1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ufs/inode.c 4 * 5 * Copyright (C) 1998 6 * Daniel Pirkl <daniel.pirkl@email.cz> 7 * Charles University, Faculty of Mathematics and Physics 8 * 9 * from 10 * 11 * linux/fs/ext2/inode.c 12 * 13 * Copyright (C) 1992, 1993, 1994, 1995 14 * Remy Card (card@masi.ibp.fr) 15 * Laboratoire MASI - Institut Blaise Pascal 16 * Universite Pierre et Marie Curie (Paris VI) 17 * 18 * from 19 * 20 * linux/fs/minix/inode.c 21 * 22 * Copyright (C) 1991, 1992 Linus Torvalds 23 * 24 * Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993 25 * Big-endian to little-endian byte-swapping/bitmaps by 26 * David S. Miller (davem@caip.rutgers.edu), 1995 27 */ 28 29 #include <linux/uaccess.h> 30 31 #include <linux/errno.h> 32 #include <linux/fs.h> 33 #include <linux/time.h> 34 #include <linux/stat.h> 35 #include <linux/string.h> 36 #include <linux/mm.h> 37 #include <linux/buffer_head.h> 38 #include <linux/writeback.h> 39 40 #include "ufs_fs.h" 41 #include "ufs.h" 42 #include "swab.h" 43 #include "util.h" 44 45 static int ufs_block_to_path(struct inode *inode, sector_t i_block, unsigned offsets[4]) 46 { 47 struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi; 48 int ptrs = uspi->s_apb; 49 int ptrs_bits = uspi->s_apbshift; 50 const long direct_blocks = UFS_NDADDR, 51 indirect_blocks = ptrs, 52 double_blocks = (1 << (ptrs_bits * 2)); 53 int n = 0; 54 55 56 UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks); 57 if (i_block < direct_blocks) { 58 offsets[n++] = i_block; 59 } else if ((i_block -= direct_blocks) < indirect_blocks) { 60 offsets[n++] = UFS_IND_BLOCK; 61 offsets[n++] = i_block; 62 } else if ((i_block -= indirect_blocks) < double_blocks) { 63 offsets[n++] = UFS_DIND_BLOCK; 64 offsets[n++] = i_block >> ptrs_bits; 65 offsets[n++] = i_block & (ptrs - 1); 66 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 67 offsets[n++] = UFS_TIND_BLOCK; 68 offsets[n++] = i_block >> (ptrs_bits * 2); 69 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 70 offsets[n++] = i_block & (ptrs - 1); 71 } else { 72 ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big"); 73 } 74 return n; 75 } 76 77 typedef struct { 78 void *p; 79 union { 80 __fs32 key32; 81 __fs64 key64; 82 }; 83 struct buffer_head *bh; 84 } Indirect; 85 86 static inline int grow_chain32(struct ufs_inode_info *ufsi, 87 struct buffer_head *bh, __fs32 *v, 88 Indirect *from, Indirect *to) 89 { 90 Indirect *p; 91 unsigned seq; 92 to->bh = bh; 93 do { 94 seq = read_seqbegin(&ufsi->meta_lock); 95 to->key32 = *(__fs32 *)(to->p = v); 96 for (p = from; p <= to && p->key32 == *(__fs32 *)p->p; p++) 97 ; 98 } while (read_seqretry(&ufsi->meta_lock, seq)); 99 return (p > to); 100 } 101 102 static inline int grow_chain64(struct ufs_inode_info *ufsi, 103 struct buffer_head *bh, __fs64 *v, 104 Indirect *from, Indirect *to) 105 { 106 Indirect *p; 107 unsigned seq; 108 to->bh = bh; 109 do { 110 seq = read_seqbegin(&ufsi->meta_lock); 111 to->key64 = *(__fs64 *)(to->p = v); 112 for (p = from; p <= to && p->key64 == *(__fs64 *)p->p; p++) 113 ; 114 } while (read_seqretry(&ufsi->meta_lock, seq)); 115 return (p > to); 116 } 117 118 /* 119 * Returns the location of the fragment from 120 * the beginning of the filesystem. 121 */ 122 123 static u64 ufs_frag_map(struct inode *inode, unsigned offsets[4], int depth) 124 { 125 struct ufs_inode_info *ufsi = UFS_I(inode); 126 struct super_block *sb = inode->i_sb; 127 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 128 u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift; 129 int shift = uspi->s_apbshift-uspi->s_fpbshift; 130 Indirect chain[4], *q = chain; 131 unsigned *p; 132 unsigned flags = UFS_SB(sb)->s_flags; 133 u64 res = 0; 134 135 UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n", 136 uspi->s_fpbshift, uspi->s_apbmask, 137 (unsigned long long)mask); 138 139 if (depth == 0) 140 goto no_block; 141 142 again: 143 p = offsets; 144 145 if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) 146 goto ufs2; 147 148 if (!grow_chain32(ufsi, NULL, &ufsi->i_u1.i_data[*p++], chain, q)) 149 goto changed; 150 if (!q->key32) 151 goto no_block; 152 while (--depth) { 153 __fs32 *ptr; 154 struct buffer_head *bh; 155 unsigned n = *p++; 156 157 bh = sb_bread(sb, uspi->s_sbbase + 158 fs32_to_cpu(sb, q->key32) + (n>>shift)); 159 if (!bh) 160 goto no_block; 161 ptr = (__fs32 *)bh->b_data + (n & mask); 162 if (!grow_chain32(ufsi, bh, ptr, chain, ++q)) 163 goto changed; 164 if (!q->key32) 165 goto no_block; 166 } 167 res = fs32_to_cpu(sb, q->key32); 168 goto found; 169 170 ufs2: 171 if (!grow_chain64(ufsi, NULL, &ufsi->i_u1.u2_i_data[*p++], chain, q)) 172 goto changed; 173 if (!q->key64) 174 goto no_block; 175 176 while (--depth) { 177 __fs64 *ptr; 178 struct buffer_head *bh; 179 unsigned n = *p++; 180 181 bh = sb_bread(sb, uspi->s_sbbase + 182 fs64_to_cpu(sb, q->key64) + (n>>shift)); 183 if (!bh) 184 goto no_block; 185 ptr = (__fs64 *)bh->b_data + (n & mask); 186 if (!grow_chain64(ufsi, bh, ptr, chain, ++q)) 187 goto changed; 188 if (!q->key64) 189 goto no_block; 190 } 191 res = fs64_to_cpu(sb, q->key64); 192 found: 193 res += uspi->s_sbbase; 194 no_block: 195 while (q > chain) { 196 brelse(q->bh); 197 q--; 198 } 199 return res; 200 201 changed: 202 while (q > chain) { 203 brelse(q->bh); 204 q--; 205 } 206 goto again; 207 } 208 209 /* 210 * Unpacking tails: we have a file with partial final block and 211 * we had been asked to extend it. If the fragment being written 212 * is within the same block, we need to extend the tail just to cover 213 * that fragment. Otherwise the tail is extended to full block. 214 * 215 * Note that we might need to create a _new_ tail, but that will 216 * be handled elsewhere; this is strictly for resizing old 217 * ones. 218 */ 219 static bool 220 ufs_extend_tail(struct inode *inode, u64 writes_to, 221 int *err, struct page *locked_page) 222 { 223 struct ufs_inode_info *ufsi = UFS_I(inode); 224 struct super_block *sb = inode->i_sb; 225 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 226 unsigned lastfrag = ufsi->i_lastfrag; /* it's a short file, so unsigned is enough */ 227 unsigned block = ufs_fragstoblks(lastfrag); 228 unsigned new_size; 229 void *p; 230 u64 tmp; 231 232 if (writes_to < (lastfrag | uspi->s_fpbmask)) 233 new_size = (writes_to & uspi->s_fpbmask) + 1; 234 else 235 new_size = uspi->s_fpb; 236 237 p = ufs_get_direct_data_ptr(uspi, ufsi, block); 238 tmp = ufs_new_fragments(inode, p, lastfrag, ufs_data_ptr_to_cpu(sb, p), 239 new_size - (lastfrag & uspi->s_fpbmask), err, 240 locked_page); 241 return tmp != 0; 242 } 243 244 /** 245 * ufs_inode_getfrag() - allocate new fragment(s) 246 * @inode: pointer to inode 247 * @index: number of block pointer within the inode's array. 248 * @new_fragment: number of new allocated fragment(s) 249 * @err: we set it if something wrong 250 * @new: we set it if we allocate new block 251 * @locked_page: for ufs_new_fragments() 252 */ 253 static u64 254 ufs_inode_getfrag(struct inode *inode, unsigned index, 255 sector_t new_fragment, int *err, 256 int *new, struct page *locked_page) 257 { 258 struct ufs_inode_info *ufsi = UFS_I(inode); 259 struct super_block *sb = inode->i_sb; 260 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 261 u64 tmp, goal, lastfrag; 262 unsigned nfrags = uspi->s_fpb; 263 void *p; 264 265 /* TODO : to be done for write support 266 if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) 267 goto ufs2; 268 */ 269 270 p = ufs_get_direct_data_ptr(uspi, ufsi, index); 271 tmp = ufs_data_ptr_to_cpu(sb, p); 272 if (tmp) 273 goto out; 274 275 lastfrag = ufsi->i_lastfrag; 276 277 /* will that be a new tail? */ 278 if (new_fragment < UFS_NDIR_FRAGMENT && new_fragment >= lastfrag) 279 nfrags = (new_fragment & uspi->s_fpbmask) + 1; 280 281 goal = 0; 282 if (index) { 283 goal = ufs_data_ptr_to_cpu(sb, 284 ufs_get_direct_data_ptr(uspi, ufsi, index - 1)); 285 if (goal) 286 goal += uspi->s_fpb; 287 } 288 tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), 289 goal, nfrags, err, locked_page); 290 291 if (!tmp) { 292 *err = -ENOSPC; 293 return 0; 294 } 295 296 if (new) 297 *new = 1; 298 inode->i_ctime = current_time(inode); 299 if (IS_SYNC(inode)) 300 ufs_sync_inode (inode); 301 mark_inode_dirty(inode); 302 out: 303 return tmp + uspi->s_sbbase; 304 305 /* This part : To be implemented .... 306 Required only for writing, not required for READ-ONLY. 307 ufs2: 308 309 u2_block = ufs_fragstoblks(fragment); 310 u2_blockoff = ufs_fragnum(fragment); 311 p = ufsi->i_u1.u2_i_data + block; 312 goal = 0; 313 314 repeat2: 315 tmp = fs32_to_cpu(sb, *p); 316 lastfrag = ufsi->i_lastfrag; 317 318 */ 319 } 320 321 /** 322 * ufs_inode_getblock() - allocate new block 323 * @inode: pointer to inode 324 * @ind_block: block number of the indirect block 325 * @index: number of pointer within the indirect block 326 * @new_fragment: number of new allocated fragment 327 * (block will hold this fragment and also uspi->s_fpb-1) 328 * @err: see ufs_inode_getfrag() 329 * @new: see ufs_inode_getfrag() 330 * @locked_page: see ufs_inode_getfrag() 331 */ 332 static u64 333 ufs_inode_getblock(struct inode *inode, u64 ind_block, 334 unsigned index, sector_t new_fragment, int *err, 335 int *new, struct page *locked_page) 336 { 337 struct super_block *sb = inode->i_sb; 338 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 339 int shift = uspi->s_apbshift - uspi->s_fpbshift; 340 u64 tmp = 0, goal; 341 struct buffer_head *bh; 342 void *p; 343 344 if (!ind_block) 345 return 0; 346 347 bh = sb_bread(sb, ind_block + (index >> shift)); 348 if (unlikely(!bh)) { 349 *err = -EIO; 350 return 0; 351 } 352 353 index &= uspi->s_apbmask >> uspi->s_fpbshift; 354 if (uspi->fs_magic == UFS2_MAGIC) 355 p = (__fs64 *)bh->b_data + index; 356 else 357 p = (__fs32 *)bh->b_data + index; 358 359 tmp = ufs_data_ptr_to_cpu(sb, p); 360 if (tmp) 361 goto out; 362 363 if (index && (uspi->fs_magic == UFS2_MAGIC ? 364 (tmp = fs64_to_cpu(sb, ((__fs64 *)bh->b_data)[index-1])) : 365 (tmp = fs32_to_cpu(sb, ((__fs32 *)bh->b_data)[index-1])))) 366 goal = tmp + uspi->s_fpb; 367 else 368 goal = bh->b_blocknr + uspi->s_fpb; 369 tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal, 370 uspi->s_fpb, err, locked_page); 371 if (!tmp) 372 goto out; 373 374 if (new) 375 *new = 1; 376 377 mark_buffer_dirty(bh); 378 if (IS_SYNC(inode)) 379 sync_dirty_buffer(bh); 380 inode->i_ctime = current_time(inode); 381 mark_inode_dirty(inode); 382 out: 383 brelse (bh); 384 UFSD("EXIT\n"); 385 if (tmp) 386 tmp += uspi->s_sbbase; 387 return tmp; 388 } 389 390 /** 391 * ufs_getfrag_block() - `get_block_t' function, interface between UFS and 392 * readpage, writepage and so on 393 */ 394 395 static int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create) 396 { 397 struct super_block *sb = inode->i_sb; 398 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 399 int err = 0, new = 0; 400 unsigned offsets[4]; 401 int depth = ufs_block_to_path(inode, fragment >> uspi->s_fpbshift, offsets); 402 u64 phys64 = 0; 403 unsigned frag = fragment & uspi->s_fpbmask; 404 405 phys64 = ufs_frag_map(inode, offsets, depth); 406 if (!create) 407 goto done; 408 409 if (phys64) { 410 if (fragment >= UFS_NDIR_FRAGMENT) 411 goto done; 412 read_seqlock_excl(&UFS_I(inode)->meta_lock); 413 if (fragment < UFS_I(inode)->i_lastfrag) { 414 read_sequnlock_excl(&UFS_I(inode)->meta_lock); 415 goto done; 416 } 417 read_sequnlock_excl(&UFS_I(inode)->meta_lock); 418 } 419 /* This code entered only while writing ....? */ 420 421 mutex_lock(&UFS_I(inode)->truncate_mutex); 422 423 UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment); 424 if (unlikely(!depth)) { 425 ufs_warning(sb, "ufs_get_block", "block > big"); 426 err = -EIO; 427 goto out; 428 } 429 430 if (UFS_I(inode)->i_lastfrag < UFS_NDIR_FRAGMENT) { 431 unsigned lastfrag = UFS_I(inode)->i_lastfrag; 432 unsigned tailfrags = lastfrag & uspi->s_fpbmask; 433 if (tailfrags && fragment >= lastfrag) { 434 if (!ufs_extend_tail(inode, fragment, 435 &err, bh_result->b_page)) 436 goto out; 437 } 438 } 439 440 if (depth == 1) { 441 phys64 = ufs_inode_getfrag(inode, offsets[0], fragment, 442 &err, &new, bh_result->b_page); 443 } else { 444 int i; 445 phys64 = ufs_inode_getfrag(inode, offsets[0], fragment, 446 &err, NULL, NULL); 447 for (i = 1; i < depth - 1; i++) 448 phys64 = ufs_inode_getblock(inode, phys64, offsets[i], 449 fragment, &err, NULL, NULL); 450 phys64 = ufs_inode_getblock(inode, phys64, offsets[depth - 1], 451 fragment, &err, &new, bh_result->b_page); 452 } 453 out: 454 if (phys64) { 455 phys64 += frag; 456 map_bh(bh_result, sb, phys64); 457 if (new) 458 set_buffer_new(bh_result); 459 } 460 mutex_unlock(&UFS_I(inode)->truncate_mutex); 461 return err; 462 463 done: 464 if (phys64) 465 map_bh(bh_result, sb, phys64 + frag); 466 return 0; 467 } 468 469 static int ufs_writepage(struct page *page, struct writeback_control *wbc) 470 { 471 return block_write_full_page(page,ufs_getfrag_block,wbc); 472 } 473 474 static int ufs_readpage(struct file *file, struct page *page) 475 { 476 return block_read_full_page(page,ufs_getfrag_block); 477 } 478 479 int ufs_prepare_chunk(struct page *page, loff_t pos, unsigned len) 480 { 481 return __block_write_begin(page, pos, len, ufs_getfrag_block); 482 } 483 484 static void ufs_truncate_blocks(struct inode *); 485 486 static void ufs_write_failed(struct address_space *mapping, loff_t to) 487 { 488 struct inode *inode = mapping->host; 489 490 if (to > inode->i_size) { 491 truncate_pagecache(inode, inode->i_size); 492 ufs_truncate_blocks(inode); 493 } 494 } 495 496 static int ufs_write_begin(struct file *file, struct address_space *mapping, 497 loff_t pos, unsigned len, unsigned flags, 498 struct page **pagep, void **fsdata) 499 { 500 int ret; 501 502 ret = block_write_begin(mapping, pos, len, flags, pagep, 503 ufs_getfrag_block); 504 if (unlikely(ret)) 505 ufs_write_failed(mapping, pos + len); 506 507 return ret; 508 } 509 510 static int ufs_write_end(struct file *file, struct address_space *mapping, 511 loff_t pos, unsigned len, unsigned copied, 512 struct page *page, void *fsdata) 513 { 514 int ret; 515 516 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata); 517 if (ret < len) 518 ufs_write_failed(mapping, pos + len); 519 return ret; 520 } 521 522 static sector_t ufs_bmap(struct address_space *mapping, sector_t block) 523 { 524 return generic_block_bmap(mapping,block,ufs_getfrag_block); 525 } 526 527 const struct address_space_operations ufs_aops = { 528 .readpage = ufs_readpage, 529 .writepage = ufs_writepage, 530 .write_begin = ufs_write_begin, 531 .write_end = ufs_write_end, 532 .bmap = ufs_bmap 533 }; 534 535 static void ufs_set_inode_ops(struct inode *inode) 536 { 537 if (S_ISREG(inode->i_mode)) { 538 inode->i_op = &ufs_file_inode_operations; 539 inode->i_fop = &ufs_file_operations; 540 inode->i_mapping->a_ops = &ufs_aops; 541 } else if (S_ISDIR(inode->i_mode)) { 542 inode->i_op = &ufs_dir_inode_operations; 543 inode->i_fop = &ufs_dir_operations; 544 inode->i_mapping->a_ops = &ufs_aops; 545 } else if (S_ISLNK(inode->i_mode)) { 546 if (!inode->i_blocks) { 547 inode->i_link = (char *)UFS_I(inode)->i_u1.i_symlink; 548 inode->i_op = &simple_symlink_inode_operations; 549 } else { 550 inode->i_mapping->a_ops = &ufs_aops; 551 inode->i_op = &page_symlink_inode_operations; 552 inode_nohighmem(inode); 553 } 554 } else 555 init_special_inode(inode, inode->i_mode, 556 ufs_get_inode_dev(inode->i_sb, UFS_I(inode))); 557 } 558 559 static int ufs1_read_inode(struct inode *inode, struct ufs_inode *ufs_inode) 560 { 561 struct ufs_inode_info *ufsi = UFS_I(inode); 562 struct super_block *sb = inode->i_sb; 563 umode_t mode; 564 565 /* 566 * Copy data to the in-core inode. 567 */ 568 inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode); 569 set_nlink(inode, fs16_to_cpu(sb, ufs_inode->ui_nlink)); 570 if (inode->i_nlink == 0) 571 return -ESTALE; 572 573 /* 574 * Linux now has 32-bit uid and gid, so we can support EFT. 575 */ 576 i_uid_write(inode, ufs_get_inode_uid(sb, ufs_inode)); 577 i_gid_write(inode, ufs_get_inode_gid(sb, ufs_inode)); 578 579 inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size); 580 inode->i_atime.tv_sec = (signed)fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec); 581 inode->i_ctime.tv_sec = (signed)fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec); 582 inode->i_mtime.tv_sec = (signed)fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec); 583 inode->i_mtime.tv_nsec = 0; 584 inode->i_atime.tv_nsec = 0; 585 inode->i_ctime.tv_nsec = 0; 586 inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks); 587 inode->i_generation = fs32_to_cpu(sb, ufs_inode->ui_gen); 588 ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags); 589 ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow); 590 ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag); 591 592 593 if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) { 594 memcpy(ufsi->i_u1.i_data, &ufs_inode->ui_u2.ui_addr, 595 sizeof(ufs_inode->ui_u2.ui_addr)); 596 } else { 597 memcpy(ufsi->i_u1.i_symlink, ufs_inode->ui_u2.ui_symlink, 598 sizeof(ufs_inode->ui_u2.ui_symlink) - 1); 599 ufsi->i_u1.i_symlink[sizeof(ufs_inode->ui_u2.ui_symlink) - 1] = 0; 600 } 601 return 0; 602 } 603 604 static int ufs2_read_inode(struct inode *inode, struct ufs2_inode *ufs2_inode) 605 { 606 struct ufs_inode_info *ufsi = UFS_I(inode); 607 struct super_block *sb = inode->i_sb; 608 umode_t mode; 609 610 UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino); 611 /* 612 * Copy data to the in-core inode. 613 */ 614 inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode); 615 set_nlink(inode, fs16_to_cpu(sb, ufs2_inode->ui_nlink)); 616 if (inode->i_nlink == 0) 617 return -ESTALE; 618 619 /* 620 * Linux now has 32-bit uid and gid, so we can support EFT. 621 */ 622 i_uid_write(inode, fs32_to_cpu(sb, ufs2_inode->ui_uid)); 623 i_gid_write(inode, fs32_to_cpu(sb, ufs2_inode->ui_gid)); 624 625 inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size); 626 inode->i_atime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_atime); 627 inode->i_ctime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_ctime); 628 inode->i_mtime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_mtime); 629 inode->i_atime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_atimensec); 630 inode->i_ctime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_ctimensec); 631 inode->i_mtime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_mtimensec); 632 inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks); 633 inode->i_generation = fs32_to_cpu(sb, ufs2_inode->ui_gen); 634 ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags); 635 /* 636 ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow); 637 ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag); 638 */ 639 640 if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) { 641 memcpy(ufsi->i_u1.u2_i_data, &ufs2_inode->ui_u2.ui_addr, 642 sizeof(ufs2_inode->ui_u2.ui_addr)); 643 } else { 644 memcpy(ufsi->i_u1.i_symlink, ufs2_inode->ui_u2.ui_symlink, 645 sizeof(ufs2_inode->ui_u2.ui_symlink) - 1); 646 ufsi->i_u1.i_symlink[sizeof(ufs2_inode->ui_u2.ui_symlink) - 1] = 0; 647 } 648 return 0; 649 } 650 651 struct inode *ufs_iget(struct super_block *sb, unsigned long ino) 652 { 653 struct ufs_inode_info *ufsi; 654 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 655 struct buffer_head * bh; 656 struct inode *inode; 657 int err = -EIO; 658 659 UFSD("ENTER, ino %lu\n", ino); 660 661 if (ino < UFS_ROOTINO || ino > (uspi->s_ncg * uspi->s_ipg)) { 662 ufs_warning(sb, "ufs_read_inode", "bad inode number (%lu)\n", 663 ino); 664 return ERR_PTR(-EIO); 665 } 666 667 inode = iget_locked(sb, ino); 668 if (!inode) 669 return ERR_PTR(-ENOMEM); 670 if (!(inode->i_state & I_NEW)) 671 return inode; 672 673 ufsi = UFS_I(inode); 674 675 bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino)); 676 if (!bh) { 677 ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n", 678 inode->i_ino); 679 goto bad_inode; 680 } 681 if ((UFS_SB(sb)->s_flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) { 682 struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data; 683 684 err = ufs2_read_inode(inode, 685 ufs2_inode + ufs_inotofsbo(inode->i_ino)); 686 } else { 687 struct ufs_inode *ufs_inode = (struct ufs_inode *)bh->b_data; 688 689 err = ufs1_read_inode(inode, 690 ufs_inode + ufs_inotofsbo(inode->i_ino)); 691 } 692 brelse(bh); 693 if (err) 694 goto bad_inode; 695 696 inode->i_version++; 697 ufsi->i_lastfrag = 698 (inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift; 699 ufsi->i_dir_start_lookup = 0; 700 ufsi->i_osync = 0; 701 702 ufs_set_inode_ops(inode); 703 704 UFSD("EXIT\n"); 705 unlock_new_inode(inode); 706 return inode; 707 708 bad_inode: 709 iget_failed(inode); 710 return ERR_PTR(err); 711 } 712 713 static void ufs1_update_inode(struct inode *inode, struct ufs_inode *ufs_inode) 714 { 715 struct super_block *sb = inode->i_sb; 716 struct ufs_inode_info *ufsi = UFS_I(inode); 717 718 ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode); 719 ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink); 720 721 ufs_set_inode_uid(sb, ufs_inode, i_uid_read(inode)); 722 ufs_set_inode_gid(sb, ufs_inode, i_gid_read(inode)); 723 724 ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size); 725 ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode->i_atime.tv_sec); 726 ufs_inode->ui_atime.tv_usec = 0; 727 ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb, inode->i_ctime.tv_sec); 728 ufs_inode->ui_ctime.tv_usec = 0; 729 ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode->i_mtime.tv_sec); 730 ufs_inode->ui_mtime.tv_usec = 0; 731 ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks); 732 ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags); 733 ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation); 734 735 if ((UFS_SB(sb)->s_flags & UFS_UID_MASK) == UFS_UID_EFT) { 736 ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow); 737 ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag); 738 } 739 740 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 741 /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */ 742 ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0]; 743 } else if (inode->i_blocks) { 744 memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.i_data, 745 sizeof(ufs_inode->ui_u2.ui_addr)); 746 } 747 else { 748 memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink, 749 sizeof(ufs_inode->ui_u2.ui_symlink)); 750 } 751 752 if (!inode->i_nlink) 753 memset (ufs_inode, 0, sizeof(struct ufs_inode)); 754 } 755 756 static void ufs2_update_inode(struct inode *inode, struct ufs2_inode *ufs_inode) 757 { 758 struct super_block *sb = inode->i_sb; 759 struct ufs_inode_info *ufsi = UFS_I(inode); 760 761 UFSD("ENTER\n"); 762 ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode); 763 ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink); 764 765 ufs_inode->ui_uid = cpu_to_fs32(sb, i_uid_read(inode)); 766 ufs_inode->ui_gid = cpu_to_fs32(sb, i_gid_read(inode)); 767 768 ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size); 769 ufs_inode->ui_atime = cpu_to_fs64(sb, inode->i_atime.tv_sec); 770 ufs_inode->ui_atimensec = cpu_to_fs32(sb, inode->i_atime.tv_nsec); 771 ufs_inode->ui_ctime = cpu_to_fs64(sb, inode->i_ctime.tv_sec); 772 ufs_inode->ui_ctimensec = cpu_to_fs32(sb, inode->i_ctime.tv_nsec); 773 ufs_inode->ui_mtime = cpu_to_fs64(sb, inode->i_mtime.tv_sec); 774 ufs_inode->ui_mtimensec = cpu_to_fs32(sb, inode->i_mtime.tv_nsec); 775 776 ufs_inode->ui_blocks = cpu_to_fs64(sb, inode->i_blocks); 777 ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags); 778 ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation); 779 780 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 781 /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */ 782 ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.u2_i_data[0]; 783 } else if (inode->i_blocks) { 784 memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.u2_i_data, 785 sizeof(ufs_inode->ui_u2.ui_addr)); 786 } else { 787 memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink, 788 sizeof(ufs_inode->ui_u2.ui_symlink)); 789 } 790 791 if (!inode->i_nlink) 792 memset (ufs_inode, 0, sizeof(struct ufs2_inode)); 793 UFSD("EXIT\n"); 794 } 795 796 static int ufs_update_inode(struct inode * inode, int do_sync) 797 { 798 struct super_block *sb = inode->i_sb; 799 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 800 struct buffer_head * bh; 801 802 UFSD("ENTER, ino %lu\n", inode->i_ino); 803 804 if (inode->i_ino < UFS_ROOTINO || 805 inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) { 806 ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino); 807 return -1; 808 } 809 810 bh = sb_bread(sb, ufs_inotofsba(inode->i_ino)); 811 if (!bh) { 812 ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino); 813 return -1; 814 } 815 if (uspi->fs_magic == UFS2_MAGIC) { 816 struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data; 817 818 ufs2_update_inode(inode, 819 ufs2_inode + ufs_inotofsbo(inode->i_ino)); 820 } else { 821 struct ufs_inode *ufs_inode = (struct ufs_inode *) bh->b_data; 822 823 ufs1_update_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino)); 824 } 825 826 mark_buffer_dirty(bh); 827 if (do_sync) 828 sync_dirty_buffer(bh); 829 brelse (bh); 830 831 UFSD("EXIT\n"); 832 return 0; 833 } 834 835 int ufs_write_inode(struct inode *inode, struct writeback_control *wbc) 836 { 837 return ufs_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 838 } 839 840 int ufs_sync_inode (struct inode *inode) 841 { 842 return ufs_update_inode (inode, 1); 843 } 844 845 void ufs_evict_inode(struct inode * inode) 846 { 847 int want_delete = 0; 848 849 if (!inode->i_nlink && !is_bad_inode(inode)) 850 want_delete = 1; 851 852 truncate_inode_pages_final(&inode->i_data); 853 if (want_delete) { 854 inode->i_size = 0; 855 if (inode->i_blocks && 856 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 857 S_ISLNK(inode->i_mode))) 858 ufs_truncate_blocks(inode); 859 ufs_update_inode(inode, inode_needs_sync(inode)); 860 } 861 862 invalidate_inode_buffers(inode); 863 clear_inode(inode); 864 865 if (want_delete) 866 ufs_free_inode(inode); 867 } 868 869 struct to_free { 870 struct inode *inode; 871 u64 to; 872 unsigned count; 873 }; 874 875 static inline void free_data(struct to_free *ctx, u64 from, unsigned count) 876 { 877 if (ctx->count && ctx->to != from) { 878 ufs_free_blocks(ctx->inode, ctx->to - ctx->count, ctx->count); 879 ctx->count = 0; 880 } 881 ctx->count += count; 882 ctx->to = from + count; 883 } 884 885 #define DIRECT_FRAGMENT ((inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift) 886 887 static void ufs_trunc_direct(struct inode *inode) 888 { 889 struct ufs_inode_info *ufsi = UFS_I(inode); 890 struct super_block * sb; 891 struct ufs_sb_private_info * uspi; 892 void *p; 893 u64 frag1, frag2, frag3, frag4, block1, block2; 894 struct to_free ctx = {.inode = inode}; 895 unsigned i, tmp; 896 897 UFSD("ENTER: ino %lu\n", inode->i_ino); 898 899 sb = inode->i_sb; 900 uspi = UFS_SB(sb)->s_uspi; 901 902 frag1 = DIRECT_FRAGMENT; 903 frag4 = min_t(u64, UFS_NDIR_FRAGMENT, ufsi->i_lastfrag); 904 frag2 = ((frag1 & uspi->s_fpbmask) ? ((frag1 | uspi->s_fpbmask) + 1) : frag1); 905 frag3 = frag4 & ~uspi->s_fpbmask; 906 block1 = block2 = 0; 907 if (frag2 > frag3) { 908 frag2 = frag4; 909 frag3 = frag4 = 0; 910 } else if (frag2 < frag3) { 911 block1 = ufs_fragstoblks (frag2); 912 block2 = ufs_fragstoblks (frag3); 913 } 914 915 UFSD("ino %lu, frag1 %llu, frag2 %llu, block1 %llu, block2 %llu," 916 " frag3 %llu, frag4 %llu\n", inode->i_ino, 917 (unsigned long long)frag1, (unsigned long long)frag2, 918 (unsigned long long)block1, (unsigned long long)block2, 919 (unsigned long long)frag3, (unsigned long long)frag4); 920 921 if (frag1 >= frag2) 922 goto next1; 923 924 /* 925 * Free first free fragments 926 */ 927 p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag1)); 928 tmp = ufs_data_ptr_to_cpu(sb, p); 929 if (!tmp ) 930 ufs_panic (sb, "ufs_trunc_direct", "internal error"); 931 frag2 -= frag1; 932 frag1 = ufs_fragnum (frag1); 933 934 ufs_free_fragments(inode, tmp + frag1, frag2); 935 936 next1: 937 /* 938 * Free whole blocks 939 */ 940 for (i = block1 ; i < block2; i++) { 941 p = ufs_get_direct_data_ptr(uspi, ufsi, i); 942 tmp = ufs_data_ptr_to_cpu(sb, p); 943 if (!tmp) 944 continue; 945 write_seqlock(&ufsi->meta_lock); 946 ufs_data_ptr_clear(uspi, p); 947 write_sequnlock(&ufsi->meta_lock); 948 949 free_data(&ctx, tmp, uspi->s_fpb); 950 } 951 952 free_data(&ctx, 0, 0); 953 954 if (frag3 >= frag4) 955 goto next3; 956 957 /* 958 * Free last free fragments 959 */ 960 p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag3)); 961 tmp = ufs_data_ptr_to_cpu(sb, p); 962 if (!tmp ) 963 ufs_panic(sb, "ufs_truncate_direct", "internal error"); 964 frag4 = ufs_fragnum (frag4); 965 write_seqlock(&ufsi->meta_lock); 966 ufs_data_ptr_clear(uspi, p); 967 write_sequnlock(&ufsi->meta_lock); 968 969 ufs_free_fragments (inode, tmp, frag4); 970 next3: 971 972 UFSD("EXIT: ino %lu\n", inode->i_ino); 973 } 974 975 static void free_full_branch(struct inode *inode, u64 ind_block, int depth) 976 { 977 struct super_block *sb = inode->i_sb; 978 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 979 struct ufs_buffer_head *ubh = ubh_bread(sb, ind_block, uspi->s_bsize); 980 unsigned i; 981 982 if (!ubh) 983 return; 984 985 if (--depth) { 986 for (i = 0; i < uspi->s_apb; i++) { 987 void *p = ubh_get_data_ptr(uspi, ubh, i); 988 u64 block = ufs_data_ptr_to_cpu(sb, p); 989 if (block) 990 free_full_branch(inode, block, depth); 991 } 992 } else { 993 struct to_free ctx = {.inode = inode}; 994 995 for (i = 0; i < uspi->s_apb; i++) { 996 void *p = ubh_get_data_ptr(uspi, ubh, i); 997 u64 block = ufs_data_ptr_to_cpu(sb, p); 998 if (block) 999 free_data(&ctx, block, uspi->s_fpb); 1000 } 1001 free_data(&ctx, 0, 0); 1002 } 1003 1004 ubh_bforget(ubh); 1005 ufs_free_blocks(inode, ind_block, uspi->s_fpb); 1006 } 1007 1008 static void free_branch_tail(struct inode *inode, unsigned from, struct ufs_buffer_head *ubh, int depth) 1009 { 1010 struct super_block *sb = inode->i_sb; 1011 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 1012 unsigned i; 1013 1014 if (--depth) { 1015 for (i = from; i < uspi->s_apb ; i++) { 1016 void *p = ubh_get_data_ptr(uspi, ubh, i); 1017 u64 block = ufs_data_ptr_to_cpu(sb, p); 1018 if (block) { 1019 write_seqlock(&UFS_I(inode)->meta_lock); 1020 ufs_data_ptr_clear(uspi, p); 1021 write_sequnlock(&UFS_I(inode)->meta_lock); 1022 ubh_mark_buffer_dirty(ubh); 1023 free_full_branch(inode, block, depth); 1024 } 1025 } 1026 } else { 1027 struct to_free ctx = {.inode = inode}; 1028 1029 for (i = from; i < uspi->s_apb; i++) { 1030 void *p = ubh_get_data_ptr(uspi, ubh, i); 1031 u64 block = ufs_data_ptr_to_cpu(sb, p); 1032 if (block) { 1033 write_seqlock(&UFS_I(inode)->meta_lock); 1034 ufs_data_ptr_clear(uspi, p); 1035 write_sequnlock(&UFS_I(inode)->meta_lock); 1036 ubh_mark_buffer_dirty(ubh); 1037 free_data(&ctx, block, uspi->s_fpb); 1038 } 1039 } 1040 free_data(&ctx, 0, 0); 1041 } 1042 if (IS_SYNC(inode) && ubh_buffer_dirty(ubh)) 1043 ubh_sync_block(ubh); 1044 ubh_brelse(ubh); 1045 } 1046 1047 static int ufs_alloc_lastblock(struct inode *inode, loff_t size) 1048 { 1049 int err = 0; 1050 struct super_block *sb = inode->i_sb; 1051 struct address_space *mapping = inode->i_mapping; 1052 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 1053 unsigned i, end; 1054 sector_t lastfrag; 1055 struct page *lastpage; 1056 struct buffer_head *bh; 1057 u64 phys64; 1058 1059 lastfrag = (size + uspi->s_fsize - 1) >> uspi->s_fshift; 1060 1061 if (!lastfrag) 1062 goto out; 1063 1064 lastfrag--; 1065 1066 lastpage = ufs_get_locked_page(mapping, lastfrag >> 1067 (PAGE_SHIFT - inode->i_blkbits)); 1068 if (IS_ERR(lastpage)) { 1069 err = -EIO; 1070 goto out; 1071 } 1072 1073 end = lastfrag & ((1 << (PAGE_SHIFT - inode->i_blkbits)) - 1); 1074 bh = page_buffers(lastpage); 1075 for (i = 0; i < end; ++i) 1076 bh = bh->b_this_page; 1077 1078 1079 err = ufs_getfrag_block(inode, lastfrag, bh, 1); 1080 1081 if (unlikely(err)) 1082 goto out_unlock; 1083 1084 if (buffer_new(bh)) { 1085 clear_buffer_new(bh); 1086 clean_bdev_bh_alias(bh); 1087 /* 1088 * we do not zeroize fragment, because of 1089 * if it maped to hole, it already contains zeroes 1090 */ 1091 set_buffer_uptodate(bh); 1092 mark_buffer_dirty(bh); 1093 set_page_dirty(lastpage); 1094 } 1095 1096 if (lastfrag >= UFS_IND_FRAGMENT) { 1097 end = uspi->s_fpb - ufs_fragnum(lastfrag) - 1; 1098 phys64 = bh->b_blocknr + 1; 1099 for (i = 0; i < end; ++i) { 1100 bh = sb_getblk(sb, i + phys64); 1101 lock_buffer(bh); 1102 memset(bh->b_data, 0, sb->s_blocksize); 1103 set_buffer_uptodate(bh); 1104 mark_buffer_dirty(bh); 1105 unlock_buffer(bh); 1106 sync_dirty_buffer(bh); 1107 brelse(bh); 1108 } 1109 } 1110 out_unlock: 1111 ufs_put_locked_page(lastpage); 1112 out: 1113 return err; 1114 } 1115 1116 static void ufs_truncate_blocks(struct inode *inode) 1117 { 1118 struct ufs_inode_info *ufsi = UFS_I(inode); 1119 struct super_block *sb = inode->i_sb; 1120 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 1121 unsigned offsets[4]; 1122 int depth; 1123 int depth2; 1124 unsigned i; 1125 struct ufs_buffer_head *ubh[3]; 1126 void *p; 1127 u64 block; 1128 1129 if (inode->i_size) { 1130 sector_t last = (inode->i_size - 1) >> uspi->s_bshift; 1131 depth = ufs_block_to_path(inode, last, offsets); 1132 if (!depth) 1133 return; 1134 } else { 1135 depth = 1; 1136 } 1137 1138 for (depth2 = depth - 1; depth2; depth2--) 1139 if (offsets[depth2] != uspi->s_apb - 1) 1140 break; 1141 1142 mutex_lock(&ufsi->truncate_mutex); 1143 if (depth == 1) { 1144 ufs_trunc_direct(inode); 1145 offsets[0] = UFS_IND_BLOCK; 1146 } else { 1147 /* get the blocks that should be partially emptied */ 1148 p = ufs_get_direct_data_ptr(uspi, ufsi, offsets[0]++); 1149 for (i = 0; i < depth2; i++) { 1150 block = ufs_data_ptr_to_cpu(sb, p); 1151 if (!block) 1152 break; 1153 ubh[i] = ubh_bread(sb, block, uspi->s_bsize); 1154 if (!ubh[i]) { 1155 write_seqlock(&ufsi->meta_lock); 1156 ufs_data_ptr_clear(uspi, p); 1157 write_sequnlock(&ufsi->meta_lock); 1158 break; 1159 } 1160 p = ubh_get_data_ptr(uspi, ubh[i], offsets[i + 1]++); 1161 } 1162 while (i--) 1163 free_branch_tail(inode, offsets[i + 1], ubh[i], depth - i - 1); 1164 } 1165 for (i = offsets[0]; i <= UFS_TIND_BLOCK; i++) { 1166 p = ufs_get_direct_data_ptr(uspi, ufsi, i); 1167 block = ufs_data_ptr_to_cpu(sb, p); 1168 if (block) { 1169 write_seqlock(&ufsi->meta_lock); 1170 ufs_data_ptr_clear(uspi, p); 1171 write_sequnlock(&ufsi->meta_lock); 1172 free_full_branch(inode, block, i - UFS_IND_BLOCK + 1); 1173 } 1174 } 1175 read_seqlock_excl(&ufsi->meta_lock); 1176 ufsi->i_lastfrag = DIRECT_FRAGMENT; 1177 read_sequnlock_excl(&ufsi->meta_lock); 1178 mark_inode_dirty(inode); 1179 mutex_unlock(&ufsi->truncate_mutex); 1180 } 1181 1182 static int ufs_truncate(struct inode *inode, loff_t size) 1183 { 1184 int err = 0; 1185 1186 UFSD("ENTER: ino %lu, i_size: %llu, old_i_size: %llu\n", 1187 inode->i_ino, (unsigned long long)size, 1188 (unsigned long long)i_size_read(inode)); 1189 1190 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1191 S_ISLNK(inode->i_mode))) 1192 return -EINVAL; 1193 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1194 return -EPERM; 1195 1196 err = ufs_alloc_lastblock(inode, size); 1197 1198 if (err) 1199 goto out; 1200 1201 block_truncate_page(inode->i_mapping, size, ufs_getfrag_block); 1202 1203 truncate_setsize(inode, size); 1204 1205 ufs_truncate_blocks(inode); 1206 inode->i_mtime = inode->i_ctime = current_time(inode); 1207 mark_inode_dirty(inode); 1208 out: 1209 UFSD("EXIT: err %d\n", err); 1210 return err; 1211 } 1212 1213 int ufs_setattr(struct dentry *dentry, struct iattr *attr) 1214 { 1215 struct inode *inode = d_inode(dentry); 1216 unsigned int ia_valid = attr->ia_valid; 1217 int error; 1218 1219 error = setattr_prepare(dentry, attr); 1220 if (error) 1221 return error; 1222 1223 if (ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) { 1224 error = ufs_truncate(inode, attr->ia_size); 1225 if (error) 1226 return error; 1227 } 1228 1229 setattr_copy(inode, attr); 1230 mark_inode_dirty(inode); 1231 return 0; 1232 } 1233 1234 const struct inode_operations ufs_file_inode_operations = { 1235 .setattr = ufs_setattr, 1236 }; 1237