xref: /openbmc/linux/fs/ufs/inode.c (revision 8a649e33f48e08be20c51541d9184645892ec370)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/fs/ufs/inode.c
4  *
5  * Copyright (C) 1998
6  * Daniel Pirkl <daniel.pirkl@email.cz>
7  * Charles University, Faculty of Mathematics and Physics
8  *
9  *  from
10  *
11  *  linux/fs/ext2/inode.c
12  *
13  * Copyright (C) 1992, 1993, 1994, 1995
14  * Remy Card (card@masi.ibp.fr)
15  * Laboratoire MASI - Institut Blaise Pascal
16  * Universite Pierre et Marie Curie (Paris VI)
17  *
18  *  from
19  *
20  *  linux/fs/minix/inode.c
21  *
22  *  Copyright (C) 1991, 1992  Linus Torvalds
23  *
24  *  Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993
25  *  Big-endian to little-endian byte-swapping/bitmaps by
26  *        David S. Miller (davem@caip.rutgers.edu), 1995
27  */
28 
29 #include <linux/uaccess.h>
30 
31 #include <linux/errno.h>
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/stat.h>
35 #include <linux/string.h>
36 #include <linux/mm.h>
37 #include <linux/buffer_head.h>
38 #include <linux/writeback.h>
39 #include <linux/iversion.h>
40 
41 #include "ufs_fs.h"
42 #include "ufs.h"
43 #include "swab.h"
44 #include "util.h"
45 
46 static int ufs_block_to_path(struct inode *inode, sector_t i_block, unsigned offsets[4])
47 {
48 	struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi;
49 	int ptrs = uspi->s_apb;
50 	int ptrs_bits = uspi->s_apbshift;
51 	const long direct_blocks = UFS_NDADDR,
52 		indirect_blocks = ptrs,
53 		double_blocks = (1 << (ptrs_bits * 2));
54 	int n = 0;
55 
56 
57 	UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks);
58 	if (i_block < direct_blocks) {
59 		offsets[n++] = i_block;
60 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
61 		offsets[n++] = UFS_IND_BLOCK;
62 		offsets[n++] = i_block;
63 	} else if ((i_block -= indirect_blocks) < double_blocks) {
64 		offsets[n++] = UFS_DIND_BLOCK;
65 		offsets[n++] = i_block >> ptrs_bits;
66 		offsets[n++] = i_block & (ptrs - 1);
67 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
68 		offsets[n++] = UFS_TIND_BLOCK;
69 		offsets[n++] = i_block >> (ptrs_bits * 2);
70 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
71 		offsets[n++] = i_block & (ptrs - 1);
72 	} else {
73 		ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big");
74 	}
75 	return n;
76 }
77 
78 typedef struct {
79 	void	*p;
80 	union {
81 		__fs32	key32;
82 		__fs64	key64;
83 	};
84 	struct buffer_head *bh;
85 } Indirect;
86 
87 static inline int grow_chain32(struct ufs_inode_info *ufsi,
88 			       struct buffer_head *bh, __fs32 *v,
89 			       Indirect *from, Indirect *to)
90 {
91 	Indirect *p;
92 	unsigned seq;
93 	to->bh = bh;
94 	do {
95 		seq = read_seqbegin(&ufsi->meta_lock);
96 		to->key32 = *(__fs32 *)(to->p = v);
97 		for (p = from; p <= to && p->key32 == *(__fs32 *)p->p; p++)
98 			;
99 	} while (read_seqretry(&ufsi->meta_lock, seq));
100 	return (p > to);
101 }
102 
103 static inline int grow_chain64(struct ufs_inode_info *ufsi,
104 			       struct buffer_head *bh, __fs64 *v,
105 			       Indirect *from, Indirect *to)
106 {
107 	Indirect *p;
108 	unsigned seq;
109 	to->bh = bh;
110 	do {
111 		seq = read_seqbegin(&ufsi->meta_lock);
112 		to->key64 = *(__fs64 *)(to->p = v);
113 		for (p = from; p <= to && p->key64 == *(__fs64 *)p->p; p++)
114 			;
115 	} while (read_seqretry(&ufsi->meta_lock, seq));
116 	return (p > to);
117 }
118 
119 /*
120  * Returns the location of the fragment from
121  * the beginning of the filesystem.
122  */
123 
124 static u64 ufs_frag_map(struct inode *inode, unsigned offsets[4], int depth)
125 {
126 	struct ufs_inode_info *ufsi = UFS_I(inode);
127 	struct super_block *sb = inode->i_sb;
128 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
129 	u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift;
130 	int shift = uspi->s_apbshift-uspi->s_fpbshift;
131 	Indirect chain[4], *q = chain;
132 	unsigned *p;
133 	unsigned flags = UFS_SB(sb)->s_flags;
134 	u64 res = 0;
135 
136 	UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n",
137 		uspi->s_fpbshift, uspi->s_apbmask,
138 		(unsigned long long)mask);
139 
140 	if (depth == 0)
141 		goto no_block;
142 
143 again:
144 	p = offsets;
145 
146 	if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
147 		goto ufs2;
148 
149 	if (!grow_chain32(ufsi, NULL, &ufsi->i_u1.i_data[*p++], chain, q))
150 		goto changed;
151 	if (!q->key32)
152 		goto no_block;
153 	while (--depth) {
154 		__fs32 *ptr;
155 		struct buffer_head *bh;
156 		unsigned n = *p++;
157 
158 		bh = sb_bread(sb, uspi->s_sbbase +
159 				  fs32_to_cpu(sb, q->key32) + (n>>shift));
160 		if (!bh)
161 			goto no_block;
162 		ptr = (__fs32 *)bh->b_data + (n & mask);
163 		if (!grow_chain32(ufsi, bh, ptr, chain, ++q))
164 			goto changed;
165 		if (!q->key32)
166 			goto no_block;
167 	}
168 	res = fs32_to_cpu(sb, q->key32);
169 	goto found;
170 
171 ufs2:
172 	if (!grow_chain64(ufsi, NULL, &ufsi->i_u1.u2_i_data[*p++], chain, q))
173 		goto changed;
174 	if (!q->key64)
175 		goto no_block;
176 
177 	while (--depth) {
178 		__fs64 *ptr;
179 		struct buffer_head *bh;
180 		unsigned n = *p++;
181 
182 		bh = sb_bread(sb, uspi->s_sbbase +
183 				  fs64_to_cpu(sb, q->key64) + (n>>shift));
184 		if (!bh)
185 			goto no_block;
186 		ptr = (__fs64 *)bh->b_data + (n & mask);
187 		if (!grow_chain64(ufsi, bh, ptr, chain, ++q))
188 			goto changed;
189 		if (!q->key64)
190 			goto no_block;
191 	}
192 	res = fs64_to_cpu(sb, q->key64);
193 found:
194 	res += uspi->s_sbbase;
195 no_block:
196 	while (q > chain) {
197 		brelse(q->bh);
198 		q--;
199 	}
200 	return res;
201 
202 changed:
203 	while (q > chain) {
204 		brelse(q->bh);
205 		q--;
206 	}
207 	goto again;
208 }
209 
210 /*
211  * Unpacking tails: we have a file with partial final block and
212  * we had been asked to extend it.  If the fragment being written
213  * is within the same block, we need to extend the tail just to cover
214  * that fragment.  Otherwise the tail is extended to full block.
215  *
216  * Note that we might need to create a _new_ tail, but that will
217  * be handled elsewhere; this is strictly for resizing old
218  * ones.
219  */
220 static bool
221 ufs_extend_tail(struct inode *inode, u64 writes_to,
222 		  int *err, struct page *locked_page)
223 {
224 	struct ufs_inode_info *ufsi = UFS_I(inode);
225 	struct super_block *sb = inode->i_sb;
226 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
227 	unsigned lastfrag = ufsi->i_lastfrag;	/* it's a short file, so unsigned is enough */
228 	unsigned block = ufs_fragstoblks(lastfrag);
229 	unsigned new_size;
230 	void *p;
231 	u64 tmp;
232 
233 	if (writes_to < (lastfrag | uspi->s_fpbmask))
234 		new_size = (writes_to & uspi->s_fpbmask) + 1;
235 	else
236 		new_size = uspi->s_fpb;
237 
238 	p = ufs_get_direct_data_ptr(uspi, ufsi, block);
239 	tmp = ufs_new_fragments(inode, p, lastfrag, ufs_data_ptr_to_cpu(sb, p),
240 				new_size - (lastfrag & uspi->s_fpbmask), err,
241 				locked_page);
242 	return tmp != 0;
243 }
244 
245 /**
246  * ufs_inode_getfrag() - allocate new fragment(s)
247  * @inode: pointer to inode
248  * @index: number of block pointer within the inode's array.
249  * @new_fragment: number of new allocated fragment(s)
250  * @err: we set it if something wrong
251  * @new: we set it if we allocate new block
252  * @locked_page: for ufs_new_fragments()
253  */
254 static u64
255 ufs_inode_getfrag(struct inode *inode, unsigned index,
256 		  sector_t new_fragment, int *err,
257 		  int *new, struct page *locked_page)
258 {
259 	struct ufs_inode_info *ufsi = UFS_I(inode);
260 	struct super_block *sb = inode->i_sb;
261 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
262 	u64 tmp, goal, lastfrag;
263 	unsigned nfrags = uspi->s_fpb;
264 	void *p;
265 
266         /* TODO : to be done for write support
267         if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
268              goto ufs2;
269          */
270 
271 	p = ufs_get_direct_data_ptr(uspi, ufsi, index);
272 	tmp = ufs_data_ptr_to_cpu(sb, p);
273 	if (tmp)
274 		goto out;
275 
276 	lastfrag = ufsi->i_lastfrag;
277 
278 	/* will that be a new tail? */
279 	if (new_fragment < UFS_NDIR_FRAGMENT && new_fragment >= lastfrag)
280 		nfrags = (new_fragment & uspi->s_fpbmask) + 1;
281 
282 	goal = 0;
283 	if (index) {
284 		goal = ufs_data_ptr_to_cpu(sb,
285 				 ufs_get_direct_data_ptr(uspi, ufsi, index - 1));
286 		if (goal)
287 			goal += uspi->s_fpb;
288 	}
289 	tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment),
290 				goal, nfrags, err, locked_page);
291 
292 	if (!tmp) {
293 		*err = -ENOSPC;
294 		return 0;
295 	}
296 
297 	if (new)
298 		*new = 1;
299 	inode->i_ctime = current_time(inode);
300 	if (IS_SYNC(inode))
301 		ufs_sync_inode (inode);
302 	mark_inode_dirty(inode);
303 out:
304 	return tmp + uspi->s_sbbase;
305 
306      /* This part : To be implemented ....
307         Required only for writing, not required for READ-ONLY.
308 ufs2:
309 
310 	u2_block = ufs_fragstoblks(fragment);
311 	u2_blockoff = ufs_fragnum(fragment);
312 	p = ufsi->i_u1.u2_i_data + block;
313 	goal = 0;
314 
315 repeat2:
316 	tmp = fs32_to_cpu(sb, *p);
317 	lastfrag = ufsi->i_lastfrag;
318 
319      */
320 }
321 
322 /**
323  * ufs_inode_getblock() - allocate new block
324  * @inode: pointer to inode
325  * @ind_block: block number of the indirect block
326  * @index: number of pointer within the indirect block
327  * @new_fragment: number of new allocated fragment
328  *  (block will hold this fragment and also uspi->s_fpb-1)
329  * @err: see ufs_inode_getfrag()
330  * @new: see ufs_inode_getfrag()
331  * @locked_page: see ufs_inode_getfrag()
332  */
333 static u64
334 ufs_inode_getblock(struct inode *inode, u64 ind_block,
335 		  unsigned index, sector_t new_fragment, int *err,
336 		  int *new, struct page *locked_page)
337 {
338 	struct super_block *sb = inode->i_sb;
339 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
340 	int shift = uspi->s_apbshift - uspi->s_fpbshift;
341 	u64 tmp = 0, goal;
342 	struct buffer_head *bh;
343 	void *p;
344 
345 	if (!ind_block)
346 		return 0;
347 
348 	bh = sb_bread(sb, ind_block + (index >> shift));
349 	if (unlikely(!bh)) {
350 		*err = -EIO;
351 		return 0;
352 	}
353 
354 	index &= uspi->s_apbmask >> uspi->s_fpbshift;
355 	if (uspi->fs_magic == UFS2_MAGIC)
356 		p = (__fs64 *)bh->b_data + index;
357 	else
358 		p = (__fs32 *)bh->b_data + index;
359 
360 	tmp = ufs_data_ptr_to_cpu(sb, p);
361 	if (tmp)
362 		goto out;
363 
364 	if (index && (uspi->fs_magic == UFS2_MAGIC ?
365 		      (tmp = fs64_to_cpu(sb, ((__fs64 *)bh->b_data)[index-1])) :
366 		      (tmp = fs32_to_cpu(sb, ((__fs32 *)bh->b_data)[index-1]))))
367 		goal = tmp + uspi->s_fpb;
368 	else
369 		goal = bh->b_blocknr + uspi->s_fpb;
370 	tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal,
371 				uspi->s_fpb, err, locked_page);
372 	if (!tmp)
373 		goto out;
374 
375 	if (new)
376 		*new = 1;
377 
378 	mark_buffer_dirty(bh);
379 	if (IS_SYNC(inode))
380 		sync_dirty_buffer(bh);
381 	inode->i_ctime = current_time(inode);
382 	mark_inode_dirty(inode);
383 out:
384 	brelse (bh);
385 	UFSD("EXIT\n");
386 	if (tmp)
387 		tmp += uspi->s_sbbase;
388 	return tmp;
389 }
390 
391 /**
392  * ufs_getfrag_block() - `get_block_t' function, interface between UFS and
393  * read_folio, writepage and so on
394  */
395 
396 static int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create)
397 {
398 	struct super_block *sb = inode->i_sb;
399 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
400 	int err = 0, new = 0;
401 	unsigned offsets[4];
402 	int depth = ufs_block_to_path(inode, fragment >> uspi->s_fpbshift, offsets);
403 	u64 phys64 = 0;
404 	unsigned frag = fragment & uspi->s_fpbmask;
405 
406 	phys64 = ufs_frag_map(inode, offsets, depth);
407 	if (!create)
408 		goto done;
409 
410 	if (phys64) {
411 		if (fragment >= UFS_NDIR_FRAGMENT)
412 			goto done;
413 		read_seqlock_excl(&UFS_I(inode)->meta_lock);
414 		if (fragment < UFS_I(inode)->i_lastfrag) {
415 			read_sequnlock_excl(&UFS_I(inode)->meta_lock);
416 			goto done;
417 		}
418 		read_sequnlock_excl(&UFS_I(inode)->meta_lock);
419 	}
420         /* This code entered only while writing ....? */
421 
422 	mutex_lock(&UFS_I(inode)->truncate_mutex);
423 
424 	UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment);
425 	if (unlikely(!depth)) {
426 		ufs_warning(sb, "ufs_get_block", "block > big");
427 		err = -EIO;
428 		goto out;
429 	}
430 
431 	if (UFS_I(inode)->i_lastfrag < UFS_NDIR_FRAGMENT) {
432 		unsigned lastfrag = UFS_I(inode)->i_lastfrag;
433 		unsigned tailfrags = lastfrag & uspi->s_fpbmask;
434 		if (tailfrags && fragment >= lastfrag) {
435 			if (!ufs_extend_tail(inode, fragment,
436 					     &err, bh_result->b_page))
437 				goto out;
438 		}
439 	}
440 
441 	if (depth == 1) {
442 		phys64 = ufs_inode_getfrag(inode, offsets[0], fragment,
443 					   &err, &new, bh_result->b_page);
444 	} else {
445 		int i;
446 		phys64 = ufs_inode_getfrag(inode, offsets[0], fragment,
447 					   &err, NULL, NULL);
448 		for (i = 1; i < depth - 1; i++)
449 			phys64 = ufs_inode_getblock(inode, phys64, offsets[i],
450 						fragment, &err, NULL, NULL);
451 		phys64 = ufs_inode_getblock(inode, phys64, offsets[depth - 1],
452 					fragment, &err, &new, bh_result->b_page);
453 	}
454 out:
455 	if (phys64) {
456 		phys64 += frag;
457 		map_bh(bh_result, sb, phys64);
458 		if (new)
459 			set_buffer_new(bh_result);
460 	}
461 	mutex_unlock(&UFS_I(inode)->truncate_mutex);
462 	return err;
463 
464 done:
465 	if (phys64)
466 		map_bh(bh_result, sb, phys64 + frag);
467 	return 0;
468 }
469 
470 static int ufs_writepage(struct page *page, struct writeback_control *wbc)
471 {
472 	return block_write_full_page(page,ufs_getfrag_block,wbc);
473 }
474 
475 static int ufs_read_folio(struct file *file, struct folio *folio)
476 {
477 	return block_read_full_folio(folio, ufs_getfrag_block);
478 }
479 
480 int ufs_prepare_chunk(struct page *page, loff_t pos, unsigned len)
481 {
482 	return __block_write_begin(page, pos, len, ufs_getfrag_block);
483 }
484 
485 static void ufs_truncate_blocks(struct inode *);
486 
487 static void ufs_write_failed(struct address_space *mapping, loff_t to)
488 {
489 	struct inode *inode = mapping->host;
490 
491 	if (to > inode->i_size) {
492 		truncate_pagecache(inode, inode->i_size);
493 		ufs_truncate_blocks(inode);
494 	}
495 }
496 
497 static int ufs_write_begin(struct file *file, struct address_space *mapping,
498 			loff_t pos, unsigned len,
499 			struct page **pagep, void **fsdata)
500 {
501 	int ret;
502 
503 	ret = block_write_begin(mapping, pos, len, pagep, ufs_getfrag_block);
504 	if (unlikely(ret))
505 		ufs_write_failed(mapping, pos + len);
506 
507 	return ret;
508 }
509 
510 static int ufs_write_end(struct file *file, struct address_space *mapping,
511 			loff_t pos, unsigned len, unsigned copied,
512 			struct page *page, void *fsdata)
513 {
514 	int ret;
515 
516 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
517 	if (ret < len)
518 		ufs_write_failed(mapping, pos + len);
519 	return ret;
520 }
521 
522 static sector_t ufs_bmap(struct address_space *mapping, sector_t block)
523 {
524 	return generic_block_bmap(mapping,block,ufs_getfrag_block);
525 }
526 
527 const struct address_space_operations ufs_aops = {
528 	.dirty_folio = block_dirty_folio,
529 	.invalidate_folio = block_invalidate_folio,
530 	.read_folio = ufs_read_folio,
531 	.writepage = ufs_writepage,
532 	.write_begin = ufs_write_begin,
533 	.write_end = ufs_write_end,
534 	.bmap = ufs_bmap
535 };
536 
537 static void ufs_set_inode_ops(struct inode *inode)
538 {
539 	if (S_ISREG(inode->i_mode)) {
540 		inode->i_op = &ufs_file_inode_operations;
541 		inode->i_fop = &ufs_file_operations;
542 		inode->i_mapping->a_ops = &ufs_aops;
543 	} else if (S_ISDIR(inode->i_mode)) {
544 		inode->i_op = &ufs_dir_inode_operations;
545 		inode->i_fop = &ufs_dir_operations;
546 		inode->i_mapping->a_ops = &ufs_aops;
547 	} else if (S_ISLNK(inode->i_mode)) {
548 		if (!inode->i_blocks) {
549 			inode->i_link = (char *)UFS_I(inode)->i_u1.i_symlink;
550 			inode->i_op = &simple_symlink_inode_operations;
551 		} else {
552 			inode->i_mapping->a_ops = &ufs_aops;
553 			inode->i_op = &page_symlink_inode_operations;
554 			inode_nohighmem(inode);
555 		}
556 	} else
557 		init_special_inode(inode, inode->i_mode,
558 				   ufs_get_inode_dev(inode->i_sb, UFS_I(inode)));
559 }
560 
561 static int ufs1_read_inode(struct inode *inode, struct ufs_inode *ufs_inode)
562 {
563 	struct ufs_inode_info *ufsi = UFS_I(inode);
564 	struct super_block *sb = inode->i_sb;
565 	umode_t mode;
566 
567 	/*
568 	 * Copy data to the in-core inode.
569 	 */
570 	inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode);
571 	set_nlink(inode, fs16_to_cpu(sb, ufs_inode->ui_nlink));
572 	if (inode->i_nlink == 0)
573 		return -ESTALE;
574 
575 	/*
576 	 * Linux now has 32-bit uid and gid, so we can support EFT.
577 	 */
578 	i_uid_write(inode, ufs_get_inode_uid(sb, ufs_inode));
579 	i_gid_write(inode, ufs_get_inode_gid(sb, ufs_inode));
580 
581 	inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size);
582 	inode->i_atime.tv_sec = (signed)fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec);
583 	inode->i_ctime.tv_sec = (signed)fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec);
584 	inode->i_mtime.tv_sec = (signed)fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec);
585 	inode->i_mtime.tv_nsec = 0;
586 	inode->i_atime.tv_nsec = 0;
587 	inode->i_ctime.tv_nsec = 0;
588 	inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks);
589 	inode->i_generation = fs32_to_cpu(sb, ufs_inode->ui_gen);
590 	ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags);
591 	ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
592 	ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
593 
594 
595 	if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
596 		memcpy(ufsi->i_u1.i_data, &ufs_inode->ui_u2.ui_addr,
597 		       sizeof(ufs_inode->ui_u2.ui_addr));
598 	} else {
599 		memcpy(ufsi->i_u1.i_symlink, ufs_inode->ui_u2.ui_symlink,
600 		       sizeof(ufs_inode->ui_u2.ui_symlink) - 1);
601 		ufsi->i_u1.i_symlink[sizeof(ufs_inode->ui_u2.ui_symlink) - 1] = 0;
602 	}
603 	return 0;
604 }
605 
606 static int ufs2_read_inode(struct inode *inode, struct ufs2_inode *ufs2_inode)
607 {
608 	struct ufs_inode_info *ufsi = UFS_I(inode);
609 	struct super_block *sb = inode->i_sb;
610 	umode_t mode;
611 
612 	UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino);
613 	/*
614 	 * Copy data to the in-core inode.
615 	 */
616 	inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode);
617 	set_nlink(inode, fs16_to_cpu(sb, ufs2_inode->ui_nlink));
618 	if (inode->i_nlink == 0)
619 		return -ESTALE;
620 
621         /*
622          * Linux now has 32-bit uid and gid, so we can support EFT.
623          */
624 	i_uid_write(inode, fs32_to_cpu(sb, ufs2_inode->ui_uid));
625 	i_gid_write(inode, fs32_to_cpu(sb, ufs2_inode->ui_gid));
626 
627 	inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size);
628 	inode->i_atime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_atime);
629 	inode->i_ctime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_ctime);
630 	inode->i_mtime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_mtime);
631 	inode->i_atime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_atimensec);
632 	inode->i_ctime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_ctimensec);
633 	inode->i_mtime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_mtimensec);
634 	inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks);
635 	inode->i_generation = fs32_to_cpu(sb, ufs2_inode->ui_gen);
636 	ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags);
637 	/*
638 	ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
639 	ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
640 	*/
641 
642 	if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
643 		memcpy(ufsi->i_u1.u2_i_data, &ufs2_inode->ui_u2.ui_addr,
644 		       sizeof(ufs2_inode->ui_u2.ui_addr));
645 	} else {
646 		memcpy(ufsi->i_u1.i_symlink, ufs2_inode->ui_u2.ui_symlink,
647 		       sizeof(ufs2_inode->ui_u2.ui_symlink) - 1);
648 		ufsi->i_u1.i_symlink[sizeof(ufs2_inode->ui_u2.ui_symlink) - 1] = 0;
649 	}
650 	return 0;
651 }
652 
653 struct inode *ufs_iget(struct super_block *sb, unsigned long ino)
654 {
655 	struct ufs_inode_info *ufsi;
656 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
657 	struct buffer_head * bh;
658 	struct inode *inode;
659 	int err = -EIO;
660 
661 	UFSD("ENTER, ino %lu\n", ino);
662 
663 	if (ino < UFS_ROOTINO || ino > (uspi->s_ncg * uspi->s_ipg)) {
664 		ufs_warning(sb, "ufs_read_inode", "bad inode number (%lu)\n",
665 			    ino);
666 		return ERR_PTR(-EIO);
667 	}
668 
669 	inode = iget_locked(sb, ino);
670 	if (!inode)
671 		return ERR_PTR(-ENOMEM);
672 	if (!(inode->i_state & I_NEW))
673 		return inode;
674 
675 	ufsi = UFS_I(inode);
676 
677 	bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino));
678 	if (!bh) {
679 		ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n",
680 			    inode->i_ino);
681 		goto bad_inode;
682 	}
683 	if ((UFS_SB(sb)->s_flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
684 		struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
685 
686 		err = ufs2_read_inode(inode,
687 				      ufs2_inode + ufs_inotofsbo(inode->i_ino));
688 	} else {
689 		struct ufs_inode *ufs_inode = (struct ufs_inode *)bh->b_data;
690 
691 		err = ufs1_read_inode(inode,
692 				      ufs_inode + ufs_inotofsbo(inode->i_ino));
693 	}
694 	brelse(bh);
695 	if (err)
696 		goto bad_inode;
697 
698 	inode_inc_iversion(inode);
699 	ufsi->i_lastfrag =
700 		(inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift;
701 	ufsi->i_dir_start_lookup = 0;
702 	ufsi->i_osync = 0;
703 
704 	ufs_set_inode_ops(inode);
705 
706 	UFSD("EXIT\n");
707 	unlock_new_inode(inode);
708 	return inode;
709 
710 bad_inode:
711 	iget_failed(inode);
712 	return ERR_PTR(err);
713 }
714 
715 static void ufs1_update_inode(struct inode *inode, struct ufs_inode *ufs_inode)
716 {
717 	struct super_block *sb = inode->i_sb;
718  	struct ufs_inode_info *ufsi = UFS_I(inode);
719 
720 	ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
721 	ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
722 
723 	ufs_set_inode_uid(sb, ufs_inode, i_uid_read(inode));
724 	ufs_set_inode_gid(sb, ufs_inode, i_gid_read(inode));
725 
726 	ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
727 	ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode->i_atime.tv_sec);
728 	ufs_inode->ui_atime.tv_usec = 0;
729 	ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb, inode->i_ctime.tv_sec);
730 	ufs_inode->ui_ctime.tv_usec = 0;
731 	ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode->i_mtime.tv_sec);
732 	ufs_inode->ui_mtime.tv_usec = 0;
733 	ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks);
734 	ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
735 	ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation);
736 
737 	if ((UFS_SB(sb)->s_flags & UFS_UID_MASK) == UFS_UID_EFT) {
738 		ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow);
739 		ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag);
740 	}
741 
742 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
743 		/* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
744 		ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0];
745 	} else if (inode->i_blocks) {
746 		memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.i_data,
747 		       sizeof(ufs_inode->ui_u2.ui_addr));
748 	}
749 	else {
750 		memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink,
751 		       sizeof(ufs_inode->ui_u2.ui_symlink));
752 	}
753 
754 	if (!inode->i_nlink)
755 		memset (ufs_inode, 0, sizeof(struct ufs_inode));
756 }
757 
758 static void ufs2_update_inode(struct inode *inode, struct ufs2_inode *ufs_inode)
759 {
760 	struct super_block *sb = inode->i_sb;
761  	struct ufs_inode_info *ufsi = UFS_I(inode);
762 
763 	UFSD("ENTER\n");
764 	ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
765 	ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
766 
767 	ufs_inode->ui_uid = cpu_to_fs32(sb, i_uid_read(inode));
768 	ufs_inode->ui_gid = cpu_to_fs32(sb, i_gid_read(inode));
769 
770 	ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
771 	ufs_inode->ui_atime = cpu_to_fs64(sb, inode->i_atime.tv_sec);
772 	ufs_inode->ui_atimensec = cpu_to_fs32(sb, inode->i_atime.tv_nsec);
773 	ufs_inode->ui_ctime = cpu_to_fs64(sb, inode->i_ctime.tv_sec);
774 	ufs_inode->ui_ctimensec = cpu_to_fs32(sb, inode->i_ctime.tv_nsec);
775 	ufs_inode->ui_mtime = cpu_to_fs64(sb, inode->i_mtime.tv_sec);
776 	ufs_inode->ui_mtimensec = cpu_to_fs32(sb, inode->i_mtime.tv_nsec);
777 
778 	ufs_inode->ui_blocks = cpu_to_fs64(sb, inode->i_blocks);
779 	ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
780 	ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation);
781 
782 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
783 		/* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
784 		ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.u2_i_data[0];
785 	} else if (inode->i_blocks) {
786 		memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.u2_i_data,
787 		       sizeof(ufs_inode->ui_u2.ui_addr));
788 	} else {
789 		memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink,
790 		       sizeof(ufs_inode->ui_u2.ui_symlink));
791  	}
792 
793 	if (!inode->i_nlink)
794 		memset (ufs_inode, 0, sizeof(struct ufs2_inode));
795 	UFSD("EXIT\n");
796 }
797 
798 static int ufs_update_inode(struct inode * inode, int do_sync)
799 {
800 	struct super_block *sb = inode->i_sb;
801 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
802 	struct buffer_head * bh;
803 
804 	UFSD("ENTER, ino %lu\n", inode->i_ino);
805 
806 	if (inode->i_ino < UFS_ROOTINO ||
807 	    inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
808 		ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino);
809 		return -1;
810 	}
811 
812 	bh = sb_bread(sb, ufs_inotofsba(inode->i_ino));
813 	if (!bh) {
814 		ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino);
815 		return -1;
816 	}
817 	if (uspi->fs_magic == UFS2_MAGIC) {
818 		struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
819 
820 		ufs2_update_inode(inode,
821 				  ufs2_inode + ufs_inotofsbo(inode->i_ino));
822 	} else {
823 		struct ufs_inode *ufs_inode = (struct ufs_inode *) bh->b_data;
824 
825 		ufs1_update_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino));
826 	}
827 
828 	mark_buffer_dirty(bh);
829 	if (do_sync)
830 		sync_dirty_buffer(bh);
831 	brelse (bh);
832 
833 	UFSD("EXIT\n");
834 	return 0;
835 }
836 
837 int ufs_write_inode(struct inode *inode, struct writeback_control *wbc)
838 {
839 	return ufs_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
840 }
841 
842 int ufs_sync_inode (struct inode *inode)
843 {
844 	return ufs_update_inode (inode, 1);
845 }
846 
847 void ufs_evict_inode(struct inode * inode)
848 {
849 	int want_delete = 0;
850 
851 	if (!inode->i_nlink && !is_bad_inode(inode))
852 		want_delete = 1;
853 
854 	truncate_inode_pages_final(&inode->i_data);
855 	if (want_delete) {
856 		inode->i_size = 0;
857 		if (inode->i_blocks &&
858 		    (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
859 		     S_ISLNK(inode->i_mode)))
860 			ufs_truncate_blocks(inode);
861 		ufs_update_inode(inode, inode_needs_sync(inode));
862 	}
863 
864 	invalidate_inode_buffers(inode);
865 	clear_inode(inode);
866 
867 	if (want_delete)
868 		ufs_free_inode(inode);
869 }
870 
871 struct to_free {
872 	struct inode *inode;
873 	u64 to;
874 	unsigned count;
875 };
876 
877 static inline void free_data(struct to_free *ctx, u64 from, unsigned count)
878 {
879 	if (ctx->count && ctx->to != from) {
880 		ufs_free_blocks(ctx->inode, ctx->to - ctx->count, ctx->count);
881 		ctx->count = 0;
882 	}
883 	ctx->count += count;
884 	ctx->to = from + count;
885 }
886 
887 #define DIRECT_FRAGMENT ((inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift)
888 
889 static void ufs_trunc_direct(struct inode *inode)
890 {
891 	struct ufs_inode_info *ufsi = UFS_I(inode);
892 	struct super_block * sb;
893 	struct ufs_sb_private_info * uspi;
894 	void *p;
895 	u64 frag1, frag2, frag3, frag4, block1, block2;
896 	struct to_free ctx = {.inode = inode};
897 	unsigned i, tmp;
898 
899 	UFSD("ENTER: ino %lu\n", inode->i_ino);
900 
901 	sb = inode->i_sb;
902 	uspi = UFS_SB(sb)->s_uspi;
903 
904 	frag1 = DIRECT_FRAGMENT;
905 	frag4 = min_t(u64, UFS_NDIR_FRAGMENT, ufsi->i_lastfrag);
906 	frag2 = ((frag1 & uspi->s_fpbmask) ? ((frag1 | uspi->s_fpbmask) + 1) : frag1);
907 	frag3 = frag4 & ~uspi->s_fpbmask;
908 	block1 = block2 = 0;
909 	if (frag2 > frag3) {
910 		frag2 = frag4;
911 		frag3 = frag4 = 0;
912 	} else if (frag2 < frag3) {
913 		block1 = ufs_fragstoblks (frag2);
914 		block2 = ufs_fragstoblks (frag3);
915 	}
916 
917 	UFSD("ino %lu, frag1 %llu, frag2 %llu, block1 %llu, block2 %llu,"
918 	     " frag3 %llu, frag4 %llu\n", inode->i_ino,
919 	     (unsigned long long)frag1, (unsigned long long)frag2,
920 	     (unsigned long long)block1, (unsigned long long)block2,
921 	     (unsigned long long)frag3, (unsigned long long)frag4);
922 
923 	if (frag1 >= frag2)
924 		goto next1;
925 
926 	/*
927 	 * Free first free fragments
928 	 */
929 	p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag1));
930 	tmp = ufs_data_ptr_to_cpu(sb, p);
931 	if (!tmp )
932 		ufs_panic (sb, "ufs_trunc_direct", "internal error");
933 	frag2 -= frag1;
934 	frag1 = ufs_fragnum (frag1);
935 
936 	ufs_free_fragments(inode, tmp + frag1, frag2);
937 
938 next1:
939 	/*
940 	 * Free whole blocks
941 	 */
942 	for (i = block1 ; i < block2; i++) {
943 		p = ufs_get_direct_data_ptr(uspi, ufsi, i);
944 		tmp = ufs_data_ptr_to_cpu(sb, p);
945 		if (!tmp)
946 			continue;
947 		write_seqlock(&ufsi->meta_lock);
948 		ufs_data_ptr_clear(uspi, p);
949 		write_sequnlock(&ufsi->meta_lock);
950 
951 		free_data(&ctx, tmp, uspi->s_fpb);
952 	}
953 
954 	free_data(&ctx, 0, 0);
955 
956 	if (frag3 >= frag4)
957 		goto next3;
958 
959 	/*
960 	 * Free last free fragments
961 	 */
962 	p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag3));
963 	tmp = ufs_data_ptr_to_cpu(sb, p);
964 	if (!tmp )
965 		ufs_panic(sb, "ufs_truncate_direct", "internal error");
966 	frag4 = ufs_fragnum (frag4);
967 	write_seqlock(&ufsi->meta_lock);
968 	ufs_data_ptr_clear(uspi, p);
969 	write_sequnlock(&ufsi->meta_lock);
970 
971 	ufs_free_fragments (inode, tmp, frag4);
972  next3:
973 
974 	UFSD("EXIT: ino %lu\n", inode->i_ino);
975 }
976 
977 static void free_full_branch(struct inode *inode, u64 ind_block, int depth)
978 {
979 	struct super_block *sb = inode->i_sb;
980 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
981 	struct ufs_buffer_head *ubh = ubh_bread(sb, ind_block, uspi->s_bsize);
982 	unsigned i;
983 
984 	if (!ubh)
985 		return;
986 
987 	if (--depth) {
988 		for (i = 0; i < uspi->s_apb; i++) {
989 			void *p = ubh_get_data_ptr(uspi, ubh, i);
990 			u64 block = ufs_data_ptr_to_cpu(sb, p);
991 			if (block)
992 				free_full_branch(inode, block, depth);
993 		}
994 	} else {
995 		struct to_free ctx = {.inode = inode};
996 
997 		for (i = 0; i < uspi->s_apb; i++) {
998 			void *p = ubh_get_data_ptr(uspi, ubh, i);
999 			u64 block = ufs_data_ptr_to_cpu(sb, p);
1000 			if (block)
1001 				free_data(&ctx, block, uspi->s_fpb);
1002 		}
1003 		free_data(&ctx, 0, 0);
1004 	}
1005 
1006 	ubh_bforget(ubh);
1007 	ufs_free_blocks(inode, ind_block, uspi->s_fpb);
1008 }
1009 
1010 static void free_branch_tail(struct inode *inode, unsigned from, struct ufs_buffer_head *ubh, int depth)
1011 {
1012 	struct super_block *sb = inode->i_sb;
1013 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
1014 	unsigned i;
1015 
1016 	if (--depth) {
1017 		for (i = from; i < uspi->s_apb ; i++) {
1018 			void *p = ubh_get_data_ptr(uspi, ubh, i);
1019 			u64 block = ufs_data_ptr_to_cpu(sb, p);
1020 			if (block) {
1021 				write_seqlock(&UFS_I(inode)->meta_lock);
1022 				ufs_data_ptr_clear(uspi, p);
1023 				write_sequnlock(&UFS_I(inode)->meta_lock);
1024 				ubh_mark_buffer_dirty(ubh);
1025 				free_full_branch(inode, block, depth);
1026 			}
1027 		}
1028 	} else {
1029 		struct to_free ctx = {.inode = inode};
1030 
1031 		for (i = from; i < uspi->s_apb; i++) {
1032 			void *p = ubh_get_data_ptr(uspi, ubh, i);
1033 			u64 block = ufs_data_ptr_to_cpu(sb, p);
1034 			if (block) {
1035 				write_seqlock(&UFS_I(inode)->meta_lock);
1036 				ufs_data_ptr_clear(uspi, p);
1037 				write_sequnlock(&UFS_I(inode)->meta_lock);
1038 				ubh_mark_buffer_dirty(ubh);
1039 				free_data(&ctx, block, uspi->s_fpb);
1040 			}
1041 		}
1042 		free_data(&ctx, 0, 0);
1043 	}
1044 	if (IS_SYNC(inode) && ubh_buffer_dirty(ubh))
1045 		ubh_sync_block(ubh);
1046 	ubh_brelse(ubh);
1047 }
1048 
1049 static int ufs_alloc_lastblock(struct inode *inode, loff_t size)
1050 {
1051 	int err = 0;
1052 	struct super_block *sb = inode->i_sb;
1053 	struct address_space *mapping = inode->i_mapping;
1054 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
1055 	unsigned i, end;
1056 	sector_t lastfrag;
1057 	struct page *lastpage;
1058 	struct buffer_head *bh;
1059 	u64 phys64;
1060 
1061 	lastfrag = (size + uspi->s_fsize - 1) >> uspi->s_fshift;
1062 
1063 	if (!lastfrag)
1064 		goto out;
1065 
1066 	lastfrag--;
1067 
1068 	lastpage = ufs_get_locked_page(mapping, lastfrag >>
1069 				       (PAGE_SHIFT - inode->i_blkbits));
1070        if (IS_ERR(lastpage)) {
1071                err = -EIO;
1072                goto out;
1073        }
1074 
1075        end = lastfrag & ((1 << (PAGE_SHIFT - inode->i_blkbits)) - 1);
1076        bh = page_buffers(lastpage);
1077        for (i = 0; i < end; ++i)
1078                bh = bh->b_this_page;
1079 
1080 
1081        err = ufs_getfrag_block(inode, lastfrag, bh, 1);
1082 
1083        if (unlikely(err))
1084 	       goto out_unlock;
1085 
1086        if (buffer_new(bh)) {
1087 	       clear_buffer_new(bh);
1088 	       clean_bdev_bh_alias(bh);
1089 	       /*
1090 		* we do not zeroize fragment, because of
1091 		* if it maped to hole, it already contains zeroes
1092 		*/
1093 	       set_buffer_uptodate(bh);
1094 	       mark_buffer_dirty(bh);
1095 	       set_page_dirty(lastpage);
1096        }
1097 
1098        if (lastfrag >= UFS_IND_FRAGMENT) {
1099 	       end = uspi->s_fpb - ufs_fragnum(lastfrag) - 1;
1100 	       phys64 = bh->b_blocknr + 1;
1101 	       for (i = 0; i < end; ++i) {
1102 		       bh = sb_getblk(sb, i + phys64);
1103 		       lock_buffer(bh);
1104 		       memset(bh->b_data, 0, sb->s_blocksize);
1105 		       set_buffer_uptodate(bh);
1106 		       mark_buffer_dirty(bh);
1107 		       unlock_buffer(bh);
1108 		       sync_dirty_buffer(bh);
1109 		       brelse(bh);
1110 	       }
1111        }
1112 out_unlock:
1113        ufs_put_locked_page(lastpage);
1114 out:
1115        return err;
1116 }
1117 
1118 static void ufs_truncate_blocks(struct inode *inode)
1119 {
1120 	struct ufs_inode_info *ufsi = UFS_I(inode);
1121 	struct super_block *sb = inode->i_sb;
1122 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
1123 	unsigned offsets[4];
1124 	int depth;
1125 	int depth2;
1126 	unsigned i;
1127 	struct ufs_buffer_head *ubh[3];
1128 	void *p;
1129 	u64 block;
1130 
1131 	if (inode->i_size) {
1132 		sector_t last = (inode->i_size - 1) >> uspi->s_bshift;
1133 		depth = ufs_block_to_path(inode, last, offsets);
1134 		if (!depth)
1135 			return;
1136 	} else {
1137 		depth = 1;
1138 	}
1139 
1140 	for (depth2 = depth - 1; depth2; depth2--)
1141 		if (offsets[depth2] != uspi->s_apb - 1)
1142 			break;
1143 
1144 	mutex_lock(&ufsi->truncate_mutex);
1145 	if (depth == 1) {
1146 		ufs_trunc_direct(inode);
1147 		offsets[0] = UFS_IND_BLOCK;
1148 	} else {
1149 		/* get the blocks that should be partially emptied */
1150 		p = ufs_get_direct_data_ptr(uspi, ufsi, offsets[0]++);
1151 		for (i = 0; i < depth2; i++) {
1152 			block = ufs_data_ptr_to_cpu(sb, p);
1153 			if (!block)
1154 				break;
1155 			ubh[i] = ubh_bread(sb, block, uspi->s_bsize);
1156 			if (!ubh[i]) {
1157 				write_seqlock(&ufsi->meta_lock);
1158 				ufs_data_ptr_clear(uspi, p);
1159 				write_sequnlock(&ufsi->meta_lock);
1160 				break;
1161 			}
1162 			p = ubh_get_data_ptr(uspi, ubh[i], offsets[i + 1]++);
1163 		}
1164 		while (i--)
1165 			free_branch_tail(inode, offsets[i + 1], ubh[i], depth - i - 1);
1166 	}
1167 	for (i = offsets[0]; i <= UFS_TIND_BLOCK; i++) {
1168 		p = ufs_get_direct_data_ptr(uspi, ufsi, i);
1169 		block = ufs_data_ptr_to_cpu(sb, p);
1170 		if (block) {
1171 			write_seqlock(&ufsi->meta_lock);
1172 			ufs_data_ptr_clear(uspi, p);
1173 			write_sequnlock(&ufsi->meta_lock);
1174 			free_full_branch(inode, block, i - UFS_IND_BLOCK + 1);
1175 		}
1176 	}
1177 	read_seqlock_excl(&ufsi->meta_lock);
1178 	ufsi->i_lastfrag = DIRECT_FRAGMENT;
1179 	read_sequnlock_excl(&ufsi->meta_lock);
1180 	mark_inode_dirty(inode);
1181 	mutex_unlock(&ufsi->truncate_mutex);
1182 }
1183 
1184 static int ufs_truncate(struct inode *inode, loff_t size)
1185 {
1186 	int err = 0;
1187 
1188 	UFSD("ENTER: ino %lu, i_size: %llu, old_i_size: %llu\n",
1189 	     inode->i_ino, (unsigned long long)size,
1190 	     (unsigned long long)i_size_read(inode));
1191 
1192 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1193 	      S_ISLNK(inode->i_mode)))
1194 		return -EINVAL;
1195 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1196 		return -EPERM;
1197 
1198 	err = ufs_alloc_lastblock(inode, size);
1199 
1200 	if (err)
1201 		goto out;
1202 
1203 	block_truncate_page(inode->i_mapping, size, ufs_getfrag_block);
1204 
1205 	truncate_setsize(inode, size);
1206 
1207 	ufs_truncate_blocks(inode);
1208 	inode->i_mtime = inode->i_ctime = current_time(inode);
1209 	mark_inode_dirty(inode);
1210 out:
1211 	UFSD("EXIT: err %d\n", err);
1212 	return err;
1213 }
1214 
1215 int ufs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1216 		struct iattr *attr)
1217 {
1218 	struct inode *inode = d_inode(dentry);
1219 	unsigned int ia_valid = attr->ia_valid;
1220 	int error;
1221 
1222 	error = setattr_prepare(&nop_mnt_idmap, dentry, attr);
1223 	if (error)
1224 		return error;
1225 
1226 	if (ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
1227 		error = ufs_truncate(inode, attr->ia_size);
1228 		if (error)
1229 			return error;
1230 	}
1231 
1232 	setattr_copy(&nop_mnt_idmap, inode, attr);
1233 	mark_inode_dirty(inode);
1234 	return 0;
1235 }
1236 
1237 const struct inode_operations ufs_file_inode_operations = {
1238 	.setattr = ufs_setattr,
1239 };
1240