1 /* 2 * linux/fs/ufs/inode.c 3 * 4 * Copyright (C) 1998 5 * Daniel Pirkl <daniel.pirkl@email.cz> 6 * Charles University, Faculty of Mathematics and Physics 7 * 8 * from 9 * 10 * linux/fs/ext2/inode.c 11 * 12 * Copyright (C) 1992, 1993, 1994, 1995 13 * Remy Card (card@masi.ibp.fr) 14 * Laboratoire MASI - Institut Blaise Pascal 15 * Universite Pierre et Marie Curie (Paris VI) 16 * 17 * from 18 * 19 * linux/fs/minix/inode.c 20 * 21 * Copyright (C) 1991, 1992 Linus Torvalds 22 * 23 * Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993 24 * Big-endian to little-endian byte-swapping/bitmaps by 25 * David S. Miller (davem@caip.rutgers.edu), 1995 26 */ 27 28 #include <asm/uaccess.h> 29 30 #include <linux/errno.h> 31 #include <linux/fs.h> 32 #include <linux/time.h> 33 #include <linux/stat.h> 34 #include <linux/string.h> 35 #include <linux/mm.h> 36 #include <linux/buffer_head.h> 37 #include <linux/writeback.h> 38 39 #include "ufs_fs.h" 40 #include "ufs.h" 41 #include "swab.h" 42 #include "util.h" 43 44 static u64 ufs_frag_map(struct inode *inode, sector_t frag, bool needs_lock); 45 46 static int ufs_block_to_path(struct inode *inode, sector_t i_block, sector_t offsets[4]) 47 { 48 struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi; 49 int ptrs = uspi->s_apb; 50 int ptrs_bits = uspi->s_apbshift; 51 const long direct_blocks = UFS_NDADDR, 52 indirect_blocks = ptrs, 53 double_blocks = (1 << (ptrs_bits * 2)); 54 int n = 0; 55 56 57 UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks); 58 if (i_block < direct_blocks) { 59 offsets[n++] = i_block; 60 } else if ((i_block -= direct_blocks) < indirect_blocks) { 61 offsets[n++] = UFS_IND_BLOCK; 62 offsets[n++] = i_block; 63 } else if ((i_block -= indirect_blocks) < double_blocks) { 64 offsets[n++] = UFS_DIND_BLOCK; 65 offsets[n++] = i_block >> ptrs_bits; 66 offsets[n++] = i_block & (ptrs - 1); 67 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 68 offsets[n++] = UFS_TIND_BLOCK; 69 offsets[n++] = i_block >> (ptrs_bits * 2); 70 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 71 offsets[n++] = i_block & (ptrs - 1); 72 } else { 73 ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big"); 74 } 75 return n; 76 } 77 78 /* 79 * Returns the location of the fragment from 80 * the beginning of the filesystem. 81 */ 82 83 static u64 ufs_frag_map(struct inode *inode, sector_t frag, bool needs_lock) 84 { 85 struct ufs_inode_info *ufsi = UFS_I(inode); 86 struct super_block *sb = inode->i_sb; 87 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 88 u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift; 89 int shift = uspi->s_apbshift-uspi->s_fpbshift; 90 sector_t offsets[4], *p; 91 int depth = ufs_block_to_path(inode, frag >> uspi->s_fpbshift, offsets); 92 u64 ret = 0L; 93 __fs32 block; 94 __fs64 u2_block = 0L; 95 unsigned flags = UFS_SB(sb)->s_flags; 96 u64 temp = 0L; 97 98 UFSD(": frag = %llu depth = %d\n", (unsigned long long)frag, depth); 99 UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n", 100 uspi->s_fpbshift, uspi->s_apbmask, 101 (unsigned long long)mask); 102 103 if (depth == 0) 104 return 0; 105 106 p = offsets; 107 108 if (needs_lock) 109 lock_ufs(sb); 110 if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) 111 goto ufs2; 112 113 block = ufsi->i_u1.i_data[*p++]; 114 if (!block) 115 goto out; 116 while (--depth) { 117 struct buffer_head *bh; 118 sector_t n = *p++; 119 120 bh = sb_bread(sb, uspi->s_sbbase + fs32_to_cpu(sb, block)+(n>>shift)); 121 if (!bh) 122 goto out; 123 block = ((__fs32 *) bh->b_data)[n & mask]; 124 brelse (bh); 125 if (!block) 126 goto out; 127 } 128 ret = (u64) (uspi->s_sbbase + fs32_to_cpu(sb, block) + (frag & uspi->s_fpbmask)); 129 goto out; 130 ufs2: 131 u2_block = ufsi->i_u1.u2_i_data[*p++]; 132 if (!u2_block) 133 goto out; 134 135 136 while (--depth) { 137 struct buffer_head *bh; 138 sector_t n = *p++; 139 140 141 temp = (u64)(uspi->s_sbbase) + fs64_to_cpu(sb, u2_block); 142 bh = sb_bread(sb, temp +(u64) (n>>shift)); 143 if (!bh) 144 goto out; 145 u2_block = ((__fs64 *)bh->b_data)[n & mask]; 146 brelse(bh); 147 if (!u2_block) 148 goto out; 149 } 150 temp = (u64)uspi->s_sbbase + fs64_to_cpu(sb, u2_block); 151 ret = temp + (u64) (frag & uspi->s_fpbmask); 152 153 out: 154 if (needs_lock) 155 unlock_ufs(sb); 156 return ret; 157 } 158 159 /** 160 * ufs_inode_getfrag() - allocate new fragment(s) 161 * @inode - pointer to inode 162 * @fragment - number of `fragment' which hold pointer 163 * to new allocated fragment(s) 164 * @new_fragment - number of new allocated fragment(s) 165 * @required - how many fragment(s) we require 166 * @err - we set it if something wrong 167 * @phys - pointer to where we save physical number of new allocated fragments, 168 * NULL if we allocate not data(indirect blocks for example). 169 * @new - we set it if we allocate new block 170 * @locked_page - for ufs_new_fragments() 171 */ 172 static struct buffer_head * 173 ufs_inode_getfrag(struct inode *inode, u64 fragment, 174 sector_t new_fragment, unsigned int required, int *err, 175 long *phys, int *new, struct page *locked_page) 176 { 177 struct ufs_inode_info *ufsi = UFS_I(inode); 178 struct super_block *sb = inode->i_sb; 179 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 180 struct buffer_head * result; 181 unsigned blockoff, lastblockoff; 182 u64 tmp, goal, lastfrag, block, lastblock; 183 void *p, *p2; 184 185 UFSD("ENTER, ino %lu, fragment %llu, new_fragment %llu, required %u, " 186 "metadata %d\n", inode->i_ino, (unsigned long long)fragment, 187 (unsigned long long)new_fragment, required, !phys); 188 189 /* TODO : to be done for write support 190 if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) 191 goto ufs2; 192 */ 193 194 block = ufs_fragstoblks (fragment); 195 blockoff = ufs_fragnum (fragment); 196 p = ufs_get_direct_data_ptr(uspi, ufsi, block); 197 198 goal = 0; 199 200 repeat: 201 tmp = ufs_data_ptr_to_cpu(sb, p); 202 203 lastfrag = ufsi->i_lastfrag; 204 if (tmp && fragment < lastfrag) { 205 if (!phys) { 206 result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff); 207 if (tmp == ufs_data_ptr_to_cpu(sb, p)) { 208 UFSD("EXIT, result %llu\n", 209 (unsigned long long)tmp + blockoff); 210 return result; 211 } 212 brelse (result); 213 goto repeat; 214 } else { 215 *phys = uspi->s_sbbase + tmp + blockoff; 216 return NULL; 217 } 218 } 219 220 lastblock = ufs_fragstoblks (lastfrag); 221 lastblockoff = ufs_fragnum (lastfrag); 222 /* 223 * We will extend file into new block beyond last allocated block 224 */ 225 if (lastblock < block) { 226 /* 227 * We must reallocate last allocated block 228 */ 229 if (lastblockoff) { 230 p2 = ufs_get_direct_data_ptr(uspi, ufsi, lastblock); 231 tmp = ufs_new_fragments(inode, p2, lastfrag, 232 ufs_data_ptr_to_cpu(sb, p2), 233 uspi->s_fpb - lastblockoff, 234 err, locked_page); 235 if (!tmp) { 236 if (lastfrag != ufsi->i_lastfrag) 237 goto repeat; 238 else 239 return NULL; 240 } 241 lastfrag = ufsi->i_lastfrag; 242 243 } 244 tmp = ufs_data_ptr_to_cpu(sb, 245 ufs_get_direct_data_ptr(uspi, ufsi, 246 lastblock)); 247 if (tmp) 248 goal = tmp + uspi->s_fpb; 249 tmp = ufs_new_fragments (inode, p, fragment - blockoff, 250 goal, required + blockoff, 251 err, 252 phys != NULL ? locked_page : NULL); 253 } else if (lastblock == block) { 254 /* 255 * We will extend last allocated block 256 */ 257 tmp = ufs_new_fragments(inode, p, fragment - 258 (blockoff - lastblockoff), 259 ufs_data_ptr_to_cpu(sb, p), 260 required + (blockoff - lastblockoff), 261 err, phys != NULL ? locked_page : NULL); 262 } else /* (lastblock > block) */ { 263 /* 264 * We will allocate new block before last allocated block 265 */ 266 if (block) { 267 tmp = ufs_data_ptr_to_cpu(sb, 268 ufs_get_direct_data_ptr(uspi, ufsi, block - 1)); 269 if (tmp) 270 goal = tmp + uspi->s_fpb; 271 } 272 tmp = ufs_new_fragments(inode, p, fragment - blockoff, 273 goal, uspi->s_fpb, err, 274 phys != NULL ? locked_page : NULL); 275 } 276 if (!tmp) { 277 if ((!blockoff && ufs_data_ptr_to_cpu(sb, p)) || 278 (blockoff && lastfrag != ufsi->i_lastfrag)) 279 goto repeat; 280 *err = -ENOSPC; 281 return NULL; 282 } 283 284 if (!phys) { 285 result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff); 286 } else { 287 *phys = uspi->s_sbbase + tmp + blockoff; 288 result = NULL; 289 *err = 0; 290 *new = 1; 291 } 292 293 inode->i_ctime = CURRENT_TIME_SEC; 294 if (IS_SYNC(inode)) 295 ufs_sync_inode (inode); 296 mark_inode_dirty(inode); 297 UFSD("EXIT, result %llu\n", (unsigned long long)tmp + blockoff); 298 return result; 299 300 /* This part : To be implemented .... 301 Required only for writing, not required for READ-ONLY. 302 ufs2: 303 304 u2_block = ufs_fragstoblks(fragment); 305 u2_blockoff = ufs_fragnum(fragment); 306 p = ufsi->i_u1.u2_i_data + block; 307 goal = 0; 308 309 repeat2: 310 tmp = fs32_to_cpu(sb, *p); 311 lastfrag = ufsi->i_lastfrag; 312 313 */ 314 } 315 316 /** 317 * ufs_inode_getblock() - allocate new block 318 * @inode - pointer to inode 319 * @bh - pointer to block which hold "pointer" to new allocated block 320 * @fragment - number of `fragment' which hold pointer 321 * to new allocated block 322 * @new_fragment - number of new allocated fragment 323 * (block will hold this fragment and also uspi->s_fpb-1) 324 * @err - see ufs_inode_getfrag() 325 * @phys - see ufs_inode_getfrag() 326 * @new - see ufs_inode_getfrag() 327 * @locked_page - see ufs_inode_getfrag() 328 */ 329 static struct buffer_head * 330 ufs_inode_getblock(struct inode *inode, struct buffer_head *bh, 331 u64 fragment, sector_t new_fragment, int *err, 332 long *phys, int *new, struct page *locked_page) 333 { 334 struct super_block *sb = inode->i_sb; 335 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 336 struct buffer_head * result; 337 unsigned blockoff; 338 u64 tmp, goal, block; 339 void *p; 340 341 block = ufs_fragstoblks (fragment); 342 blockoff = ufs_fragnum (fragment); 343 344 UFSD("ENTER, ino %lu, fragment %llu, new_fragment %llu, metadata %d\n", 345 inode->i_ino, (unsigned long long)fragment, 346 (unsigned long long)new_fragment, !phys); 347 348 result = NULL; 349 if (!bh) 350 goto out; 351 if (!buffer_uptodate(bh)) { 352 ll_rw_block (READ, 1, &bh); 353 wait_on_buffer (bh); 354 if (!buffer_uptodate(bh)) 355 goto out; 356 } 357 if (uspi->fs_magic == UFS2_MAGIC) 358 p = (__fs64 *)bh->b_data + block; 359 else 360 p = (__fs32 *)bh->b_data + block; 361 repeat: 362 tmp = ufs_data_ptr_to_cpu(sb, p); 363 if (tmp) { 364 if (!phys) { 365 result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff); 366 if (tmp == ufs_data_ptr_to_cpu(sb, p)) 367 goto out; 368 brelse (result); 369 goto repeat; 370 } else { 371 *phys = uspi->s_sbbase + tmp + blockoff; 372 goto out; 373 } 374 } 375 376 if (block && (uspi->fs_magic == UFS2_MAGIC ? 377 (tmp = fs64_to_cpu(sb, ((__fs64 *)bh->b_data)[block-1])) : 378 (tmp = fs32_to_cpu(sb, ((__fs32 *)bh->b_data)[block-1])))) 379 goal = tmp + uspi->s_fpb; 380 else 381 goal = bh->b_blocknr + uspi->s_fpb; 382 tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal, 383 uspi->s_fpb, err, locked_page); 384 if (!tmp) { 385 if (ufs_data_ptr_to_cpu(sb, p)) 386 goto repeat; 387 goto out; 388 } 389 390 391 if (!phys) { 392 result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff); 393 } else { 394 *phys = uspi->s_sbbase + tmp + blockoff; 395 *new = 1; 396 } 397 398 mark_buffer_dirty(bh); 399 if (IS_SYNC(inode)) 400 sync_dirty_buffer(bh); 401 inode->i_ctime = CURRENT_TIME_SEC; 402 mark_inode_dirty(inode); 403 UFSD("result %llu\n", (unsigned long long)tmp + blockoff); 404 out: 405 brelse (bh); 406 UFSD("EXIT\n"); 407 return result; 408 } 409 410 /** 411 * ufs_getfrag_block() - `get_block_t' function, interface between UFS and 412 * readpage, writepage and so on 413 */ 414 415 int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create) 416 { 417 struct super_block * sb = inode->i_sb; 418 struct ufs_sb_info * sbi = UFS_SB(sb); 419 struct ufs_sb_private_info * uspi = sbi->s_uspi; 420 struct buffer_head * bh; 421 int ret, err, new; 422 unsigned long ptr,phys; 423 u64 phys64 = 0; 424 bool needs_lock = (sbi->mutex_owner != current); 425 426 if (!create) { 427 phys64 = ufs_frag_map(inode, fragment, needs_lock); 428 UFSD("phys64 = %llu\n", (unsigned long long)phys64); 429 if (phys64) 430 map_bh(bh_result, sb, phys64); 431 return 0; 432 } 433 434 /* This code entered only while writing ....? */ 435 436 err = -EIO; 437 new = 0; 438 ret = 0; 439 bh = NULL; 440 441 if (needs_lock) 442 lock_ufs(sb); 443 444 UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment); 445 if (fragment > 446 ((UFS_NDADDR + uspi->s_apb + uspi->s_2apb + uspi->s_3apb) 447 << uspi->s_fpbshift)) 448 goto abort_too_big; 449 450 err = 0; 451 ptr = fragment; 452 453 /* 454 * ok, these macros clean the logic up a bit and make 455 * it much more readable: 456 */ 457 #define GET_INODE_DATABLOCK(x) \ 458 ufs_inode_getfrag(inode, x, fragment, 1, &err, &phys, &new,\ 459 bh_result->b_page) 460 #define GET_INODE_PTR(x) \ 461 ufs_inode_getfrag(inode, x, fragment, uspi->s_fpb, &err, NULL, NULL,\ 462 bh_result->b_page) 463 #define GET_INDIRECT_DATABLOCK(x) \ 464 ufs_inode_getblock(inode, bh, x, fragment, \ 465 &err, &phys, &new, bh_result->b_page) 466 #define GET_INDIRECT_PTR(x) \ 467 ufs_inode_getblock(inode, bh, x, fragment, \ 468 &err, NULL, NULL, NULL) 469 470 if (ptr < UFS_NDIR_FRAGMENT) { 471 bh = GET_INODE_DATABLOCK(ptr); 472 goto out; 473 } 474 ptr -= UFS_NDIR_FRAGMENT; 475 if (ptr < (1 << (uspi->s_apbshift + uspi->s_fpbshift))) { 476 bh = GET_INODE_PTR(UFS_IND_FRAGMENT + (ptr >> uspi->s_apbshift)); 477 goto get_indirect; 478 } 479 ptr -= 1 << (uspi->s_apbshift + uspi->s_fpbshift); 480 if (ptr < (1 << (uspi->s_2apbshift + uspi->s_fpbshift))) { 481 bh = GET_INODE_PTR(UFS_DIND_FRAGMENT + (ptr >> uspi->s_2apbshift)); 482 goto get_double; 483 } 484 ptr -= 1 << (uspi->s_2apbshift + uspi->s_fpbshift); 485 bh = GET_INODE_PTR(UFS_TIND_FRAGMENT + (ptr >> uspi->s_3apbshift)); 486 bh = GET_INDIRECT_PTR((ptr >> uspi->s_2apbshift) & uspi->s_apbmask); 487 get_double: 488 bh = GET_INDIRECT_PTR((ptr >> uspi->s_apbshift) & uspi->s_apbmask); 489 get_indirect: 490 bh = GET_INDIRECT_DATABLOCK(ptr & uspi->s_apbmask); 491 492 #undef GET_INODE_DATABLOCK 493 #undef GET_INODE_PTR 494 #undef GET_INDIRECT_DATABLOCK 495 #undef GET_INDIRECT_PTR 496 497 out: 498 if (err) 499 goto abort; 500 if (new) 501 set_buffer_new(bh_result); 502 map_bh(bh_result, sb, phys); 503 abort: 504 if (needs_lock) 505 unlock_ufs(sb); 506 507 return err; 508 509 abort_too_big: 510 ufs_warning(sb, "ufs_get_block", "block > big"); 511 goto abort; 512 } 513 514 static int ufs_writepage(struct page *page, struct writeback_control *wbc) 515 { 516 return block_write_full_page(page,ufs_getfrag_block,wbc); 517 } 518 519 static int ufs_readpage(struct file *file, struct page *page) 520 { 521 return block_read_full_page(page,ufs_getfrag_block); 522 } 523 524 int ufs_prepare_chunk(struct page *page, loff_t pos, unsigned len) 525 { 526 return __block_write_begin(page, pos, len, ufs_getfrag_block); 527 } 528 529 static void ufs_write_failed(struct address_space *mapping, loff_t to) 530 { 531 struct inode *inode = mapping->host; 532 533 if (to > inode->i_size) 534 truncate_pagecache(inode, inode->i_size); 535 } 536 537 static int ufs_write_begin(struct file *file, struct address_space *mapping, 538 loff_t pos, unsigned len, unsigned flags, 539 struct page **pagep, void **fsdata) 540 { 541 int ret; 542 543 ret = block_write_begin(mapping, pos, len, flags, pagep, 544 ufs_getfrag_block); 545 if (unlikely(ret)) 546 ufs_write_failed(mapping, pos + len); 547 548 return ret; 549 } 550 551 static sector_t ufs_bmap(struct address_space *mapping, sector_t block) 552 { 553 return generic_block_bmap(mapping,block,ufs_getfrag_block); 554 } 555 556 const struct address_space_operations ufs_aops = { 557 .readpage = ufs_readpage, 558 .writepage = ufs_writepage, 559 .write_begin = ufs_write_begin, 560 .write_end = generic_write_end, 561 .bmap = ufs_bmap 562 }; 563 564 static void ufs_set_inode_ops(struct inode *inode) 565 { 566 if (S_ISREG(inode->i_mode)) { 567 inode->i_op = &ufs_file_inode_operations; 568 inode->i_fop = &ufs_file_operations; 569 inode->i_mapping->a_ops = &ufs_aops; 570 } else if (S_ISDIR(inode->i_mode)) { 571 inode->i_op = &ufs_dir_inode_operations; 572 inode->i_fop = &ufs_dir_operations; 573 inode->i_mapping->a_ops = &ufs_aops; 574 } else if (S_ISLNK(inode->i_mode)) { 575 if (!inode->i_blocks) 576 inode->i_op = &ufs_fast_symlink_inode_operations; 577 else { 578 inode->i_op = &ufs_symlink_inode_operations; 579 inode->i_mapping->a_ops = &ufs_aops; 580 } 581 } else 582 init_special_inode(inode, inode->i_mode, 583 ufs_get_inode_dev(inode->i_sb, UFS_I(inode))); 584 } 585 586 static int ufs1_read_inode(struct inode *inode, struct ufs_inode *ufs_inode) 587 { 588 struct ufs_inode_info *ufsi = UFS_I(inode); 589 struct super_block *sb = inode->i_sb; 590 umode_t mode; 591 592 /* 593 * Copy data to the in-core inode. 594 */ 595 inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode); 596 set_nlink(inode, fs16_to_cpu(sb, ufs_inode->ui_nlink)); 597 if (inode->i_nlink == 0) { 598 ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino); 599 return -1; 600 } 601 602 /* 603 * Linux now has 32-bit uid and gid, so we can support EFT. 604 */ 605 i_uid_write(inode, ufs_get_inode_uid(sb, ufs_inode)); 606 i_gid_write(inode, ufs_get_inode_gid(sb, ufs_inode)); 607 608 inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size); 609 inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec); 610 inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec); 611 inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec); 612 inode->i_mtime.tv_nsec = 0; 613 inode->i_atime.tv_nsec = 0; 614 inode->i_ctime.tv_nsec = 0; 615 inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks); 616 inode->i_generation = fs32_to_cpu(sb, ufs_inode->ui_gen); 617 ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags); 618 ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow); 619 ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag); 620 621 622 if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) { 623 memcpy(ufsi->i_u1.i_data, &ufs_inode->ui_u2.ui_addr, 624 sizeof(ufs_inode->ui_u2.ui_addr)); 625 } else { 626 memcpy(ufsi->i_u1.i_symlink, ufs_inode->ui_u2.ui_symlink, 627 sizeof(ufs_inode->ui_u2.ui_symlink) - 1); 628 ufsi->i_u1.i_symlink[sizeof(ufs_inode->ui_u2.ui_symlink) - 1] = 0; 629 } 630 return 0; 631 } 632 633 static int ufs2_read_inode(struct inode *inode, struct ufs2_inode *ufs2_inode) 634 { 635 struct ufs_inode_info *ufsi = UFS_I(inode); 636 struct super_block *sb = inode->i_sb; 637 umode_t mode; 638 639 UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino); 640 /* 641 * Copy data to the in-core inode. 642 */ 643 inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode); 644 set_nlink(inode, fs16_to_cpu(sb, ufs2_inode->ui_nlink)); 645 if (inode->i_nlink == 0) { 646 ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino); 647 return -1; 648 } 649 650 /* 651 * Linux now has 32-bit uid and gid, so we can support EFT. 652 */ 653 i_uid_write(inode, fs32_to_cpu(sb, ufs2_inode->ui_uid)); 654 i_gid_write(inode, fs32_to_cpu(sb, ufs2_inode->ui_gid)); 655 656 inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size); 657 inode->i_atime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_atime); 658 inode->i_ctime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_ctime); 659 inode->i_mtime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_mtime); 660 inode->i_atime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_atimensec); 661 inode->i_ctime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_ctimensec); 662 inode->i_mtime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_mtimensec); 663 inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks); 664 inode->i_generation = fs32_to_cpu(sb, ufs2_inode->ui_gen); 665 ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags); 666 /* 667 ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow); 668 ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag); 669 */ 670 671 if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) { 672 memcpy(ufsi->i_u1.u2_i_data, &ufs2_inode->ui_u2.ui_addr, 673 sizeof(ufs2_inode->ui_u2.ui_addr)); 674 } else { 675 memcpy(ufsi->i_u1.i_symlink, ufs2_inode->ui_u2.ui_symlink, 676 sizeof(ufs2_inode->ui_u2.ui_symlink) - 1); 677 ufsi->i_u1.i_symlink[sizeof(ufs2_inode->ui_u2.ui_symlink) - 1] = 0; 678 } 679 return 0; 680 } 681 682 struct inode *ufs_iget(struct super_block *sb, unsigned long ino) 683 { 684 struct ufs_inode_info *ufsi; 685 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 686 struct buffer_head * bh; 687 struct inode *inode; 688 int err; 689 690 UFSD("ENTER, ino %lu\n", ino); 691 692 if (ino < UFS_ROOTINO || ino > (uspi->s_ncg * uspi->s_ipg)) { 693 ufs_warning(sb, "ufs_read_inode", "bad inode number (%lu)\n", 694 ino); 695 return ERR_PTR(-EIO); 696 } 697 698 inode = iget_locked(sb, ino); 699 if (!inode) 700 return ERR_PTR(-ENOMEM); 701 if (!(inode->i_state & I_NEW)) 702 return inode; 703 704 ufsi = UFS_I(inode); 705 706 bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino)); 707 if (!bh) { 708 ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n", 709 inode->i_ino); 710 goto bad_inode; 711 } 712 if ((UFS_SB(sb)->s_flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) { 713 struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data; 714 715 err = ufs2_read_inode(inode, 716 ufs2_inode + ufs_inotofsbo(inode->i_ino)); 717 } else { 718 struct ufs_inode *ufs_inode = (struct ufs_inode *)bh->b_data; 719 720 err = ufs1_read_inode(inode, 721 ufs_inode + ufs_inotofsbo(inode->i_ino)); 722 } 723 724 if (err) 725 goto bad_inode; 726 inode->i_version++; 727 ufsi->i_lastfrag = 728 (inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift; 729 ufsi->i_dir_start_lookup = 0; 730 ufsi->i_osync = 0; 731 732 ufs_set_inode_ops(inode); 733 734 brelse(bh); 735 736 UFSD("EXIT\n"); 737 unlock_new_inode(inode); 738 return inode; 739 740 bad_inode: 741 iget_failed(inode); 742 return ERR_PTR(-EIO); 743 } 744 745 static void ufs1_update_inode(struct inode *inode, struct ufs_inode *ufs_inode) 746 { 747 struct super_block *sb = inode->i_sb; 748 struct ufs_inode_info *ufsi = UFS_I(inode); 749 750 ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode); 751 ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink); 752 753 ufs_set_inode_uid(sb, ufs_inode, i_uid_read(inode)); 754 ufs_set_inode_gid(sb, ufs_inode, i_gid_read(inode)); 755 756 ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size); 757 ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode->i_atime.tv_sec); 758 ufs_inode->ui_atime.tv_usec = 0; 759 ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb, inode->i_ctime.tv_sec); 760 ufs_inode->ui_ctime.tv_usec = 0; 761 ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode->i_mtime.tv_sec); 762 ufs_inode->ui_mtime.tv_usec = 0; 763 ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks); 764 ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags); 765 ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation); 766 767 if ((UFS_SB(sb)->s_flags & UFS_UID_MASK) == UFS_UID_EFT) { 768 ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow); 769 ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag); 770 } 771 772 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 773 /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */ 774 ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0]; 775 } else if (inode->i_blocks) { 776 memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.i_data, 777 sizeof(ufs_inode->ui_u2.ui_addr)); 778 } 779 else { 780 memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink, 781 sizeof(ufs_inode->ui_u2.ui_symlink)); 782 } 783 784 if (!inode->i_nlink) 785 memset (ufs_inode, 0, sizeof(struct ufs_inode)); 786 } 787 788 static void ufs2_update_inode(struct inode *inode, struct ufs2_inode *ufs_inode) 789 { 790 struct super_block *sb = inode->i_sb; 791 struct ufs_inode_info *ufsi = UFS_I(inode); 792 793 UFSD("ENTER\n"); 794 ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode); 795 ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink); 796 797 ufs_inode->ui_uid = cpu_to_fs32(sb, i_uid_read(inode)); 798 ufs_inode->ui_gid = cpu_to_fs32(sb, i_gid_read(inode)); 799 800 ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size); 801 ufs_inode->ui_atime = cpu_to_fs64(sb, inode->i_atime.tv_sec); 802 ufs_inode->ui_atimensec = cpu_to_fs32(sb, inode->i_atime.tv_nsec); 803 ufs_inode->ui_ctime = cpu_to_fs64(sb, inode->i_ctime.tv_sec); 804 ufs_inode->ui_ctimensec = cpu_to_fs32(sb, inode->i_ctime.tv_nsec); 805 ufs_inode->ui_mtime = cpu_to_fs64(sb, inode->i_mtime.tv_sec); 806 ufs_inode->ui_mtimensec = cpu_to_fs32(sb, inode->i_mtime.tv_nsec); 807 808 ufs_inode->ui_blocks = cpu_to_fs64(sb, inode->i_blocks); 809 ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags); 810 ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation); 811 812 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 813 /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */ 814 ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.u2_i_data[0]; 815 } else if (inode->i_blocks) { 816 memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.u2_i_data, 817 sizeof(ufs_inode->ui_u2.ui_addr)); 818 } else { 819 memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink, 820 sizeof(ufs_inode->ui_u2.ui_symlink)); 821 } 822 823 if (!inode->i_nlink) 824 memset (ufs_inode, 0, sizeof(struct ufs2_inode)); 825 UFSD("EXIT\n"); 826 } 827 828 static int ufs_update_inode(struct inode * inode, int do_sync) 829 { 830 struct super_block *sb = inode->i_sb; 831 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 832 struct buffer_head * bh; 833 834 UFSD("ENTER, ino %lu\n", inode->i_ino); 835 836 if (inode->i_ino < UFS_ROOTINO || 837 inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) { 838 ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino); 839 return -1; 840 } 841 842 bh = sb_bread(sb, ufs_inotofsba(inode->i_ino)); 843 if (!bh) { 844 ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino); 845 return -1; 846 } 847 if (uspi->fs_magic == UFS2_MAGIC) { 848 struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data; 849 850 ufs2_update_inode(inode, 851 ufs2_inode + ufs_inotofsbo(inode->i_ino)); 852 } else { 853 struct ufs_inode *ufs_inode = (struct ufs_inode *) bh->b_data; 854 855 ufs1_update_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino)); 856 } 857 858 mark_buffer_dirty(bh); 859 if (do_sync) 860 sync_dirty_buffer(bh); 861 brelse (bh); 862 863 UFSD("EXIT\n"); 864 return 0; 865 } 866 867 int ufs_write_inode(struct inode *inode, struct writeback_control *wbc) 868 { 869 int ret; 870 lock_ufs(inode->i_sb); 871 ret = ufs_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 872 unlock_ufs(inode->i_sb); 873 return ret; 874 } 875 876 int ufs_sync_inode (struct inode *inode) 877 { 878 return ufs_update_inode (inode, 1); 879 } 880 881 void ufs_evict_inode(struct inode * inode) 882 { 883 int want_delete = 0; 884 885 if (!inode->i_nlink && !is_bad_inode(inode)) 886 want_delete = 1; 887 888 truncate_inode_pages(&inode->i_data, 0); 889 if (want_delete) { 890 loff_t old_i_size; 891 /*UFS_I(inode)->i_dtime = CURRENT_TIME;*/ 892 lock_ufs(inode->i_sb); 893 mark_inode_dirty(inode); 894 ufs_update_inode(inode, IS_SYNC(inode)); 895 old_i_size = inode->i_size; 896 inode->i_size = 0; 897 if (inode->i_blocks && ufs_truncate(inode, old_i_size)) 898 ufs_warning(inode->i_sb, __func__, "ufs_truncate failed\n"); 899 unlock_ufs(inode->i_sb); 900 } 901 902 invalidate_inode_buffers(inode); 903 clear_inode(inode); 904 905 if (want_delete) { 906 lock_ufs(inode->i_sb); 907 ufs_free_inode (inode); 908 unlock_ufs(inode->i_sb); 909 } 910 } 911