1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ufs/inode.c 4 * 5 * Copyright (C) 1998 6 * Daniel Pirkl <daniel.pirkl@email.cz> 7 * Charles University, Faculty of Mathematics and Physics 8 * 9 * from 10 * 11 * linux/fs/ext2/inode.c 12 * 13 * Copyright (C) 1992, 1993, 1994, 1995 14 * Remy Card (card@masi.ibp.fr) 15 * Laboratoire MASI - Institut Blaise Pascal 16 * Universite Pierre et Marie Curie (Paris VI) 17 * 18 * from 19 * 20 * linux/fs/minix/inode.c 21 * 22 * Copyright (C) 1991, 1992 Linus Torvalds 23 * 24 * Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993 25 * Big-endian to little-endian byte-swapping/bitmaps by 26 * David S. Miller (davem@caip.rutgers.edu), 1995 27 */ 28 29 #include <linux/uaccess.h> 30 31 #include <linux/errno.h> 32 #include <linux/fs.h> 33 #include <linux/time.h> 34 #include <linux/stat.h> 35 #include <linux/string.h> 36 #include <linux/mm.h> 37 #include <linux/buffer_head.h> 38 #include <linux/writeback.h> 39 #include <linux/iversion.h> 40 41 #include "ufs_fs.h" 42 #include "ufs.h" 43 #include "swab.h" 44 #include "util.h" 45 46 static int ufs_block_to_path(struct inode *inode, sector_t i_block, unsigned offsets[4]) 47 { 48 struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi; 49 int ptrs = uspi->s_apb; 50 int ptrs_bits = uspi->s_apbshift; 51 const long direct_blocks = UFS_NDADDR, 52 indirect_blocks = ptrs, 53 double_blocks = (1 << (ptrs_bits * 2)); 54 int n = 0; 55 56 57 UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks); 58 if (i_block < direct_blocks) { 59 offsets[n++] = i_block; 60 } else if ((i_block -= direct_blocks) < indirect_blocks) { 61 offsets[n++] = UFS_IND_BLOCK; 62 offsets[n++] = i_block; 63 } else if ((i_block -= indirect_blocks) < double_blocks) { 64 offsets[n++] = UFS_DIND_BLOCK; 65 offsets[n++] = i_block >> ptrs_bits; 66 offsets[n++] = i_block & (ptrs - 1); 67 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 68 offsets[n++] = UFS_TIND_BLOCK; 69 offsets[n++] = i_block >> (ptrs_bits * 2); 70 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 71 offsets[n++] = i_block & (ptrs - 1); 72 } else { 73 ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big"); 74 } 75 return n; 76 } 77 78 typedef struct { 79 void *p; 80 union { 81 __fs32 key32; 82 __fs64 key64; 83 }; 84 struct buffer_head *bh; 85 } Indirect; 86 87 static inline int grow_chain32(struct ufs_inode_info *ufsi, 88 struct buffer_head *bh, __fs32 *v, 89 Indirect *from, Indirect *to) 90 { 91 Indirect *p; 92 unsigned seq; 93 to->bh = bh; 94 do { 95 seq = read_seqbegin(&ufsi->meta_lock); 96 to->key32 = *(__fs32 *)(to->p = v); 97 for (p = from; p <= to && p->key32 == *(__fs32 *)p->p; p++) 98 ; 99 } while (read_seqretry(&ufsi->meta_lock, seq)); 100 return (p > to); 101 } 102 103 static inline int grow_chain64(struct ufs_inode_info *ufsi, 104 struct buffer_head *bh, __fs64 *v, 105 Indirect *from, Indirect *to) 106 { 107 Indirect *p; 108 unsigned seq; 109 to->bh = bh; 110 do { 111 seq = read_seqbegin(&ufsi->meta_lock); 112 to->key64 = *(__fs64 *)(to->p = v); 113 for (p = from; p <= to && p->key64 == *(__fs64 *)p->p; p++) 114 ; 115 } while (read_seqretry(&ufsi->meta_lock, seq)); 116 return (p > to); 117 } 118 119 /* 120 * Returns the location of the fragment from 121 * the beginning of the filesystem. 122 */ 123 124 static u64 ufs_frag_map(struct inode *inode, unsigned offsets[4], int depth) 125 { 126 struct ufs_inode_info *ufsi = UFS_I(inode); 127 struct super_block *sb = inode->i_sb; 128 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 129 u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift; 130 int shift = uspi->s_apbshift-uspi->s_fpbshift; 131 Indirect chain[4], *q = chain; 132 unsigned *p; 133 unsigned flags = UFS_SB(sb)->s_flags; 134 u64 res = 0; 135 136 UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n", 137 uspi->s_fpbshift, uspi->s_apbmask, 138 (unsigned long long)mask); 139 140 if (depth == 0) 141 goto no_block; 142 143 again: 144 p = offsets; 145 146 if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) 147 goto ufs2; 148 149 if (!grow_chain32(ufsi, NULL, &ufsi->i_u1.i_data[*p++], chain, q)) 150 goto changed; 151 if (!q->key32) 152 goto no_block; 153 while (--depth) { 154 __fs32 *ptr; 155 struct buffer_head *bh; 156 unsigned n = *p++; 157 158 bh = sb_bread(sb, uspi->s_sbbase + 159 fs32_to_cpu(sb, q->key32) + (n>>shift)); 160 if (!bh) 161 goto no_block; 162 ptr = (__fs32 *)bh->b_data + (n & mask); 163 if (!grow_chain32(ufsi, bh, ptr, chain, ++q)) 164 goto changed; 165 if (!q->key32) 166 goto no_block; 167 } 168 res = fs32_to_cpu(sb, q->key32); 169 goto found; 170 171 ufs2: 172 if (!grow_chain64(ufsi, NULL, &ufsi->i_u1.u2_i_data[*p++], chain, q)) 173 goto changed; 174 if (!q->key64) 175 goto no_block; 176 177 while (--depth) { 178 __fs64 *ptr; 179 struct buffer_head *bh; 180 unsigned n = *p++; 181 182 bh = sb_bread(sb, uspi->s_sbbase + 183 fs64_to_cpu(sb, q->key64) + (n>>shift)); 184 if (!bh) 185 goto no_block; 186 ptr = (__fs64 *)bh->b_data + (n & mask); 187 if (!grow_chain64(ufsi, bh, ptr, chain, ++q)) 188 goto changed; 189 if (!q->key64) 190 goto no_block; 191 } 192 res = fs64_to_cpu(sb, q->key64); 193 found: 194 res += uspi->s_sbbase; 195 no_block: 196 while (q > chain) { 197 brelse(q->bh); 198 q--; 199 } 200 return res; 201 202 changed: 203 while (q > chain) { 204 brelse(q->bh); 205 q--; 206 } 207 goto again; 208 } 209 210 /* 211 * Unpacking tails: we have a file with partial final block and 212 * we had been asked to extend it. If the fragment being written 213 * is within the same block, we need to extend the tail just to cover 214 * that fragment. Otherwise the tail is extended to full block. 215 * 216 * Note that we might need to create a _new_ tail, but that will 217 * be handled elsewhere; this is strictly for resizing old 218 * ones. 219 */ 220 static bool 221 ufs_extend_tail(struct inode *inode, u64 writes_to, 222 int *err, struct page *locked_page) 223 { 224 struct ufs_inode_info *ufsi = UFS_I(inode); 225 struct super_block *sb = inode->i_sb; 226 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 227 unsigned lastfrag = ufsi->i_lastfrag; /* it's a short file, so unsigned is enough */ 228 unsigned block = ufs_fragstoblks(lastfrag); 229 unsigned new_size; 230 void *p; 231 u64 tmp; 232 233 if (writes_to < (lastfrag | uspi->s_fpbmask)) 234 new_size = (writes_to & uspi->s_fpbmask) + 1; 235 else 236 new_size = uspi->s_fpb; 237 238 p = ufs_get_direct_data_ptr(uspi, ufsi, block); 239 tmp = ufs_new_fragments(inode, p, lastfrag, ufs_data_ptr_to_cpu(sb, p), 240 new_size - (lastfrag & uspi->s_fpbmask), err, 241 locked_page); 242 return tmp != 0; 243 } 244 245 /** 246 * ufs_inode_getfrag() - allocate new fragment(s) 247 * @inode: pointer to inode 248 * @index: number of block pointer within the inode's array. 249 * @new_fragment: number of new allocated fragment(s) 250 * @err: we set it if something wrong 251 * @new: we set it if we allocate new block 252 * @locked_page: for ufs_new_fragments() 253 */ 254 static u64 255 ufs_inode_getfrag(struct inode *inode, unsigned index, 256 sector_t new_fragment, int *err, 257 int *new, struct page *locked_page) 258 { 259 struct ufs_inode_info *ufsi = UFS_I(inode); 260 struct super_block *sb = inode->i_sb; 261 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 262 u64 tmp, goal, lastfrag; 263 unsigned nfrags = uspi->s_fpb; 264 void *p; 265 266 /* TODO : to be done for write support 267 if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) 268 goto ufs2; 269 */ 270 271 p = ufs_get_direct_data_ptr(uspi, ufsi, index); 272 tmp = ufs_data_ptr_to_cpu(sb, p); 273 if (tmp) 274 goto out; 275 276 lastfrag = ufsi->i_lastfrag; 277 278 /* will that be a new tail? */ 279 if (new_fragment < UFS_NDIR_FRAGMENT && new_fragment >= lastfrag) 280 nfrags = (new_fragment & uspi->s_fpbmask) + 1; 281 282 goal = 0; 283 if (index) { 284 goal = ufs_data_ptr_to_cpu(sb, 285 ufs_get_direct_data_ptr(uspi, ufsi, index - 1)); 286 if (goal) 287 goal += uspi->s_fpb; 288 } 289 tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), 290 goal, nfrags, err, locked_page); 291 292 if (!tmp) { 293 *err = -ENOSPC; 294 return 0; 295 } 296 297 if (new) 298 *new = 1; 299 inode->i_ctime = current_time(inode); 300 if (IS_SYNC(inode)) 301 ufs_sync_inode (inode); 302 mark_inode_dirty(inode); 303 out: 304 return tmp + uspi->s_sbbase; 305 306 /* This part : To be implemented .... 307 Required only for writing, not required for READ-ONLY. 308 ufs2: 309 310 u2_block = ufs_fragstoblks(fragment); 311 u2_blockoff = ufs_fragnum(fragment); 312 p = ufsi->i_u1.u2_i_data + block; 313 goal = 0; 314 315 repeat2: 316 tmp = fs32_to_cpu(sb, *p); 317 lastfrag = ufsi->i_lastfrag; 318 319 */ 320 } 321 322 /** 323 * ufs_inode_getblock() - allocate new block 324 * @inode: pointer to inode 325 * @ind_block: block number of the indirect block 326 * @index: number of pointer within the indirect block 327 * @new_fragment: number of new allocated fragment 328 * (block will hold this fragment and also uspi->s_fpb-1) 329 * @err: see ufs_inode_getfrag() 330 * @new: see ufs_inode_getfrag() 331 * @locked_page: see ufs_inode_getfrag() 332 */ 333 static u64 334 ufs_inode_getblock(struct inode *inode, u64 ind_block, 335 unsigned index, sector_t new_fragment, int *err, 336 int *new, struct page *locked_page) 337 { 338 struct super_block *sb = inode->i_sb; 339 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 340 int shift = uspi->s_apbshift - uspi->s_fpbshift; 341 u64 tmp = 0, goal; 342 struct buffer_head *bh; 343 void *p; 344 345 if (!ind_block) 346 return 0; 347 348 bh = sb_bread(sb, ind_block + (index >> shift)); 349 if (unlikely(!bh)) { 350 *err = -EIO; 351 return 0; 352 } 353 354 index &= uspi->s_apbmask >> uspi->s_fpbshift; 355 if (uspi->fs_magic == UFS2_MAGIC) 356 p = (__fs64 *)bh->b_data + index; 357 else 358 p = (__fs32 *)bh->b_data + index; 359 360 tmp = ufs_data_ptr_to_cpu(sb, p); 361 if (tmp) 362 goto out; 363 364 if (index && (uspi->fs_magic == UFS2_MAGIC ? 365 (tmp = fs64_to_cpu(sb, ((__fs64 *)bh->b_data)[index-1])) : 366 (tmp = fs32_to_cpu(sb, ((__fs32 *)bh->b_data)[index-1])))) 367 goal = tmp + uspi->s_fpb; 368 else 369 goal = bh->b_blocknr + uspi->s_fpb; 370 tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal, 371 uspi->s_fpb, err, locked_page); 372 if (!tmp) 373 goto out; 374 375 if (new) 376 *new = 1; 377 378 mark_buffer_dirty(bh); 379 if (IS_SYNC(inode)) 380 sync_dirty_buffer(bh); 381 inode->i_ctime = current_time(inode); 382 mark_inode_dirty(inode); 383 out: 384 brelse (bh); 385 UFSD("EXIT\n"); 386 if (tmp) 387 tmp += uspi->s_sbbase; 388 return tmp; 389 } 390 391 /** 392 * ufs_getfrag_block() - `get_block_t' function, interface between UFS and 393 * readpage, writepage and so on 394 */ 395 396 static int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create) 397 { 398 struct super_block *sb = inode->i_sb; 399 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 400 int err = 0, new = 0; 401 unsigned offsets[4]; 402 int depth = ufs_block_to_path(inode, fragment >> uspi->s_fpbshift, offsets); 403 u64 phys64 = 0; 404 unsigned frag = fragment & uspi->s_fpbmask; 405 406 phys64 = ufs_frag_map(inode, offsets, depth); 407 if (!create) 408 goto done; 409 410 if (phys64) { 411 if (fragment >= UFS_NDIR_FRAGMENT) 412 goto done; 413 read_seqlock_excl(&UFS_I(inode)->meta_lock); 414 if (fragment < UFS_I(inode)->i_lastfrag) { 415 read_sequnlock_excl(&UFS_I(inode)->meta_lock); 416 goto done; 417 } 418 read_sequnlock_excl(&UFS_I(inode)->meta_lock); 419 } 420 /* This code entered only while writing ....? */ 421 422 mutex_lock(&UFS_I(inode)->truncate_mutex); 423 424 UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment); 425 if (unlikely(!depth)) { 426 ufs_warning(sb, "ufs_get_block", "block > big"); 427 err = -EIO; 428 goto out; 429 } 430 431 if (UFS_I(inode)->i_lastfrag < UFS_NDIR_FRAGMENT) { 432 unsigned lastfrag = UFS_I(inode)->i_lastfrag; 433 unsigned tailfrags = lastfrag & uspi->s_fpbmask; 434 if (tailfrags && fragment >= lastfrag) { 435 if (!ufs_extend_tail(inode, fragment, 436 &err, bh_result->b_page)) 437 goto out; 438 } 439 } 440 441 if (depth == 1) { 442 phys64 = ufs_inode_getfrag(inode, offsets[0], fragment, 443 &err, &new, bh_result->b_page); 444 } else { 445 int i; 446 phys64 = ufs_inode_getfrag(inode, offsets[0], fragment, 447 &err, NULL, NULL); 448 for (i = 1; i < depth - 1; i++) 449 phys64 = ufs_inode_getblock(inode, phys64, offsets[i], 450 fragment, &err, NULL, NULL); 451 phys64 = ufs_inode_getblock(inode, phys64, offsets[depth - 1], 452 fragment, &err, &new, bh_result->b_page); 453 } 454 out: 455 if (phys64) { 456 phys64 += frag; 457 map_bh(bh_result, sb, phys64); 458 if (new) 459 set_buffer_new(bh_result); 460 } 461 mutex_unlock(&UFS_I(inode)->truncate_mutex); 462 return err; 463 464 done: 465 if (phys64) 466 map_bh(bh_result, sb, phys64 + frag); 467 return 0; 468 } 469 470 static int ufs_writepage(struct page *page, struct writeback_control *wbc) 471 { 472 return block_write_full_page(page,ufs_getfrag_block,wbc); 473 } 474 475 static int ufs_readpage(struct file *file, struct page *page) 476 { 477 return block_read_full_page(page,ufs_getfrag_block); 478 } 479 480 int ufs_prepare_chunk(struct page *page, loff_t pos, unsigned len) 481 { 482 return __block_write_begin(page, pos, len, ufs_getfrag_block); 483 } 484 485 static void ufs_truncate_blocks(struct inode *); 486 487 static void ufs_write_failed(struct address_space *mapping, loff_t to) 488 { 489 struct inode *inode = mapping->host; 490 491 if (to > inode->i_size) { 492 truncate_pagecache(inode, inode->i_size); 493 ufs_truncate_blocks(inode); 494 } 495 } 496 497 static int ufs_write_begin(struct file *file, struct address_space *mapping, 498 loff_t pos, unsigned len, unsigned flags, 499 struct page **pagep, void **fsdata) 500 { 501 int ret; 502 503 ret = block_write_begin(mapping, pos, len, flags, pagep, 504 ufs_getfrag_block); 505 if (unlikely(ret)) 506 ufs_write_failed(mapping, pos + len); 507 508 return ret; 509 } 510 511 static int ufs_write_end(struct file *file, struct address_space *mapping, 512 loff_t pos, unsigned len, unsigned copied, 513 struct page *page, void *fsdata) 514 { 515 int ret; 516 517 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata); 518 if (ret < len) 519 ufs_write_failed(mapping, pos + len); 520 return ret; 521 } 522 523 static sector_t ufs_bmap(struct address_space *mapping, sector_t block) 524 { 525 return generic_block_bmap(mapping,block,ufs_getfrag_block); 526 } 527 528 const struct address_space_operations ufs_aops = { 529 .dirty_folio = block_dirty_folio, 530 .invalidate_folio = block_invalidate_folio, 531 .readpage = ufs_readpage, 532 .writepage = ufs_writepage, 533 .write_begin = ufs_write_begin, 534 .write_end = ufs_write_end, 535 .bmap = ufs_bmap 536 }; 537 538 static void ufs_set_inode_ops(struct inode *inode) 539 { 540 if (S_ISREG(inode->i_mode)) { 541 inode->i_op = &ufs_file_inode_operations; 542 inode->i_fop = &ufs_file_operations; 543 inode->i_mapping->a_ops = &ufs_aops; 544 } else if (S_ISDIR(inode->i_mode)) { 545 inode->i_op = &ufs_dir_inode_operations; 546 inode->i_fop = &ufs_dir_operations; 547 inode->i_mapping->a_ops = &ufs_aops; 548 } else if (S_ISLNK(inode->i_mode)) { 549 if (!inode->i_blocks) { 550 inode->i_link = (char *)UFS_I(inode)->i_u1.i_symlink; 551 inode->i_op = &simple_symlink_inode_operations; 552 } else { 553 inode->i_mapping->a_ops = &ufs_aops; 554 inode->i_op = &page_symlink_inode_operations; 555 inode_nohighmem(inode); 556 } 557 } else 558 init_special_inode(inode, inode->i_mode, 559 ufs_get_inode_dev(inode->i_sb, UFS_I(inode))); 560 } 561 562 static int ufs1_read_inode(struct inode *inode, struct ufs_inode *ufs_inode) 563 { 564 struct ufs_inode_info *ufsi = UFS_I(inode); 565 struct super_block *sb = inode->i_sb; 566 umode_t mode; 567 568 /* 569 * Copy data to the in-core inode. 570 */ 571 inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode); 572 set_nlink(inode, fs16_to_cpu(sb, ufs_inode->ui_nlink)); 573 if (inode->i_nlink == 0) 574 return -ESTALE; 575 576 /* 577 * Linux now has 32-bit uid and gid, so we can support EFT. 578 */ 579 i_uid_write(inode, ufs_get_inode_uid(sb, ufs_inode)); 580 i_gid_write(inode, ufs_get_inode_gid(sb, ufs_inode)); 581 582 inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size); 583 inode->i_atime.tv_sec = (signed)fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec); 584 inode->i_ctime.tv_sec = (signed)fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec); 585 inode->i_mtime.tv_sec = (signed)fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec); 586 inode->i_mtime.tv_nsec = 0; 587 inode->i_atime.tv_nsec = 0; 588 inode->i_ctime.tv_nsec = 0; 589 inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks); 590 inode->i_generation = fs32_to_cpu(sb, ufs_inode->ui_gen); 591 ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags); 592 ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow); 593 ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag); 594 595 596 if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) { 597 memcpy(ufsi->i_u1.i_data, &ufs_inode->ui_u2.ui_addr, 598 sizeof(ufs_inode->ui_u2.ui_addr)); 599 } else { 600 memcpy(ufsi->i_u1.i_symlink, ufs_inode->ui_u2.ui_symlink, 601 sizeof(ufs_inode->ui_u2.ui_symlink) - 1); 602 ufsi->i_u1.i_symlink[sizeof(ufs_inode->ui_u2.ui_symlink) - 1] = 0; 603 } 604 return 0; 605 } 606 607 static int ufs2_read_inode(struct inode *inode, struct ufs2_inode *ufs2_inode) 608 { 609 struct ufs_inode_info *ufsi = UFS_I(inode); 610 struct super_block *sb = inode->i_sb; 611 umode_t mode; 612 613 UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino); 614 /* 615 * Copy data to the in-core inode. 616 */ 617 inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode); 618 set_nlink(inode, fs16_to_cpu(sb, ufs2_inode->ui_nlink)); 619 if (inode->i_nlink == 0) 620 return -ESTALE; 621 622 /* 623 * Linux now has 32-bit uid and gid, so we can support EFT. 624 */ 625 i_uid_write(inode, fs32_to_cpu(sb, ufs2_inode->ui_uid)); 626 i_gid_write(inode, fs32_to_cpu(sb, ufs2_inode->ui_gid)); 627 628 inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size); 629 inode->i_atime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_atime); 630 inode->i_ctime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_ctime); 631 inode->i_mtime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_mtime); 632 inode->i_atime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_atimensec); 633 inode->i_ctime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_ctimensec); 634 inode->i_mtime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_mtimensec); 635 inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks); 636 inode->i_generation = fs32_to_cpu(sb, ufs2_inode->ui_gen); 637 ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags); 638 /* 639 ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow); 640 ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag); 641 */ 642 643 if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) { 644 memcpy(ufsi->i_u1.u2_i_data, &ufs2_inode->ui_u2.ui_addr, 645 sizeof(ufs2_inode->ui_u2.ui_addr)); 646 } else { 647 memcpy(ufsi->i_u1.i_symlink, ufs2_inode->ui_u2.ui_symlink, 648 sizeof(ufs2_inode->ui_u2.ui_symlink) - 1); 649 ufsi->i_u1.i_symlink[sizeof(ufs2_inode->ui_u2.ui_symlink) - 1] = 0; 650 } 651 return 0; 652 } 653 654 struct inode *ufs_iget(struct super_block *sb, unsigned long ino) 655 { 656 struct ufs_inode_info *ufsi; 657 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 658 struct buffer_head * bh; 659 struct inode *inode; 660 int err = -EIO; 661 662 UFSD("ENTER, ino %lu\n", ino); 663 664 if (ino < UFS_ROOTINO || ino > (uspi->s_ncg * uspi->s_ipg)) { 665 ufs_warning(sb, "ufs_read_inode", "bad inode number (%lu)\n", 666 ino); 667 return ERR_PTR(-EIO); 668 } 669 670 inode = iget_locked(sb, ino); 671 if (!inode) 672 return ERR_PTR(-ENOMEM); 673 if (!(inode->i_state & I_NEW)) 674 return inode; 675 676 ufsi = UFS_I(inode); 677 678 bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino)); 679 if (!bh) { 680 ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n", 681 inode->i_ino); 682 goto bad_inode; 683 } 684 if ((UFS_SB(sb)->s_flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) { 685 struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data; 686 687 err = ufs2_read_inode(inode, 688 ufs2_inode + ufs_inotofsbo(inode->i_ino)); 689 } else { 690 struct ufs_inode *ufs_inode = (struct ufs_inode *)bh->b_data; 691 692 err = ufs1_read_inode(inode, 693 ufs_inode + ufs_inotofsbo(inode->i_ino)); 694 } 695 brelse(bh); 696 if (err) 697 goto bad_inode; 698 699 inode_inc_iversion(inode); 700 ufsi->i_lastfrag = 701 (inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift; 702 ufsi->i_dir_start_lookup = 0; 703 ufsi->i_osync = 0; 704 705 ufs_set_inode_ops(inode); 706 707 UFSD("EXIT\n"); 708 unlock_new_inode(inode); 709 return inode; 710 711 bad_inode: 712 iget_failed(inode); 713 return ERR_PTR(err); 714 } 715 716 static void ufs1_update_inode(struct inode *inode, struct ufs_inode *ufs_inode) 717 { 718 struct super_block *sb = inode->i_sb; 719 struct ufs_inode_info *ufsi = UFS_I(inode); 720 721 ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode); 722 ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink); 723 724 ufs_set_inode_uid(sb, ufs_inode, i_uid_read(inode)); 725 ufs_set_inode_gid(sb, ufs_inode, i_gid_read(inode)); 726 727 ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size); 728 ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode->i_atime.tv_sec); 729 ufs_inode->ui_atime.tv_usec = 0; 730 ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb, inode->i_ctime.tv_sec); 731 ufs_inode->ui_ctime.tv_usec = 0; 732 ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode->i_mtime.tv_sec); 733 ufs_inode->ui_mtime.tv_usec = 0; 734 ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks); 735 ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags); 736 ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation); 737 738 if ((UFS_SB(sb)->s_flags & UFS_UID_MASK) == UFS_UID_EFT) { 739 ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow); 740 ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag); 741 } 742 743 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 744 /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */ 745 ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0]; 746 } else if (inode->i_blocks) { 747 memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.i_data, 748 sizeof(ufs_inode->ui_u2.ui_addr)); 749 } 750 else { 751 memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink, 752 sizeof(ufs_inode->ui_u2.ui_symlink)); 753 } 754 755 if (!inode->i_nlink) 756 memset (ufs_inode, 0, sizeof(struct ufs_inode)); 757 } 758 759 static void ufs2_update_inode(struct inode *inode, struct ufs2_inode *ufs_inode) 760 { 761 struct super_block *sb = inode->i_sb; 762 struct ufs_inode_info *ufsi = UFS_I(inode); 763 764 UFSD("ENTER\n"); 765 ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode); 766 ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink); 767 768 ufs_inode->ui_uid = cpu_to_fs32(sb, i_uid_read(inode)); 769 ufs_inode->ui_gid = cpu_to_fs32(sb, i_gid_read(inode)); 770 771 ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size); 772 ufs_inode->ui_atime = cpu_to_fs64(sb, inode->i_atime.tv_sec); 773 ufs_inode->ui_atimensec = cpu_to_fs32(sb, inode->i_atime.tv_nsec); 774 ufs_inode->ui_ctime = cpu_to_fs64(sb, inode->i_ctime.tv_sec); 775 ufs_inode->ui_ctimensec = cpu_to_fs32(sb, inode->i_ctime.tv_nsec); 776 ufs_inode->ui_mtime = cpu_to_fs64(sb, inode->i_mtime.tv_sec); 777 ufs_inode->ui_mtimensec = cpu_to_fs32(sb, inode->i_mtime.tv_nsec); 778 779 ufs_inode->ui_blocks = cpu_to_fs64(sb, inode->i_blocks); 780 ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags); 781 ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation); 782 783 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 784 /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */ 785 ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.u2_i_data[0]; 786 } else if (inode->i_blocks) { 787 memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.u2_i_data, 788 sizeof(ufs_inode->ui_u2.ui_addr)); 789 } else { 790 memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink, 791 sizeof(ufs_inode->ui_u2.ui_symlink)); 792 } 793 794 if (!inode->i_nlink) 795 memset (ufs_inode, 0, sizeof(struct ufs2_inode)); 796 UFSD("EXIT\n"); 797 } 798 799 static int ufs_update_inode(struct inode * inode, int do_sync) 800 { 801 struct super_block *sb = inode->i_sb; 802 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 803 struct buffer_head * bh; 804 805 UFSD("ENTER, ino %lu\n", inode->i_ino); 806 807 if (inode->i_ino < UFS_ROOTINO || 808 inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) { 809 ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino); 810 return -1; 811 } 812 813 bh = sb_bread(sb, ufs_inotofsba(inode->i_ino)); 814 if (!bh) { 815 ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino); 816 return -1; 817 } 818 if (uspi->fs_magic == UFS2_MAGIC) { 819 struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data; 820 821 ufs2_update_inode(inode, 822 ufs2_inode + ufs_inotofsbo(inode->i_ino)); 823 } else { 824 struct ufs_inode *ufs_inode = (struct ufs_inode *) bh->b_data; 825 826 ufs1_update_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino)); 827 } 828 829 mark_buffer_dirty(bh); 830 if (do_sync) 831 sync_dirty_buffer(bh); 832 brelse (bh); 833 834 UFSD("EXIT\n"); 835 return 0; 836 } 837 838 int ufs_write_inode(struct inode *inode, struct writeback_control *wbc) 839 { 840 return ufs_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 841 } 842 843 int ufs_sync_inode (struct inode *inode) 844 { 845 return ufs_update_inode (inode, 1); 846 } 847 848 void ufs_evict_inode(struct inode * inode) 849 { 850 int want_delete = 0; 851 852 if (!inode->i_nlink && !is_bad_inode(inode)) 853 want_delete = 1; 854 855 truncate_inode_pages_final(&inode->i_data); 856 if (want_delete) { 857 inode->i_size = 0; 858 if (inode->i_blocks && 859 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 860 S_ISLNK(inode->i_mode))) 861 ufs_truncate_blocks(inode); 862 ufs_update_inode(inode, inode_needs_sync(inode)); 863 } 864 865 invalidate_inode_buffers(inode); 866 clear_inode(inode); 867 868 if (want_delete) 869 ufs_free_inode(inode); 870 } 871 872 struct to_free { 873 struct inode *inode; 874 u64 to; 875 unsigned count; 876 }; 877 878 static inline void free_data(struct to_free *ctx, u64 from, unsigned count) 879 { 880 if (ctx->count && ctx->to != from) { 881 ufs_free_blocks(ctx->inode, ctx->to - ctx->count, ctx->count); 882 ctx->count = 0; 883 } 884 ctx->count += count; 885 ctx->to = from + count; 886 } 887 888 #define DIRECT_FRAGMENT ((inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift) 889 890 static void ufs_trunc_direct(struct inode *inode) 891 { 892 struct ufs_inode_info *ufsi = UFS_I(inode); 893 struct super_block * sb; 894 struct ufs_sb_private_info * uspi; 895 void *p; 896 u64 frag1, frag2, frag3, frag4, block1, block2; 897 struct to_free ctx = {.inode = inode}; 898 unsigned i, tmp; 899 900 UFSD("ENTER: ino %lu\n", inode->i_ino); 901 902 sb = inode->i_sb; 903 uspi = UFS_SB(sb)->s_uspi; 904 905 frag1 = DIRECT_FRAGMENT; 906 frag4 = min_t(u64, UFS_NDIR_FRAGMENT, ufsi->i_lastfrag); 907 frag2 = ((frag1 & uspi->s_fpbmask) ? ((frag1 | uspi->s_fpbmask) + 1) : frag1); 908 frag3 = frag4 & ~uspi->s_fpbmask; 909 block1 = block2 = 0; 910 if (frag2 > frag3) { 911 frag2 = frag4; 912 frag3 = frag4 = 0; 913 } else if (frag2 < frag3) { 914 block1 = ufs_fragstoblks (frag2); 915 block2 = ufs_fragstoblks (frag3); 916 } 917 918 UFSD("ino %lu, frag1 %llu, frag2 %llu, block1 %llu, block2 %llu," 919 " frag3 %llu, frag4 %llu\n", inode->i_ino, 920 (unsigned long long)frag1, (unsigned long long)frag2, 921 (unsigned long long)block1, (unsigned long long)block2, 922 (unsigned long long)frag3, (unsigned long long)frag4); 923 924 if (frag1 >= frag2) 925 goto next1; 926 927 /* 928 * Free first free fragments 929 */ 930 p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag1)); 931 tmp = ufs_data_ptr_to_cpu(sb, p); 932 if (!tmp ) 933 ufs_panic (sb, "ufs_trunc_direct", "internal error"); 934 frag2 -= frag1; 935 frag1 = ufs_fragnum (frag1); 936 937 ufs_free_fragments(inode, tmp + frag1, frag2); 938 939 next1: 940 /* 941 * Free whole blocks 942 */ 943 for (i = block1 ; i < block2; i++) { 944 p = ufs_get_direct_data_ptr(uspi, ufsi, i); 945 tmp = ufs_data_ptr_to_cpu(sb, p); 946 if (!tmp) 947 continue; 948 write_seqlock(&ufsi->meta_lock); 949 ufs_data_ptr_clear(uspi, p); 950 write_sequnlock(&ufsi->meta_lock); 951 952 free_data(&ctx, tmp, uspi->s_fpb); 953 } 954 955 free_data(&ctx, 0, 0); 956 957 if (frag3 >= frag4) 958 goto next3; 959 960 /* 961 * Free last free fragments 962 */ 963 p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag3)); 964 tmp = ufs_data_ptr_to_cpu(sb, p); 965 if (!tmp ) 966 ufs_panic(sb, "ufs_truncate_direct", "internal error"); 967 frag4 = ufs_fragnum (frag4); 968 write_seqlock(&ufsi->meta_lock); 969 ufs_data_ptr_clear(uspi, p); 970 write_sequnlock(&ufsi->meta_lock); 971 972 ufs_free_fragments (inode, tmp, frag4); 973 next3: 974 975 UFSD("EXIT: ino %lu\n", inode->i_ino); 976 } 977 978 static void free_full_branch(struct inode *inode, u64 ind_block, int depth) 979 { 980 struct super_block *sb = inode->i_sb; 981 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 982 struct ufs_buffer_head *ubh = ubh_bread(sb, ind_block, uspi->s_bsize); 983 unsigned i; 984 985 if (!ubh) 986 return; 987 988 if (--depth) { 989 for (i = 0; i < uspi->s_apb; i++) { 990 void *p = ubh_get_data_ptr(uspi, ubh, i); 991 u64 block = ufs_data_ptr_to_cpu(sb, p); 992 if (block) 993 free_full_branch(inode, block, depth); 994 } 995 } else { 996 struct to_free ctx = {.inode = inode}; 997 998 for (i = 0; i < uspi->s_apb; i++) { 999 void *p = ubh_get_data_ptr(uspi, ubh, i); 1000 u64 block = ufs_data_ptr_to_cpu(sb, p); 1001 if (block) 1002 free_data(&ctx, block, uspi->s_fpb); 1003 } 1004 free_data(&ctx, 0, 0); 1005 } 1006 1007 ubh_bforget(ubh); 1008 ufs_free_blocks(inode, ind_block, uspi->s_fpb); 1009 } 1010 1011 static void free_branch_tail(struct inode *inode, unsigned from, struct ufs_buffer_head *ubh, int depth) 1012 { 1013 struct super_block *sb = inode->i_sb; 1014 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 1015 unsigned i; 1016 1017 if (--depth) { 1018 for (i = from; i < uspi->s_apb ; i++) { 1019 void *p = ubh_get_data_ptr(uspi, ubh, i); 1020 u64 block = ufs_data_ptr_to_cpu(sb, p); 1021 if (block) { 1022 write_seqlock(&UFS_I(inode)->meta_lock); 1023 ufs_data_ptr_clear(uspi, p); 1024 write_sequnlock(&UFS_I(inode)->meta_lock); 1025 ubh_mark_buffer_dirty(ubh); 1026 free_full_branch(inode, block, depth); 1027 } 1028 } 1029 } else { 1030 struct to_free ctx = {.inode = inode}; 1031 1032 for (i = from; i < uspi->s_apb; i++) { 1033 void *p = ubh_get_data_ptr(uspi, ubh, i); 1034 u64 block = ufs_data_ptr_to_cpu(sb, p); 1035 if (block) { 1036 write_seqlock(&UFS_I(inode)->meta_lock); 1037 ufs_data_ptr_clear(uspi, p); 1038 write_sequnlock(&UFS_I(inode)->meta_lock); 1039 ubh_mark_buffer_dirty(ubh); 1040 free_data(&ctx, block, uspi->s_fpb); 1041 } 1042 } 1043 free_data(&ctx, 0, 0); 1044 } 1045 if (IS_SYNC(inode) && ubh_buffer_dirty(ubh)) 1046 ubh_sync_block(ubh); 1047 ubh_brelse(ubh); 1048 } 1049 1050 static int ufs_alloc_lastblock(struct inode *inode, loff_t size) 1051 { 1052 int err = 0; 1053 struct super_block *sb = inode->i_sb; 1054 struct address_space *mapping = inode->i_mapping; 1055 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 1056 unsigned i, end; 1057 sector_t lastfrag; 1058 struct page *lastpage; 1059 struct buffer_head *bh; 1060 u64 phys64; 1061 1062 lastfrag = (size + uspi->s_fsize - 1) >> uspi->s_fshift; 1063 1064 if (!lastfrag) 1065 goto out; 1066 1067 lastfrag--; 1068 1069 lastpage = ufs_get_locked_page(mapping, lastfrag >> 1070 (PAGE_SHIFT - inode->i_blkbits)); 1071 if (IS_ERR(lastpage)) { 1072 err = -EIO; 1073 goto out; 1074 } 1075 1076 end = lastfrag & ((1 << (PAGE_SHIFT - inode->i_blkbits)) - 1); 1077 bh = page_buffers(lastpage); 1078 for (i = 0; i < end; ++i) 1079 bh = bh->b_this_page; 1080 1081 1082 err = ufs_getfrag_block(inode, lastfrag, bh, 1); 1083 1084 if (unlikely(err)) 1085 goto out_unlock; 1086 1087 if (buffer_new(bh)) { 1088 clear_buffer_new(bh); 1089 clean_bdev_bh_alias(bh); 1090 /* 1091 * we do not zeroize fragment, because of 1092 * if it maped to hole, it already contains zeroes 1093 */ 1094 set_buffer_uptodate(bh); 1095 mark_buffer_dirty(bh); 1096 set_page_dirty(lastpage); 1097 } 1098 1099 if (lastfrag >= UFS_IND_FRAGMENT) { 1100 end = uspi->s_fpb - ufs_fragnum(lastfrag) - 1; 1101 phys64 = bh->b_blocknr + 1; 1102 for (i = 0; i < end; ++i) { 1103 bh = sb_getblk(sb, i + phys64); 1104 lock_buffer(bh); 1105 memset(bh->b_data, 0, sb->s_blocksize); 1106 set_buffer_uptodate(bh); 1107 mark_buffer_dirty(bh); 1108 unlock_buffer(bh); 1109 sync_dirty_buffer(bh); 1110 brelse(bh); 1111 } 1112 } 1113 out_unlock: 1114 ufs_put_locked_page(lastpage); 1115 out: 1116 return err; 1117 } 1118 1119 static void ufs_truncate_blocks(struct inode *inode) 1120 { 1121 struct ufs_inode_info *ufsi = UFS_I(inode); 1122 struct super_block *sb = inode->i_sb; 1123 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 1124 unsigned offsets[4]; 1125 int depth; 1126 int depth2; 1127 unsigned i; 1128 struct ufs_buffer_head *ubh[3]; 1129 void *p; 1130 u64 block; 1131 1132 if (inode->i_size) { 1133 sector_t last = (inode->i_size - 1) >> uspi->s_bshift; 1134 depth = ufs_block_to_path(inode, last, offsets); 1135 if (!depth) 1136 return; 1137 } else { 1138 depth = 1; 1139 } 1140 1141 for (depth2 = depth - 1; depth2; depth2--) 1142 if (offsets[depth2] != uspi->s_apb - 1) 1143 break; 1144 1145 mutex_lock(&ufsi->truncate_mutex); 1146 if (depth == 1) { 1147 ufs_trunc_direct(inode); 1148 offsets[0] = UFS_IND_BLOCK; 1149 } else { 1150 /* get the blocks that should be partially emptied */ 1151 p = ufs_get_direct_data_ptr(uspi, ufsi, offsets[0]++); 1152 for (i = 0; i < depth2; i++) { 1153 block = ufs_data_ptr_to_cpu(sb, p); 1154 if (!block) 1155 break; 1156 ubh[i] = ubh_bread(sb, block, uspi->s_bsize); 1157 if (!ubh[i]) { 1158 write_seqlock(&ufsi->meta_lock); 1159 ufs_data_ptr_clear(uspi, p); 1160 write_sequnlock(&ufsi->meta_lock); 1161 break; 1162 } 1163 p = ubh_get_data_ptr(uspi, ubh[i], offsets[i + 1]++); 1164 } 1165 while (i--) 1166 free_branch_tail(inode, offsets[i + 1], ubh[i], depth - i - 1); 1167 } 1168 for (i = offsets[0]; i <= UFS_TIND_BLOCK; i++) { 1169 p = ufs_get_direct_data_ptr(uspi, ufsi, i); 1170 block = ufs_data_ptr_to_cpu(sb, p); 1171 if (block) { 1172 write_seqlock(&ufsi->meta_lock); 1173 ufs_data_ptr_clear(uspi, p); 1174 write_sequnlock(&ufsi->meta_lock); 1175 free_full_branch(inode, block, i - UFS_IND_BLOCK + 1); 1176 } 1177 } 1178 read_seqlock_excl(&ufsi->meta_lock); 1179 ufsi->i_lastfrag = DIRECT_FRAGMENT; 1180 read_sequnlock_excl(&ufsi->meta_lock); 1181 mark_inode_dirty(inode); 1182 mutex_unlock(&ufsi->truncate_mutex); 1183 } 1184 1185 static int ufs_truncate(struct inode *inode, loff_t size) 1186 { 1187 int err = 0; 1188 1189 UFSD("ENTER: ino %lu, i_size: %llu, old_i_size: %llu\n", 1190 inode->i_ino, (unsigned long long)size, 1191 (unsigned long long)i_size_read(inode)); 1192 1193 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1194 S_ISLNK(inode->i_mode))) 1195 return -EINVAL; 1196 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1197 return -EPERM; 1198 1199 err = ufs_alloc_lastblock(inode, size); 1200 1201 if (err) 1202 goto out; 1203 1204 block_truncate_page(inode->i_mapping, size, ufs_getfrag_block); 1205 1206 truncate_setsize(inode, size); 1207 1208 ufs_truncate_blocks(inode); 1209 inode->i_mtime = inode->i_ctime = current_time(inode); 1210 mark_inode_dirty(inode); 1211 out: 1212 UFSD("EXIT: err %d\n", err); 1213 return err; 1214 } 1215 1216 int ufs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 1217 struct iattr *attr) 1218 { 1219 struct inode *inode = d_inode(dentry); 1220 unsigned int ia_valid = attr->ia_valid; 1221 int error; 1222 1223 error = setattr_prepare(&init_user_ns, dentry, attr); 1224 if (error) 1225 return error; 1226 1227 if (ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) { 1228 error = ufs_truncate(inode, attr->ia_size); 1229 if (error) 1230 return error; 1231 } 1232 1233 setattr_copy(&init_user_ns, inode, attr); 1234 mark_inode_dirty(inode); 1235 return 0; 1236 } 1237 1238 const struct inode_operations ufs_file_inode_operations = { 1239 .setattr = ufs_setattr, 1240 }; 1241