1 /* 2 * fs/userfaultfd.c 3 * 4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org> 5 * Copyright (C) 2008-2009 Red Hat, Inc. 6 * Copyright (C) 2015 Red Hat, Inc. 7 * 8 * This work is licensed under the terms of the GNU GPL, version 2. See 9 * the COPYING file in the top-level directory. 10 * 11 * Some part derived from fs/eventfd.c (anon inode setup) and 12 * mm/ksm.c (mm hashing). 13 */ 14 15 #include <linux/list.h> 16 #include <linux/hashtable.h> 17 #include <linux/sched/signal.h> 18 #include <linux/sched/mm.h> 19 #include <linux/mm.h> 20 #include <linux/poll.h> 21 #include <linux/slab.h> 22 #include <linux/seq_file.h> 23 #include <linux/file.h> 24 #include <linux/bug.h> 25 #include <linux/anon_inodes.h> 26 #include <linux/syscalls.h> 27 #include <linux/userfaultfd_k.h> 28 #include <linux/mempolicy.h> 29 #include <linux/ioctl.h> 30 #include <linux/security.h> 31 #include <linux/hugetlb.h> 32 33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly; 34 35 enum userfaultfd_state { 36 UFFD_STATE_WAIT_API, 37 UFFD_STATE_RUNNING, 38 }; 39 40 /* 41 * Start with fault_pending_wqh and fault_wqh so they're more likely 42 * to be in the same cacheline. 43 */ 44 struct userfaultfd_ctx { 45 /* waitqueue head for the pending (i.e. not read) userfaults */ 46 wait_queue_head_t fault_pending_wqh; 47 /* waitqueue head for the userfaults */ 48 wait_queue_head_t fault_wqh; 49 /* waitqueue head for the pseudo fd to wakeup poll/read */ 50 wait_queue_head_t fd_wqh; 51 /* waitqueue head for events */ 52 wait_queue_head_t event_wqh; 53 /* a refile sequence protected by fault_pending_wqh lock */ 54 struct seqcount refile_seq; 55 /* pseudo fd refcounting */ 56 atomic_t refcount; 57 /* userfaultfd syscall flags */ 58 unsigned int flags; 59 /* features requested from the userspace */ 60 unsigned int features; 61 /* state machine */ 62 enum userfaultfd_state state; 63 /* released */ 64 bool released; 65 /* mm with one ore more vmas attached to this userfaultfd_ctx */ 66 struct mm_struct *mm; 67 }; 68 69 struct userfaultfd_fork_ctx { 70 struct userfaultfd_ctx *orig; 71 struct userfaultfd_ctx *new; 72 struct list_head list; 73 }; 74 75 struct userfaultfd_unmap_ctx { 76 struct userfaultfd_ctx *ctx; 77 unsigned long start; 78 unsigned long end; 79 struct list_head list; 80 }; 81 82 struct userfaultfd_wait_queue { 83 struct uffd_msg msg; 84 wait_queue_entry_t wq; 85 struct userfaultfd_ctx *ctx; 86 bool waken; 87 }; 88 89 struct userfaultfd_wake_range { 90 unsigned long start; 91 unsigned long len; 92 }; 93 94 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode, 95 int wake_flags, void *key) 96 { 97 struct userfaultfd_wake_range *range = key; 98 int ret; 99 struct userfaultfd_wait_queue *uwq; 100 unsigned long start, len; 101 102 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 103 ret = 0; 104 /* len == 0 means wake all */ 105 start = range->start; 106 len = range->len; 107 if (len && (start > uwq->msg.arg.pagefault.address || 108 start + len <= uwq->msg.arg.pagefault.address)) 109 goto out; 110 WRITE_ONCE(uwq->waken, true); 111 /* 112 * The Program-Order guarantees provided by the scheduler 113 * ensure uwq->waken is visible before the task is woken. 114 */ 115 ret = wake_up_state(wq->private, mode); 116 if (ret) { 117 /* 118 * Wake only once, autoremove behavior. 119 * 120 * After the effect of list_del_init is visible to the other 121 * CPUs, the waitqueue may disappear from under us, see the 122 * !list_empty_careful() in handle_userfault(). 123 * 124 * try_to_wake_up() has an implicit smp_mb(), and the 125 * wq->private is read before calling the extern function 126 * "wake_up_state" (which in turns calls try_to_wake_up). 127 */ 128 list_del_init(&wq->entry); 129 } 130 out: 131 return ret; 132 } 133 134 /** 135 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd 136 * context. 137 * @ctx: [in] Pointer to the userfaultfd context. 138 */ 139 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx) 140 { 141 if (!atomic_inc_not_zero(&ctx->refcount)) 142 BUG(); 143 } 144 145 /** 146 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd 147 * context. 148 * @ctx: [in] Pointer to userfaultfd context. 149 * 150 * The userfaultfd context reference must have been previously acquired either 151 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget(). 152 */ 153 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx) 154 { 155 if (atomic_dec_and_test(&ctx->refcount)) { 156 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock)); 157 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh)); 158 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock)); 159 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh)); 160 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock)); 161 VM_BUG_ON(waitqueue_active(&ctx->event_wqh)); 162 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock)); 163 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh)); 164 mmdrop(ctx->mm); 165 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 166 } 167 } 168 169 static inline void msg_init(struct uffd_msg *msg) 170 { 171 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32); 172 /* 173 * Must use memset to zero out the paddings or kernel data is 174 * leaked to userland. 175 */ 176 memset(msg, 0, sizeof(struct uffd_msg)); 177 } 178 179 static inline struct uffd_msg userfault_msg(unsigned long address, 180 unsigned int flags, 181 unsigned long reason, 182 unsigned int features) 183 { 184 struct uffd_msg msg; 185 msg_init(&msg); 186 msg.event = UFFD_EVENT_PAGEFAULT; 187 msg.arg.pagefault.address = address; 188 if (flags & FAULT_FLAG_WRITE) 189 /* 190 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 191 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE 192 * was not set in a UFFD_EVENT_PAGEFAULT, it means it 193 * was a read fault, otherwise if set it means it's 194 * a write fault. 195 */ 196 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE; 197 if (reason & VM_UFFD_WP) 198 /* 199 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the 200 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was 201 * not set in a UFFD_EVENT_PAGEFAULT, it means it was 202 * a missing fault, otherwise if set it means it's a 203 * write protect fault. 204 */ 205 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP; 206 if (features & UFFD_FEATURE_THREAD_ID) 207 msg.arg.pagefault.feat.ptid = task_pid_vnr(current); 208 return msg; 209 } 210 211 #ifdef CONFIG_HUGETLB_PAGE 212 /* 213 * Same functionality as userfaultfd_must_wait below with modifications for 214 * hugepmd ranges. 215 */ 216 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 217 struct vm_area_struct *vma, 218 unsigned long address, 219 unsigned long flags, 220 unsigned long reason) 221 { 222 struct mm_struct *mm = ctx->mm; 223 pte_t *pte; 224 bool ret = true; 225 226 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 227 228 pte = huge_pte_offset(mm, address, vma_mmu_pagesize(vma)); 229 if (!pte) 230 goto out; 231 232 ret = false; 233 234 /* 235 * Lockless access: we're in a wait_event so it's ok if it 236 * changes under us. 237 */ 238 if (huge_pte_none(*pte)) 239 ret = true; 240 if (!huge_pte_write(*pte) && (reason & VM_UFFD_WP)) 241 ret = true; 242 out: 243 return ret; 244 } 245 #else 246 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx, 247 struct vm_area_struct *vma, 248 unsigned long address, 249 unsigned long flags, 250 unsigned long reason) 251 { 252 return false; /* should never get here */ 253 } 254 #endif /* CONFIG_HUGETLB_PAGE */ 255 256 /* 257 * Verify the pagetables are still not ok after having reigstered into 258 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any 259 * userfault that has already been resolved, if userfaultfd_read and 260 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different 261 * threads. 262 */ 263 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx, 264 unsigned long address, 265 unsigned long flags, 266 unsigned long reason) 267 { 268 struct mm_struct *mm = ctx->mm; 269 pgd_t *pgd; 270 p4d_t *p4d; 271 pud_t *pud; 272 pmd_t *pmd, _pmd; 273 pte_t *pte; 274 bool ret = true; 275 276 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem)); 277 278 pgd = pgd_offset(mm, address); 279 if (!pgd_present(*pgd)) 280 goto out; 281 p4d = p4d_offset(pgd, address); 282 if (!p4d_present(*p4d)) 283 goto out; 284 pud = pud_offset(p4d, address); 285 if (!pud_present(*pud)) 286 goto out; 287 pmd = pmd_offset(pud, address); 288 /* 289 * READ_ONCE must function as a barrier with narrower scope 290 * and it must be equivalent to: 291 * _pmd = *pmd; barrier(); 292 * 293 * This is to deal with the instability (as in 294 * pmd_trans_unstable) of the pmd. 295 */ 296 _pmd = READ_ONCE(*pmd); 297 if (pmd_none(_pmd)) 298 goto out; 299 300 ret = false; 301 if (!pmd_present(_pmd)) 302 goto out; 303 304 if (pmd_trans_huge(_pmd)) 305 goto out; 306 307 /* 308 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it 309 * and use the standard pte_offset_map() instead of parsing _pmd. 310 */ 311 pte = pte_offset_map(pmd, address); 312 /* 313 * Lockless access: we're in a wait_event so it's ok if it 314 * changes under us. 315 */ 316 if (pte_none(*pte)) 317 ret = true; 318 pte_unmap(pte); 319 320 out: 321 return ret; 322 } 323 324 /* 325 * The locking rules involved in returning VM_FAULT_RETRY depending on 326 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and 327 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution" 328 * recommendation in __lock_page_or_retry is not an understatement. 329 * 330 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released 331 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is 332 * not set. 333 * 334 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not 335 * set, VM_FAULT_RETRY can still be returned if and only if there are 336 * fatal_signal_pending()s, and the mmap_sem must be released before 337 * returning it. 338 */ 339 int handle_userfault(struct vm_fault *vmf, unsigned long reason) 340 { 341 struct mm_struct *mm = vmf->vma->vm_mm; 342 struct userfaultfd_ctx *ctx; 343 struct userfaultfd_wait_queue uwq; 344 int ret; 345 bool must_wait, return_to_userland; 346 long blocking_state; 347 348 ret = VM_FAULT_SIGBUS; 349 350 /* 351 * We don't do userfault handling for the final child pid update. 352 * 353 * We also don't do userfault handling during 354 * coredumping. hugetlbfs has the special 355 * follow_hugetlb_page() to skip missing pages in the 356 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with 357 * the no_page_table() helper in follow_page_mask(), but the 358 * shmem_vm_ops->fault method is invoked even during 359 * coredumping without mmap_sem and it ends up here. 360 */ 361 if (current->flags & (PF_EXITING|PF_DUMPCORE)) 362 goto out; 363 364 /* 365 * Coredumping runs without mmap_sem so we can only check that 366 * the mmap_sem is held, if PF_DUMPCORE was not set. 367 */ 368 WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem)); 369 370 ctx = vmf->vma->vm_userfaultfd_ctx.ctx; 371 if (!ctx) 372 goto out; 373 374 BUG_ON(ctx->mm != mm); 375 376 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP)); 377 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP)); 378 379 if (ctx->features & UFFD_FEATURE_SIGBUS) 380 goto out; 381 382 /* 383 * If it's already released don't get it. This avoids to loop 384 * in __get_user_pages if userfaultfd_release waits on the 385 * caller of handle_userfault to release the mmap_sem. 386 */ 387 if (unlikely(READ_ONCE(ctx->released))) { 388 /* 389 * Don't return VM_FAULT_SIGBUS in this case, so a non 390 * cooperative manager can close the uffd after the 391 * last UFFDIO_COPY, without risking to trigger an 392 * involuntary SIGBUS if the process was starting the 393 * userfaultfd while the userfaultfd was still armed 394 * (but after the last UFFDIO_COPY). If the uffd 395 * wasn't already closed when the userfault reached 396 * this point, that would normally be solved by 397 * userfaultfd_must_wait returning 'false'. 398 * 399 * If we were to return VM_FAULT_SIGBUS here, the non 400 * cooperative manager would be instead forced to 401 * always call UFFDIO_UNREGISTER before it can safely 402 * close the uffd. 403 */ 404 ret = VM_FAULT_NOPAGE; 405 goto out; 406 } 407 408 /* 409 * Check that we can return VM_FAULT_RETRY. 410 * 411 * NOTE: it should become possible to return VM_FAULT_RETRY 412 * even if FAULT_FLAG_TRIED is set without leading to gup() 413 * -EBUSY failures, if the userfaultfd is to be extended for 414 * VM_UFFD_WP tracking and we intend to arm the userfault 415 * without first stopping userland access to the memory. For 416 * VM_UFFD_MISSING userfaults this is enough for now. 417 */ 418 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) { 419 /* 420 * Validate the invariant that nowait must allow retry 421 * to be sure not to return SIGBUS erroneously on 422 * nowait invocations. 423 */ 424 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT); 425 #ifdef CONFIG_DEBUG_VM 426 if (printk_ratelimit()) { 427 printk(KERN_WARNING 428 "FAULT_FLAG_ALLOW_RETRY missing %x\n", 429 vmf->flags); 430 dump_stack(); 431 } 432 #endif 433 goto out; 434 } 435 436 /* 437 * Handle nowait, not much to do other than tell it to retry 438 * and wait. 439 */ 440 ret = VM_FAULT_RETRY; 441 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 442 goto out; 443 444 /* take the reference before dropping the mmap_sem */ 445 userfaultfd_ctx_get(ctx); 446 447 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function); 448 uwq.wq.private = current; 449 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason, 450 ctx->features); 451 uwq.ctx = ctx; 452 uwq.waken = false; 453 454 return_to_userland = 455 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) == 456 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE); 457 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE : 458 TASK_KILLABLE; 459 460 spin_lock(&ctx->fault_pending_wqh.lock); 461 /* 462 * After the __add_wait_queue the uwq is visible to userland 463 * through poll/read(). 464 */ 465 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq); 466 /* 467 * The smp_mb() after __set_current_state prevents the reads 468 * following the spin_unlock to happen before the list_add in 469 * __add_wait_queue. 470 */ 471 set_current_state(blocking_state); 472 spin_unlock(&ctx->fault_pending_wqh.lock); 473 474 if (!is_vm_hugetlb_page(vmf->vma)) 475 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags, 476 reason); 477 else 478 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma, 479 vmf->address, 480 vmf->flags, reason); 481 up_read(&mm->mmap_sem); 482 483 if (likely(must_wait && !READ_ONCE(ctx->released) && 484 (return_to_userland ? !signal_pending(current) : 485 !fatal_signal_pending(current)))) { 486 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 487 schedule(); 488 ret |= VM_FAULT_MAJOR; 489 490 /* 491 * False wakeups can orginate even from rwsem before 492 * up_read() however userfaults will wait either for a 493 * targeted wakeup on the specific uwq waitqueue from 494 * wake_userfault() or for signals or for uffd 495 * release. 496 */ 497 while (!READ_ONCE(uwq.waken)) { 498 /* 499 * This needs the full smp_store_mb() 500 * guarantee as the state write must be 501 * visible to other CPUs before reading 502 * uwq.waken from other CPUs. 503 */ 504 set_current_state(blocking_state); 505 if (READ_ONCE(uwq.waken) || 506 READ_ONCE(ctx->released) || 507 (return_to_userland ? signal_pending(current) : 508 fatal_signal_pending(current))) 509 break; 510 schedule(); 511 } 512 } 513 514 __set_current_state(TASK_RUNNING); 515 516 if (return_to_userland) { 517 if (signal_pending(current) && 518 !fatal_signal_pending(current)) { 519 /* 520 * If we got a SIGSTOP or SIGCONT and this is 521 * a normal userland page fault, just let 522 * userland return so the signal will be 523 * handled and gdb debugging works. The page 524 * fault code immediately after we return from 525 * this function is going to release the 526 * mmap_sem and it's not depending on it 527 * (unlike gup would if we were not to return 528 * VM_FAULT_RETRY). 529 * 530 * If a fatal signal is pending we still take 531 * the streamlined VM_FAULT_RETRY failure path 532 * and there's no need to retake the mmap_sem 533 * in such case. 534 */ 535 down_read(&mm->mmap_sem); 536 ret = VM_FAULT_NOPAGE; 537 } 538 } 539 540 /* 541 * Here we race with the list_del; list_add in 542 * userfaultfd_ctx_read(), however because we don't ever run 543 * list_del_init() to refile across the two lists, the prev 544 * and next pointers will never point to self. list_add also 545 * would never let any of the two pointers to point to 546 * self. So list_empty_careful won't risk to see both pointers 547 * pointing to self at any time during the list refile. The 548 * only case where list_del_init() is called is the full 549 * removal in the wake function and there we don't re-list_add 550 * and it's fine not to block on the spinlock. The uwq on this 551 * kernel stack can be released after the list_del_init. 552 */ 553 if (!list_empty_careful(&uwq.wq.entry)) { 554 spin_lock(&ctx->fault_pending_wqh.lock); 555 /* 556 * No need of list_del_init(), the uwq on the stack 557 * will be freed shortly anyway. 558 */ 559 list_del(&uwq.wq.entry); 560 spin_unlock(&ctx->fault_pending_wqh.lock); 561 } 562 563 /* 564 * ctx may go away after this if the userfault pseudo fd is 565 * already released. 566 */ 567 userfaultfd_ctx_put(ctx); 568 569 out: 570 return ret; 571 } 572 573 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx, 574 struct userfaultfd_wait_queue *ewq) 575 { 576 struct userfaultfd_ctx *release_new_ctx; 577 578 if (WARN_ON_ONCE(current->flags & PF_EXITING)) 579 goto out; 580 581 ewq->ctx = ctx; 582 init_waitqueue_entry(&ewq->wq, current); 583 release_new_ctx = NULL; 584 585 spin_lock(&ctx->event_wqh.lock); 586 /* 587 * After the __add_wait_queue the uwq is visible to userland 588 * through poll/read(). 589 */ 590 __add_wait_queue(&ctx->event_wqh, &ewq->wq); 591 for (;;) { 592 set_current_state(TASK_KILLABLE); 593 if (ewq->msg.event == 0) 594 break; 595 if (READ_ONCE(ctx->released) || 596 fatal_signal_pending(current)) { 597 /* 598 * &ewq->wq may be queued in fork_event, but 599 * __remove_wait_queue ignores the head 600 * parameter. It would be a problem if it 601 * didn't. 602 */ 603 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 604 if (ewq->msg.event == UFFD_EVENT_FORK) { 605 struct userfaultfd_ctx *new; 606 607 new = (struct userfaultfd_ctx *) 608 (unsigned long) 609 ewq->msg.arg.reserved.reserved1; 610 release_new_ctx = new; 611 } 612 break; 613 } 614 615 spin_unlock(&ctx->event_wqh.lock); 616 617 wake_up_poll(&ctx->fd_wqh, EPOLLIN); 618 schedule(); 619 620 spin_lock(&ctx->event_wqh.lock); 621 } 622 __set_current_state(TASK_RUNNING); 623 spin_unlock(&ctx->event_wqh.lock); 624 625 if (release_new_ctx) { 626 struct vm_area_struct *vma; 627 struct mm_struct *mm = release_new_ctx->mm; 628 629 /* the various vma->vm_userfaultfd_ctx still points to it */ 630 down_write(&mm->mmap_sem); 631 for (vma = mm->mmap; vma; vma = vma->vm_next) 632 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) 633 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 634 up_write(&mm->mmap_sem); 635 636 userfaultfd_ctx_put(release_new_ctx); 637 } 638 639 /* 640 * ctx may go away after this if the userfault pseudo fd is 641 * already released. 642 */ 643 out: 644 userfaultfd_ctx_put(ctx); 645 } 646 647 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx, 648 struct userfaultfd_wait_queue *ewq) 649 { 650 ewq->msg.event = 0; 651 wake_up_locked(&ctx->event_wqh); 652 __remove_wait_queue(&ctx->event_wqh, &ewq->wq); 653 } 654 655 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs) 656 { 657 struct userfaultfd_ctx *ctx = NULL, *octx; 658 struct userfaultfd_fork_ctx *fctx; 659 660 octx = vma->vm_userfaultfd_ctx.ctx; 661 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) { 662 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 663 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING); 664 return 0; 665 } 666 667 list_for_each_entry(fctx, fcs, list) 668 if (fctx->orig == octx) { 669 ctx = fctx->new; 670 break; 671 } 672 673 if (!ctx) { 674 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL); 675 if (!fctx) 676 return -ENOMEM; 677 678 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 679 if (!ctx) { 680 kfree(fctx); 681 return -ENOMEM; 682 } 683 684 atomic_set(&ctx->refcount, 1); 685 ctx->flags = octx->flags; 686 ctx->state = UFFD_STATE_RUNNING; 687 ctx->features = octx->features; 688 ctx->released = false; 689 ctx->mm = vma->vm_mm; 690 mmgrab(ctx->mm); 691 692 userfaultfd_ctx_get(octx); 693 fctx->orig = octx; 694 fctx->new = ctx; 695 list_add_tail(&fctx->list, fcs); 696 } 697 698 vma->vm_userfaultfd_ctx.ctx = ctx; 699 return 0; 700 } 701 702 static void dup_fctx(struct userfaultfd_fork_ctx *fctx) 703 { 704 struct userfaultfd_ctx *ctx = fctx->orig; 705 struct userfaultfd_wait_queue ewq; 706 707 msg_init(&ewq.msg); 708 709 ewq.msg.event = UFFD_EVENT_FORK; 710 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new; 711 712 userfaultfd_event_wait_completion(ctx, &ewq); 713 } 714 715 void dup_userfaultfd_complete(struct list_head *fcs) 716 { 717 struct userfaultfd_fork_ctx *fctx, *n; 718 719 list_for_each_entry_safe(fctx, n, fcs, list) { 720 dup_fctx(fctx); 721 list_del(&fctx->list); 722 kfree(fctx); 723 } 724 } 725 726 void mremap_userfaultfd_prep(struct vm_area_struct *vma, 727 struct vm_userfaultfd_ctx *vm_ctx) 728 { 729 struct userfaultfd_ctx *ctx; 730 731 ctx = vma->vm_userfaultfd_ctx.ctx; 732 if (ctx && (ctx->features & UFFD_FEATURE_EVENT_REMAP)) { 733 vm_ctx->ctx = ctx; 734 userfaultfd_ctx_get(ctx); 735 } 736 } 737 738 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx, 739 unsigned long from, unsigned long to, 740 unsigned long len) 741 { 742 struct userfaultfd_ctx *ctx = vm_ctx->ctx; 743 struct userfaultfd_wait_queue ewq; 744 745 if (!ctx) 746 return; 747 748 if (to & ~PAGE_MASK) { 749 userfaultfd_ctx_put(ctx); 750 return; 751 } 752 753 msg_init(&ewq.msg); 754 755 ewq.msg.event = UFFD_EVENT_REMAP; 756 ewq.msg.arg.remap.from = from; 757 ewq.msg.arg.remap.to = to; 758 ewq.msg.arg.remap.len = len; 759 760 userfaultfd_event_wait_completion(ctx, &ewq); 761 } 762 763 bool userfaultfd_remove(struct vm_area_struct *vma, 764 unsigned long start, unsigned long end) 765 { 766 struct mm_struct *mm = vma->vm_mm; 767 struct userfaultfd_ctx *ctx; 768 struct userfaultfd_wait_queue ewq; 769 770 ctx = vma->vm_userfaultfd_ctx.ctx; 771 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE)) 772 return true; 773 774 userfaultfd_ctx_get(ctx); 775 up_read(&mm->mmap_sem); 776 777 msg_init(&ewq.msg); 778 779 ewq.msg.event = UFFD_EVENT_REMOVE; 780 ewq.msg.arg.remove.start = start; 781 ewq.msg.arg.remove.end = end; 782 783 userfaultfd_event_wait_completion(ctx, &ewq); 784 785 return false; 786 } 787 788 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps, 789 unsigned long start, unsigned long end) 790 { 791 struct userfaultfd_unmap_ctx *unmap_ctx; 792 793 list_for_each_entry(unmap_ctx, unmaps, list) 794 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start && 795 unmap_ctx->end == end) 796 return true; 797 798 return false; 799 } 800 801 int userfaultfd_unmap_prep(struct vm_area_struct *vma, 802 unsigned long start, unsigned long end, 803 struct list_head *unmaps) 804 { 805 for ( ; vma && vma->vm_start < end; vma = vma->vm_next) { 806 struct userfaultfd_unmap_ctx *unmap_ctx; 807 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx; 808 809 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) || 810 has_unmap_ctx(ctx, unmaps, start, end)) 811 continue; 812 813 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL); 814 if (!unmap_ctx) 815 return -ENOMEM; 816 817 userfaultfd_ctx_get(ctx); 818 unmap_ctx->ctx = ctx; 819 unmap_ctx->start = start; 820 unmap_ctx->end = end; 821 list_add_tail(&unmap_ctx->list, unmaps); 822 } 823 824 return 0; 825 } 826 827 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf) 828 { 829 struct userfaultfd_unmap_ctx *ctx, *n; 830 struct userfaultfd_wait_queue ewq; 831 832 list_for_each_entry_safe(ctx, n, uf, list) { 833 msg_init(&ewq.msg); 834 835 ewq.msg.event = UFFD_EVENT_UNMAP; 836 ewq.msg.arg.remove.start = ctx->start; 837 ewq.msg.arg.remove.end = ctx->end; 838 839 userfaultfd_event_wait_completion(ctx->ctx, &ewq); 840 841 list_del(&ctx->list); 842 kfree(ctx); 843 } 844 } 845 846 static int userfaultfd_release(struct inode *inode, struct file *file) 847 { 848 struct userfaultfd_ctx *ctx = file->private_data; 849 struct mm_struct *mm = ctx->mm; 850 struct vm_area_struct *vma, *prev; 851 /* len == 0 means wake all */ 852 struct userfaultfd_wake_range range = { .len = 0, }; 853 unsigned long new_flags; 854 855 WRITE_ONCE(ctx->released, true); 856 857 if (!mmget_not_zero(mm)) 858 goto wakeup; 859 860 /* 861 * Flush page faults out of all CPUs. NOTE: all page faults 862 * must be retried without returning VM_FAULT_SIGBUS if 863 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx 864 * changes while handle_userfault released the mmap_sem. So 865 * it's critical that released is set to true (above), before 866 * taking the mmap_sem for writing. 867 */ 868 down_write(&mm->mmap_sem); 869 prev = NULL; 870 for (vma = mm->mmap; vma; vma = vma->vm_next) { 871 cond_resched(); 872 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^ 873 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 874 if (vma->vm_userfaultfd_ctx.ctx != ctx) { 875 prev = vma; 876 continue; 877 } 878 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 879 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end, 880 new_flags, vma->anon_vma, 881 vma->vm_file, vma->vm_pgoff, 882 vma_policy(vma), 883 NULL_VM_UFFD_CTX); 884 if (prev) 885 vma = prev; 886 else 887 prev = vma; 888 vma->vm_flags = new_flags; 889 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 890 } 891 up_write(&mm->mmap_sem); 892 mmput(mm); 893 wakeup: 894 /* 895 * After no new page faults can wait on this fault_*wqh, flush 896 * the last page faults that may have been already waiting on 897 * the fault_*wqh. 898 */ 899 spin_lock(&ctx->fault_pending_wqh.lock); 900 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range); 901 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range); 902 spin_unlock(&ctx->fault_pending_wqh.lock); 903 904 /* Flush pending events that may still wait on event_wqh */ 905 wake_up_all(&ctx->event_wqh); 906 907 wake_up_poll(&ctx->fd_wqh, EPOLLHUP); 908 userfaultfd_ctx_put(ctx); 909 return 0; 910 } 911 912 /* fault_pending_wqh.lock must be hold by the caller */ 913 static inline struct userfaultfd_wait_queue *find_userfault_in( 914 wait_queue_head_t *wqh) 915 { 916 wait_queue_entry_t *wq; 917 struct userfaultfd_wait_queue *uwq; 918 919 VM_BUG_ON(!spin_is_locked(&wqh->lock)); 920 921 uwq = NULL; 922 if (!waitqueue_active(wqh)) 923 goto out; 924 /* walk in reverse to provide FIFO behavior to read userfaults */ 925 wq = list_last_entry(&wqh->head, typeof(*wq), entry); 926 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 927 out: 928 return uwq; 929 } 930 931 static inline struct userfaultfd_wait_queue *find_userfault( 932 struct userfaultfd_ctx *ctx) 933 { 934 return find_userfault_in(&ctx->fault_pending_wqh); 935 } 936 937 static inline struct userfaultfd_wait_queue *find_userfault_evt( 938 struct userfaultfd_ctx *ctx) 939 { 940 return find_userfault_in(&ctx->event_wqh); 941 } 942 943 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait) 944 { 945 struct userfaultfd_ctx *ctx = file->private_data; 946 __poll_t ret; 947 948 poll_wait(file, &ctx->fd_wqh, wait); 949 950 switch (ctx->state) { 951 case UFFD_STATE_WAIT_API: 952 return EPOLLERR; 953 case UFFD_STATE_RUNNING: 954 /* 955 * poll() never guarantees that read won't block. 956 * userfaults can be waken before they're read(). 957 */ 958 if (unlikely(!(file->f_flags & O_NONBLOCK))) 959 return EPOLLERR; 960 /* 961 * lockless access to see if there are pending faults 962 * __pollwait last action is the add_wait_queue but 963 * the spin_unlock would allow the waitqueue_active to 964 * pass above the actual list_add inside 965 * add_wait_queue critical section. So use a full 966 * memory barrier to serialize the list_add write of 967 * add_wait_queue() with the waitqueue_active read 968 * below. 969 */ 970 ret = 0; 971 smp_mb(); 972 if (waitqueue_active(&ctx->fault_pending_wqh)) 973 ret = EPOLLIN; 974 else if (waitqueue_active(&ctx->event_wqh)) 975 ret = EPOLLIN; 976 977 return ret; 978 default: 979 WARN_ON_ONCE(1); 980 return EPOLLERR; 981 } 982 } 983 984 static const struct file_operations userfaultfd_fops; 985 986 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx, 987 struct userfaultfd_ctx *new, 988 struct uffd_msg *msg) 989 { 990 int fd; 991 992 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new, 993 O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS)); 994 if (fd < 0) 995 return fd; 996 997 msg->arg.reserved.reserved1 = 0; 998 msg->arg.fork.ufd = fd; 999 return 0; 1000 } 1001 1002 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait, 1003 struct uffd_msg *msg) 1004 { 1005 ssize_t ret; 1006 DECLARE_WAITQUEUE(wait, current); 1007 struct userfaultfd_wait_queue *uwq; 1008 /* 1009 * Handling fork event requires sleeping operations, so 1010 * we drop the event_wqh lock, then do these ops, then 1011 * lock it back and wake up the waiter. While the lock is 1012 * dropped the ewq may go away so we keep track of it 1013 * carefully. 1014 */ 1015 LIST_HEAD(fork_event); 1016 struct userfaultfd_ctx *fork_nctx = NULL; 1017 1018 /* always take the fd_wqh lock before the fault_pending_wqh lock */ 1019 spin_lock(&ctx->fd_wqh.lock); 1020 __add_wait_queue(&ctx->fd_wqh, &wait); 1021 for (;;) { 1022 set_current_state(TASK_INTERRUPTIBLE); 1023 spin_lock(&ctx->fault_pending_wqh.lock); 1024 uwq = find_userfault(ctx); 1025 if (uwq) { 1026 /* 1027 * Use a seqcount to repeat the lockless check 1028 * in wake_userfault() to avoid missing 1029 * wakeups because during the refile both 1030 * waitqueue could become empty if this is the 1031 * only userfault. 1032 */ 1033 write_seqcount_begin(&ctx->refile_seq); 1034 1035 /* 1036 * The fault_pending_wqh.lock prevents the uwq 1037 * to disappear from under us. 1038 * 1039 * Refile this userfault from 1040 * fault_pending_wqh to fault_wqh, it's not 1041 * pending anymore after we read it. 1042 * 1043 * Use list_del() by hand (as 1044 * userfaultfd_wake_function also uses 1045 * list_del_init() by hand) to be sure nobody 1046 * changes __remove_wait_queue() to use 1047 * list_del_init() in turn breaking the 1048 * !list_empty_careful() check in 1049 * handle_userfault(). The uwq->wq.head list 1050 * must never be empty at any time during the 1051 * refile, or the waitqueue could disappear 1052 * from under us. The "wait_queue_head_t" 1053 * parameter of __remove_wait_queue() is unused 1054 * anyway. 1055 */ 1056 list_del(&uwq->wq.entry); 1057 __add_wait_queue(&ctx->fault_wqh, &uwq->wq); 1058 1059 write_seqcount_end(&ctx->refile_seq); 1060 1061 /* careful to always initialize msg if ret == 0 */ 1062 *msg = uwq->msg; 1063 spin_unlock(&ctx->fault_pending_wqh.lock); 1064 ret = 0; 1065 break; 1066 } 1067 spin_unlock(&ctx->fault_pending_wqh.lock); 1068 1069 spin_lock(&ctx->event_wqh.lock); 1070 uwq = find_userfault_evt(ctx); 1071 if (uwq) { 1072 *msg = uwq->msg; 1073 1074 if (uwq->msg.event == UFFD_EVENT_FORK) { 1075 fork_nctx = (struct userfaultfd_ctx *) 1076 (unsigned long) 1077 uwq->msg.arg.reserved.reserved1; 1078 list_move(&uwq->wq.entry, &fork_event); 1079 /* 1080 * fork_nctx can be freed as soon as 1081 * we drop the lock, unless we take a 1082 * reference on it. 1083 */ 1084 userfaultfd_ctx_get(fork_nctx); 1085 spin_unlock(&ctx->event_wqh.lock); 1086 ret = 0; 1087 break; 1088 } 1089 1090 userfaultfd_event_complete(ctx, uwq); 1091 spin_unlock(&ctx->event_wqh.lock); 1092 ret = 0; 1093 break; 1094 } 1095 spin_unlock(&ctx->event_wqh.lock); 1096 1097 if (signal_pending(current)) { 1098 ret = -ERESTARTSYS; 1099 break; 1100 } 1101 if (no_wait) { 1102 ret = -EAGAIN; 1103 break; 1104 } 1105 spin_unlock(&ctx->fd_wqh.lock); 1106 schedule(); 1107 spin_lock(&ctx->fd_wqh.lock); 1108 } 1109 __remove_wait_queue(&ctx->fd_wqh, &wait); 1110 __set_current_state(TASK_RUNNING); 1111 spin_unlock(&ctx->fd_wqh.lock); 1112 1113 if (!ret && msg->event == UFFD_EVENT_FORK) { 1114 ret = resolve_userfault_fork(ctx, fork_nctx, msg); 1115 spin_lock(&ctx->event_wqh.lock); 1116 if (!list_empty(&fork_event)) { 1117 /* 1118 * The fork thread didn't abort, so we can 1119 * drop the temporary refcount. 1120 */ 1121 userfaultfd_ctx_put(fork_nctx); 1122 1123 uwq = list_first_entry(&fork_event, 1124 typeof(*uwq), 1125 wq.entry); 1126 /* 1127 * If fork_event list wasn't empty and in turn 1128 * the event wasn't already released by fork 1129 * (the event is allocated on fork kernel 1130 * stack), put the event back to its place in 1131 * the event_wq. fork_event head will be freed 1132 * as soon as we return so the event cannot 1133 * stay queued there no matter the current 1134 * "ret" value. 1135 */ 1136 list_del(&uwq->wq.entry); 1137 __add_wait_queue(&ctx->event_wqh, &uwq->wq); 1138 1139 /* 1140 * Leave the event in the waitqueue and report 1141 * error to userland if we failed to resolve 1142 * the userfault fork. 1143 */ 1144 if (likely(!ret)) 1145 userfaultfd_event_complete(ctx, uwq); 1146 } else { 1147 /* 1148 * Here the fork thread aborted and the 1149 * refcount from the fork thread on fork_nctx 1150 * has already been released. We still hold 1151 * the reference we took before releasing the 1152 * lock above. If resolve_userfault_fork 1153 * failed we've to drop it because the 1154 * fork_nctx has to be freed in such case. If 1155 * it succeeded we'll hold it because the new 1156 * uffd references it. 1157 */ 1158 if (ret) 1159 userfaultfd_ctx_put(fork_nctx); 1160 } 1161 spin_unlock(&ctx->event_wqh.lock); 1162 } 1163 1164 return ret; 1165 } 1166 1167 static ssize_t userfaultfd_read(struct file *file, char __user *buf, 1168 size_t count, loff_t *ppos) 1169 { 1170 struct userfaultfd_ctx *ctx = file->private_data; 1171 ssize_t _ret, ret = 0; 1172 struct uffd_msg msg; 1173 int no_wait = file->f_flags & O_NONBLOCK; 1174 1175 if (ctx->state == UFFD_STATE_WAIT_API) 1176 return -EINVAL; 1177 1178 for (;;) { 1179 if (count < sizeof(msg)) 1180 return ret ? ret : -EINVAL; 1181 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg); 1182 if (_ret < 0) 1183 return ret ? ret : _ret; 1184 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg))) 1185 return ret ? ret : -EFAULT; 1186 ret += sizeof(msg); 1187 buf += sizeof(msg); 1188 count -= sizeof(msg); 1189 /* 1190 * Allow to read more than one fault at time but only 1191 * block if waiting for the very first one. 1192 */ 1193 no_wait = O_NONBLOCK; 1194 } 1195 } 1196 1197 static void __wake_userfault(struct userfaultfd_ctx *ctx, 1198 struct userfaultfd_wake_range *range) 1199 { 1200 spin_lock(&ctx->fault_pending_wqh.lock); 1201 /* wake all in the range and autoremove */ 1202 if (waitqueue_active(&ctx->fault_pending_wqh)) 1203 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, 1204 range); 1205 if (waitqueue_active(&ctx->fault_wqh)) 1206 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range); 1207 spin_unlock(&ctx->fault_pending_wqh.lock); 1208 } 1209 1210 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx, 1211 struct userfaultfd_wake_range *range) 1212 { 1213 unsigned seq; 1214 bool need_wakeup; 1215 1216 /* 1217 * To be sure waitqueue_active() is not reordered by the CPU 1218 * before the pagetable update, use an explicit SMP memory 1219 * barrier here. PT lock release or up_read(mmap_sem) still 1220 * have release semantics that can allow the 1221 * waitqueue_active() to be reordered before the pte update. 1222 */ 1223 smp_mb(); 1224 1225 /* 1226 * Use waitqueue_active because it's very frequent to 1227 * change the address space atomically even if there are no 1228 * userfaults yet. So we take the spinlock only when we're 1229 * sure we've userfaults to wake. 1230 */ 1231 do { 1232 seq = read_seqcount_begin(&ctx->refile_seq); 1233 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) || 1234 waitqueue_active(&ctx->fault_wqh); 1235 cond_resched(); 1236 } while (read_seqcount_retry(&ctx->refile_seq, seq)); 1237 if (need_wakeup) 1238 __wake_userfault(ctx, range); 1239 } 1240 1241 static __always_inline int validate_range(struct mm_struct *mm, 1242 __u64 start, __u64 len) 1243 { 1244 __u64 task_size = mm->task_size; 1245 1246 if (start & ~PAGE_MASK) 1247 return -EINVAL; 1248 if (len & ~PAGE_MASK) 1249 return -EINVAL; 1250 if (!len) 1251 return -EINVAL; 1252 if (start < mmap_min_addr) 1253 return -EINVAL; 1254 if (start >= task_size) 1255 return -EINVAL; 1256 if (len > task_size - start) 1257 return -EINVAL; 1258 return 0; 1259 } 1260 1261 static inline bool vma_can_userfault(struct vm_area_struct *vma) 1262 { 1263 return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) || 1264 vma_is_shmem(vma); 1265 } 1266 1267 static int userfaultfd_register(struct userfaultfd_ctx *ctx, 1268 unsigned long arg) 1269 { 1270 struct mm_struct *mm = ctx->mm; 1271 struct vm_area_struct *vma, *prev, *cur; 1272 int ret; 1273 struct uffdio_register uffdio_register; 1274 struct uffdio_register __user *user_uffdio_register; 1275 unsigned long vm_flags, new_flags; 1276 bool found; 1277 bool basic_ioctls; 1278 unsigned long start, end, vma_end; 1279 1280 user_uffdio_register = (struct uffdio_register __user *) arg; 1281 1282 ret = -EFAULT; 1283 if (copy_from_user(&uffdio_register, user_uffdio_register, 1284 sizeof(uffdio_register)-sizeof(__u64))) 1285 goto out; 1286 1287 ret = -EINVAL; 1288 if (!uffdio_register.mode) 1289 goto out; 1290 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING| 1291 UFFDIO_REGISTER_MODE_WP)) 1292 goto out; 1293 vm_flags = 0; 1294 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING) 1295 vm_flags |= VM_UFFD_MISSING; 1296 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) { 1297 vm_flags |= VM_UFFD_WP; 1298 /* 1299 * FIXME: remove the below error constraint by 1300 * implementing the wprotect tracking mode. 1301 */ 1302 ret = -EINVAL; 1303 goto out; 1304 } 1305 1306 ret = validate_range(mm, uffdio_register.range.start, 1307 uffdio_register.range.len); 1308 if (ret) 1309 goto out; 1310 1311 start = uffdio_register.range.start; 1312 end = start + uffdio_register.range.len; 1313 1314 ret = -ENOMEM; 1315 if (!mmget_not_zero(mm)) 1316 goto out; 1317 1318 down_write(&mm->mmap_sem); 1319 vma = find_vma_prev(mm, start, &prev); 1320 if (!vma) 1321 goto out_unlock; 1322 1323 /* check that there's at least one vma in the range */ 1324 ret = -EINVAL; 1325 if (vma->vm_start >= end) 1326 goto out_unlock; 1327 1328 /* 1329 * If the first vma contains huge pages, make sure start address 1330 * is aligned to huge page size. 1331 */ 1332 if (is_vm_hugetlb_page(vma)) { 1333 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1334 1335 if (start & (vma_hpagesize - 1)) 1336 goto out_unlock; 1337 } 1338 1339 /* 1340 * Search for not compatible vmas. 1341 */ 1342 found = false; 1343 basic_ioctls = false; 1344 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1345 cond_resched(); 1346 1347 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1348 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1349 1350 /* check not compatible vmas */ 1351 ret = -EINVAL; 1352 if (!vma_can_userfault(cur)) 1353 goto out_unlock; 1354 /* 1355 * If this vma contains ending address, and huge pages 1356 * check alignment. 1357 */ 1358 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end && 1359 end > cur->vm_start) { 1360 unsigned long vma_hpagesize = vma_kernel_pagesize(cur); 1361 1362 ret = -EINVAL; 1363 1364 if (end & (vma_hpagesize - 1)) 1365 goto out_unlock; 1366 } 1367 1368 /* 1369 * Check that this vma isn't already owned by a 1370 * different userfaultfd. We can't allow more than one 1371 * userfaultfd to own a single vma simultaneously or we 1372 * wouldn't know which one to deliver the userfaults to. 1373 */ 1374 ret = -EBUSY; 1375 if (cur->vm_userfaultfd_ctx.ctx && 1376 cur->vm_userfaultfd_ctx.ctx != ctx) 1377 goto out_unlock; 1378 1379 /* 1380 * Note vmas containing huge pages 1381 */ 1382 if (is_vm_hugetlb_page(cur)) 1383 basic_ioctls = true; 1384 1385 found = true; 1386 } 1387 BUG_ON(!found); 1388 1389 if (vma->vm_start < start) 1390 prev = vma; 1391 1392 ret = 0; 1393 do { 1394 cond_resched(); 1395 1396 BUG_ON(!vma_can_userfault(vma)); 1397 BUG_ON(vma->vm_userfaultfd_ctx.ctx && 1398 vma->vm_userfaultfd_ctx.ctx != ctx); 1399 1400 /* 1401 * Nothing to do: this vma is already registered into this 1402 * userfaultfd and with the right tracking mode too. 1403 */ 1404 if (vma->vm_userfaultfd_ctx.ctx == ctx && 1405 (vma->vm_flags & vm_flags) == vm_flags) 1406 goto skip; 1407 1408 if (vma->vm_start > start) 1409 start = vma->vm_start; 1410 vma_end = min(end, vma->vm_end); 1411 1412 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags; 1413 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1414 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1415 vma_policy(vma), 1416 ((struct vm_userfaultfd_ctx){ ctx })); 1417 if (prev) { 1418 vma = prev; 1419 goto next; 1420 } 1421 if (vma->vm_start < start) { 1422 ret = split_vma(mm, vma, start, 1); 1423 if (ret) 1424 break; 1425 } 1426 if (vma->vm_end > end) { 1427 ret = split_vma(mm, vma, end, 0); 1428 if (ret) 1429 break; 1430 } 1431 next: 1432 /* 1433 * In the vma_merge() successful mprotect-like case 8: 1434 * the next vma was merged into the current one and 1435 * the current one has not been updated yet. 1436 */ 1437 vma->vm_flags = new_flags; 1438 vma->vm_userfaultfd_ctx.ctx = ctx; 1439 1440 skip: 1441 prev = vma; 1442 start = vma->vm_end; 1443 vma = vma->vm_next; 1444 } while (vma && vma->vm_start < end); 1445 out_unlock: 1446 up_write(&mm->mmap_sem); 1447 mmput(mm); 1448 if (!ret) { 1449 /* 1450 * Now that we scanned all vmas we can already tell 1451 * userland which ioctls methods are guaranteed to 1452 * succeed on this range. 1453 */ 1454 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC : 1455 UFFD_API_RANGE_IOCTLS, 1456 &user_uffdio_register->ioctls)) 1457 ret = -EFAULT; 1458 } 1459 out: 1460 return ret; 1461 } 1462 1463 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx, 1464 unsigned long arg) 1465 { 1466 struct mm_struct *mm = ctx->mm; 1467 struct vm_area_struct *vma, *prev, *cur; 1468 int ret; 1469 struct uffdio_range uffdio_unregister; 1470 unsigned long new_flags; 1471 bool found; 1472 unsigned long start, end, vma_end; 1473 const void __user *buf = (void __user *)arg; 1474 1475 ret = -EFAULT; 1476 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister))) 1477 goto out; 1478 1479 ret = validate_range(mm, uffdio_unregister.start, 1480 uffdio_unregister.len); 1481 if (ret) 1482 goto out; 1483 1484 start = uffdio_unregister.start; 1485 end = start + uffdio_unregister.len; 1486 1487 ret = -ENOMEM; 1488 if (!mmget_not_zero(mm)) 1489 goto out; 1490 1491 down_write(&mm->mmap_sem); 1492 vma = find_vma_prev(mm, start, &prev); 1493 if (!vma) 1494 goto out_unlock; 1495 1496 /* check that there's at least one vma in the range */ 1497 ret = -EINVAL; 1498 if (vma->vm_start >= end) 1499 goto out_unlock; 1500 1501 /* 1502 * If the first vma contains huge pages, make sure start address 1503 * is aligned to huge page size. 1504 */ 1505 if (is_vm_hugetlb_page(vma)) { 1506 unsigned long vma_hpagesize = vma_kernel_pagesize(vma); 1507 1508 if (start & (vma_hpagesize - 1)) 1509 goto out_unlock; 1510 } 1511 1512 /* 1513 * Search for not compatible vmas. 1514 */ 1515 found = false; 1516 ret = -EINVAL; 1517 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) { 1518 cond_resched(); 1519 1520 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^ 1521 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP))); 1522 1523 /* 1524 * Check not compatible vmas, not strictly required 1525 * here as not compatible vmas cannot have an 1526 * userfaultfd_ctx registered on them, but this 1527 * provides for more strict behavior to notice 1528 * unregistration errors. 1529 */ 1530 if (!vma_can_userfault(cur)) 1531 goto out_unlock; 1532 1533 found = true; 1534 } 1535 BUG_ON(!found); 1536 1537 if (vma->vm_start < start) 1538 prev = vma; 1539 1540 ret = 0; 1541 do { 1542 cond_resched(); 1543 1544 BUG_ON(!vma_can_userfault(vma)); 1545 1546 /* 1547 * Nothing to do: this vma is already registered into this 1548 * userfaultfd and with the right tracking mode too. 1549 */ 1550 if (!vma->vm_userfaultfd_ctx.ctx) 1551 goto skip; 1552 1553 if (vma->vm_start > start) 1554 start = vma->vm_start; 1555 vma_end = min(end, vma->vm_end); 1556 1557 if (userfaultfd_missing(vma)) { 1558 /* 1559 * Wake any concurrent pending userfault while 1560 * we unregister, so they will not hang 1561 * permanently and it avoids userland to call 1562 * UFFDIO_WAKE explicitly. 1563 */ 1564 struct userfaultfd_wake_range range; 1565 range.start = start; 1566 range.len = vma_end - start; 1567 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range); 1568 } 1569 1570 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP); 1571 prev = vma_merge(mm, prev, start, vma_end, new_flags, 1572 vma->anon_vma, vma->vm_file, vma->vm_pgoff, 1573 vma_policy(vma), 1574 NULL_VM_UFFD_CTX); 1575 if (prev) { 1576 vma = prev; 1577 goto next; 1578 } 1579 if (vma->vm_start < start) { 1580 ret = split_vma(mm, vma, start, 1); 1581 if (ret) 1582 break; 1583 } 1584 if (vma->vm_end > end) { 1585 ret = split_vma(mm, vma, end, 0); 1586 if (ret) 1587 break; 1588 } 1589 next: 1590 /* 1591 * In the vma_merge() successful mprotect-like case 8: 1592 * the next vma was merged into the current one and 1593 * the current one has not been updated yet. 1594 */ 1595 vma->vm_flags = new_flags; 1596 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX; 1597 1598 skip: 1599 prev = vma; 1600 start = vma->vm_end; 1601 vma = vma->vm_next; 1602 } while (vma && vma->vm_start < end); 1603 out_unlock: 1604 up_write(&mm->mmap_sem); 1605 mmput(mm); 1606 out: 1607 return ret; 1608 } 1609 1610 /* 1611 * userfaultfd_wake may be used in combination with the 1612 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches. 1613 */ 1614 static int userfaultfd_wake(struct userfaultfd_ctx *ctx, 1615 unsigned long arg) 1616 { 1617 int ret; 1618 struct uffdio_range uffdio_wake; 1619 struct userfaultfd_wake_range range; 1620 const void __user *buf = (void __user *)arg; 1621 1622 ret = -EFAULT; 1623 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake))) 1624 goto out; 1625 1626 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len); 1627 if (ret) 1628 goto out; 1629 1630 range.start = uffdio_wake.start; 1631 range.len = uffdio_wake.len; 1632 1633 /* 1634 * len == 0 means wake all and we don't want to wake all here, 1635 * so check it again to be sure. 1636 */ 1637 VM_BUG_ON(!range.len); 1638 1639 wake_userfault(ctx, &range); 1640 ret = 0; 1641 1642 out: 1643 return ret; 1644 } 1645 1646 static int userfaultfd_copy(struct userfaultfd_ctx *ctx, 1647 unsigned long arg) 1648 { 1649 __s64 ret; 1650 struct uffdio_copy uffdio_copy; 1651 struct uffdio_copy __user *user_uffdio_copy; 1652 struct userfaultfd_wake_range range; 1653 1654 user_uffdio_copy = (struct uffdio_copy __user *) arg; 1655 1656 ret = -EFAULT; 1657 if (copy_from_user(&uffdio_copy, user_uffdio_copy, 1658 /* don't copy "copy" last field */ 1659 sizeof(uffdio_copy)-sizeof(__s64))) 1660 goto out; 1661 1662 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len); 1663 if (ret) 1664 goto out; 1665 /* 1666 * double check for wraparound just in case. copy_from_user() 1667 * will later check uffdio_copy.src + uffdio_copy.len to fit 1668 * in the userland range. 1669 */ 1670 ret = -EINVAL; 1671 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src) 1672 goto out; 1673 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE) 1674 goto out; 1675 if (mmget_not_zero(ctx->mm)) { 1676 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src, 1677 uffdio_copy.len); 1678 mmput(ctx->mm); 1679 } else { 1680 return -ESRCH; 1681 } 1682 if (unlikely(put_user(ret, &user_uffdio_copy->copy))) 1683 return -EFAULT; 1684 if (ret < 0) 1685 goto out; 1686 BUG_ON(!ret); 1687 /* len == 0 would wake all */ 1688 range.len = ret; 1689 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) { 1690 range.start = uffdio_copy.dst; 1691 wake_userfault(ctx, &range); 1692 } 1693 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN; 1694 out: 1695 return ret; 1696 } 1697 1698 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx, 1699 unsigned long arg) 1700 { 1701 __s64 ret; 1702 struct uffdio_zeropage uffdio_zeropage; 1703 struct uffdio_zeropage __user *user_uffdio_zeropage; 1704 struct userfaultfd_wake_range range; 1705 1706 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg; 1707 1708 ret = -EFAULT; 1709 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage, 1710 /* don't copy "zeropage" last field */ 1711 sizeof(uffdio_zeropage)-sizeof(__s64))) 1712 goto out; 1713 1714 ret = validate_range(ctx->mm, uffdio_zeropage.range.start, 1715 uffdio_zeropage.range.len); 1716 if (ret) 1717 goto out; 1718 ret = -EINVAL; 1719 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE) 1720 goto out; 1721 1722 if (mmget_not_zero(ctx->mm)) { 1723 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start, 1724 uffdio_zeropage.range.len); 1725 mmput(ctx->mm); 1726 } else { 1727 return -ESRCH; 1728 } 1729 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage))) 1730 return -EFAULT; 1731 if (ret < 0) 1732 goto out; 1733 /* len == 0 would wake all */ 1734 BUG_ON(!ret); 1735 range.len = ret; 1736 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) { 1737 range.start = uffdio_zeropage.range.start; 1738 wake_userfault(ctx, &range); 1739 } 1740 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN; 1741 out: 1742 return ret; 1743 } 1744 1745 static inline unsigned int uffd_ctx_features(__u64 user_features) 1746 { 1747 /* 1748 * For the current set of features the bits just coincide 1749 */ 1750 return (unsigned int)user_features; 1751 } 1752 1753 /* 1754 * userland asks for a certain API version and we return which bits 1755 * and ioctl commands are implemented in this kernel for such API 1756 * version or -EINVAL if unknown. 1757 */ 1758 static int userfaultfd_api(struct userfaultfd_ctx *ctx, 1759 unsigned long arg) 1760 { 1761 struct uffdio_api uffdio_api; 1762 void __user *buf = (void __user *)arg; 1763 int ret; 1764 __u64 features; 1765 1766 ret = -EINVAL; 1767 if (ctx->state != UFFD_STATE_WAIT_API) 1768 goto out; 1769 ret = -EFAULT; 1770 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api))) 1771 goto out; 1772 features = uffdio_api.features; 1773 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) { 1774 memset(&uffdio_api, 0, sizeof(uffdio_api)); 1775 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1776 goto out; 1777 ret = -EINVAL; 1778 goto out; 1779 } 1780 /* report all available features and ioctls to userland */ 1781 uffdio_api.features = UFFD_API_FEATURES; 1782 uffdio_api.ioctls = UFFD_API_IOCTLS; 1783 ret = -EFAULT; 1784 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api))) 1785 goto out; 1786 ctx->state = UFFD_STATE_RUNNING; 1787 /* only enable the requested features for this uffd context */ 1788 ctx->features = uffd_ctx_features(features); 1789 ret = 0; 1790 out: 1791 return ret; 1792 } 1793 1794 static long userfaultfd_ioctl(struct file *file, unsigned cmd, 1795 unsigned long arg) 1796 { 1797 int ret = -EINVAL; 1798 struct userfaultfd_ctx *ctx = file->private_data; 1799 1800 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API) 1801 return -EINVAL; 1802 1803 switch(cmd) { 1804 case UFFDIO_API: 1805 ret = userfaultfd_api(ctx, arg); 1806 break; 1807 case UFFDIO_REGISTER: 1808 ret = userfaultfd_register(ctx, arg); 1809 break; 1810 case UFFDIO_UNREGISTER: 1811 ret = userfaultfd_unregister(ctx, arg); 1812 break; 1813 case UFFDIO_WAKE: 1814 ret = userfaultfd_wake(ctx, arg); 1815 break; 1816 case UFFDIO_COPY: 1817 ret = userfaultfd_copy(ctx, arg); 1818 break; 1819 case UFFDIO_ZEROPAGE: 1820 ret = userfaultfd_zeropage(ctx, arg); 1821 break; 1822 } 1823 return ret; 1824 } 1825 1826 #ifdef CONFIG_PROC_FS 1827 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f) 1828 { 1829 struct userfaultfd_ctx *ctx = f->private_data; 1830 wait_queue_entry_t *wq; 1831 struct userfaultfd_wait_queue *uwq; 1832 unsigned long pending = 0, total = 0; 1833 1834 spin_lock(&ctx->fault_pending_wqh.lock); 1835 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) { 1836 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 1837 pending++; 1838 total++; 1839 } 1840 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) { 1841 uwq = container_of(wq, struct userfaultfd_wait_queue, wq); 1842 total++; 1843 } 1844 spin_unlock(&ctx->fault_pending_wqh.lock); 1845 1846 /* 1847 * If more protocols will be added, there will be all shown 1848 * separated by a space. Like this: 1849 * protocols: aa:... bb:... 1850 */ 1851 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n", 1852 pending, total, UFFD_API, ctx->features, 1853 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS); 1854 } 1855 #endif 1856 1857 static const struct file_operations userfaultfd_fops = { 1858 #ifdef CONFIG_PROC_FS 1859 .show_fdinfo = userfaultfd_show_fdinfo, 1860 #endif 1861 .release = userfaultfd_release, 1862 .poll = userfaultfd_poll, 1863 .read = userfaultfd_read, 1864 .unlocked_ioctl = userfaultfd_ioctl, 1865 .compat_ioctl = userfaultfd_ioctl, 1866 .llseek = noop_llseek, 1867 }; 1868 1869 static void init_once_userfaultfd_ctx(void *mem) 1870 { 1871 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem; 1872 1873 init_waitqueue_head(&ctx->fault_pending_wqh); 1874 init_waitqueue_head(&ctx->fault_wqh); 1875 init_waitqueue_head(&ctx->event_wqh); 1876 init_waitqueue_head(&ctx->fd_wqh); 1877 seqcount_init(&ctx->refile_seq); 1878 } 1879 1880 SYSCALL_DEFINE1(userfaultfd, int, flags) 1881 { 1882 struct userfaultfd_ctx *ctx; 1883 int fd; 1884 1885 BUG_ON(!current->mm); 1886 1887 /* Check the UFFD_* constants for consistency. */ 1888 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC); 1889 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK); 1890 1891 if (flags & ~UFFD_SHARED_FCNTL_FLAGS) 1892 return -EINVAL; 1893 1894 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL); 1895 if (!ctx) 1896 return -ENOMEM; 1897 1898 atomic_set(&ctx->refcount, 1); 1899 ctx->flags = flags; 1900 ctx->features = 0; 1901 ctx->state = UFFD_STATE_WAIT_API; 1902 ctx->released = false; 1903 ctx->mm = current->mm; 1904 /* prevent the mm struct to be freed */ 1905 mmgrab(ctx->mm); 1906 1907 fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx, 1908 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS)); 1909 if (fd < 0) { 1910 mmdrop(ctx->mm); 1911 kmem_cache_free(userfaultfd_ctx_cachep, ctx); 1912 } 1913 return fd; 1914 } 1915 1916 static int __init userfaultfd_init(void) 1917 { 1918 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache", 1919 sizeof(struct userfaultfd_ctx), 1920 0, 1921 SLAB_HWCACHE_ALIGN|SLAB_PANIC, 1922 init_once_userfaultfd_ctx); 1923 return 0; 1924 } 1925 __initcall(userfaultfd_init); 1926