xref: /openbmc/linux/fs/ufs/inode.c (revision 9d56dd3b)
1 /*
2  *  linux/fs/ufs/inode.c
3  *
4  * Copyright (C) 1998
5  * Daniel Pirkl <daniel.pirkl@email.cz>
6  * Charles University, Faculty of Mathematics and Physics
7  *
8  *  from
9  *
10  *  linux/fs/ext2/inode.c
11  *
12  * Copyright (C) 1992, 1993, 1994, 1995
13  * Remy Card (card@masi.ibp.fr)
14  * Laboratoire MASI - Institut Blaise Pascal
15  * Universite Pierre et Marie Curie (Paris VI)
16  *
17  *  from
18  *
19  *  linux/fs/minix/inode.c
20  *
21  *  Copyright (C) 1991, 1992  Linus Torvalds
22  *
23  *  Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993
24  *  Big-endian to little-endian byte-swapping/bitmaps by
25  *        David S. Miller (davem@caip.rutgers.edu), 1995
26  */
27 
28 #include <asm/uaccess.h>
29 #include <asm/system.h>
30 
31 #include <linux/errno.h>
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/stat.h>
35 #include <linux/string.h>
36 #include <linux/mm.h>
37 #include <linux/smp_lock.h>
38 #include <linux/buffer_head.h>
39 
40 #include "ufs_fs.h"
41 #include "ufs.h"
42 #include "swab.h"
43 #include "util.h"
44 
45 static u64 ufs_frag_map(struct inode *inode, sector_t frag);
46 
47 static int ufs_block_to_path(struct inode *inode, sector_t i_block, sector_t offsets[4])
48 {
49 	struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi;
50 	int ptrs = uspi->s_apb;
51 	int ptrs_bits = uspi->s_apbshift;
52 	const long direct_blocks = UFS_NDADDR,
53 		indirect_blocks = ptrs,
54 		double_blocks = (1 << (ptrs_bits * 2));
55 	int n = 0;
56 
57 
58 	UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks);
59 	if (i_block < direct_blocks) {
60 		offsets[n++] = i_block;
61 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
62 		offsets[n++] = UFS_IND_BLOCK;
63 		offsets[n++] = i_block;
64 	} else if ((i_block -= indirect_blocks) < double_blocks) {
65 		offsets[n++] = UFS_DIND_BLOCK;
66 		offsets[n++] = i_block >> ptrs_bits;
67 		offsets[n++] = i_block & (ptrs - 1);
68 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
69 		offsets[n++] = UFS_TIND_BLOCK;
70 		offsets[n++] = i_block >> (ptrs_bits * 2);
71 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
72 		offsets[n++] = i_block & (ptrs - 1);
73 	} else {
74 		ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big");
75 	}
76 	return n;
77 }
78 
79 /*
80  * Returns the location of the fragment from
81  * the begining of the filesystem.
82  */
83 
84 static u64 ufs_frag_map(struct inode *inode, sector_t frag)
85 {
86 	struct ufs_inode_info *ufsi = UFS_I(inode);
87 	struct super_block *sb = inode->i_sb;
88 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
89 	u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift;
90 	int shift = uspi->s_apbshift-uspi->s_fpbshift;
91 	sector_t offsets[4], *p;
92 	int depth = ufs_block_to_path(inode, frag >> uspi->s_fpbshift, offsets);
93 	u64  ret = 0L;
94 	__fs32 block;
95 	__fs64 u2_block = 0L;
96 	unsigned flags = UFS_SB(sb)->s_flags;
97 	u64 temp = 0L;
98 
99 	UFSD(": frag = %llu  depth = %d\n", (unsigned long long)frag, depth);
100 	UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n",
101 		uspi->s_fpbshift, uspi->s_apbmask,
102 		(unsigned long long)mask);
103 
104 	if (depth == 0)
105 		return 0;
106 
107 	p = offsets;
108 
109 	lock_kernel();
110 	if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
111 		goto ufs2;
112 
113 	block = ufsi->i_u1.i_data[*p++];
114 	if (!block)
115 		goto out;
116 	while (--depth) {
117 		struct buffer_head *bh;
118 		sector_t n = *p++;
119 
120 		bh = sb_bread(sb, uspi->s_sbbase + fs32_to_cpu(sb, block)+(n>>shift));
121 		if (!bh)
122 			goto out;
123 		block = ((__fs32 *) bh->b_data)[n & mask];
124 		brelse (bh);
125 		if (!block)
126 			goto out;
127 	}
128 	ret = (u64) (uspi->s_sbbase + fs32_to_cpu(sb, block) + (frag & uspi->s_fpbmask));
129 	goto out;
130 ufs2:
131 	u2_block = ufsi->i_u1.u2_i_data[*p++];
132 	if (!u2_block)
133 		goto out;
134 
135 
136 	while (--depth) {
137 		struct buffer_head *bh;
138 		sector_t n = *p++;
139 
140 
141 		temp = (u64)(uspi->s_sbbase) + fs64_to_cpu(sb, u2_block);
142 		bh = sb_bread(sb, temp +(u64) (n>>shift));
143 		if (!bh)
144 			goto out;
145 		u2_block = ((__fs64 *)bh->b_data)[n & mask];
146 		brelse(bh);
147 		if (!u2_block)
148 			goto out;
149 	}
150 	temp = (u64)uspi->s_sbbase + fs64_to_cpu(sb, u2_block);
151 	ret = temp + (u64) (frag & uspi->s_fpbmask);
152 
153 out:
154 	unlock_kernel();
155 	return ret;
156 }
157 
158 /**
159  * ufs_inode_getfrag() - allocate new fragment(s)
160  * @inode - pointer to inode
161  * @fragment - number of `fragment' which hold pointer
162  *   to new allocated fragment(s)
163  * @new_fragment - number of new allocated fragment(s)
164  * @required - how many fragment(s) we require
165  * @err - we set it if something wrong
166  * @phys - pointer to where we save physical number of new allocated fragments,
167  *   NULL if we allocate not data(indirect blocks for example).
168  * @new - we set it if we allocate new block
169  * @locked_page - for ufs_new_fragments()
170  */
171 static struct buffer_head *
172 ufs_inode_getfrag(struct inode *inode, u64 fragment,
173 		  sector_t new_fragment, unsigned int required, int *err,
174 		  long *phys, int *new, struct page *locked_page)
175 {
176 	struct ufs_inode_info *ufsi = UFS_I(inode);
177 	struct super_block *sb = inode->i_sb;
178 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
179 	struct buffer_head * result;
180 	unsigned blockoff, lastblockoff;
181 	u64 tmp, goal, lastfrag, block, lastblock;
182 	void *p, *p2;
183 
184 	UFSD("ENTER, ino %lu, fragment %llu, new_fragment %llu, required %u, "
185 	     "metadata %d\n", inode->i_ino, (unsigned long long)fragment,
186 	     (unsigned long long)new_fragment, required, !phys);
187 
188         /* TODO : to be done for write support
189         if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
190              goto ufs2;
191          */
192 
193 	block = ufs_fragstoblks (fragment);
194 	blockoff = ufs_fragnum (fragment);
195 	p = ufs_get_direct_data_ptr(uspi, ufsi, block);
196 
197 	goal = 0;
198 
199 repeat:
200 	tmp = ufs_data_ptr_to_cpu(sb, p);
201 
202 	lastfrag = ufsi->i_lastfrag;
203 	if (tmp && fragment < lastfrag) {
204 		if (!phys) {
205 			result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
206 			if (tmp == ufs_data_ptr_to_cpu(sb, p)) {
207 				UFSD("EXIT, result %llu\n",
208 				     (unsigned long long)tmp + blockoff);
209 				return result;
210 			}
211 			brelse (result);
212 			goto repeat;
213 		} else {
214 			*phys = uspi->s_sbbase + tmp + blockoff;
215 			return NULL;
216 		}
217 	}
218 
219 	lastblock = ufs_fragstoblks (lastfrag);
220 	lastblockoff = ufs_fragnum (lastfrag);
221 	/*
222 	 * We will extend file into new block beyond last allocated block
223 	 */
224 	if (lastblock < block) {
225 		/*
226 		 * We must reallocate last allocated block
227 		 */
228 		if (lastblockoff) {
229 			p2 = ufs_get_direct_data_ptr(uspi, ufsi, lastblock);
230 			tmp = ufs_new_fragments(inode, p2, lastfrag,
231 						ufs_data_ptr_to_cpu(sb, p2),
232 						uspi->s_fpb - lastblockoff,
233 						err, locked_page);
234 			if (!tmp) {
235 				if (lastfrag != ufsi->i_lastfrag)
236 					goto repeat;
237 				else
238 					return NULL;
239 			}
240 			lastfrag = ufsi->i_lastfrag;
241 
242 		}
243 		tmp = ufs_data_ptr_to_cpu(sb,
244 					 ufs_get_direct_data_ptr(uspi, ufsi,
245 								 lastblock));
246 		if (tmp)
247 			goal = tmp + uspi->s_fpb;
248 		tmp = ufs_new_fragments (inode, p, fragment - blockoff,
249 					 goal, required + blockoff,
250 					 err,
251 					 phys != NULL ? locked_page : NULL);
252 	} else if (lastblock == block) {
253 	/*
254 	 * We will extend last allocated block
255 	 */
256 		tmp = ufs_new_fragments(inode, p, fragment -
257 					(blockoff - lastblockoff),
258 					ufs_data_ptr_to_cpu(sb, p),
259 					required +  (blockoff - lastblockoff),
260 					err, phys != NULL ? locked_page : NULL);
261 	} else /* (lastblock > block) */ {
262 	/*
263 	 * We will allocate new block before last allocated block
264 	 */
265 		if (block) {
266 			tmp = ufs_data_ptr_to_cpu(sb,
267 						 ufs_get_direct_data_ptr(uspi, ufsi, block - 1));
268 			if (tmp)
269 				goal = tmp + uspi->s_fpb;
270 		}
271 		tmp = ufs_new_fragments(inode, p, fragment - blockoff,
272 					goal, uspi->s_fpb, err,
273 					phys != NULL ? locked_page : NULL);
274 	}
275 	if (!tmp) {
276 		if ((!blockoff && ufs_data_ptr_to_cpu(sb, p)) ||
277 		    (blockoff && lastfrag != ufsi->i_lastfrag))
278 			goto repeat;
279 		*err = -ENOSPC;
280 		return NULL;
281 	}
282 
283 	if (!phys) {
284 		result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
285 	} else {
286 		*phys = uspi->s_sbbase + tmp + blockoff;
287 		result = NULL;
288 		*err = 0;
289 		*new = 1;
290 	}
291 
292 	inode->i_ctime = CURRENT_TIME_SEC;
293 	if (IS_SYNC(inode))
294 		ufs_sync_inode (inode);
295 	mark_inode_dirty(inode);
296 	UFSD("EXIT, result %llu\n", (unsigned long long)tmp + blockoff);
297 	return result;
298 
299      /* This part : To be implemented ....
300         Required only for writing, not required for READ-ONLY.
301 ufs2:
302 
303 	u2_block = ufs_fragstoblks(fragment);
304 	u2_blockoff = ufs_fragnum(fragment);
305 	p = ufsi->i_u1.u2_i_data + block;
306 	goal = 0;
307 
308 repeat2:
309 	tmp = fs32_to_cpu(sb, *p);
310 	lastfrag = ufsi->i_lastfrag;
311 
312      */
313 }
314 
315 /**
316  * ufs_inode_getblock() - allocate new block
317  * @inode - pointer to inode
318  * @bh - pointer to block which hold "pointer" to new allocated block
319  * @fragment - number of `fragment' which hold pointer
320  *   to new allocated block
321  * @new_fragment - number of new allocated fragment
322  *  (block will hold this fragment and also uspi->s_fpb-1)
323  * @err - see ufs_inode_getfrag()
324  * @phys - see ufs_inode_getfrag()
325  * @new - see ufs_inode_getfrag()
326  * @locked_page - see ufs_inode_getfrag()
327  */
328 static struct buffer_head *
329 ufs_inode_getblock(struct inode *inode, struct buffer_head *bh,
330 		  u64 fragment, sector_t new_fragment, int *err,
331 		  long *phys, int *new, struct page *locked_page)
332 {
333 	struct super_block *sb = inode->i_sb;
334 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
335 	struct buffer_head * result;
336 	unsigned blockoff;
337 	u64 tmp, goal, block;
338 	void *p;
339 
340 	block = ufs_fragstoblks (fragment);
341 	blockoff = ufs_fragnum (fragment);
342 
343 	UFSD("ENTER, ino %lu, fragment %llu, new_fragment %llu, metadata %d\n",
344 	     inode->i_ino, (unsigned long long)fragment,
345 	     (unsigned long long)new_fragment, !phys);
346 
347 	result = NULL;
348 	if (!bh)
349 		goto out;
350 	if (!buffer_uptodate(bh)) {
351 		ll_rw_block (READ, 1, &bh);
352 		wait_on_buffer (bh);
353 		if (!buffer_uptodate(bh))
354 			goto out;
355 	}
356 	if (uspi->fs_magic == UFS2_MAGIC)
357 		p = (__fs64 *)bh->b_data + block;
358 	else
359 		p = (__fs32 *)bh->b_data + block;
360 repeat:
361 	tmp = ufs_data_ptr_to_cpu(sb, p);
362 	if (tmp) {
363 		if (!phys) {
364 			result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
365 			if (tmp == ufs_data_ptr_to_cpu(sb, p))
366 				goto out;
367 			brelse (result);
368 			goto repeat;
369 		} else {
370 			*phys = uspi->s_sbbase + tmp + blockoff;
371 			goto out;
372 		}
373 	}
374 
375 	if (block && (uspi->fs_magic == UFS2_MAGIC ?
376 		      (tmp = fs64_to_cpu(sb, ((__fs64 *)bh->b_data)[block-1])) :
377 		      (tmp = fs32_to_cpu(sb, ((__fs32 *)bh->b_data)[block-1]))))
378 		goal = tmp + uspi->s_fpb;
379 	else
380 		goal = bh->b_blocknr + uspi->s_fpb;
381 	tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal,
382 				uspi->s_fpb, err, locked_page);
383 	if (!tmp) {
384 		if (ufs_data_ptr_to_cpu(sb, p))
385 			goto repeat;
386 		goto out;
387 	}
388 
389 
390 	if (!phys) {
391 		result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
392 	} else {
393 		*phys = uspi->s_sbbase + tmp + blockoff;
394 		*new = 1;
395 	}
396 
397 	mark_buffer_dirty(bh);
398 	if (IS_SYNC(inode))
399 		sync_dirty_buffer(bh);
400 	inode->i_ctime = CURRENT_TIME_SEC;
401 	mark_inode_dirty(inode);
402 	UFSD("result %llu\n", (unsigned long long)tmp + blockoff);
403 out:
404 	brelse (bh);
405 	UFSD("EXIT\n");
406 	return result;
407 }
408 
409 /**
410  * ufs_getfrag_bloc() - `get_block_t' function, interface between UFS and
411  * readpage, writepage and so on
412  */
413 
414 int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create)
415 {
416 	struct super_block * sb = inode->i_sb;
417 	struct ufs_sb_private_info * uspi = UFS_SB(sb)->s_uspi;
418 	struct buffer_head * bh;
419 	int ret, err, new;
420 	unsigned long ptr,phys;
421 	u64 phys64 = 0;
422 
423 	if (!create) {
424 		phys64 = ufs_frag_map(inode, fragment);
425 		UFSD("phys64 = %llu\n", (unsigned long long)phys64);
426 		if (phys64)
427 			map_bh(bh_result, sb, phys64);
428 		return 0;
429 	}
430 
431         /* This code entered only while writing ....? */
432 
433 	err = -EIO;
434 	new = 0;
435 	ret = 0;
436 	bh = NULL;
437 
438 	lock_kernel();
439 
440 	UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment);
441 	if (fragment >
442 	    ((UFS_NDADDR + uspi->s_apb + uspi->s_2apb + uspi->s_3apb)
443 	     << uspi->s_fpbshift))
444 		goto abort_too_big;
445 
446 	err = 0;
447 	ptr = fragment;
448 
449 	/*
450 	 * ok, these macros clean the logic up a bit and make
451 	 * it much more readable:
452 	 */
453 #define GET_INODE_DATABLOCK(x) \
454 	ufs_inode_getfrag(inode, x, fragment, 1, &err, &phys, &new,\
455 			  bh_result->b_page)
456 #define GET_INODE_PTR(x) \
457 	ufs_inode_getfrag(inode, x, fragment, uspi->s_fpb, &err, NULL, NULL,\
458 			  bh_result->b_page)
459 #define GET_INDIRECT_DATABLOCK(x) \
460 	ufs_inode_getblock(inode, bh, x, fragment,	\
461 			  &err, &phys, &new, bh_result->b_page)
462 #define GET_INDIRECT_PTR(x) \
463 	ufs_inode_getblock(inode, bh, x, fragment,	\
464 			  &err, NULL, NULL, NULL)
465 
466 	if (ptr < UFS_NDIR_FRAGMENT) {
467 		bh = GET_INODE_DATABLOCK(ptr);
468 		goto out;
469 	}
470 	ptr -= UFS_NDIR_FRAGMENT;
471 	if (ptr < (1 << (uspi->s_apbshift + uspi->s_fpbshift))) {
472 		bh = GET_INODE_PTR(UFS_IND_FRAGMENT + (ptr >> uspi->s_apbshift));
473 		goto get_indirect;
474 	}
475 	ptr -= 1 << (uspi->s_apbshift + uspi->s_fpbshift);
476 	if (ptr < (1 << (uspi->s_2apbshift + uspi->s_fpbshift))) {
477 		bh = GET_INODE_PTR(UFS_DIND_FRAGMENT + (ptr >> uspi->s_2apbshift));
478 		goto get_double;
479 	}
480 	ptr -= 1 << (uspi->s_2apbshift + uspi->s_fpbshift);
481 	bh = GET_INODE_PTR(UFS_TIND_FRAGMENT + (ptr >> uspi->s_3apbshift));
482 	bh = GET_INDIRECT_PTR((ptr >> uspi->s_2apbshift) & uspi->s_apbmask);
483 get_double:
484 	bh = GET_INDIRECT_PTR((ptr >> uspi->s_apbshift) & uspi->s_apbmask);
485 get_indirect:
486 	bh = GET_INDIRECT_DATABLOCK(ptr & uspi->s_apbmask);
487 
488 #undef GET_INODE_DATABLOCK
489 #undef GET_INODE_PTR
490 #undef GET_INDIRECT_DATABLOCK
491 #undef GET_INDIRECT_PTR
492 
493 out:
494 	if (err)
495 		goto abort;
496 	if (new)
497 		set_buffer_new(bh_result);
498 	map_bh(bh_result, sb, phys);
499 abort:
500 	unlock_kernel();
501 	return err;
502 
503 abort_too_big:
504 	ufs_warning(sb, "ufs_get_block", "block > big");
505 	goto abort;
506 }
507 
508 static struct buffer_head *ufs_getfrag(struct inode *inode,
509 				       unsigned int fragment,
510 				       int create, int *err)
511 {
512 	struct buffer_head dummy;
513 	int error;
514 
515 	dummy.b_state = 0;
516 	dummy.b_blocknr = -1000;
517 	error = ufs_getfrag_block(inode, fragment, &dummy, create);
518 	*err = error;
519 	if (!error && buffer_mapped(&dummy)) {
520 		struct buffer_head *bh;
521 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
522 		if (buffer_new(&dummy)) {
523 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
524 			set_buffer_uptodate(bh);
525 			mark_buffer_dirty(bh);
526 		}
527 		return bh;
528 	}
529 	return NULL;
530 }
531 
532 struct buffer_head * ufs_bread (struct inode * inode, unsigned fragment,
533 	int create, int * err)
534 {
535 	struct buffer_head * bh;
536 
537 	UFSD("ENTER, ino %lu, fragment %u\n", inode->i_ino, fragment);
538 	bh = ufs_getfrag (inode, fragment, create, err);
539 	if (!bh || buffer_uptodate(bh))
540 		return bh;
541 	ll_rw_block (READ, 1, &bh);
542 	wait_on_buffer (bh);
543 	if (buffer_uptodate(bh))
544 		return bh;
545 	brelse (bh);
546 	*err = -EIO;
547 	return NULL;
548 }
549 
550 static int ufs_writepage(struct page *page, struct writeback_control *wbc)
551 {
552 	return block_write_full_page(page,ufs_getfrag_block,wbc);
553 }
554 
555 static int ufs_readpage(struct file *file, struct page *page)
556 {
557 	return block_read_full_page(page,ufs_getfrag_block);
558 }
559 
560 int __ufs_write_begin(struct file *file, struct address_space *mapping,
561 			loff_t pos, unsigned len, unsigned flags,
562 			struct page **pagep, void **fsdata)
563 {
564 	return block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
565 				ufs_getfrag_block);
566 }
567 
568 static int ufs_write_begin(struct file *file, struct address_space *mapping,
569 			loff_t pos, unsigned len, unsigned flags,
570 			struct page **pagep, void **fsdata)
571 {
572 	*pagep = NULL;
573 	return __ufs_write_begin(file, mapping, pos, len, flags, pagep, fsdata);
574 }
575 
576 static sector_t ufs_bmap(struct address_space *mapping, sector_t block)
577 {
578 	return generic_block_bmap(mapping,block,ufs_getfrag_block);
579 }
580 
581 const struct address_space_operations ufs_aops = {
582 	.readpage = ufs_readpage,
583 	.writepage = ufs_writepage,
584 	.sync_page = block_sync_page,
585 	.write_begin = ufs_write_begin,
586 	.write_end = generic_write_end,
587 	.bmap = ufs_bmap
588 };
589 
590 static void ufs_set_inode_ops(struct inode *inode)
591 {
592 	if (S_ISREG(inode->i_mode)) {
593 		inode->i_op = &ufs_file_inode_operations;
594 		inode->i_fop = &ufs_file_operations;
595 		inode->i_mapping->a_ops = &ufs_aops;
596 	} else if (S_ISDIR(inode->i_mode)) {
597 		inode->i_op = &ufs_dir_inode_operations;
598 		inode->i_fop = &ufs_dir_operations;
599 		inode->i_mapping->a_ops = &ufs_aops;
600 	} else if (S_ISLNK(inode->i_mode)) {
601 		if (!inode->i_blocks)
602 			inode->i_op = &ufs_fast_symlink_inode_operations;
603 		else {
604 			inode->i_op = &page_symlink_inode_operations;
605 			inode->i_mapping->a_ops = &ufs_aops;
606 		}
607 	} else
608 		init_special_inode(inode, inode->i_mode,
609 				   ufs_get_inode_dev(inode->i_sb, UFS_I(inode)));
610 }
611 
612 static int ufs1_read_inode(struct inode *inode, struct ufs_inode *ufs_inode)
613 {
614 	struct ufs_inode_info *ufsi = UFS_I(inode);
615 	struct super_block *sb = inode->i_sb;
616 	mode_t mode;
617 
618 	/*
619 	 * Copy data to the in-core inode.
620 	 */
621 	inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode);
622 	inode->i_nlink = fs16_to_cpu(sb, ufs_inode->ui_nlink);
623 	if (inode->i_nlink == 0) {
624 		ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
625 		return -1;
626 	}
627 
628 	/*
629 	 * Linux now has 32-bit uid and gid, so we can support EFT.
630 	 */
631 	inode->i_uid = ufs_get_inode_uid(sb, ufs_inode);
632 	inode->i_gid = ufs_get_inode_gid(sb, ufs_inode);
633 
634 	inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size);
635 	inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec);
636 	inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec);
637 	inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec);
638 	inode->i_mtime.tv_nsec = 0;
639 	inode->i_atime.tv_nsec = 0;
640 	inode->i_ctime.tv_nsec = 0;
641 	inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks);
642 	inode->i_generation = fs32_to_cpu(sb, ufs_inode->ui_gen);
643 	ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags);
644 	ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
645 	ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
646 
647 
648 	if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
649 		memcpy(ufsi->i_u1.i_data, &ufs_inode->ui_u2.ui_addr,
650 		       sizeof(ufs_inode->ui_u2.ui_addr));
651 	} else {
652 		memcpy(ufsi->i_u1.i_symlink, ufs_inode->ui_u2.ui_symlink,
653 		       sizeof(ufs_inode->ui_u2.ui_symlink) - 1);
654 		ufsi->i_u1.i_symlink[sizeof(ufs_inode->ui_u2.ui_symlink) - 1] = 0;
655 	}
656 	return 0;
657 }
658 
659 static int ufs2_read_inode(struct inode *inode, struct ufs2_inode *ufs2_inode)
660 {
661 	struct ufs_inode_info *ufsi = UFS_I(inode);
662 	struct super_block *sb = inode->i_sb;
663 	mode_t mode;
664 
665 	UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino);
666 	/*
667 	 * Copy data to the in-core inode.
668 	 */
669 	inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode);
670 	inode->i_nlink = fs16_to_cpu(sb, ufs2_inode->ui_nlink);
671 	if (inode->i_nlink == 0) {
672 		ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
673 		return -1;
674 	}
675 
676         /*
677          * Linux now has 32-bit uid and gid, so we can support EFT.
678          */
679 	inode->i_uid = fs32_to_cpu(sb, ufs2_inode->ui_uid);
680 	inode->i_gid = fs32_to_cpu(sb, ufs2_inode->ui_gid);
681 
682 	inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size);
683 	inode->i_atime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_atime);
684 	inode->i_ctime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_ctime);
685 	inode->i_mtime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_mtime);
686 	inode->i_atime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_atimensec);
687 	inode->i_ctime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_ctimensec);
688 	inode->i_mtime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_mtimensec);
689 	inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks);
690 	inode->i_generation = fs32_to_cpu(sb, ufs2_inode->ui_gen);
691 	ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags);
692 	/*
693 	ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
694 	ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
695 	*/
696 
697 	if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
698 		memcpy(ufsi->i_u1.u2_i_data, &ufs2_inode->ui_u2.ui_addr,
699 		       sizeof(ufs2_inode->ui_u2.ui_addr));
700 	} else {
701 		memcpy(ufsi->i_u1.i_symlink, ufs2_inode->ui_u2.ui_symlink,
702 		       sizeof(ufs2_inode->ui_u2.ui_symlink) - 1);
703 		ufsi->i_u1.i_symlink[sizeof(ufs2_inode->ui_u2.ui_symlink) - 1] = 0;
704 	}
705 	return 0;
706 }
707 
708 struct inode *ufs_iget(struct super_block *sb, unsigned long ino)
709 {
710 	struct ufs_inode_info *ufsi;
711 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
712 	struct buffer_head * bh;
713 	struct inode *inode;
714 	int err;
715 
716 	UFSD("ENTER, ino %lu\n", ino);
717 
718 	if (ino < UFS_ROOTINO || ino > (uspi->s_ncg * uspi->s_ipg)) {
719 		ufs_warning(sb, "ufs_read_inode", "bad inode number (%lu)\n",
720 			    ino);
721 		return ERR_PTR(-EIO);
722 	}
723 
724 	inode = iget_locked(sb, ino);
725 	if (!inode)
726 		return ERR_PTR(-ENOMEM);
727 	if (!(inode->i_state & I_NEW))
728 		return inode;
729 
730 	ufsi = UFS_I(inode);
731 
732 	bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino));
733 	if (!bh) {
734 		ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n",
735 			    inode->i_ino);
736 		goto bad_inode;
737 	}
738 	if ((UFS_SB(sb)->s_flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
739 		struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
740 
741 		err = ufs2_read_inode(inode,
742 				      ufs2_inode + ufs_inotofsbo(inode->i_ino));
743 	} else {
744 		struct ufs_inode *ufs_inode = (struct ufs_inode *)bh->b_data;
745 
746 		err = ufs1_read_inode(inode,
747 				      ufs_inode + ufs_inotofsbo(inode->i_ino));
748 	}
749 
750 	if (err)
751 		goto bad_inode;
752 	inode->i_version++;
753 	ufsi->i_lastfrag =
754 		(inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift;
755 	ufsi->i_dir_start_lookup = 0;
756 	ufsi->i_osync = 0;
757 
758 	ufs_set_inode_ops(inode);
759 
760 	brelse(bh);
761 
762 	UFSD("EXIT\n");
763 	unlock_new_inode(inode);
764 	return inode;
765 
766 bad_inode:
767 	iget_failed(inode);
768 	return ERR_PTR(-EIO);
769 }
770 
771 static void ufs1_update_inode(struct inode *inode, struct ufs_inode *ufs_inode)
772 {
773 	struct super_block *sb = inode->i_sb;
774  	struct ufs_inode_info *ufsi = UFS_I(inode);
775 
776 	ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
777 	ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
778 
779 	ufs_set_inode_uid(sb, ufs_inode, inode->i_uid);
780 	ufs_set_inode_gid(sb, ufs_inode, inode->i_gid);
781 
782 	ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
783 	ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode->i_atime.tv_sec);
784 	ufs_inode->ui_atime.tv_usec = 0;
785 	ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb, inode->i_ctime.tv_sec);
786 	ufs_inode->ui_ctime.tv_usec = 0;
787 	ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode->i_mtime.tv_sec);
788 	ufs_inode->ui_mtime.tv_usec = 0;
789 	ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks);
790 	ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
791 	ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation);
792 
793 	if ((UFS_SB(sb)->s_flags & UFS_UID_MASK) == UFS_UID_EFT) {
794 		ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow);
795 		ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag);
796 	}
797 
798 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
799 		/* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
800 		ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0];
801 	} else if (inode->i_blocks) {
802 		memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.i_data,
803 		       sizeof(ufs_inode->ui_u2.ui_addr));
804 	}
805 	else {
806 		memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink,
807 		       sizeof(ufs_inode->ui_u2.ui_symlink));
808 	}
809 
810 	if (!inode->i_nlink)
811 		memset (ufs_inode, 0, sizeof(struct ufs_inode));
812 }
813 
814 static void ufs2_update_inode(struct inode *inode, struct ufs2_inode *ufs_inode)
815 {
816 	struct super_block *sb = inode->i_sb;
817  	struct ufs_inode_info *ufsi = UFS_I(inode);
818 
819 	UFSD("ENTER\n");
820 	ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
821 	ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
822 
823 	ufs_inode->ui_uid = cpu_to_fs32(sb, inode->i_uid);
824 	ufs_inode->ui_gid = cpu_to_fs32(sb, inode->i_gid);
825 
826 	ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
827 	ufs_inode->ui_atime = cpu_to_fs64(sb, inode->i_atime.tv_sec);
828 	ufs_inode->ui_atimensec = cpu_to_fs32(sb, inode->i_atime.tv_nsec);
829 	ufs_inode->ui_ctime = cpu_to_fs64(sb, inode->i_ctime.tv_sec);
830 	ufs_inode->ui_ctimensec = cpu_to_fs32(sb, inode->i_ctime.tv_nsec);
831 	ufs_inode->ui_mtime = cpu_to_fs64(sb, inode->i_mtime.tv_sec);
832 	ufs_inode->ui_mtimensec = cpu_to_fs32(sb, inode->i_mtime.tv_nsec);
833 
834 	ufs_inode->ui_blocks = cpu_to_fs64(sb, inode->i_blocks);
835 	ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
836 	ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation);
837 
838 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
839 		/* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
840 		ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.u2_i_data[0];
841 	} else if (inode->i_blocks) {
842 		memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.u2_i_data,
843 		       sizeof(ufs_inode->ui_u2.ui_addr));
844 	} else {
845 		memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink,
846 		       sizeof(ufs_inode->ui_u2.ui_symlink));
847  	}
848 
849 	if (!inode->i_nlink)
850 		memset (ufs_inode, 0, sizeof(struct ufs2_inode));
851 	UFSD("EXIT\n");
852 }
853 
854 static int ufs_update_inode(struct inode * inode, int do_sync)
855 {
856 	struct super_block *sb = inode->i_sb;
857 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
858 	struct buffer_head * bh;
859 
860 	UFSD("ENTER, ino %lu\n", inode->i_ino);
861 
862 	if (inode->i_ino < UFS_ROOTINO ||
863 	    inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
864 		ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino);
865 		return -1;
866 	}
867 
868 	bh = sb_bread(sb, ufs_inotofsba(inode->i_ino));
869 	if (!bh) {
870 		ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino);
871 		return -1;
872 	}
873 	if (uspi->fs_magic == UFS2_MAGIC) {
874 		struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
875 
876 		ufs2_update_inode(inode,
877 				  ufs2_inode + ufs_inotofsbo(inode->i_ino));
878 	} else {
879 		struct ufs_inode *ufs_inode = (struct ufs_inode *) bh->b_data;
880 
881 		ufs1_update_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino));
882 	}
883 
884 	mark_buffer_dirty(bh);
885 	if (do_sync)
886 		sync_dirty_buffer(bh);
887 	brelse (bh);
888 
889 	UFSD("EXIT\n");
890 	return 0;
891 }
892 
893 int ufs_write_inode (struct inode * inode, int wait)
894 {
895 	int ret;
896 	lock_kernel();
897 	ret = ufs_update_inode (inode, wait);
898 	unlock_kernel();
899 	return ret;
900 }
901 
902 int ufs_sync_inode (struct inode *inode)
903 {
904 	return ufs_update_inode (inode, 1);
905 }
906 
907 void ufs_delete_inode (struct inode * inode)
908 {
909 	loff_t old_i_size;
910 
911 	truncate_inode_pages(&inode->i_data, 0);
912 	if (is_bad_inode(inode))
913 		goto no_delete;
914 	/*UFS_I(inode)->i_dtime = CURRENT_TIME;*/
915 	lock_kernel();
916 	mark_inode_dirty(inode);
917 	ufs_update_inode(inode, IS_SYNC(inode));
918 	old_i_size = inode->i_size;
919 	inode->i_size = 0;
920 	if (inode->i_blocks && ufs_truncate(inode, old_i_size))
921 		ufs_warning(inode->i_sb, __func__, "ufs_truncate failed\n");
922 	ufs_free_inode (inode);
923 	unlock_kernel();
924 	return;
925 no_delete:
926 	clear_inode(inode);	/* We must guarantee clearing of inode... */
927 }
928