_changing); 1807 if (ret) 1808 return ret; 1809 1810 if (!mode_wp && !mode_dontwake) { 1811 range.start = uffdio_wp.range.start; 1812 range.len = uffdio_wp.range.len; 1813 wake_userfault(ctx, &range); 1814 } 1815 return ret; 1816 } 1817 1818 static inline unsigned int uffd_ctx_features(__u64 user_features) 1819 { 1820 /* 1821 * For the current set of features the bits just coincide 1822 */ 1823 return (unsigned int)user_features; 1824 } 1825 1826 /* 1827 * userland asks for a certain API version and we return which bits 1828 * and ioctl commands are implemented in this kernel for such API 1829 * version or -EINVAL if unknown. 1830 */ 1831 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1832 unsigned long arg) 1833 { 1834 struct uffdio_api uffdio_api; 1835 void __user *buf = (void __user *)arg; 1836 int ret; 1837 __u64 features; 1838 1839 ret = -EINVAL; 1840 if (ctx->state != UFFD_STATE_WAIT_API) 1841 goto out; 1842 ret = -EFAULT; 1843 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1844 goto out; 1845 features = uffdio_api.features; 1846 ret = -EINVAL; 1847 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) 1848 goto err_out; 1849 ret = -EPERM; 1850 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) 1851 goto err_out; 1852 /* report all available features and ioctls to userland */ 1853 uffdio_api.features = UFFD_API_FEATURES; 1854 uffdio_api.ioctls = UFFD_API_IOCTLS; 1855 ret = -EFAULT; 1856 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1857 goto out; 1858 ctx->state = UFFD_STATE_RUNNING; 1859 /* only enable the requested features for this uffd context */ 1860 ctx->features = uffd_ctx_features(features); 1861 ret = 0; 1862 out: 1863 return ret; 1864 err_out: 1865 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1866 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1867 ret = -EFAULT; 1868 goto out; 1869 } 1870 1871 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1872 unsigned long arg) 1873 { 1874 int ret = -EINVAL; 1875 struct userfaultfd_ctx *ctx = file->private_data; 1876 1877 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) 1878 return -EINVAL; 1879 1880 switch(cmd) { 1881 case UFFDIO_API: 1882 ret = userfaultfd_api(ctx, arg); 1883 break; 1884 case UFFDIO_REGISTER: 1885 ret = userfaultfd_register(ctx, arg); 1886 break; 1887 case UFFDIO_UNREGISTER: 1888 ret = userfaultfd_unregister(ctx, arg); 1889 break; 1890 case UFFDIO_WAKE: 1891 ret = userfaultfd_wake(ctx, arg); 1892 break; 1893 case UFFDIO_COPY: 1894 ret = userfaultfd_copy(ctx, arg); 1895 break; 1896 case UFFDIO_ZEROPAGE: 1897 ret = userfaultfd_zeropage(ctx, arg); 1898 break; 1899 case UFFDIO_WRITEPROTECT: 1900 ret = userfaultfd_writeprotect(ctx, arg); 1901 break; 1902 } 1903 return ret; 1904 } 1905 1906 #ifdef CONFIG_PROC_FS 1907 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 1908 { 1909 struct userfaultfd_ctx *ctx = f->private_data; 1910 wait_queue_entry_t *wq; 1911 unsigned long pending = 0, total = 0; 1912 1913 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1914 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 1915 pending++; 1916 total++; 1917 } 1918 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 1919 total++; 1920 } 1921 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1922 1923 /* 1924 * If more protocols will be added, there will be all shown 1925 * separated by a space. Like this: 1926 * protocols: aa:... bb:... 1927 */ 1928 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 1929 pending, total, UFFD_API, ctx->features, 1930 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 1931 } 1932 #endif 1933 1934 static const struct file_operations userfaultfd_fops = { 1935 #ifdef CONFIG_PROC_FS 1936 .show_fdinfo = userfaultfd_show_fdinfo, 1937 #endif 1938 .release = userfaultfd_release, 1939 .poll = userfaultfd_poll, 1940 .read = userfaultfd_read, 1941 .unlocked_ioctl = userfaultfd_ioctl, 1942 .compat_ioctl = compat_ptr_ioctl, 1943 .llseek = noop_llseek, 1944 }; 1945 1946 static void init_once_userfaultfd_ctx(void *mem) 1947 { 1948 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 1949 1950 init_waitqueue_head(&ctx->fault_pending_wqh); 1951 init_waitqueue_head(&ctx->fault_wqh); 1952 init_waitqueue_head(&ctx->event_wqh); 1953 init_waitqueue_head(&ctx->fd_wqh); 1954 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); 1955 } 1956 1957 SYSCALL_DEFINE1(userfaultfd, int, flags) 1958 { 1959 struct userfaultfd_ctx *ctx; 1960 int fd; 1961 1962 if (!sysctl_unprivileged_userfaultfd && !capable(CAP_SYS_PTRACE)) 1963 return -EPERM; 1964 1965 BUG_ON(!current->mm); 1966 1967 /* Check the UFFD_* constants for consistency. */ 1968 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 1969 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 1970 1971 if (flags & ~UFFD_SHARED_FCNTL_FLAGS) 1972 return -EINVAL; 1973 1974 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 1975 if (!ctx) 1976 return -ENOMEM; 1977 1978 refcount_set(&ctx->refcount, 1); 1979 ctx->flags = flags; 1980 ctx->features = 0; 1981 ctx->state = UFFD_STATE_WAIT_API; 1982 ctx->released = false; 1983 ctx->mmap_changing = false; 1984 ctx->mm = current->mm; 1985 /* prevent the mm struct to be freed */ 1986 mmgrab(ctx->mm); 1987 1988 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx, 1989 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); 1990 if (fd < 0) { 1991 mmdrop(ctx->mm); 1992 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 1993 } 1994 return fd; 1995 } 1996 1997 static int __init userfaultfd_init(void) 1998 { 1999 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 2000 sizeof(struct userfaultfd_ctx), 2001 0, 2002 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2003 init_once_userfaultfd_ctx); 2004 return 0; 2005 } 2006 __initcall(userfaultfd_init); 2007