xref: /openbmc/linux/fs/ufs/inode.c (revision 7eaceacc)
1 /*
2  *  linux/fs/ufs/inode.c
3  *
4  * Copyright (C) 1998
5  * Daniel Pirkl <daniel.pirkl@email.cz>
6  * Charles University, Faculty of Mathematics and Physics
7  *
8  *  from
9  *
10  *  linux/fs/ext2/inode.c
11  *
12  * Copyright (C) 1992, 1993, 1994, 1995
13  * Remy Card (card@masi.ibp.fr)
14  * Laboratoire MASI - Institut Blaise Pascal
15  * Universite Pierre et Marie Curie (Paris VI)
16  *
17  *  from
18  *
19  *  linux/fs/minix/inode.c
20  *
21  *  Copyright (C) 1991, 1992  Linus Torvalds
22  *
23  *  Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993
24  *  Big-endian to little-endian byte-swapping/bitmaps by
25  *        David S. Miller (davem@caip.rutgers.edu), 1995
26  */
27 
28 #include <asm/uaccess.h>
29 #include <asm/system.h>
30 
31 #include <linux/errno.h>
32 #include <linux/fs.h>
33 #include <linux/time.h>
34 #include <linux/stat.h>
35 #include <linux/string.h>
36 #include <linux/mm.h>
37 #include <linux/smp_lock.h>
38 #include <linux/buffer_head.h>
39 #include <linux/writeback.h>
40 
41 #include "ufs_fs.h"
42 #include "ufs.h"
43 #include "swab.h"
44 #include "util.h"
45 
46 static u64 ufs_frag_map(struct inode *inode, sector_t frag);
47 
48 static int ufs_block_to_path(struct inode *inode, sector_t i_block, sector_t offsets[4])
49 {
50 	struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi;
51 	int ptrs = uspi->s_apb;
52 	int ptrs_bits = uspi->s_apbshift;
53 	const long direct_blocks = UFS_NDADDR,
54 		indirect_blocks = ptrs,
55 		double_blocks = (1 << (ptrs_bits * 2));
56 	int n = 0;
57 
58 
59 	UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks);
60 	if (i_block < direct_blocks) {
61 		offsets[n++] = i_block;
62 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
63 		offsets[n++] = UFS_IND_BLOCK;
64 		offsets[n++] = i_block;
65 	} else if ((i_block -= indirect_blocks) < double_blocks) {
66 		offsets[n++] = UFS_DIND_BLOCK;
67 		offsets[n++] = i_block >> ptrs_bits;
68 		offsets[n++] = i_block & (ptrs - 1);
69 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
70 		offsets[n++] = UFS_TIND_BLOCK;
71 		offsets[n++] = i_block >> (ptrs_bits * 2);
72 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
73 		offsets[n++] = i_block & (ptrs - 1);
74 	} else {
75 		ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big");
76 	}
77 	return n;
78 }
79 
80 /*
81  * Returns the location of the fragment from
82  * the begining of the filesystem.
83  */
84 
85 static u64 ufs_frag_map(struct inode *inode, sector_t frag)
86 {
87 	struct ufs_inode_info *ufsi = UFS_I(inode);
88 	struct super_block *sb = inode->i_sb;
89 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
90 	u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift;
91 	int shift = uspi->s_apbshift-uspi->s_fpbshift;
92 	sector_t offsets[4], *p;
93 	int depth = ufs_block_to_path(inode, frag >> uspi->s_fpbshift, offsets);
94 	u64  ret = 0L;
95 	__fs32 block;
96 	__fs64 u2_block = 0L;
97 	unsigned flags = UFS_SB(sb)->s_flags;
98 	u64 temp = 0L;
99 
100 	UFSD(": frag = %llu  depth = %d\n", (unsigned long long)frag, depth);
101 	UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n",
102 		uspi->s_fpbshift, uspi->s_apbmask,
103 		(unsigned long long)mask);
104 
105 	if (depth == 0)
106 		return 0;
107 
108 	p = offsets;
109 
110 	lock_kernel();
111 	if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
112 		goto ufs2;
113 
114 	block = ufsi->i_u1.i_data[*p++];
115 	if (!block)
116 		goto out;
117 	while (--depth) {
118 		struct buffer_head *bh;
119 		sector_t n = *p++;
120 
121 		bh = sb_bread(sb, uspi->s_sbbase + fs32_to_cpu(sb, block)+(n>>shift));
122 		if (!bh)
123 			goto out;
124 		block = ((__fs32 *) bh->b_data)[n & mask];
125 		brelse (bh);
126 		if (!block)
127 			goto out;
128 	}
129 	ret = (u64) (uspi->s_sbbase + fs32_to_cpu(sb, block) + (frag & uspi->s_fpbmask));
130 	goto out;
131 ufs2:
132 	u2_block = ufsi->i_u1.u2_i_data[*p++];
133 	if (!u2_block)
134 		goto out;
135 
136 
137 	while (--depth) {
138 		struct buffer_head *bh;
139 		sector_t n = *p++;
140 
141 
142 		temp = (u64)(uspi->s_sbbase) + fs64_to_cpu(sb, u2_block);
143 		bh = sb_bread(sb, temp +(u64) (n>>shift));
144 		if (!bh)
145 			goto out;
146 		u2_block = ((__fs64 *)bh->b_data)[n & mask];
147 		brelse(bh);
148 		if (!u2_block)
149 			goto out;
150 	}
151 	temp = (u64)uspi->s_sbbase + fs64_to_cpu(sb, u2_block);
152 	ret = temp + (u64) (frag & uspi->s_fpbmask);
153 
154 out:
155 	unlock_kernel();
156 	return ret;
157 }
158 
159 /**
160  * ufs_inode_getfrag() - allocate new fragment(s)
161  * @inode - pointer to inode
162  * @fragment - number of `fragment' which hold pointer
163  *   to new allocated fragment(s)
164  * @new_fragment - number of new allocated fragment(s)
165  * @required - how many fragment(s) we require
166  * @err - we set it if something wrong
167  * @phys - pointer to where we save physical number of new allocated fragments,
168  *   NULL if we allocate not data(indirect blocks for example).
169  * @new - we set it if we allocate new block
170  * @locked_page - for ufs_new_fragments()
171  */
172 static struct buffer_head *
173 ufs_inode_getfrag(struct inode *inode, u64 fragment,
174 		  sector_t new_fragment, unsigned int required, int *err,
175 		  long *phys, int *new, struct page *locked_page)
176 {
177 	struct ufs_inode_info *ufsi = UFS_I(inode);
178 	struct super_block *sb = inode->i_sb;
179 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
180 	struct buffer_head * result;
181 	unsigned blockoff, lastblockoff;
182 	u64 tmp, goal, lastfrag, block, lastblock;
183 	void *p, *p2;
184 
185 	UFSD("ENTER, ino %lu, fragment %llu, new_fragment %llu, required %u, "
186 	     "metadata %d\n", inode->i_ino, (unsigned long long)fragment,
187 	     (unsigned long long)new_fragment, required, !phys);
188 
189         /* TODO : to be done for write support
190         if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
191              goto ufs2;
192          */
193 
194 	block = ufs_fragstoblks (fragment);
195 	blockoff = ufs_fragnum (fragment);
196 	p = ufs_get_direct_data_ptr(uspi, ufsi, block);
197 
198 	goal = 0;
199 
200 repeat:
201 	tmp = ufs_data_ptr_to_cpu(sb, p);
202 
203 	lastfrag = ufsi->i_lastfrag;
204 	if (tmp && fragment < lastfrag) {
205 		if (!phys) {
206 			result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
207 			if (tmp == ufs_data_ptr_to_cpu(sb, p)) {
208 				UFSD("EXIT, result %llu\n",
209 				     (unsigned long long)tmp + blockoff);
210 				return result;
211 			}
212 			brelse (result);
213 			goto repeat;
214 		} else {
215 			*phys = uspi->s_sbbase + tmp + blockoff;
216 			return NULL;
217 		}
218 	}
219 
220 	lastblock = ufs_fragstoblks (lastfrag);
221 	lastblockoff = ufs_fragnum (lastfrag);
222 	/*
223 	 * We will extend file into new block beyond last allocated block
224 	 */
225 	if (lastblock < block) {
226 		/*
227 		 * We must reallocate last allocated block
228 		 */
229 		if (lastblockoff) {
230 			p2 = ufs_get_direct_data_ptr(uspi, ufsi, lastblock);
231 			tmp = ufs_new_fragments(inode, p2, lastfrag,
232 						ufs_data_ptr_to_cpu(sb, p2),
233 						uspi->s_fpb - lastblockoff,
234 						err, locked_page);
235 			if (!tmp) {
236 				if (lastfrag != ufsi->i_lastfrag)
237 					goto repeat;
238 				else
239 					return NULL;
240 			}
241 			lastfrag = ufsi->i_lastfrag;
242 
243 		}
244 		tmp = ufs_data_ptr_to_cpu(sb,
245 					 ufs_get_direct_data_ptr(uspi, ufsi,
246 								 lastblock));
247 		if (tmp)
248 			goal = tmp + uspi->s_fpb;
249 		tmp = ufs_new_fragments (inode, p, fragment - blockoff,
250 					 goal, required + blockoff,
251 					 err,
252 					 phys != NULL ? locked_page : NULL);
253 	} else if (lastblock == block) {
254 	/*
255 	 * We will extend last allocated block
256 	 */
257 		tmp = ufs_new_fragments(inode, p, fragment -
258 					(blockoff - lastblockoff),
259 					ufs_data_ptr_to_cpu(sb, p),
260 					required +  (blockoff - lastblockoff),
261 					err, phys != NULL ? locked_page : NULL);
262 	} else /* (lastblock > block) */ {
263 	/*
264 	 * We will allocate new block before last allocated block
265 	 */
266 		if (block) {
267 			tmp = ufs_data_ptr_to_cpu(sb,
268 						 ufs_get_direct_data_ptr(uspi, ufsi, block - 1));
269 			if (tmp)
270 				goal = tmp + uspi->s_fpb;
271 		}
272 		tmp = ufs_new_fragments(inode, p, fragment - blockoff,
273 					goal, uspi->s_fpb, err,
274 					phys != NULL ? locked_page : NULL);
275 	}
276 	if (!tmp) {
277 		if ((!blockoff && ufs_data_ptr_to_cpu(sb, p)) ||
278 		    (blockoff && lastfrag != ufsi->i_lastfrag))
279 			goto repeat;
280 		*err = -ENOSPC;
281 		return NULL;
282 	}
283 
284 	if (!phys) {
285 		result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
286 	} else {
287 		*phys = uspi->s_sbbase + tmp + blockoff;
288 		result = NULL;
289 		*err = 0;
290 		*new = 1;
291 	}
292 
293 	inode->i_ctime = CURRENT_TIME_SEC;
294 	if (IS_SYNC(inode))
295 		ufs_sync_inode (inode);
296 	mark_inode_dirty(inode);
297 	UFSD("EXIT, result %llu\n", (unsigned long long)tmp + blockoff);
298 	return result;
299 
300      /* This part : To be implemented ....
301         Required only for writing, not required for READ-ONLY.
302 ufs2:
303 
304 	u2_block = ufs_fragstoblks(fragment);
305 	u2_blockoff = ufs_fragnum(fragment);
306 	p = ufsi->i_u1.u2_i_data + block;
307 	goal = 0;
308 
309 repeat2:
310 	tmp = fs32_to_cpu(sb, *p);
311 	lastfrag = ufsi->i_lastfrag;
312 
313      */
314 }
315 
316 /**
317  * ufs_inode_getblock() - allocate new block
318  * @inode - pointer to inode
319  * @bh - pointer to block which hold "pointer" to new allocated block
320  * @fragment - number of `fragment' which hold pointer
321  *   to new allocated block
322  * @new_fragment - number of new allocated fragment
323  *  (block will hold this fragment and also uspi->s_fpb-1)
324  * @err - see ufs_inode_getfrag()
325  * @phys - see ufs_inode_getfrag()
326  * @new - see ufs_inode_getfrag()
327  * @locked_page - see ufs_inode_getfrag()
328  */
329 static struct buffer_head *
330 ufs_inode_getblock(struct inode *inode, struct buffer_head *bh,
331 		  u64 fragment, sector_t new_fragment, int *err,
332 		  long *phys, int *new, struct page *locked_page)
333 {
334 	struct super_block *sb = inode->i_sb;
335 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
336 	struct buffer_head * result;
337 	unsigned blockoff;
338 	u64 tmp, goal, block;
339 	void *p;
340 
341 	block = ufs_fragstoblks (fragment);
342 	blockoff = ufs_fragnum (fragment);
343 
344 	UFSD("ENTER, ino %lu, fragment %llu, new_fragment %llu, metadata %d\n",
345 	     inode->i_ino, (unsigned long long)fragment,
346 	     (unsigned long long)new_fragment, !phys);
347 
348 	result = NULL;
349 	if (!bh)
350 		goto out;
351 	if (!buffer_uptodate(bh)) {
352 		ll_rw_block (READ, 1, &bh);
353 		wait_on_buffer (bh);
354 		if (!buffer_uptodate(bh))
355 			goto out;
356 	}
357 	if (uspi->fs_magic == UFS2_MAGIC)
358 		p = (__fs64 *)bh->b_data + block;
359 	else
360 		p = (__fs32 *)bh->b_data + block;
361 repeat:
362 	tmp = ufs_data_ptr_to_cpu(sb, p);
363 	if (tmp) {
364 		if (!phys) {
365 			result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
366 			if (tmp == ufs_data_ptr_to_cpu(sb, p))
367 				goto out;
368 			brelse (result);
369 			goto repeat;
370 		} else {
371 			*phys = uspi->s_sbbase + tmp + blockoff;
372 			goto out;
373 		}
374 	}
375 
376 	if (block && (uspi->fs_magic == UFS2_MAGIC ?
377 		      (tmp = fs64_to_cpu(sb, ((__fs64 *)bh->b_data)[block-1])) :
378 		      (tmp = fs32_to_cpu(sb, ((__fs32 *)bh->b_data)[block-1]))))
379 		goal = tmp + uspi->s_fpb;
380 	else
381 		goal = bh->b_blocknr + uspi->s_fpb;
382 	tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal,
383 				uspi->s_fpb, err, locked_page);
384 	if (!tmp) {
385 		if (ufs_data_ptr_to_cpu(sb, p))
386 			goto repeat;
387 		goto out;
388 	}
389 
390 
391 	if (!phys) {
392 		result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
393 	} else {
394 		*phys = uspi->s_sbbase + tmp + blockoff;
395 		*new = 1;
396 	}
397 
398 	mark_buffer_dirty(bh);
399 	if (IS_SYNC(inode))
400 		sync_dirty_buffer(bh);
401 	inode->i_ctime = CURRENT_TIME_SEC;
402 	mark_inode_dirty(inode);
403 	UFSD("result %llu\n", (unsigned long long)tmp + blockoff);
404 out:
405 	brelse (bh);
406 	UFSD("EXIT\n");
407 	return result;
408 }
409 
410 /**
411  * ufs_getfrag_bloc() - `get_block_t' function, interface between UFS and
412  * readpage, writepage and so on
413  */
414 
415 int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create)
416 {
417 	struct super_block * sb = inode->i_sb;
418 	struct ufs_sb_private_info * uspi = UFS_SB(sb)->s_uspi;
419 	struct buffer_head * bh;
420 	int ret, err, new;
421 	unsigned long ptr,phys;
422 	u64 phys64 = 0;
423 
424 	if (!create) {
425 		phys64 = ufs_frag_map(inode, fragment);
426 		UFSD("phys64 = %llu\n", (unsigned long long)phys64);
427 		if (phys64)
428 			map_bh(bh_result, sb, phys64);
429 		return 0;
430 	}
431 
432         /* This code entered only while writing ....? */
433 
434 	err = -EIO;
435 	new = 0;
436 	ret = 0;
437 	bh = NULL;
438 
439 	lock_kernel();
440 
441 	UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment);
442 	if (fragment >
443 	    ((UFS_NDADDR + uspi->s_apb + uspi->s_2apb + uspi->s_3apb)
444 	     << uspi->s_fpbshift))
445 		goto abort_too_big;
446 
447 	err = 0;
448 	ptr = fragment;
449 
450 	/*
451 	 * ok, these macros clean the logic up a bit and make
452 	 * it much more readable:
453 	 */
454 #define GET_INODE_DATABLOCK(x) \
455 	ufs_inode_getfrag(inode, x, fragment, 1, &err, &phys, &new,\
456 			  bh_result->b_page)
457 #define GET_INODE_PTR(x) \
458 	ufs_inode_getfrag(inode, x, fragment, uspi->s_fpb, &err, NULL, NULL,\
459 			  bh_result->b_page)
460 #define GET_INDIRECT_DATABLOCK(x) \
461 	ufs_inode_getblock(inode, bh, x, fragment,	\
462 			  &err, &phys, &new, bh_result->b_page)
463 #define GET_INDIRECT_PTR(x) \
464 	ufs_inode_getblock(inode, bh, x, fragment,	\
465 			  &err, NULL, NULL, NULL)
466 
467 	if (ptr < UFS_NDIR_FRAGMENT) {
468 		bh = GET_INODE_DATABLOCK(ptr);
469 		goto out;
470 	}
471 	ptr -= UFS_NDIR_FRAGMENT;
472 	if (ptr < (1 << (uspi->s_apbshift + uspi->s_fpbshift))) {
473 		bh = GET_INODE_PTR(UFS_IND_FRAGMENT + (ptr >> uspi->s_apbshift));
474 		goto get_indirect;
475 	}
476 	ptr -= 1 << (uspi->s_apbshift + uspi->s_fpbshift);
477 	if (ptr < (1 << (uspi->s_2apbshift + uspi->s_fpbshift))) {
478 		bh = GET_INODE_PTR(UFS_DIND_FRAGMENT + (ptr >> uspi->s_2apbshift));
479 		goto get_double;
480 	}
481 	ptr -= 1 << (uspi->s_2apbshift + uspi->s_fpbshift);
482 	bh = GET_INODE_PTR(UFS_TIND_FRAGMENT + (ptr >> uspi->s_3apbshift));
483 	bh = GET_INDIRECT_PTR((ptr >> uspi->s_2apbshift) & uspi->s_apbmask);
484 get_double:
485 	bh = GET_INDIRECT_PTR((ptr >> uspi->s_apbshift) & uspi->s_apbmask);
486 get_indirect:
487 	bh = GET_INDIRECT_DATABLOCK(ptr & uspi->s_apbmask);
488 
489 #undef GET_INODE_DATABLOCK
490 #undef GET_INODE_PTR
491 #undef GET_INDIRECT_DATABLOCK
492 #undef GET_INDIRECT_PTR
493 
494 out:
495 	if (err)
496 		goto abort;
497 	if (new)
498 		set_buffer_new(bh_result);
499 	map_bh(bh_result, sb, phys);
500 abort:
501 	unlock_kernel();
502 	return err;
503 
504 abort_too_big:
505 	ufs_warning(sb, "ufs_get_block", "block > big");
506 	goto abort;
507 }
508 
509 static struct buffer_head *ufs_getfrag(struct inode *inode,
510 				       unsigned int fragment,
511 				       int create, int *err)
512 {
513 	struct buffer_head dummy;
514 	int error;
515 
516 	dummy.b_state = 0;
517 	dummy.b_blocknr = -1000;
518 	error = ufs_getfrag_block(inode, fragment, &dummy, create);
519 	*err = error;
520 	if (!error && buffer_mapped(&dummy)) {
521 		struct buffer_head *bh;
522 		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
523 		if (buffer_new(&dummy)) {
524 			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
525 			set_buffer_uptodate(bh);
526 			mark_buffer_dirty(bh);
527 		}
528 		return bh;
529 	}
530 	return NULL;
531 }
532 
533 struct buffer_head * ufs_bread (struct inode * inode, unsigned fragment,
534 	int create, int * err)
535 {
536 	struct buffer_head * bh;
537 
538 	UFSD("ENTER, ino %lu, fragment %u\n", inode->i_ino, fragment);
539 	bh = ufs_getfrag (inode, fragment, create, err);
540 	if (!bh || buffer_uptodate(bh))
541 		return bh;
542 	ll_rw_block (READ, 1, &bh);
543 	wait_on_buffer (bh);
544 	if (buffer_uptodate(bh))
545 		return bh;
546 	brelse (bh);
547 	*err = -EIO;
548 	return NULL;
549 }
550 
551 static int ufs_writepage(struct page *page, struct writeback_control *wbc)
552 {
553 	return block_write_full_page(page,ufs_getfrag_block,wbc);
554 }
555 
556 static int ufs_readpage(struct file *file, struct page *page)
557 {
558 	return block_read_full_page(page,ufs_getfrag_block);
559 }
560 
561 int ufs_prepare_chunk(struct page *page, loff_t pos, unsigned len)
562 {
563 	return __block_write_begin(page, pos, len, ufs_getfrag_block);
564 }
565 
566 static int ufs_write_begin(struct file *file, struct address_space *mapping,
567 			loff_t pos, unsigned len, unsigned flags,
568 			struct page **pagep, void **fsdata)
569 {
570 	int ret;
571 
572 	ret = block_write_begin(mapping, pos, len, flags, pagep,
573 				ufs_getfrag_block);
574 	if (unlikely(ret)) {
575 		loff_t isize = mapping->host->i_size;
576 		if (pos + len > isize)
577 			vmtruncate(mapping->host, isize);
578 	}
579 
580 	return ret;
581 }
582 
583 static sector_t ufs_bmap(struct address_space *mapping, sector_t block)
584 {
585 	return generic_block_bmap(mapping,block,ufs_getfrag_block);
586 }
587 
588 const struct address_space_operations ufs_aops = {
589 	.readpage = ufs_readpage,
590 	.writepage = ufs_writepage,
591 	.write_begin = ufs_write_begin,
592 	.write_end = generic_write_end,
593 	.bmap = ufs_bmap
594 };
595 
596 static void ufs_set_inode_ops(struct inode *inode)
597 {
598 	if (S_ISREG(inode->i_mode)) {
599 		inode->i_op = &ufs_file_inode_operations;
600 		inode->i_fop = &ufs_file_operations;
601 		inode->i_mapping->a_ops = &ufs_aops;
602 	} else if (S_ISDIR(inode->i_mode)) {
603 		inode->i_op = &ufs_dir_inode_operations;
604 		inode->i_fop = &ufs_dir_operations;
605 		inode->i_mapping->a_ops = &ufs_aops;
606 	} else if (S_ISLNK(inode->i_mode)) {
607 		if (!inode->i_blocks)
608 			inode->i_op = &ufs_fast_symlink_inode_operations;
609 		else {
610 			inode->i_op = &ufs_symlink_inode_operations;
611 			inode->i_mapping->a_ops = &ufs_aops;
612 		}
613 	} else
614 		init_special_inode(inode, inode->i_mode,
615 				   ufs_get_inode_dev(inode->i_sb, UFS_I(inode)));
616 }
617 
618 static int ufs1_read_inode(struct inode *inode, struct ufs_inode *ufs_inode)
619 {
620 	struct ufs_inode_info *ufsi = UFS_I(inode);
621 	struct super_block *sb = inode->i_sb;
622 	mode_t mode;
623 
624 	/*
625 	 * Copy data to the in-core inode.
626 	 */
627 	inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode);
628 	inode->i_nlink = fs16_to_cpu(sb, ufs_inode->ui_nlink);
629 	if (inode->i_nlink == 0) {
630 		ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
631 		return -1;
632 	}
633 
634 	/*
635 	 * Linux now has 32-bit uid and gid, so we can support EFT.
636 	 */
637 	inode->i_uid = ufs_get_inode_uid(sb, ufs_inode);
638 	inode->i_gid = ufs_get_inode_gid(sb, ufs_inode);
639 
640 	inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size);
641 	inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec);
642 	inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec);
643 	inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec);
644 	inode->i_mtime.tv_nsec = 0;
645 	inode->i_atime.tv_nsec = 0;
646 	inode->i_ctime.tv_nsec = 0;
647 	inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks);
648 	inode->i_generation = fs32_to_cpu(sb, ufs_inode->ui_gen);
649 	ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags);
650 	ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
651 	ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
652 
653 
654 	if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
655 		memcpy(ufsi->i_u1.i_data, &ufs_inode->ui_u2.ui_addr,
656 		       sizeof(ufs_inode->ui_u2.ui_addr));
657 	} else {
658 		memcpy(ufsi->i_u1.i_symlink, ufs_inode->ui_u2.ui_symlink,
659 		       sizeof(ufs_inode->ui_u2.ui_symlink) - 1);
660 		ufsi->i_u1.i_symlink[sizeof(ufs_inode->ui_u2.ui_symlink) - 1] = 0;
661 	}
662 	return 0;
663 }
664 
665 static int ufs2_read_inode(struct inode *inode, struct ufs2_inode *ufs2_inode)
666 {
667 	struct ufs_inode_info *ufsi = UFS_I(inode);
668 	struct super_block *sb = inode->i_sb;
669 	mode_t mode;
670 
671 	UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino);
672 	/*
673 	 * Copy data to the in-core inode.
674 	 */
675 	inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode);
676 	inode->i_nlink = fs16_to_cpu(sb, ufs2_inode->ui_nlink);
677 	if (inode->i_nlink == 0) {
678 		ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
679 		return -1;
680 	}
681 
682         /*
683          * Linux now has 32-bit uid and gid, so we can support EFT.
684          */
685 	inode->i_uid = fs32_to_cpu(sb, ufs2_inode->ui_uid);
686 	inode->i_gid = fs32_to_cpu(sb, ufs2_inode->ui_gid);
687 
688 	inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size);
689 	inode->i_atime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_atime);
690 	inode->i_ctime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_ctime);
691 	inode->i_mtime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_mtime);
692 	inode->i_atime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_atimensec);
693 	inode->i_ctime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_ctimensec);
694 	inode->i_mtime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_mtimensec);
695 	inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks);
696 	inode->i_generation = fs32_to_cpu(sb, ufs2_inode->ui_gen);
697 	ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags);
698 	/*
699 	ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
700 	ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
701 	*/
702 
703 	if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
704 		memcpy(ufsi->i_u1.u2_i_data, &ufs2_inode->ui_u2.ui_addr,
705 		       sizeof(ufs2_inode->ui_u2.ui_addr));
706 	} else {
707 		memcpy(ufsi->i_u1.i_symlink, ufs2_inode->ui_u2.ui_symlink,
708 		       sizeof(ufs2_inode->ui_u2.ui_symlink) - 1);
709 		ufsi->i_u1.i_symlink[sizeof(ufs2_inode->ui_u2.ui_symlink) - 1] = 0;
710 	}
711 	return 0;
712 }
713 
714 struct inode *ufs_iget(struct super_block *sb, unsigned long ino)
715 {
716 	struct ufs_inode_info *ufsi;
717 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
718 	struct buffer_head * bh;
719 	struct inode *inode;
720 	int err;
721 
722 	UFSD("ENTER, ino %lu\n", ino);
723 
724 	if (ino < UFS_ROOTINO || ino > (uspi->s_ncg * uspi->s_ipg)) {
725 		ufs_warning(sb, "ufs_read_inode", "bad inode number (%lu)\n",
726 			    ino);
727 		return ERR_PTR(-EIO);
728 	}
729 
730 	inode = iget_locked(sb, ino);
731 	if (!inode)
732 		return ERR_PTR(-ENOMEM);
733 	if (!(inode->i_state & I_NEW))
734 		return inode;
735 
736 	ufsi = UFS_I(inode);
737 
738 	bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino));
739 	if (!bh) {
740 		ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n",
741 			    inode->i_ino);
742 		goto bad_inode;
743 	}
744 	if ((UFS_SB(sb)->s_flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
745 		struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
746 
747 		err = ufs2_read_inode(inode,
748 				      ufs2_inode + ufs_inotofsbo(inode->i_ino));
749 	} else {
750 		struct ufs_inode *ufs_inode = (struct ufs_inode *)bh->b_data;
751 
752 		err = ufs1_read_inode(inode,
753 				      ufs_inode + ufs_inotofsbo(inode->i_ino));
754 	}
755 
756 	if (err)
757 		goto bad_inode;
758 	inode->i_version++;
759 	ufsi->i_lastfrag =
760 		(inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift;
761 	ufsi->i_dir_start_lookup = 0;
762 	ufsi->i_osync = 0;
763 
764 	ufs_set_inode_ops(inode);
765 
766 	brelse(bh);
767 
768 	UFSD("EXIT\n");
769 	unlock_new_inode(inode);
770 	return inode;
771 
772 bad_inode:
773 	iget_failed(inode);
774 	return ERR_PTR(-EIO);
775 }
776 
777 static void ufs1_update_inode(struct inode *inode, struct ufs_inode *ufs_inode)
778 {
779 	struct super_block *sb = inode->i_sb;
780  	struct ufs_inode_info *ufsi = UFS_I(inode);
781 
782 	ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
783 	ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
784 
785 	ufs_set_inode_uid(sb, ufs_inode, inode->i_uid);
786 	ufs_set_inode_gid(sb, ufs_inode, inode->i_gid);
787 
788 	ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
789 	ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode->i_atime.tv_sec);
790 	ufs_inode->ui_atime.tv_usec = 0;
791 	ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb, inode->i_ctime.tv_sec);
792 	ufs_inode->ui_ctime.tv_usec = 0;
793 	ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode->i_mtime.tv_sec);
794 	ufs_inode->ui_mtime.tv_usec = 0;
795 	ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks);
796 	ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
797 	ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation);
798 
799 	if ((UFS_SB(sb)->s_flags & UFS_UID_MASK) == UFS_UID_EFT) {
800 		ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow);
801 		ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag);
802 	}
803 
804 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
805 		/* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
806 		ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0];
807 	} else if (inode->i_blocks) {
808 		memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.i_data,
809 		       sizeof(ufs_inode->ui_u2.ui_addr));
810 	}
811 	else {
812 		memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink,
813 		       sizeof(ufs_inode->ui_u2.ui_symlink));
814 	}
815 
816 	if (!inode->i_nlink)
817 		memset (ufs_inode, 0, sizeof(struct ufs_inode));
818 }
819 
820 static void ufs2_update_inode(struct inode *inode, struct ufs2_inode *ufs_inode)
821 {
822 	struct super_block *sb = inode->i_sb;
823  	struct ufs_inode_info *ufsi = UFS_I(inode);
824 
825 	UFSD("ENTER\n");
826 	ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
827 	ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
828 
829 	ufs_inode->ui_uid = cpu_to_fs32(sb, inode->i_uid);
830 	ufs_inode->ui_gid = cpu_to_fs32(sb, inode->i_gid);
831 
832 	ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
833 	ufs_inode->ui_atime = cpu_to_fs64(sb, inode->i_atime.tv_sec);
834 	ufs_inode->ui_atimensec = cpu_to_fs32(sb, inode->i_atime.tv_nsec);
835 	ufs_inode->ui_ctime = cpu_to_fs64(sb, inode->i_ctime.tv_sec);
836 	ufs_inode->ui_ctimensec = cpu_to_fs32(sb, inode->i_ctime.tv_nsec);
837 	ufs_inode->ui_mtime = cpu_to_fs64(sb, inode->i_mtime.tv_sec);
838 	ufs_inode->ui_mtimensec = cpu_to_fs32(sb, inode->i_mtime.tv_nsec);
839 
840 	ufs_inode->ui_blocks = cpu_to_fs64(sb, inode->i_blocks);
841 	ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
842 	ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation);
843 
844 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
845 		/* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
846 		ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.u2_i_data[0];
847 	} else if (inode->i_blocks) {
848 		memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.u2_i_data,
849 		       sizeof(ufs_inode->ui_u2.ui_addr));
850 	} else {
851 		memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink,
852 		       sizeof(ufs_inode->ui_u2.ui_symlink));
853  	}
854 
855 	if (!inode->i_nlink)
856 		memset (ufs_inode, 0, sizeof(struct ufs2_inode));
857 	UFSD("EXIT\n");
858 }
859 
860 static int ufs_update_inode(struct inode * inode, int do_sync)
861 {
862 	struct super_block *sb = inode->i_sb;
863 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
864 	struct buffer_head * bh;
865 
866 	UFSD("ENTER, ino %lu\n", inode->i_ino);
867 
868 	if (inode->i_ino < UFS_ROOTINO ||
869 	    inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
870 		ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino);
871 		return -1;
872 	}
873 
874 	bh = sb_bread(sb, ufs_inotofsba(inode->i_ino));
875 	if (!bh) {
876 		ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino);
877 		return -1;
878 	}
879 	if (uspi->fs_magic == UFS2_MAGIC) {
880 		struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
881 
882 		ufs2_update_inode(inode,
883 				  ufs2_inode + ufs_inotofsbo(inode->i_ino));
884 	} else {
885 		struct ufs_inode *ufs_inode = (struct ufs_inode *) bh->b_data;
886 
887 		ufs1_update_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino));
888 	}
889 
890 	mark_buffer_dirty(bh);
891 	if (do_sync)
892 		sync_dirty_buffer(bh);
893 	brelse (bh);
894 
895 	UFSD("EXIT\n");
896 	return 0;
897 }
898 
899 int ufs_write_inode(struct inode *inode, struct writeback_control *wbc)
900 {
901 	int ret;
902 	lock_kernel();
903 	ret = ufs_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
904 	unlock_kernel();
905 	return ret;
906 }
907 
908 int ufs_sync_inode (struct inode *inode)
909 {
910 	return ufs_update_inode (inode, 1);
911 }
912 
913 void ufs_evict_inode(struct inode * inode)
914 {
915 	int want_delete = 0;
916 
917 	if (!inode->i_nlink && !is_bad_inode(inode))
918 		want_delete = 1;
919 
920 	truncate_inode_pages(&inode->i_data, 0);
921 	if (want_delete) {
922 		loff_t old_i_size;
923 		/*UFS_I(inode)->i_dtime = CURRENT_TIME;*/
924 		lock_kernel();
925 		mark_inode_dirty(inode);
926 		ufs_update_inode(inode, IS_SYNC(inode));
927 		old_i_size = inode->i_size;
928 		inode->i_size = 0;
929 		if (inode->i_blocks && ufs_truncate(inode, old_i_size))
930 			ufs_warning(inode->i_sb, __func__, "ufs_truncate failed\n");
931 		unlock_kernel();
932 	}
933 
934 	invalidate_inode_buffers(inode);
935 	end_writeback(inode);
936 
937 	if (want_delete) {
938 		lock_kernel();
939 		ufs_free_inode (inode);
940 		unlock_kernel();
941 	}
942 }
943