1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * fs/userfaultfd.c 4 * 5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 6 * Copyright (C) 2008-2009 Red Hat, Inc. 7 * Copyright (C) 2015 Red Hat, Inc. 8 * 9 * Some part derived from fs/eventfd.c (anon inode setup) and 10 * mm/ksm.c (mm hashing). 11 */ 12 13 #include <linux/list.h> 14 #include <linux/hashtable.h> 15 #include <linux/sched/signal.h> 16 #include <linux/sched/mm.h> 17 #include <linux/mm.h> 18 #include <linux/mm_inline.h> 19 #include <linux/mmu_notifier.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 #include <linux/swapops.h> 33 #include <linux/miscdevice.h> 34 35 int sysctl_unprivileged_userfaultfd __read_mostly; 36 37 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 38 39 /* 40 * Start with fault_pending_wqh and fault_wqh so they're more likely 41 * to be in the same cacheline. 42 * 43 * Locking order: 44 * fd_wqh.lock 45 * fault_pending_wqh.lock 46 * fault_wqh.lock 47 * event_wqh.lock 48 * 49 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks, 50 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's 51 * also taken in IRQ context. 52 */ 53 struct userfaultfd_ctx { 54 /* waitqueue head for the pending (i.e. not read) userfaults */ 55 wait_queue_head_t fault_pending_wqh; 56 /* waitqueue head for the userfaults */ 57 wait_queue_head_t fault_wqh; 58 /* waitqueue head for the pseudo fd to wakeup poll/read */ 59 wait_queue_head_t fd_wqh; 60 /* waitqueue head for events */ 61 wait_queue_head_t event_wqh; 62 /* a refile sequence protected by fault_pending_wqh lock */ 63 seqcount_spinlock_t refile_seq; 64 /* pseudo fd refcounting */ 65 refcount_t refcount; 66 /* userfaultfd syscall flags */ 67 unsigned int flags; 68 /* features requested from the userspace */ 69 unsigned int features; 70 /* released */ 71 bool released; 72 /* memory mappings are changing because of non-cooperative event */ 73 atomic_t mmap_changing; 74 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 75 struct mm_struct *mm; 76 }; 77 78 struct userfaultfd_fork_ctx { 79 struct userfaultfd_ctx *orig; 80 struct userfaultfd_ctx *new; 81 struct list_head list; 82 }; 83 84 struct userfaultfd_unmap_ctx { 85 struct userfaultfd_ctx *ctx; 86 unsigned long start; 87 unsigned long end; 88 struct list_head list; 89 }; 90 91 struct userfaultfd_wait_queue { 92 struct uffd_msg msg; 93 wait_queue_entry_t wq; 94 struct userfaultfd_ctx *ctx; 95 bool waken; 96 }; 97 98 struct userfaultfd_wake_range { 99 unsigned long start; 100 unsigned long len; 101 }; 102 103 /* internal indication that UFFD_API ioctl was successfully executed */ 104 #define UFFD_FEATURE_INITIALIZED (1u << 31) 105 106 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx) 107 { 108 return ctx->features & UFFD_FEATURE_INITIALIZED; 109 } 110 111 static void userfaultfd_set_vm_flags(struct vm_area_struct *vma, 112 vm_flags_t flags) 113 { 114 const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP; 115 116 vm_flags_reset(vma, flags); 117 /* 118 * For shared mappings, we want to enable writenotify while 119 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply 120 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes. 121 */ 122 if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed) 123 vma_set_page_prot(vma); 124 } 125 126 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 127 int wake_flags, void *key) 128 { 129 struct userfaultfd_wake_range *range = key; 130 int ret; 131 struct userfaultfd_wait_queue *uwq; 132 unsigned long start, len; 133 134 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 135 ret = 0; 136 /* len == 0 means wake all */ 137 start = range->start; 138 len = range->len; 139 if (len && (start > uwq->msg.arg.pagefault.address || 140 start + len <= uwq->msg.arg.pagefault.address)) 141 goto out; 142 WRITE_ONCE(uwq->waken, true); 143 /* 144 * The Program-Order guarantees provided by the scheduler 145 * ensure uwq->waken is visible before the task is woken. 146 */ 147 ret = wake_up_state(wq->private, mode); 148 if (ret) { 149 /* 150 * Wake only once, autoremove behavior. 151 * 152 * After the effect of list_del_init is visible to the other 153 * CPUs, the waitqueue may disappear from under us, see the 154 * !list_empty_careful() in handle_userfault(). 155 * 156 * try_to_wake_up() has an implicit smp_mb(), and the 157 * wq->private is read before calling the extern function 158 * "wake_up_state" (which in turns calls try_to_wake_up). 159 */ 160 list_del_init(&wq->entry); 161 } 162 out: 163 return ret; 164 } 165 166 /** 167 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 168 * context. 169 * @ctx: [in] Pointer to the userfaultfd context. 170 */ 171 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 172 { 173 refcount_inc(&ctx->refcount); 174 } 175 176 /** 177 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 178 * context. 179 * @ctx: [in] Pointer to userfaultfd context. 180 * 181 * The userfaultfd context reference must have been previously acquired either 182 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 183 */ 184 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 185 { 186 if (refcount_dec_and_test(&ctx->refcount)) { 187 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 188 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 189 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 190 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 191 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 192 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 193 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 194 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 195 mmdrop(ctx->mm); 196 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 197 } 198 } 199 200 static inline void msg_init(struct uffd_msg *msg) 201 { 202 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 203 /* 204 * Must use memset to zero out the paddings or kernel data is 205 * leaked to userland. 206 */ 207 memset(msg, 0, sizeof(struct uffd_msg)); 208 } 209 210 static inline struct uffd_msg userfault_msg(unsigned long address, 211 unsigned long real_address, 212 unsigned int flags, 213 unsigned long reason, 214 unsigned int features) 215 { 216 struct uffd_msg msg; 217 218 msg_init(&msg); 219 msg.event = UFFD_EVENT_PAGEFAULT; 220 221 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ? 222 real_address : address; 223 224 /* 225 * These flags indicate why the userfault occurred: 226 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault. 227 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault. 228 * - Neither of these flags being set indicates a MISSING fault. 229 * 230 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write 231 * fault. Otherwise, it was a read fault. 232 */ 233 if (flags & FAULT_FLAG_WRITE) 234 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 235 if (reason & VM_UFFD_WP) 236 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 237 if (reason & VM_UFFD_MINOR) 238 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR; 239 if (features & UFFD_FEATURE_THREAD_ID) 240 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 241 return msg; 242 } 243 244 #ifdef CONFIG_HUGETLB_PAGE 245 /* 246 * Same functionality as userfaultfd_must_wait below with modifications for 247 * hugepmd ranges. 248 */ 249 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 250 struct vm_area_struct *vma, 251 unsigned long address, 252 unsigned long flags, 253 unsigned long reason) 254 { 255 pte_t *ptep, pte; 256 bool ret = true; 257 258 mmap_assert_locked(ctx->mm); 259 260 ptep = hugetlb_walk(vma, address, vma_mmu_pagesize(vma)); 261 if (!ptep) 262 goto out; 263 264 ret = false; 265 pte = huge_ptep_get(ptep); 266 267 /* 268 * Lockless access: we're in a wait_event so it's ok if it 269 * changes under us. PTE markers should be handled the same as none 270 * ptes here. 271 */ 272 if (huge_pte_none_mostly(pte)) 273 ret = true; 274 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP)) 275 ret = true; 276 out: 277 return ret; 278 } 279 #else 280 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 281 struct vm_area_struct *vma, 282 unsigned long address, 283 unsigned long flags, 284 unsigned long reason) 285 { 286 return false; /* should never get here */ 287 } 288 #endif /* CONFIG_HUGETLB_PAGE */ 289 290 /* 291 * Verify the pagetables are still not ok after having reigstered into 292 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 293 * userfault that has already been resolved, if userfaultfd_read and 294 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 295 * threads. 296 */ 297 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 298 unsigned long address, 299 unsigned long flags, 300 unsigned long reason) 301 { 302 struct mm_struct *mm = ctx->mm; 303 pgd_t *pgd; 304 p4d_t *p4d; 305 pud_t *pud; 306 pmd_t *pmd, _pmd; 307 pte_t *pte; 308 bool ret = true; 309 310 mmap_assert_locked(mm); 311 312 pgd = pgd_offset(mm, address); 313 if (!pgd_present(*pgd)) 314 goto out; 315 p4d = p4d_offset(pgd, address); 316 if (!p4d_present(*p4d)) 317 goto out; 318 pud = pud_offset(p4d, address); 319 if (!pud_present(*pud)) 320 goto out; 321 pmd = pmd_offset(pud, address); 322 /* 323 * READ_ONCE must function as a barrier with narrower scope 324 * and it must be equivalent to: 325 * _pmd = *pmd; barrier(); 326 * 327 * This is to deal with the instability (as in 328 * pmd_trans_unstable) of the pmd. 329 */ 330 _pmd = READ_ONCE(*pmd); 331 if (pmd_none(_pmd)) 332 goto out; 333 334 ret = false; 335 if (!pmd_present(_pmd)) 336 goto out; 337 338 if (pmd_trans_huge(_pmd)) { 339 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP)) 340 ret = true; 341 goto out; 342 } 343 344 /* 345 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 346 * and use the standard pte_offset_map() instead of parsing _pmd. 347 */ 348 pte = pte_offset_map(pmd, address); 349 /* 350 * Lockless access: we're in a wait_event so it's ok if it 351 * changes under us. PTE markers should be handled the same as none 352 * ptes here. 353 */ 354 if (pte_none_mostly(*pte)) 355 ret = true; 356 if (!pte_write(*pte) && (reason & VM_UFFD_WP)) 357 ret = true; 358 pte_unmap(pte); 359 360 out: 361 return ret; 362 } 363 364 static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags) 365 { 366 if (flags & FAULT_FLAG_INTERRUPTIBLE) 367 return TASK_INTERRUPTIBLE; 368 369 if (flags & FAULT_FLAG_KILLABLE) 370 return TASK_KILLABLE; 371 372 return TASK_UNINTERRUPTIBLE; 373 } 374 375 /* 376 * The locking rules involved in returning VM_FAULT_RETRY depending on 377 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 378 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 379 * recommendation in __lock_page_or_retry is not an understatement. 380 * 381 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released 382 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 383 * not set. 384 * 385 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 386 * set, VM_FAULT_RETRY can still be returned if and only if there are 387 * fatal_signal_pending()s, and the mmap_lock must be released before 388 * returning it. 389 */ 390 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason) 391 { 392 struct vm_area_struct *vma = vmf->vma; 393 struct mm_struct *mm = vma->vm_mm; 394 struct userfaultfd_ctx *ctx; 395 struct userfaultfd_wait_queue uwq; 396 vm_fault_t ret = VM_FAULT_SIGBUS; 397 bool must_wait; 398 unsigned int blocking_state; 399 400 /* 401 * We don't do userfault handling for the final child pid update. 402 * 403 * We also don't do userfault handling during 404 * coredumping. hugetlbfs has the special 405 * follow_hugetlb_page() to skip missing pages in the 406 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 407 * the no_page_table() helper in follow_page_mask(), but the 408 * shmem_vm_ops->fault method is invoked even during 409 * coredumping without mmap_lock and it ends up here. 410 */ 411 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 412 goto out; 413 414 /* 415 * Coredumping runs without mmap_lock so we can only check that 416 * the mmap_lock is held, if PF_DUMPCORE was not set. 417 */ 418 mmap_assert_locked(mm); 419 420 ctx = vma->vm_userfaultfd_ctx.ctx; 421 if (!ctx) 422 goto out; 423 424 BUG_ON(ctx->mm != mm); 425 426 /* Any unrecognized flag is a bug. */ 427 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS); 428 /* 0 or > 1 flags set is a bug; we expect exactly 1. */ 429 VM_BUG_ON(!reason || (reason & (reason - 1))); 430 431 if (ctx->features & UFFD_FEATURE_SIGBUS) 432 goto out; 433 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY)) 434 goto out; 435 436 /* 437 * If it's already released don't get it. This avoids to loop 438 * in __get_user_pages if userfaultfd_release waits on the 439 * caller of handle_userfault to release the mmap_lock. 440 */ 441 if (unlikely(READ_ONCE(ctx->released))) { 442 /* 443 * Don't return VM_FAULT_SIGBUS in this case, so a non 444 * cooperative manager can close the uffd after the 445 * last UFFDIO_COPY, without risking to trigger an 446 * involuntary SIGBUS if the process was starting the 447 * userfaultfd while the userfaultfd was still armed 448 * (but after the last UFFDIO_COPY). If the uffd 449 * wasn't already closed when the userfault reached 450 * this point, that would normally be solved by 451 * userfaultfd_must_wait returning 'false'. 452 * 453 * If we were to return VM_FAULT_SIGBUS here, the non 454 * cooperative manager would be instead forced to 455 * always call UFFDIO_UNREGISTER before it can safely 456 * close the uffd. 457 */ 458 ret = VM_FAULT_NOPAGE; 459 goto out; 460 } 461 462 /* 463 * Check that we can return VM_FAULT_RETRY. 464 * 465 * NOTE: it should become possible to return VM_FAULT_RETRY 466 * even if FAULT_FLAG_TRIED is set without leading to gup() 467 * -EBUSY failures, if the userfaultfd is to be extended for 468 * VM_UFFD_WP tracking and we intend to arm the userfault 469 * without first stopping userland access to the memory. For 470 * VM_UFFD_MISSING userfaults this is enough for now. 471 */ 472 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 473 /* 474 * Validate the invariant that nowait must allow retry 475 * to be sure not to return SIGBUS erroneously on 476 * nowait invocations. 477 */ 478 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 479 #ifdef CONFIG_DEBUG_VM 480 if (printk_ratelimit()) { 481 printk(KERN_WARNING 482 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 483 vmf->flags); 484 dump_stack(); 485 } 486 #endif 487 goto out; 488 } 489 490 /* 491 * Handle nowait, not much to do other than tell it to retry 492 * and wait. 493 */ 494 ret = VM_FAULT_RETRY; 495 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 496 goto out; 497 498 /* take the reference before dropping the mmap_lock */ 499 userfaultfd_ctx_get(ctx); 500 501 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 502 uwq.wq.private = current; 503 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags, 504 reason, ctx->features); 505 uwq.ctx = ctx; 506 uwq.waken = false; 507 508 blocking_state = userfaultfd_get_blocking_state(vmf->flags); 509 510 /* 511 * Take the vma lock now, in order to safely call 512 * userfaultfd_huge_must_wait() later. Since acquiring the 513 * (sleepable) vma lock can modify the current task state, that 514 * must be before explicitly calling set_current_state(). 515 */ 516 if (is_vm_hugetlb_page(vma)) 517 hugetlb_vma_lock_read(vma); 518 519 spin_lock_irq(&ctx->fault_pending_wqh.lock); 520 /* 521 * After the __add_wait_queue the uwq is visible to userland 522 * through poll/read(). 523 */ 524 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 525 /* 526 * The smp_mb() after __set_current_state prevents the reads 527 * following the spin_unlock to happen before the list_add in 528 * __add_wait_queue. 529 */ 530 set_current_state(blocking_state); 531 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 532 533 if (!is_vm_hugetlb_page(vma)) 534 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 535 reason); 536 else 537 must_wait = userfaultfd_huge_must_wait(ctx, vma, 538 vmf->address, 539 vmf->flags, reason); 540 if (is_vm_hugetlb_page(vma)) 541 hugetlb_vma_unlock_read(vma); 542 mmap_read_unlock(mm); 543 544 if (likely(must_wait && !READ_ONCE(ctx->released))) { 545 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 546 schedule(); 547 } 548 549 __set_current_state(TASK_RUNNING); 550 551 /* 552 * Here we race with the list_del; list_add in 553 * userfaultfd_ctx_read(), however because we don't ever run 554 * list_del_init() to refile across the two lists, the prev 555 * and next pointers will never point to self. list_add also 556 * would never let any of the two pointers to point to 557 * self. So list_empty_careful won't risk to see both pointers 558 * pointing to self at any time during the list refile. The 559 * only case where list_del_init() is called is the full 560 * removal in the wake function and there we don't re-list_add 561 * and it's fine not to block on the spinlock. The uwq on this 562 * kernel stack can be released after the list_del_init. 563 */ 564 if (!list_empty_careful(&uwq.wq.entry)) { 565 spin_lock_irq(&ctx->fault_pending_wqh.lock); 566 /* 567 * No need of list_del_init(), the uwq on the stack 568 * will be freed shortly anyway. 569 */ 570 list_del(&uwq.wq.entry); 571 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 572 } 573 574 /* 575 * ctx may go away after this if the userfault pseudo fd is 576 * already released. 577 */ 578 userfaultfd_ctx_put(ctx); 579 580 out: 581 return ret; 582 } 583 584 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 585 struct userfaultfd_wait_queue *ewq) 586 { 587 struct userfaultfd_ctx *release_new_ctx; 588 589 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 590 goto out; 591 592 ewq->ctx = ctx; 593 init_waitqueue_entry(&ewq->wq, current); 594 release_new_ctx = NULL; 595 596 spin_lock_irq(&ctx->event_wqh.lock); 597 /* 598 * After the __add_wait_queue the uwq is visible to userland 599 * through poll/read(). 600 */ 601 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 602 for (;;) { 603 set_current_state(TASK_KILLABLE); 604 if (ewq->msg.event == 0) 605 break; 606 if (READ_ONCE(ctx->released) || 607 fatal_signal_pending(current)) { 608 /* 609 * &ewq->wq may be queued in fork_event, but 610 * __remove_wait_queue ignores the head 611 * parameter. It would be a problem if it 612 * didn't. 613 */ 614 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 615 if (ewq->msg.event == UFFD_EVENT_FORK) { 616 struct userfaultfd_ctx *new; 617 618 new = (struct userfaultfd_ctx *) 619 (unsigned long) 620 ewq->msg.arg.reserved.reserved1; 621 release_new_ctx = new; 622 } 623 break; 624 } 625 626 spin_unlock_irq(&ctx->event_wqh.lock); 627 628 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 629 schedule(); 630 631 spin_lock_irq(&ctx->event_wqh.lock); 632 } 633 __set_current_state(TASK_RUNNING); 634 spin_unlock_irq(&ctx->event_wqh.lock); 635 636 if (release_new_ctx) { 637 struct vm_area_struct *vma; 638 struct mm_struct *mm = release_new_ctx->mm; 639 VMA_ITERATOR(vmi, mm, 0); 640 641 /* the various vma->vm_userfaultfd_ctx still points to it */ 642 mmap_write_lock(mm); 643 for_each_vma(vmi, vma) { 644 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) { 645 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 646 userfaultfd_set_vm_flags(vma, 647 vma->vm_flags & ~__VM_UFFD_FLAGS); 648 } 649 } 650 mmap_write_unlock(mm); 651 652 userfaultfd_ctx_put(release_new_ctx); 653 } 654 655 /* 656 * ctx may go away after this if the userfault pseudo fd is 657 * already released. 658 */ 659 out: 660 atomic_dec(&ctx->mmap_changing); 661 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0); 662 userfaultfd_ctx_put(ctx); 663 } 664 665 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 666 struct userfaultfd_wait_queue *ewq) 667 { 668 ewq->msg.event = 0; 669 wake_up_locked(&ctx->event_wqh); 670 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 671 } 672 673 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 674 { 675 struct userfaultfd_ctx *ctx = NULL, *octx; 676 struct userfaultfd_fork_ctx *fctx; 677 678 octx = vma->vm_userfaultfd_ctx.ctx; 679 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 680 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 681 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS); 682 return 0; 683 } 684 685 list_for_each_entry(fctx, fcs, list) 686 if (fctx->orig == octx) { 687 ctx = fctx->new; 688 break; 689 } 690 691 if (!ctx) { 692 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 693 if (!fctx) 694 return -ENOMEM; 695 696 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 697 if (!ctx) { 698 kfree(fctx); 699 return -ENOMEM; 700 } 701 702 refcount_set(&ctx->refcount, 1); 703 ctx->flags = octx->flags; 704 ctx->features = octx->features; 705 ctx->released = false; 706 atomic_set(&ctx->mmap_changing, 0); 707 ctx->mm = vma->vm_mm; 708 mmgrab(ctx->mm); 709 710 userfaultfd_ctx_get(octx); 711 atomic_inc(&octx->mmap_changing); 712 fctx->orig = octx; 713 fctx->new = ctx; 714 list_add_tail(&fctx->list, fcs); 715 } 716 717 vma->vm_userfaultfd_ctx.ctx = ctx; 718 return 0; 719 } 720 721 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 722 { 723 struct userfaultfd_ctx *ctx = fctx->orig; 724 struct userfaultfd_wait_queue ewq; 725 726 msg_init(&ewq.msg); 727 728 ewq.msg.event = UFFD_EVENT_FORK; 729 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 730 731 userfaultfd_event_wait_completion(ctx, &ewq); 732 } 733 734 void dup_userfaultfd_complete(struct list_head *fcs) 735 { 736 struct userfaultfd_fork_ctx *fctx, *n; 737 738 list_for_each_entry_safe(fctx, n, fcs, list) { 739 dup_fctx(fctx); 740 list_del(&fctx->list); 741 kfree(fctx); 742 } 743 } 744 745 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 746 struct vm_userfaultfd_ctx *vm_ctx) 747 { 748 struct userfaultfd_ctx *ctx; 749 750 ctx = vma->vm_userfaultfd_ctx.ctx; 751 752 if (!ctx) 753 return; 754 755 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) { 756 vm_ctx->ctx = ctx; 757 userfaultfd_ctx_get(ctx); 758 atomic_inc(&ctx->mmap_changing); 759 } else { 760 /* Drop uffd context if remap feature not enabled */ 761 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 762 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS); 763 } 764 } 765 766 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 767 unsigned long from, unsigned long to, 768 unsigned long len) 769 { 770 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 771 struct userfaultfd_wait_queue ewq; 772 773 if (!ctx) 774 return; 775 776 if (to & ~PAGE_MASK) { 777 userfaultfd_ctx_put(ctx); 778 return; 779 } 780 781 msg_init(&ewq.msg); 782 783 ewq.msg.event = UFFD_EVENT_REMAP; 784 ewq.msg.arg.remap.from = from; 785 ewq.msg.arg.remap.to = to; 786 ewq.msg.arg.remap.len = len; 787 788 userfaultfd_event_wait_completion(ctx, &ewq); 789 } 790 791 bool userfaultfd_remove(struct vm_area_struct *vma, 792 unsigned long start, unsigned long end) 793 { 794 struct mm_struct *mm = vma->vm_mm; 795 struct userfaultfd_ctx *ctx; 796 struct userfaultfd_wait_queue ewq; 797 798 ctx = vma->vm_userfaultfd_ctx.ctx; 799 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 800 return true; 801 802 userfaultfd_ctx_get(ctx); 803 atomic_inc(&ctx->mmap_changing); 804 mmap_read_unlock(mm); 805 806 msg_init(&ewq.msg); 807 808 ewq.msg.event = UFFD_EVENT_REMOVE; 809 ewq.msg.arg.remove.start = start; 810 ewq.msg.arg.remove.end = end; 811 812 userfaultfd_event_wait_completion(ctx, &ewq); 813 814 return false; 815 } 816 817 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 818 unsigned long start, unsigned long end) 819 { 820 struct userfaultfd_unmap_ctx *unmap_ctx; 821 822 list_for_each_entry(unmap_ctx, unmaps, list) 823 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 824 unmap_ctx->end == end) 825 return true; 826 827 return false; 828 } 829 830 int userfaultfd_unmap_prep(struct mm_struct *mm, unsigned long start, 831 unsigned long end, struct list_head *unmaps) 832 { 833 VMA_ITERATOR(vmi, mm, start); 834 struct vm_area_struct *vma; 835 836 for_each_vma_range(vmi, vma, end) { 837 struct userfaultfd_unmap_ctx *unmap_ctx; 838 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 839 840 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 841 has_unmap_ctx(ctx, unmaps, start, end)) 842 continue; 843 844 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 845 if (!unmap_ctx) 846 return -ENOMEM; 847 848 userfaultfd_ctx_get(ctx); 849 atomic_inc(&ctx->mmap_changing); 850 unmap_ctx->ctx = ctx; 851 unmap_ctx->start = start; 852 unmap_ctx->end = end; 853 list_add_tail(&unmap_ctx->list, unmaps); 854 } 855 856 return 0; 857 } 858 859 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 860 { 861 struct userfaultfd_unmap_ctx *ctx, *n; 862 struct userfaultfd_wait_queue ewq; 863 864 list_for_each_entry_safe(ctx, n, uf, list) { 865 msg_init(&ewq.msg); 866 867 ewq.msg.event = UFFD_EVENT_UNMAP; 868 ewq.msg.arg.remove.start = ctx->start; 869 ewq.msg.arg.remove.end = ctx->end; 870 871 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 872 873 list_del(&ctx->list); 874 kfree(ctx); 875 } 876 } 877 878 static int userfaultfd_release(struct inode *inode, struct file *file) 879 { 880 struct userfaultfd_ctx *ctx = file->private_data; 881 struct mm_struct *mm = ctx->mm; 882 struct vm_area_struct *vma, *prev; 883 /* len == 0 means wake all */ 884 struct userfaultfd_wake_range range = { .len = 0, }; 885 unsigned long new_flags; 886 VMA_ITERATOR(vmi, mm, 0); 887 888 WRITE_ONCE(ctx->released, true); 889 890 if (!mmget_not_zero(mm)) 891 goto wakeup; 892 893 /* 894 * Flush page faults out of all CPUs. NOTE: all page faults 895 * must be retried without returning VM_FAULT_SIGBUS if 896 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 897 * changes while handle_userfault released the mmap_lock. So 898 * it's critical that released is set to true (above), before 899 * taking the mmap_lock for writing. 900 */ 901 mmap_write_lock(mm); 902 prev = NULL; 903 for_each_vma(vmi, vma) { 904 cond_resched(); 905 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 906 !!(vma->vm_flags & __VM_UFFD_FLAGS)); 907 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 908 prev = vma; 909 continue; 910 } 911 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 912 prev = vma_merge(&vmi, mm, prev, vma->vm_start, vma->vm_end, 913 new_flags, vma->anon_vma, 914 vma->vm_file, vma->vm_pgoff, 915 vma_policy(vma), 916 NULL_VM_UFFD_CTX, anon_vma_name(vma)); 917 if (prev) { 918 vma = prev; 919 } else { 920 prev = vma; 921 } 922 923 userfaultfd_set_vm_flags(vma, new_flags); 924 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 925 } 926 mmap_write_unlock(mm); 927 mmput(mm); 928 wakeup: 929 /* 930 * After no new page faults can wait on this fault_*wqh, flush 931 * the last page faults that may have been already waiting on 932 * the fault_*wqh. 933 */ 934 spin_lock_irq(&ctx->fault_pending_wqh.lock); 935 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 936 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range); 937 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 938 939 /* Flush pending events that may still wait on event_wqh */ 940 wake_up_all(&ctx->event_wqh); 941 942 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 943 userfaultfd_ctx_put(ctx); 944 return 0; 945 } 946 947 /* fault_pending_wqh.lock must be hold by the caller */ 948 static inline struct userfaultfd_wait_queue *find_userfault_in( 949 wait_queue_head_t *wqh) 950 { 951 wait_queue_entry_t *wq; 952 struct userfaultfd_wait_queue *uwq; 953 954 lockdep_assert_held(&wqh->lock); 955 956 uwq = NULL; 957 if (!waitqueue_active(wqh)) 958 goto out; 959 /* walk in reverse to provide FIFO behavior to read userfaults */ 960 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 961 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 962 out: 963 return uwq; 964 } 965 966 static inline struct userfaultfd_wait_queue *find_userfault( 967 struct userfaultfd_ctx *ctx) 968 { 969 return find_userfault_in(&ctx->fault_pending_wqh); 970 } 971 972 static inline struct userfaultfd_wait_queue *find_userfault_evt( 973 struct userfaultfd_ctx *ctx) 974 { 975 return find_userfault_in(&ctx->event_wqh); 976 } 977 978 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 979 { 980 struct userfaultfd_ctx *ctx = file->private_data; 981 __poll_t ret; 982 983 poll_wait(file, &ctx->fd_wqh, wait); 984 985 if (!userfaultfd_is_initialized(ctx)) 986 return EPOLLERR; 987 988 /* 989 * poll() never guarantees that read won't block. 990 * userfaults can be waken before they're read(). 991 */ 992 if (unlikely(!(file->f_flags & O_NONBLOCK))) 993 return EPOLLERR; 994 /* 995 * lockless access to see if there are pending faults 996 * __pollwait last action is the add_wait_queue but 997 * the spin_unlock would allow the waitqueue_active to 998 * pass above the actual list_add inside 999 * add_wait_queue critical section. So use a full 1000 * memory barrier to serialize the list_add write of 1001 * add_wait_queue() with the waitqueue_active read 1002 * below. 1003 */ 1004 ret = 0; 1005 smp_mb(); 1006 if (waitqueue_active(&ctx->fault_pending_wqh)) 1007 ret = EPOLLIN; 1008 else if (waitqueue_active(&ctx->event_wqh)) 1009 ret = EPOLLIN; 1010 1011 return ret; 1012 } 1013 1014 static const struct file_operations userfaultfd_fops; 1015 1016 static int resolve_userfault_fork(struct userfaultfd_ctx *new, 1017 struct inode *inode, 1018 struct uffd_msg *msg) 1019 { 1020 int fd; 1021 1022 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new, 1023 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode); 1024 if (fd < 0) 1025 return fd; 1026 1027 msg->arg.reserved.reserved1 = 0; 1028 msg->arg.fork.ufd = fd; 1029 return 0; 1030 } 1031 1032 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1033 struct uffd_msg *msg, struct inode *inode) 1034 { 1035 ssize_t ret; 1036 DECLARE_WAITQUEUE(wait, current); 1037 struct userfaultfd_wait_queue *uwq; 1038 /* 1039 * Handling fork event requires sleeping operations, so 1040 * we drop the event_wqh lock, then do these ops, then 1041 * lock it back and wake up the waiter. While the lock is 1042 * dropped the ewq may go away so we keep track of it 1043 * carefully. 1044 */ 1045 LIST_HEAD(fork_event); 1046 struct userfaultfd_ctx *fork_nctx = NULL; 1047 1048 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1049 spin_lock_irq(&ctx->fd_wqh.lock); 1050 __add_wait_queue(&ctx->fd_wqh, &wait); 1051 for (;;) { 1052 set_current_state(TASK_INTERRUPTIBLE); 1053 spin_lock(&ctx->fault_pending_wqh.lock); 1054 uwq = find_userfault(ctx); 1055 if (uwq) { 1056 /* 1057 * Use a seqcount to repeat the lockless check 1058 * in wake_userfault() to avoid missing 1059 * wakeups because during the refile both 1060 * waitqueue could become empty if this is the 1061 * only userfault. 1062 */ 1063 write_seqcount_begin(&ctx->refile_seq); 1064 1065 /* 1066 * The fault_pending_wqh.lock prevents the uwq 1067 * to disappear from under us. 1068 * 1069 * Refile this userfault from 1070 * fault_pending_wqh to fault_wqh, it's not 1071 * pending anymore after we read it. 1072 * 1073 * Use list_del() by hand (as 1074 * userfaultfd_wake_function also uses 1075 * list_del_init() by hand) to be sure nobody 1076 * changes __remove_wait_queue() to use 1077 * list_del_init() in turn breaking the 1078 * !list_empty_careful() check in 1079 * handle_userfault(). The uwq->wq.head list 1080 * must never be empty at any time during the 1081 * refile, or the waitqueue could disappear 1082 * from under us. The "wait_queue_head_t" 1083 * parameter of __remove_wait_queue() is unused 1084 * anyway. 1085 */ 1086 list_del(&uwq->wq.entry); 1087 add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1088 1089 write_seqcount_end(&ctx->refile_seq); 1090 1091 /* careful to always initialize msg if ret == 0 */ 1092 *msg = uwq->msg; 1093 spin_unlock(&ctx->fault_pending_wqh.lock); 1094 ret = 0; 1095 break; 1096 } 1097 spin_unlock(&ctx->fault_pending_wqh.lock); 1098 1099 spin_lock(&ctx->event_wqh.lock); 1100 uwq = find_userfault_evt(ctx); 1101 if (uwq) { 1102 *msg = uwq->msg; 1103 1104 if (uwq->msg.event == UFFD_EVENT_FORK) { 1105 fork_nctx = (struct userfaultfd_ctx *) 1106 (unsigned long) 1107 uwq->msg.arg.reserved.reserved1; 1108 list_move(&uwq->wq.entry, &fork_event); 1109 /* 1110 * fork_nctx can be freed as soon as 1111 * we drop the lock, unless we take a 1112 * reference on it. 1113 */ 1114 userfaultfd_ctx_get(fork_nctx); 1115 spin_unlock(&ctx->event_wqh.lock); 1116 ret = 0; 1117 break; 1118 } 1119 1120 userfaultfd_event_complete(ctx, uwq); 1121 spin_unlock(&ctx->event_wqh.lock); 1122 ret = 0; 1123 break; 1124 } 1125 spin_unlock(&ctx->event_wqh.lock); 1126 1127 if (signal_pending(current)) { 1128 ret = -ERESTARTSYS; 1129 break; 1130 } 1131 if (no_wait) { 1132 ret = -EAGAIN; 1133 break; 1134 } 1135 spin_unlock_irq(&ctx->fd_wqh.lock); 1136 schedule(); 1137 spin_lock_irq(&ctx->fd_wqh.lock); 1138 } 1139 __remove_wait_queue(&ctx->fd_wqh, &wait); 1140 __set_current_state(TASK_RUNNING); 1141 spin_unlock_irq(&ctx->fd_wqh.lock); 1142 1143 if (!ret && msg->event == UFFD_EVENT_FORK) { 1144 ret = resolve_userfault_fork(fork_nctx, inode, msg); 1145 spin_lock_irq(&ctx->event_wqh.lock); 1146 if (!list_empty(&fork_event)) { 1147 /* 1148 * The fork thread didn't abort, so we can 1149 * drop the temporary refcount. 1150 */ 1151 userfaultfd_ctx_put(fork_nctx); 1152 1153 uwq = list_first_entry(&fork_event, 1154 typeof(*uwq), 1155 wq.entry); 1156 /* 1157 * If fork_event list wasn't empty and in turn 1158 * the event wasn't already released by fork 1159 * (the event is allocated on fork kernel 1160 * stack), put the event back to its place in 1161 * the event_wq. fork_event head will be freed 1162 * as soon as we return so the event cannot 1163 * stay queued there no matter the current 1164 * "ret" value. 1165 */ 1166 list_del(&uwq->wq.entry); 1167 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1168 1169 /* 1170 * Leave the event in the waitqueue and report 1171 * error to userland if we failed to resolve 1172 * the userfault fork. 1173 */ 1174 if (likely(!ret)) 1175 userfaultfd_event_complete(ctx, uwq); 1176 } else { 1177 /* 1178 * Here the fork thread aborted and the 1179 * refcount from the fork thread on fork_nctx 1180 * has already been released. We still hold 1181 * the reference we took before releasing the 1182 * lock above. If resolve_userfault_fork 1183 * failed we've to drop it because the 1184 * fork_nctx has to be freed in such case. If 1185 * it succeeded we'll hold it because the new 1186 * uffd references it. 1187 */ 1188 if (ret) 1189 userfaultfd_ctx_put(fork_nctx); 1190 } 1191 spin_unlock_irq(&ctx->event_wqh.lock); 1192 } 1193 1194 return ret; 1195 } 1196 1197 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1198 size_t count, loff_t *ppos) 1199 { 1200 struct userfaultfd_ctx *ctx = file->private_data; 1201 ssize_t _ret, ret = 0; 1202 struct uffd_msg msg; 1203 int no_wait = file->f_flags & O_NONBLOCK; 1204 struct inode *inode = file_inode(file); 1205 1206 if (!userfaultfd_is_initialized(ctx)) 1207 return -EINVAL; 1208 1209 for (;;) { 1210 if (count < sizeof(msg)) 1211 return ret ? ret : -EINVAL; 1212 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode); 1213 if (_ret < 0) 1214 return ret ? ret : _ret; 1215 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1216 return ret ? ret : -EFAULT; 1217 ret += sizeof(msg); 1218 buf += sizeof(msg); 1219 count -= sizeof(msg); 1220 /* 1221 * Allow to read more than one fault at time but only 1222 * block if waiting for the very first one. 1223 */ 1224 no_wait = O_NONBLOCK; 1225 } 1226 } 1227 1228 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1229 struct userfaultfd_wake_range *range) 1230 { 1231 spin_lock_irq(&ctx->fault_pending_wqh.lock); 1232 /* wake all in the range and autoremove */ 1233 if (waitqueue_active(&ctx->fault_pending_wqh)) 1234 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1235 range); 1236 if (waitqueue_active(&ctx->fault_wqh)) 1237 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range); 1238 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 1239 } 1240 1241 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1242 struct userfaultfd_wake_range *range) 1243 { 1244 unsigned seq; 1245 bool need_wakeup; 1246 1247 /* 1248 * To be sure waitqueue_active() is not reordered by the CPU 1249 * before the pagetable update, use an explicit SMP memory 1250 * barrier here. PT lock release or mmap_read_unlock(mm) still 1251 * have release semantics that can allow the 1252 * waitqueue_active() to be reordered before the pte update. 1253 */ 1254 smp_mb(); 1255 1256 /* 1257 * Use waitqueue_active because it's very frequent to 1258 * change the address space atomically even if there are no 1259 * userfaults yet. So we take the spinlock only when we're 1260 * sure we've userfaults to wake. 1261 */ 1262 do { 1263 seq = read_seqcount_begin(&ctx->refile_seq); 1264 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1265 waitqueue_active(&ctx->fault_wqh); 1266 cond_resched(); 1267 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1268 if (need_wakeup) 1269 __wake_userfault(ctx, range); 1270 } 1271 1272 static __always_inline int validate_range(struct mm_struct *mm, 1273 __u64 start, __u64 len) 1274 { 1275 __u64 task_size = mm->task_size; 1276 1277 if (start & ~PAGE_MASK) 1278 return -EINVAL; 1279 if (len & ~PAGE_MASK) 1280 return -EINVAL; 1281 if (!len) 1282 return -EINVAL; 1283 if (start < mmap_min_addr) 1284 return -EINVAL; 1285 if (start >= task_size) 1286 return -EINVAL; 1287 if (len > task_size - start) 1288 return -EINVAL; 1289 return 0; 1290 } 1291 1292 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1293 unsigned long arg) 1294 { 1295 struct mm_struct *mm = ctx->mm; 1296 struct vm_area_struct *vma, *prev, *cur; 1297 int ret; 1298 struct uffdio_register uffdio_register; 1299 struct uffdio_register __user *user_uffdio_register; 1300 unsigned long vm_flags, new_flags; 1301 bool found; 1302 bool basic_ioctls; 1303 unsigned long start, end, vma_end; 1304 struct vma_iterator vmi; 1305 1306 user_uffdio_register = (struct uffdio_register __user *) arg; 1307 1308 ret = -EFAULT; 1309 if (copy_from_user(&uffdio_register, user_uffdio_register, 1310 sizeof(uffdio_register)-sizeof(__u64))) 1311 goto out; 1312 1313 ret = -EINVAL; 1314 if (!uffdio_register.mode) 1315 goto out; 1316 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES) 1317 goto out; 1318 vm_flags = 0; 1319 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1320 vm_flags |= VM_UFFD_MISSING; 1321 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1322 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1323 goto out; 1324 #endif 1325 vm_flags |= VM_UFFD_WP; 1326 } 1327 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) { 1328 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1329 goto out; 1330 #endif 1331 vm_flags |= VM_UFFD_MINOR; 1332 } 1333 1334 ret = validate_range(mm, uffdio_register.range.start, 1335 uffdio_register.range.len); 1336 if (ret) 1337 goto out; 1338 1339 start = uffdio_register.range.start; 1340 end = start + uffdio_register.range.len; 1341 1342 ret = -ENOMEM; 1343 if (!mmget_not_zero(mm)) 1344 goto out; 1345 1346 ret = -EINVAL; 1347 mmap_write_lock(mm); 1348 vma_iter_init(&vmi, mm, start); 1349 vma = vma_find(&vmi, end); 1350 if (!vma) 1351 goto out_unlock; 1352 1353 /* 1354 * If the first vma contains huge pages, make sure start address 1355 * is aligned to huge page size. 1356 */ 1357 if (is_vm_hugetlb_page(vma)) { 1358 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1359 1360 if (start & (vma_hpagesize - 1)) 1361 goto out_unlock; 1362 } 1363 1364 /* 1365 * Search for not compatible vmas. 1366 */ 1367 found = false; 1368 basic_ioctls = false; 1369 cur = vma; 1370 do { 1371 cond_resched(); 1372 1373 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1374 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1375 1376 /* check not compatible vmas */ 1377 ret = -EINVAL; 1378 if (!vma_can_userfault(cur, vm_flags)) 1379 goto out_unlock; 1380 1381 /* 1382 * UFFDIO_COPY will fill file holes even without 1383 * PROT_WRITE. This check enforces that if this is a 1384 * MAP_SHARED, the process has write permission to the backing 1385 * file. If VM_MAYWRITE is set it also enforces that on a 1386 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further 1387 * F_WRITE_SEAL can be taken until the vma is destroyed. 1388 */ 1389 ret = -EPERM; 1390 if (unlikely(!(cur->vm_flags & VM_MAYWRITE))) 1391 goto out_unlock; 1392 1393 /* 1394 * If this vma contains ending address, and huge pages 1395 * check alignment. 1396 */ 1397 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1398 end > cur->vm_start) { 1399 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1400 1401 ret = -EINVAL; 1402 1403 if (end & (vma_hpagesize - 1)) 1404 goto out_unlock; 1405 } 1406 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE)) 1407 goto out_unlock; 1408 1409 /* 1410 * Check that this vma isn't already owned by a 1411 * different userfaultfd. We can't allow more than one 1412 * userfaultfd to own a single vma simultaneously or we 1413 * wouldn't know which one to deliver the userfaults to. 1414 */ 1415 ret = -EBUSY; 1416 if (cur->vm_userfaultfd_ctx.ctx && 1417 cur->vm_userfaultfd_ctx.ctx != ctx) 1418 goto out_unlock; 1419 1420 /* 1421 * Note vmas containing huge pages 1422 */ 1423 if (is_vm_hugetlb_page(cur)) 1424 basic_ioctls = true; 1425 1426 found = true; 1427 } for_each_vma_range(vmi, cur, end); 1428 BUG_ON(!found); 1429 1430 vma_iter_set(&vmi, start); 1431 prev = vma_prev(&vmi); 1432 1433 ret = 0; 1434 for_each_vma_range(vmi, vma, end) { 1435 cond_resched(); 1436 1437 BUG_ON(!vma_can_userfault(vma, vm_flags)); 1438 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1439 vma->vm_userfaultfd_ctx.ctx != ctx); 1440 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1441 1442 /* 1443 * Nothing to do: this vma is already registered into this 1444 * userfaultfd and with the right tracking mode too. 1445 */ 1446 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1447 (vma->vm_flags & vm_flags) == vm_flags) 1448 goto skip; 1449 1450 if (vma->vm_start > start) 1451 start = vma->vm_start; 1452 vma_end = min(end, vma->vm_end); 1453 1454 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags; 1455 prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags, 1456 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1457 vma_policy(vma), 1458 ((struct vm_userfaultfd_ctx){ ctx }), 1459 anon_vma_name(vma)); 1460 if (prev) { 1461 /* vma_merge() invalidated the mas */ 1462 vma = prev; 1463 goto next; 1464 } 1465 if (vma->vm_start < start) { 1466 ret = split_vma(&vmi, vma, start, 1); 1467 if (ret) 1468 break; 1469 } 1470 if (vma->vm_end > end) { 1471 ret = split_vma(&vmi, vma, end, 0); 1472 if (ret) 1473 break; 1474 } 1475 next: 1476 /* 1477 * In the vma_merge() successful mprotect-like case 8: 1478 * the next vma was merged into the current one and 1479 * the current one has not been updated yet. 1480 */ 1481 userfaultfd_set_vm_flags(vma, new_flags); 1482 vma->vm_userfaultfd_ctx.ctx = ctx; 1483 1484 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma)) 1485 hugetlb_unshare_all_pmds(vma); 1486 1487 skip: 1488 prev = vma; 1489 start = vma->vm_end; 1490 } 1491 1492 out_unlock: 1493 mmap_write_unlock(mm); 1494 mmput(mm); 1495 if (!ret) { 1496 __u64 ioctls_out; 1497 1498 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1499 UFFD_API_RANGE_IOCTLS; 1500 1501 /* 1502 * Declare the WP ioctl only if the WP mode is 1503 * specified and all checks passed with the range 1504 */ 1505 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP)) 1506 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT); 1507 1508 /* CONTINUE ioctl is only supported for MINOR ranges. */ 1509 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR)) 1510 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE); 1511 1512 /* 1513 * Now that we scanned all vmas we can already tell 1514 * userland which ioctls methods are guaranteed to 1515 * succeed on this range. 1516 */ 1517 if (put_user(ioctls_out, &user_uffdio_register->ioctls)) 1518 ret = -EFAULT; 1519 } 1520 out: 1521 return ret; 1522 } 1523 1524 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1525 unsigned long arg) 1526 { 1527 struct mm_struct *mm = ctx->mm; 1528 struct vm_area_struct *vma, *prev, *cur; 1529 int ret; 1530 struct uffdio_range uffdio_unregister; 1531 unsigned long new_flags; 1532 bool found; 1533 unsigned long start, end, vma_end; 1534 const void __user *buf = (void __user *)arg; 1535 struct vma_iterator vmi; 1536 1537 ret = -EFAULT; 1538 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1539 goto out; 1540 1541 ret = validate_range(mm, uffdio_unregister.start, 1542 uffdio_unregister.len); 1543 if (ret) 1544 goto out; 1545 1546 start = uffdio_unregister.start; 1547 end = start + uffdio_unregister.len; 1548 1549 ret = -ENOMEM; 1550 if (!mmget_not_zero(mm)) 1551 goto out; 1552 1553 mmap_write_lock(mm); 1554 ret = -EINVAL; 1555 vma_iter_init(&vmi, mm, start); 1556 vma = vma_find(&vmi, end); 1557 if (!vma) 1558 goto out_unlock; 1559 1560 /* 1561 * If the first vma contains huge pages, make sure start address 1562 * is aligned to huge page size. 1563 */ 1564 if (is_vm_hugetlb_page(vma)) { 1565 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1566 1567 if (start & (vma_hpagesize - 1)) 1568 goto out_unlock; 1569 } 1570 1571 /* 1572 * Search for not compatible vmas. 1573 */ 1574 found = false; 1575 cur = vma; 1576 do { 1577 cond_resched(); 1578 1579 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1580 !!(cur->vm_flags & __VM_UFFD_FLAGS)); 1581 1582 /* 1583 * Check not compatible vmas, not strictly required 1584 * here as not compatible vmas cannot have an 1585 * userfaultfd_ctx registered on them, but this 1586 * provides for more strict behavior to notice 1587 * unregistration errors. 1588 */ 1589 if (!vma_can_userfault(cur, cur->vm_flags)) 1590 goto out_unlock; 1591 1592 found = true; 1593 } for_each_vma_range(vmi, cur, end); 1594 BUG_ON(!found); 1595 1596 vma_iter_set(&vmi, start); 1597 prev = vma_prev(&vmi); 1598 ret = 0; 1599 for_each_vma_range(vmi, vma, end) { 1600 cond_resched(); 1601 1602 BUG_ON(!vma_can_userfault(vma, vma->vm_flags)); 1603 1604 /* 1605 * Nothing to do: this vma is already registered into this 1606 * userfaultfd and with the right tracking mode too. 1607 */ 1608 if (!vma->vm_userfaultfd_ctx.ctx) 1609 goto skip; 1610 1611 WARN_ON(!(vma->vm_flags & VM_MAYWRITE)); 1612 1613 if (vma->vm_start > start) 1614 start = vma->vm_start; 1615 vma_end = min(end, vma->vm_end); 1616 1617 if (userfaultfd_missing(vma)) { 1618 /* 1619 * Wake any concurrent pending userfault while 1620 * we unregister, so they will not hang 1621 * permanently and it avoids userland to call 1622 * UFFDIO_WAKE explicitly. 1623 */ 1624 struct userfaultfd_wake_range range; 1625 range.start = start; 1626 range.len = vma_end - start; 1627 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1628 } 1629 1630 /* Reset ptes for the whole vma range if wr-protected */ 1631 if (userfaultfd_wp(vma)) 1632 uffd_wp_range(mm, vma, start, vma_end - start, false); 1633 1634 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS; 1635 prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags, 1636 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1637 vma_policy(vma), 1638 NULL_VM_UFFD_CTX, anon_vma_name(vma)); 1639 if (prev) { 1640 vma = prev; 1641 goto next; 1642 } 1643 if (vma->vm_start < start) { 1644 ret = split_vma(&vmi, vma, start, 1); 1645 if (ret) 1646 break; 1647 } 1648 if (vma->vm_end > end) { 1649 ret = split_vma(&vmi, vma, end, 0); 1650 if (ret) 1651 break; 1652 } 1653 next: 1654 /* 1655 * In the vma_merge() successful mprotect-like case 8: 1656 * the next vma was merged into the current one and 1657 * the current one has not been updated yet. 1658 */ 1659 userfaultfd_set_vm_flags(vma, new_flags); 1660 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1661 1662 skip: 1663 prev = vma; 1664 start = vma->vm_end; 1665 } 1666 1667 out_unlock: 1668 mmap_write_unlock(mm); 1669 mmput(mm); 1670 out: 1671 return ret; 1672 } 1673 1674 /* 1675 * userfaultfd_wake may be used in combination with the 1676 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1677 */ 1678 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1679 unsigned long arg) 1680 { 1681 int ret; 1682 struct uffdio_range uffdio_wake; 1683 struct userfaultfd_wake_range range; 1684 const void __user *buf = (void __user *)arg; 1685 1686 ret = -EFAULT; 1687 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1688 goto out; 1689 1690 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1691 if (ret) 1692 goto out; 1693 1694 range.start = uffdio_wake.start; 1695 range.len = uffdio_wake.len; 1696 1697 /* 1698 * len == 0 means wake all and we don't want to wake all here, 1699 * so check it again to be sure. 1700 */ 1701 VM_BUG_ON(!range.len); 1702 1703 wake_userfault(ctx, &range); 1704 ret = 0; 1705 1706 out: 1707 return ret; 1708 } 1709 1710 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1711 unsigned long arg) 1712 { 1713 __s64 ret; 1714 struct uffdio_copy uffdio_copy; 1715 struct uffdio_copy __user *user_uffdio_copy; 1716 struct userfaultfd_wake_range range; 1717 1718 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1719 1720 ret = -EAGAIN; 1721 if (atomic_read(&ctx->mmap_changing)) 1722 goto out; 1723 1724 ret = -EFAULT; 1725 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1726 /* don't copy "copy" last field */ 1727 sizeof(uffdio_copy)-sizeof(__s64))) 1728 goto out; 1729 1730 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1731 if (ret) 1732 goto out; 1733 /* 1734 * double check for wraparound just in case. copy_from_user() 1735 * will later check uffdio_copy.src + uffdio_copy.len to fit 1736 * in the userland range. 1737 */ 1738 ret = -EINVAL; 1739 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1740 goto out; 1741 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP)) 1742 goto out; 1743 if (mmget_not_zero(ctx->mm)) { 1744 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1745 uffdio_copy.len, &ctx->mmap_changing, 1746 uffdio_copy.mode); 1747 mmput(ctx->mm); 1748 } else { 1749 return -ESRCH; 1750 } 1751 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1752 return -EFAULT; 1753 if (ret < 0) 1754 goto out; 1755 BUG_ON(!ret); 1756 /* len == 0 would wake all */ 1757 range.len = ret; 1758 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1759 range.start = uffdio_copy.dst; 1760 wake_userfault(ctx, &range); 1761 } 1762 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1763 out: 1764 return ret; 1765 } 1766 1767 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1768 unsigned long arg) 1769 { 1770 __s64 ret; 1771 struct uffdio_zeropage uffdio_zeropage; 1772 struct uffdio_zeropage __user *user_uffdio_zeropage; 1773 struct userfaultfd_wake_range range; 1774 1775 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1776 1777 ret = -EAGAIN; 1778 if (atomic_read(&ctx->mmap_changing)) 1779 goto out; 1780 1781 ret = -EFAULT; 1782 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1783 /* don't copy "zeropage" last field */ 1784 sizeof(uffdio_zeropage)-sizeof(__s64))) 1785 goto out; 1786 1787 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1788 uffdio_zeropage.range.len); 1789 if (ret) 1790 goto out; 1791 ret = -EINVAL; 1792 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1793 goto out; 1794 1795 if (mmget_not_zero(ctx->mm)) { 1796 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1797 uffdio_zeropage.range.len, 1798 &ctx->mmap_changing); 1799 mmput(ctx->mm); 1800 } else { 1801 return -ESRCH; 1802 } 1803 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1804 return -EFAULT; 1805 if (ret < 0) 1806 goto out; 1807 /* len == 0 would wake all */ 1808 BUG_ON(!ret); 1809 range.len = ret; 1810 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1811 range.start = uffdio_zeropage.range.start; 1812 wake_userfault(ctx, &range); 1813 } 1814 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1815 out: 1816 return ret; 1817 } 1818 1819 static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx, 1820 unsigned long arg) 1821 { 1822 int ret; 1823 struct uffdio_writeprotect uffdio_wp; 1824 struct uffdio_writeprotect __user *user_uffdio_wp; 1825 struct userfaultfd_wake_range range; 1826 bool mode_wp, mode_dontwake; 1827 1828 if (atomic_read(&ctx->mmap_changing)) 1829 return -EAGAIN; 1830 1831 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg; 1832 1833 if (copy_from_user(&uffdio_wp, user_uffdio_wp, 1834 sizeof(struct uffdio_writeprotect))) 1835 return -EFAULT; 1836 1837 ret = validate_range(ctx->mm, uffdio_wp.range.start, 1838 uffdio_wp.range.len); 1839 if (ret) 1840 return ret; 1841 1842 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE | 1843 UFFDIO_WRITEPROTECT_MODE_WP)) 1844 return -EINVAL; 1845 1846 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP; 1847 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE; 1848 1849 if (mode_wp && mode_dontwake) 1850 return -EINVAL; 1851 1852 if (mmget_not_zero(ctx->mm)) { 1853 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start, 1854 uffdio_wp.range.len, mode_wp, 1855 &ctx->mmap_changing); 1856 mmput(ctx->mm); 1857 } else { 1858 return -ESRCH; 1859 } 1860 1861 if (ret) 1862 return ret; 1863 1864 if (!mode_wp && !mode_dontwake) { 1865 range.start = uffdio_wp.range.start; 1866 range.len = uffdio_wp.range.len; 1867 wake_userfault(ctx, &range); 1868 } 1869 return ret; 1870 } 1871 1872 static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg) 1873 { 1874 __s64 ret; 1875 struct uffdio_continue uffdio_continue; 1876 struct uffdio_continue __user *user_uffdio_continue; 1877 struct userfaultfd_wake_range range; 1878 1879 user_uffdio_continue = (struct uffdio_continue __user *)arg; 1880 1881 ret = -EAGAIN; 1882 if (atomic_read(&ctx->mmap_changing)) 1883 goto out; 1884 1885 ret = -EFAULT; 1886 if (copy_from_user(&uffdio_continue, user_uffdio_continue, 1887 /* don't copy the output fields */ 1888 sizeof(uffdio_continue) - (sizeof(__s64)))) 1889 goto out; 1890 1891 ret = validate_range(ctx->mm, uffdio_continue.range.start, 1892 uffdio_continue.range.len); 1893 if (ret) 1894 goto out; 1895 1896 ret = -EINVAL; 1897 /* double check for wraparound just in case. */ 1898 if (uffdio_continue.range.start + uffdio_continue.range.len <= 1899 uffdio_continue.range.start) { 1900 goto out; 1901 } 1902 if (uffdio_continue.mode & ~UFFDIO_CONTINUE_MODE_DONTWAKE) 1903 goto out; 1904 1905 if (mmget_not_zero(ctx->mm)) { 1906 ret = mcopy_continue(ctx->mm, uffdio_continue.range.start, 1907 uffdio_continue.range.len, 1908 &ctx->mmap_changing); 1909 mmput(ctx->mm); 1910 } else { 1911 return -ESRCH; 1912 } 1913 1914 if (unlikely(put_user(ret, &user_uffdio_continue->mapped))) 1915 return -EFAULT; 1916 if (ret < 0) 1917 goto out; 1918 1919 /* len == 0 would wake all */ 1920 BUG_ON(!ret); 1921 range.len = ret; 1922 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) { 1923 range.start = uffdio_continue.range.start; 1924 wake_userfault(ctx, &range); 1925 } 1926 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN; 1927 1928 out: 1929 return ret; 1930 } 1931 1932 static inline unsigned int uffd_ctx_features(__u64 user_features) 1933 { 1934 /* 1935 * For the current set of features the bits just coincide. Set 1936 * UFFD_FEATURE_INITIALIZED to mark the features as enabled. 1937 */ 1938 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED; 1939 } 1940 1941 /* 1942 * userland asks for a certain API version and we return which bits 1943 * and ioctl commands are implemented in this kernel for such API 1944 * version or -EINVAL if unknown. 1945 */ 1946 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1947 unsigned long arg) 1948 { 1949 struct uffdio_api uffdio_api; 1950 void __user *buf = (void __user *)arg; 1951 unsigned int ctx_features; 1952 int ret; 1953 __u64 features; 1954 1955 ret = -EFAULT; 1956 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1957 goto out; 1958 /* Ignore unsupported features (userspace built against newer kernel) */ 1959 features = uffdio_api.features & UFFD_API_FEATURES; 1960 ret = -EPERM; 1961 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE)) 1962 goto err_out; 1963 /* report all available features and ioctls to userland */ 1964 uffdio_api.features = UFFD_API_FEATURES; 1965 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR 1966 uffdio_api.features &= 1967 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM); 1968 #endif 1969 #ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP 1970 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP; 1971 #endif 1972 #ifndef CONFIG_PTE_MARKER_UFFD_WP 1973 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM; 1974 #endif 1975 uffdio_api.ioctls = UFFD_API_IOCTLS; 1976 ret = -EFAULT; 1977 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1978 goto out; 1979 1980 /* only enable the requested features for this uffd context */ 1981 ctx_features = uffd_ctx_features(features); 1982 ret = -EINVAL; 1983 if (cmpxchg(&ctx->features, 0, ctx_features) != 0) 1984 goto err_out; 1985 1986 ret = 0; 1987 out: 1988 return ret; 1989 err_out: 1990 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1991 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1992 ret = -EFAULT; 1993 goto out; 1994 } 1995 1996 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1997 unsigned long arg) 1998 { 1999 int ret = -EINVAL; 2000 struct userfaultfd_ctx *ctx = file->private_data; 2001 2002 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx)) 2003 return -EINVAL; 2004 2005 switch(cmd) { 2006 case UFFDIO_API: 2007 ret = userfaultfd_api(ctx, arg); 2008 break; 2009 case UFFDIO_REGISTER: 2010 ret = userfaultfd_register(ctx, arg); 2011 break; 2012 case UFFDIO_UNREGISTER: 2013 ret = userfaultfd_unregister(ctx, arg); 2014 break; 2015 case UFFDIO_WAKE: 2016 ret = userfaultfd_wake(ctx, arg); 2017 break; 2018 case UFFDIO_COPY: 2019 ret = userfaultfd_copy(ctx, arg); 2020 break; 2021 case UFFDIO_ZEROPAGE: 2022 ret = userfaultfd_zeropage(ctx, arg); 2023 break; 2024 case UFFDIO_WRITEPROTECT: 2025 ret = userfaultfd_writeprotect(ctx, arg); 2026 break; 2027 case UFFDIO_CONTINUE: 2028 ret = userfaultfd_continue(ctx, arg); 2029 break; 2030 } 2031 return ret; 2032 } 2033 2034 #ifdef CONFIG_PROC_FS 2035 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 2036 { 2037 struct userfaultfd_ctx *ctx = f->private_data; 2038 wait_queue_entry_t *wq; 2039 unsigned long pending = 0, total = 0; 2040 2041 spin_lock_irq(&ctx->fault_pending_wqh.lock); 2042 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 2043 pending++; 2044 total++; 2045 } 2046 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 2047 total++; 2048 } 2049 spin_unlock_irq(&ctx->fault_pending_wqh.lock); 2050 2051 /* 2052 * If more protocols will be added, there will be all shown 2053 * separated by a space. Like this: 2054 * protocols: aa:... bb:... 2055 */ 2056 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 2057 pending, total, UFFD_API, ctx->features, 2058 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 2059 } 2060 #endif 2061 2062 static const struct file_operations userfaultfd_fops = { 2063 #ifdef CONFIG_PROC_FS 2064 .show_fdinfo = userfaultfd_show_fdinfo, 2065 #endif 2066 .release = userfaultfd_release, 2067 .poll = userfaultfd_poll, 2068 .read = userfaultfd_read, 2069 .unlocked_ioctl = userfaultfd_ioctl, 2070 .compat_ioctl = compat_ptr_ioctl, 2071 .llseek = noop_llseek, 2072 }; 2073 2074 static void init_once_userfaultfd_ctx(void *mem) 2075 { 2076 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 2077 2078 init_waitqueue_head(&ctx->fault_pending_wqh); 2079 init_waitqueue_head(&ctx->fault_wqh); 2080 init_waitqueue_head(&ctx->event_wqh); 2081 init_waitqueue_head(&ctx->fd_wqh); 2082 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock); 2083 } 2084 2085 static int new_userfaultfd(int flags) 2086 { 2087 struct userfaultfd_ctx *ctx; 2088 int fd; 2089 2090 BUG_ON(!current->mm); 2091 2092 /* Check the UFFD_* constants for consistency. */ 2093 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS); 2094 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 2095 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 2096 2097 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY)) 2098 return -EINVAL; 2099 2100 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 2101 if (!ctx) 2102 return -ENOMEM; 2103 2104 refcount_set(&ctx->refcount, 1); 2105 ctx->flags = flags; 2106 ctx->features = 0; 2107 ctx->released = false; 2108 atomic_set(&ctx->mmap_changing, 0); 2109 ctx->mm = current->mm; 2110 /* prevent the mm struct to be freed */ 2111 mmgrab(ctx->mm); 2112 2113 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx, 2114 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL); 2115 if (fd < 0) { 2116 mmdrop(ctx->mm); 2117 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 2118 } 2119 return fd; 2120 } 2121 2122 static inline bool userfaultfd_syscall_allowed(int flags) 2123 { 2124 /* Userspace-only page faults are always allowed */ 2125 if (flags & UFFD_USER_MODE_ONLY) 2126 return true; 2127 2128 /* 2129 * The user is requesting a userfaultfd which can handle kernel faults. 2130 * Privileged users are always allowed to do this. 2131 */ 2132 if (capable(CAP_SYS_PTRACE)) 2133 return true; 2134 2135 /* Otherwise, access to kernel fault handling is sysctl controlled. */ 2136 return sysctl_unprivileged_userfaultfd; 2137 } 2138 2139 SYSCALL_DEFINE1(userfaultfd, int, flags) 2140 { 2141 if (!userfaultfd_syscall_allowed(flags)) 2142 return -EPERM; 2143 2144 return new_userfaultfd(flags); 2145 } 2146 2147 static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags) 2148 { 2149 if (cmd != USERFAULTFD_IOC_NEW) 2150 return -EINVAL; 2151 2152 return new_userfaultfd(flags); 2153 } 2154 2155 static const struct file_operations userfaultfd_dev_fops = { 2156 .unlocked_ioctl = userfaultfd_dev_ioctl, 2157 .compat_ioctl = userfaultfd_dev_ioctl, 2158 .owner = THIS_MODULE, 2159 .llseek = noop_llseek, 2160 }; 2161 2162 static struct miscdevice userfaultfd_misc = { 2163 .minor = MISC_DYNAMIC_MINOR, 2164 .name = "userfaultfd", 2165 .fops = &userfaultfd_dev_fops 2166 }; 2167 2168 static int __init userfaultfd_init(void) 2169 { 2170 int ret; 2171 2172 ret = misc_register(&userfaultfd_misc); 2173 if (ret) 2174 return ret; 2175 2176 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 2177 sizeof(struct userfaultfd_ctx), 2178 0, 2179 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 2180 init_once_userfaultfd_ctx); 2181 return 0; 2182 } 2183 __initcall(userfaultfd_init); 2184