xref: /openbmc/linux/fs/ufs/inode.c (revision 5a39c255)
1 /*
2  *  linux/fs/ufs/inode.c
3  *
4  * Copyright (C) 1998
5  * Daniel Pirkl <daniel.pirkl@email.cz>
6  * Charles University, Faculty of Mathematics and Physics
7  *
8  *  from
9  *
10  *  linux/fs/ext2/inode.c
11  *
12  * Copyright (C) 1992, 1993, 1994, 1995
13  * Remy Card (card@masi.ibp.fr)
14  * Laboratoire MASI - Institut Blaise Pascal
15  * Universite Pierre et Marie Curie (Paris VI)
16  *
17  *  from
18  *
19  *  linux/fs/minix/inode.c
20  *
21  *  Copyright (C) 1991, 1992  Linus Torvalds
22  *
23  *  Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993
24  *  Big-endian to little-endian byte-swapping/bitmaps by
25  *        David S. Miller (davem@caip.rutgers.edu), 1995
26  */
27 
28 #include <asm/uaccess.h>
29 
30 #include <linux/errno.h>
31 #include <linux/fs.h>
32 #include <linux/time.h>
33 #include <linux/stat.h>
34 #include <linux/string.h>
35 #include <linux/mm.h>
36 #include <linux/buffer_head.h>
37 #include <linux/writeback.h>
38 
39 #include "ufs_fs.h"
40 #include "ufs.h"
41 #include "swab.h"
42 #include "util.h"
43 
44 static int ufs_block_to_path(struct inode *inode, sector_t i_block, unsigned offsets[4])
45 {
46 	struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi;
47 	int ptrs = uspi->s_apb;
48 	int ptrs_bits = uspi->s_apbshift;
49 	const long direct_blocks = UFS_NDADDR,
50 		indirect_blocks = ptrs,
51 		double_blocks = (1 << (ptrs_bits * 2));
52 	int n = 0;
53 
54 
55 	UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks);
56 	if (i_block < direct_blocks) {
57 		offsets[n++] = i_block;
58 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
59 		offsets[n++] = UFS_IND_BLOCK;
60 		offsets[n++] = i_block;
61 	} else if ((i_block -= indirect_blocks) < double_blocks) {
62 		offsets[n++] = UFS_DIND_BLOCK;
63 		offsets[n++] = i_block >> ptrs_bits;
64 		offsets[n++] = i_block & (ptrs - 1);
65 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
66 		offsets[n++] = UFS_TIND_BLOCK;
67 		offsets[n++] = i_block >> (ptrs_bits * 2);
68 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
69 		offsets[n++] = i_block & (ptrs - 1);
70 	} else {
71 		ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big");
72 	}
73 	return n;
74 }
75 
76 typedef struct {
77 	void	*p;
78 	union {
79 		__fs32	key32;
80 		__fs64	key64;
81 	};
82 	struct buffer_head *bh;
83 } Indirect;
84 
85 static inline int grow_chain32(struct ufs_inode_info *ufsi,
86 			       struct buffer_head *bh, __fs32 *v,
87 			       Indirect *from, Indirect *to)
88 {
89 	Indirect *p;
90 	unsigned seq;
91 	to->bh = bh;
92 	do {
93 		seq = read_seqbegin(&ufsi->meta_lock);
94 		to->key32 = *(__fs32 *)(to->p = v);
95 		for (p = from; p <= to && p->key32 == *(__fs32 *)p->p; p++)
96 			;
97 	} while (read_seqretry(&ufsi->meta_lock, seq));
98 	return (p > to);
99 }
100 
101 static inline int grow_chain64(struct ufs_inode_info *ufsi,
102 			       struct buffer_head *bh, __fs64 *v,
103 			       Indirect *from, Indirect *to)
104 {
105 	Indirect *p;
106 	unsigned seq;
107 	to->bh = bh;
108 	do {
109 		seq = read_seqbegin(&ufsi->meta_lock);
110 		to->key64 = *(__fs64 *)(to->p = v);
111 		for (p = from; p <= to && p->key64 == *(__fs64 *)p->p; p++)
112 			;
113 	} while (read_seqretry(&ufsi->meta_lock, seq));
114 	return (p > to);
115 }
116 
117 /*
118  * Returns the location of the fragment from
119  * the beginning of the filesystem.
120  */
121 
122 static u64 ufs_frag_map(struct inode *inode, sector_t frag)
123 {
124 	struct ufs_inode_info *ufsi = UFS_I(inode);
125 	struct super_block *sb = inode->i_sb;
126 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
127 	u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift;
128 	int shift = uspi->s_apbshift-uspi->s_fpbshift;
129 	unsigned offsets[4], *p;
130 	Indirect chain[4], *q = chain;
131 	int depth = ufs_block_to_path(inode, frag >> uspi->s_fpbshift, offsets);
132 	unsigned flags = UFS_SB(sb)->s_flags;
133 	u64 res = 0;
134 
135 	UFSD(": frag = %llu  depth = %d\n", (unsigned long long)frag, depth);
136 	UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n",
137 		uspi->s_fpbshift, uspi->s_apbmask,
138 		(unsigned long long)mask);
139 
140 	if (depth == 0)
141 		goto no_block;
142 
143 again:
144 	p = offsets;
145 
146 	if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
147 		goto ufs2;
148 
149 	if (!grow_chain32(ufsi, NULL, &ufsi->i_u1.i_data[*p++], chain, q))
150 		goto changed;
151 	if (!q->key32)
152 		goto no_block;
153 	while (--depth) {
154 		__fs32 *ptr;
155 		struct buffer_head *bh;
156 		unsigned n = *p++;
157 
158 		bh = sb_bread(sb, uspi->s_sbbase +
159 				  fs32_to_cpu(sb, q->key32) + (n>>shift));
160 		if (!bh)
161 			goto no_block;
162 		ptr = (__fs32 *)bh->b_data + (n & mask);
163 		if (!grow_chain32(ufsi, bh, ptr, chain, ++q))
164 			goto changed;
165 		if (!q->key32)
166 			goto no_block;
167 	}
168 	res = fs32_to_cpu(sb, q->key32);
169 	goto found;
170 
171 ufs2:
172 	if (!grow_chain64(ufsi, NULL, &ufsi->i_u1.u2_i_data[*p++], chain, q))
173 		goto changed;
174 	if (!q->key64)
175 		goto no_block;
176 
177 	while (--depth) {
178 		__fs64 *ptr;
179 		struct buffer_head *bh;
180 		unsigned n = *p++;
181 
182 		bh = sb_bread(sb, uspi->s_sbbase +
183 				  fs64_to_cpu(sb, q->key64) + (n>>shift));
184 		if (!bh)
185 			goto no_block;
186 		ptr = (__fs64 *)bh->b_data + (n & mask);
187 		if (!grow_chain64(ufsi, bh, ptr, chain, ++q))
188 			goto changed;
189 		if (!q->key64)
190 			goto no_block;
191 	}
192 	res = fs64_to_cpu(sb, q->key64);
193 found:
194 	res += uspi->s_sbbase + (frag & uspi->s_fpbmask);
195 no_block:
196 	while (q > chain) {
197 		brelse(q->bh);
198 		q--;
199 	}
200 	return res;
201 
202 changed:
203 	while (q > chain) {
204 		brelse(q->bh);
205 		q--;
206 	}
207 	goto again;
208 }
209 
210 /**
211  * ufs_inode_getfrag() - allocate new fragment(s)
212  * @inode: pointer to inode
213  * @fragment: number of `fragment' which hold pointer
214  *   to new allocated fragment(s)
215  * @new_fragment: number of new allocated fragment(s)
216  * @required: how many fragment(s) we require
217  * @err: we set it if something wrong
218  * @phys: pointer to where we save physical number of new allocated fragments,
219  *   NULL if we allocate not data(indirect blocks for example).
220  * @new: we set it if we allocate new block
221  * @locked_page: for ufs_new_fragments()
222  */
223 static struct buffer_head *
224 ufs_inode_getfrag(struct inode *inode, u64 fragment,
225 		  sector_t new_fragment, unsigned int required, int *err,
226 		  long *phys, int *new, struct page *locked_page)
227 {
228 	struct ufs_inode_info *ufsi = UFS_I(inode);
229 	struct super_block *sb = inode->i_sb;
230 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
231 	struct buffer_head * result;
232 	unsigned blockoff, lastblockoff;
233 	u64 tmp, goal, lastfrag, block, lastblock;
234 	void *p, *p2;
235 
236 	UFSD("ENTER, ino %lu, fragment %llu, new_fragment %llu, required %u, "
237 	     "metadata %d\n", inode->i_ino, (unsigned long long)fragment,
238 	     (unsigned long long)new_fragment, required, !phys);
239 
240         /* TODO : to be done for write support
241         if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
242              goto ufs2;
243          */
244 
245 	block = ufs_fragstoblks (fragment);
246 	blockoff = ufs_fragnum (fragment);
247 	p = ufs_get_direct_data_ptr(uspi, ufsi, block);
248 
249 	goal = 0;
250 
251 	tmp = ufs_data_ptr_to_cpu(sb, p);
252 
253 	lastfrag = ufsi->i_lastfrag;
254 	if (tmp && fragment < lastfrag) {
255 		if (!phys) {
256 			return sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
257 		} else {
258 			*phys = uspi->s_sbbase + tmp + blockoff;
259 			return NULL;
260 		}
261 	}
262 
263 	lastblock = ufs_fragstoblks (lastfrag);
264 	lastblockoff = ufs_fragnum (lastfrag);
265 	/*
266 	 * We will extend file into new block beyond last allocated block
267 	 */
268 	if (lastblock < block) {
269 		/*
270 		 * We must reallocate last allocated block
271 		 */
272 		if (lastblockoff) {
273 			p2 = ufs_get_direct_data_ptr(uspi, ufsi, lastblock);
274 			tmp = ufs_new_fragments(inode, p2, lastfrag,
275 						ufs_data_ptr_to_cpu(sb, p2),
276 						uspi->s_fpb - lastblockoff,
277 						err, locked_page);
278 			if (!tmp)
279 				return NULL;
280 			lastfrag = ufsi->i_lastfrag;
281 		}
282 		tmp = ufs_data_ptr_to_cpu(sb,
283 					 ufs_get_direct_data_ptr(uspi, ufsi,
284 								 lastblock));
285 		if (tmp)
286 			goal = tmp + uspi->s_fpb;
287 		tmp = ufs_new_fragments (inode, p, fragment - blockoff,
288 					 goal, required + blockoff,
289 					 err,
290 					 phys != NULL ? locked_page : NULL);
291 	} else if (lastblock == block) {
292 	/*
293 	 * We will extend last allocated block
294 	 */
295 		tmp = ufs_new_fragments(inode, p, fragment -
296 					(blockoff - lastblockoff),
297 					ufs_data_ptr_to_cpu(sb, p),
298 					required +  (blockoff - lastblockoff),
299 					err, phys != NULL ? locked_page : NULL);
300 	} else /* (lastblock > block) */ {
301 	/*
302 	 * We will allocate new block before last allocated block
303 	 */
304 		if (block) {
305 			tmp = ufs_data_ptr_to_cpu(sb,
306 						 ufs_get_direct_data_ptr(uspi, ufsi, block - 1));
307 			if (tmp)
308 				goal = tmp + uspi->s_fpb;
309 		}
310 		tmp = ufs_new_fragments(inode, p, fragment - blockoff,
311 					goal, uspi->s_fpb, err,
312 					phys != NULL ? locked_page : NULL);
313 	}
314 	if (!tmp) {
315 		*err = -ENOSPC;
316 		return NULL;
317 	}
318 
319 	if (!phys) {
320 		result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
321 	} else {
322 		*phys = uspi->s_sbbase + tmp + blockoff;
323 		result = NULL;
324 		*err = 0;
325 		*new = 1;
326 	}
327 
328 	inode->i_ctime = CURRENT_TIME_SEC;
329 	if (IS_SYNC(inode))
330 		ufs_sync_inode (inode);
331 	mark_inode_dirty(inode);
332 	return result;
333 
334      /* This part : To be implemented ....
335         Required only for writing, not required for READ-ONLY.
336 ufs2:
337 
338 	u2_block = ufs_fragstoblks(fragment);
339 	u2_blockoff = ufs_fragnum(fragment);
340 	p = ufsi->i_u1.u2_i_data + block;
341 	goal = 0;
342 
343 repeat2:
344 	tmp = fs32_to_cpu(sb, *p);
345 	lastfrag = ufsi->i_lastfrag;
346 
347      */
348 }
349 
350 /**
351  * ufs_inode_getblock() - allocate new block
352  * @inode: pointer to inode
353  * @bh: pointer to block which hold "pointer" to new allocated block
354  * @fragment: number of `fragment' which hold pointer
355  *   to new allocated block
356  * @new_fragment: number of new allocated fragment
357  *  (block will hold this fragment and also uspi->s_fpb-1)
358  * @err: see ufs_inode_getfrag()
359  * @phys: see ufs_inode_getfrag()
360  * @new: see ufs_inode_getfrag()
361  * @locked_page: see ufs_inode_getfrag()
362  */
363 static struct buffer_head *
364 ufs_inode_getblock(struct inode *inode, struct buffer_head *bh,
365 		  u64 fragment, sector_t new_fragment, int *err,
366 		  long *phys, int *new, struct page *locked_page)
367 {
368 	struct super_block *sb = inode->i_sb;
369 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
370 	struct buffer_head * result;
371 	unsigned blockoff;
372 	u64 tmp, goal, block;
373 	void *p;
374 
375 	block = ufs_fragstoblks (fragment);
376 	blockoff = ufs_fragnum (fragment);
377 
378 	UFSD("ENTER, ino %lu, fragment %llu, new_fragment %llu, metadata %d\n",
379 	     inode->i_ino, (unsigned long long)fragment,
380 	     (unsigned long long)new_fragment, !phys);
381 
382 	result = NULL;
383 	if (!bh)
384 		goto out;
385 	if (!buffer_uptodate(bh)) {
386 		ll_rw_block (READ, 1, &bh);
387 		wait_on_buffer (bh);
388 		if (!buffer_uptodate(bh))
389 			goto out;
390 	}
391 	if (uspi->fs_magic == UFS2_MAGIC)
392 		p = (__fs64 *)bh->b_data + block;
393 	else
394 		p = (__fs32 *)bh->b_data + block;
395 
396 	tmp = ufs_data_ptr_to_cpu(sb, p);
397 	if (tmp) {
398 		if (!phys)
399 			result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
400 		else
401 			*phys = uspi->s_sbbase + tmp + blockoff;
402 		goto out;
403 	}
404 
405 	if (block && (uspi->fs_magic == UFS2_MAGIC ?
406 		      (tmp = fs64_to_cpu(sb, ((__fs64 *)bh->b_data)[block-1])) :
407 		      (tmp = fs32_to_cpu(sb, ((__fs32 *)bh->b_data)[block-1]))))
408 		goal = tmp + uspi->s_fpb;
409 	else
410 		goal = bh->b_blocknr + uspi->s_fpb;
411 	tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal,
412 				uspi->s_fpb, err, locked_page);
413 	if (!tmp)
414 		goto out;
415 
416 	if (!phys) {
417 		result = sb_getblk(sb, uspi->s_sbbase + tmp + blockoff);
418 	} else {
419 		*phys = uspi->s_sbbase + tmp + blockoff;
420 		*new = 1;
421 	}
422 
423 	mark_buffer_dirty(bh);
424 	if (IS_SYNC(inode))
425 		sync_dirty_buffer(bh);
426 	inode->i_ctime = CURRENT_TIME_SEC;
427 	mark_inode_dirty(inode);
428 out:
429 	brelse (bh);
430 	UFSD("EXIT\n");
431 	return result;
432 }
433 
434 /**
435  * ufs_getfrag_block() - `get_block_t' function, interface between UFS and
436  * readpage, writepage and so on
437  */
438 
439 static int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create)
440 {
441 	struct super_block * sb = inode->i_sb;
442 	struct ufs_sb_info * sbi = UFS_SB(sb);
443 	struct ufs_sb_private_info * uspi = sbi->s_uspi;
444 	struct buffer_head * bh;
445 	int ret, err, new;
446 	unsigned long ptr,phys;
447 	u64 phys64 = 0;
448 
449 	if (!create) {
450 		phys64 = ufs_frag_map(inode, fragment);
451 		UFSD("phys64 = %llu\n", (unsigned long long)phys64);
452 		if (phys64)
453 			map_bh(bh_result, sb, phys64);
454 		return 0;
455 	}
456 
457         /* This code entered only while writing ....? */
458 
459 	err = -EIO;
460 	new = 0;
461 	ret = 0;
462 	bh = NULL;
463 
464 	mutex_lock(&UFS_I(inode)->truncate_mutex);
465 
466 	UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment);
467 	if (fragment >
468 	    ((UFS_NDADDR + uspi->s_apb + uspi->s_2apb + uspi->s_3apb)
469 	     << uspi->s_fpbshift))
470 		goto abort_too_big;
471 
472 	err = 0;
473 	ptr = fragment;
474 
475 	/*
476 	 * ok, these macros clean the logic up a bit and make
477 	 * it much more readable:
478 	 */
479 #define GET_INODE_DATABLOCK(x) \
480 	ufs_inode_getfrag(inode, x, fragment, 1, &err, &phys, &new,\
481 			  bh_result->b_page)
482 #define GET_INODE_PTR(x) \
483 	ufs_inode_getfrag(inode, x, fragment, uspi->s_fpb, &err, NULL, NULL,\
484 			  bh_result->b_page)
485 #define GET_INDIRECT_DATABLOCK(x) \
486 	ufs_inode_getblock(inode, bh, x, fragment,	\
487 			  &err, &phys, &new, bh_result->b_page)
488 #define GET_INDIRECT_PTR(x) \
489 	ufs_inode_getblock(inode, bh, x, fragment,	\
490 			  &err, NULL, NULL, NULL)
491 
492 	if (ptr < UFS_NDIR_FRAGMENT) {
493 		bh = GET_INODE_DATABLOCK(ptr);
494 		goto out;
495 	}
496 	ptr -= UFS_NDIR_FRAGMENT;
497 	if (ptr < (1 << (uspi->s_apbshift + uspi->s_fpbshift))) {
498 		bh = GET_INODE_PTR(UFS_IND_FRAGMENT + (ptr >> uspi->s_apbshift));
499 		goto get_indirect;
500 	}
501 	ptr -= 1 << (uspi->s_apbshift + uspi->s_fpbshift);
502 	if (ptr < (1 << (uspi->s_2apbshift + uspi->s_fpbshift))) {
503 		bh = GET_INODE_PTR(UFS_DIND_FRAGMENT + (ptr >> uspi->s_2apbshift));
504 		goto get_double;
505 	}
506 	ptr -= 1 << (uspi->s_2apbshift + uspi->s_fpbshift);
507 	bh = GET_INODE_PTR(UFS_TIND_FRAGMENT + (ptr >> uspi->s_3apbshift));
508 	bh = GET_INDIRECT_PTR((ptr >> uspi->s_2apbshift) & uspi->s_apbmask);
509 get_double:
510 	bh = GET_INDIRECT_PTR((ptr >> uspi->s_apbshift) & uspi->s_apbmask);
511 get_indirect:
512 	bh = GET_INDIRECT_DATABLOCK(ptr & uspi->s_apbmask);
513 
514 #undef GET_INODE_DATABLOCK
515 #undef GET_INODE_PTR
516 #undef GET_INDIRECT_DATABLOCK
517 #undef GET_INDIRECT_PTR
518 
519 out:
520 	if (err)
521 		goto abort;
522 	if (new)
523 		set_buffer_new(bh_result);
524 	map_bh(bh_result, sb, phys);
525 abort:
526 	mutex_unlock(&UFS_I(inode)->truncate_mutex);
527 
528 	return err;
529 
530 abort_too_big:
531 	ufs_warning(sb, "ufs_get_block", "block > big");
532 	goto abort;
533 }
534 
535 static int ufs_writepage(struct page *page, struct writeback_control *wbc)
536 {
537 	return block_write_full_page(page,ufs_getfrag_block,wbc);
538 }
539 
540 static int ufs_readpage(struct file *file, struct page *page)
541 {
542 	return block_read_full_page(page,ufs_getfrag_block);
543 }
544 
545 int ufs_prepare_chunk(struct page *page, loff_t pos, unsigned len)
546 {
547 	return __block_write_begin(page, pos, len, ufs_getfrag_block);
548 }
549 
550 static void ufs_truncate_blocks(struct inode *);
551 
552 static void ufs_write_failed(struct address_space *mapping, loff_t to)
553 {
554 	struct inode *inode = mapping->host;
555 
556 	if (to > inode->i_size) {
557 		truncate_pagecache(inode, inode->i_size);
558 		ufs_truncate_blocks(inode);
559 	}
560 }
561 
562 static int ufs_write_begin(struct file *file, struct address_space *mapping,
563 			loff_t pos, unsigned len, unsigned flags,
564 			struct page **pagep, void **fsdata)
565 {
566 	int ret;
567 
568 	ret = block_write_begin(mapping, pos, len, flags, pagep,
569 				ufs_getfrag_block);
570 	if (unlikely(ret))
571 		ufs_write_failed(mapping, pos + len);
572 
573 	return ret;
574 }
575 
576 static int ufs_write_end(struct file *file, struct address_space *mapping,
577 			loff_t pos, unsigned len, unsigned copied,
578 			struct page *page, void *fsdata)
579 {
580 	int ret;
581 
582 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
583 	if (ret < len)
584 		ufs_write_failed(mapping, pos + len);
585 	return ret;
586 }
587 
588 static sector_t ufs_bmap(struct address_space *mapping, sector_t block)
589 {
590 	return generic_block_bmap(mapping,block,ufs_getfrag_block);
591 }
592 
593 const struct address_space_operations ufs_aops = {
594 	.readpage = ufs_readpage,
595 	.writepage = ufs_writepage,
596 	.write_begin = ufs_write_begin,
597 	.write_end = ufs_write_end,
598 	.bmap = ufs_bmap
599 };
600 
601 static void ufs_set_inode_ops(struct inode *inode)
602 {
603 	if (S_ISREG(inode->i_mode)) {
604 		inode->i_op = &ufs_file_inode_operations;
605 		inode->i_fop = &ufs_file_operations;
606 		inode->i_mapping->a_ops = &ufs_aops;
607 	} else if (S_ISDIR(inode->i_mode)) {
608 		inode->i_op = &ufs_dir_inode_operations;
609 		inode->i_fop = &ufs_dir_operations;
610 		inode->i_mapping->a_ops = &ufs_aops;
611 	} else if (S_ISLNK(inode->i_mode)) {
612 		if (!inode->i_blocks) {
613 			inode->i_op = &ufs_fast_symlink_inode_operations;
614 			inode->i_link = (char *)UFS_I(inode)->i_u1.i_symlink;
615 		} else {
616 			inode->i_op = &ufs_symlink_inode_operations;
617 			inode->i_mapping->a_ops = &ufs_aops;
618 		}
619 	} else
620 		init_special_inode(inode, inode->i_mode,
621 				   ufs_get_inode_dev(inode->i_sb, UFS_I(inode)));
622 }
623 
624 static int ufs1_read_inode(struct inode *inode, struct ufs_inode *ufs_inode)
625 {
626 	struct ufs_inode_info *ufsi = UFS_I(inode);
627 	struct super_block *sb = inode->i_sb;
628 	umode_t mode;
629 
630 	/*
631 	 * Copy data to the in-core inode.
632 	 */
633 	inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode);
634 	set_nlink(inode, fs16_to_cpu(sb, ufs_inode->ui_nlink));
635 	if (inode->i_nlink == 0) {
636 		ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
637 		return -1;
638 	}
639 
640 	/*
641 	 * Linux now has 32-bit uid and gid, so we can support EFT.
642 	 */
643 	i_uid_write(inode, ufs_get_inode_uid(sb, ufs_inode));
644 	i_gid_write(inode, ufs_get_inode_gid(sb, ufs_inode));
645 
646 	inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size);
647 	inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec);
648 	inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec);
649 	inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec);
650 	inode->i_mtime.tv_nsec = 0;
651 	inode->i_atime.tv_nsec = 0;
652 	inode->i_ctime.tv_nsec = 0;
653 	inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks);
654 	inode->i_generation = fs32_to_cpu(sb, ufs_inode->ui_gen);
655 	ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags);
656 	ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
657 	ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
658 
659 
660 	if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
661 		memcpy(ufsi->i_u1.i_data, &ufs_inode->ui_u2.ui_addr,
662 		       sizeof(ufs_inode->ui_u2.ui_addr));
663 	} else {
664 		memcpy(ufsi->i_u1.i_symlink, ufs_inode->ui_u2.ui_symlink,
665 		       sizeof(ufs_inode->ui_u2.ui_symlink) - 1);
666 		ufsi->i_u1.i_symlink[sizeof(ufs_inode->ui_u2.ui_symlink) - 1] = 0;
667 	}
668 	return 0;
669 }
670 
671 static int ufs2_read_inode(struct inode *inode, struct ufs2_inode *ufs2_inode)
672 {
673 	struct ufs_inode_info *ufsi = UFS_I(inode);
674 	struct super_block *sb = inode->i_sb;
675 	umode_t mode;
676 
677 	UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino);
678 	/*
679 	 * Copy data to the in-core inode.
680 	 */
681 	inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode);
682 	set_nlink(inode, fs16_to_cpu(sb, ufs2_inode->ui_nlink));
683 	if (inode->i_nlink == 0) {
684 		ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
685 		return -1;
686 	}
687 
688         /*
689          * Linux now has 32-bit uid and gid, so we can support EFT.
690          */
691 	i_uid_write(inode, fs32_to_cpu(sb, ufs2_inode->ui_uid));
692 	i_gid_write(inode, fs32_to_cpu(sb, ufs2_inode->ui_gid));
693 
694 	inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size);
695 	inode->i_atime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_atime);
696 	inode->i_ctime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_ctime);
697 	inode->i_mtime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_mtime);
698 	inode->i_atime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_atimensec);
699 	inode->i_ctime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_ctimensec);
700 	inode->i_mtime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_mtimensec);
701 	inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks);
702 	inode->i_generation = fs32_to_cpu(sb, ufs2_inode->ui_gen);
703 	ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags);
704 	/*
705 	ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
706 	ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
707 	*/
708 
709 	if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
710 		memcpy(ufsi->i_u1.u2_i_data, &ufs2_inode->ui_u2.ui_addr,
711 		       sizeof(ufs2_inode->ui_u2.ui_addr));
712 	} else {
713 		memcpy(ufsi->i_u1.i_symlink, ufs2_inode->ui_u2.ui_symlink,
714 		       sizeof(ufs2_inode->ui_u2.ui_symlink) - 1);
715 		ufsi->i_u1.i_symlink[sizeof(ufs2_inode->ui_u2.ui_symlink) - 1] = 0;
716 	}
717 	return 0;
718 }
719 
720 struct inode *ufs_iget(struct super_block *sb, unsigned long ino)
721 {
722 	struct ufs_inode_info *ufsi;
723 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
724 	struct buffer_head * bh;
725 	struct inode *inode;
726 	int err;
727 
728 	UFSD("ENTER, ino %lu\n", ino);
729 
730 	if (ino < UFS_ROOTINO || ino > (uspi->s_ncg * uspi->s_ipg)) {
731 		ufs_warning(sb, "ufs_read_inode", "bad inode number (%lu)\n",
732 			    ino);
733 		return ERR_PTR(-EIO);
734 	}
735 
736 	inode = iget_locked(sb, ino);
737 	if (!inode)
738 		return ERR_PTR(-ENOMEM);
739 	if (!(inode->i_state & I_NEW))
740 		return inode;
741 
742 	ufsi = UFS_I(inode);
743 
744 	bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino));
745 	if (!bh) {
746 		ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n",
747 			    inode->i_ino);
748 		goto bad_inode;
749 	}
750 	if ((UFS_SB(sb)->s_flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
751 		struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
752 
753 		err = ufs2_read_inode(inode,
754 				      ufs2_inode + ufs_inotofsbo(inode->i_ino));
755 	} else {
756 		struct ufs_inode *ufs_inode = (struct ufs_inode *)bh->b_data;
757 
758 		err = ufs1_read_inode(inode,
759 				      ufs_inode + ufs_inotofsbo(inode->i_ino));
760 	}
761 
762 	if (err)
763 		goto bad_inode;
764 	inode->i_version++;
765 	ufsi->i_lastfrag =
766 		(inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift;
767 	ufsi->i_dir_start_lookup = 0;
768 	ufsi->i_osync = 0;
769 
770 	ufs_set_inode_ops(inode);
771 
772 	brelse(bh);
773 
774 	UFSD("EXIT\n");
775 	unlock_new_inode(inode);
776 	return inode;
777 
778 bad_inode:
779 	iget_failed(inode);
780 	return ERR_PTR(-EIO);
781 }
782 
783 static void ufs1_update_inode(struct inode *inode, struct ufs_inode *ufs_inode)
784 {
785 	struct super_block *sb = inode->i_sb;
786  	struct ufs_inode_info *ufsi = UFS_I(inode);
787 
788 	ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
789 	ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
790 
791 	ufs_set_inode_uid(sb, ufs_inode, i_uid_read(inode));
792 	ufs_set_inode_gid(sb, ufs_inode, i_gid_read(inode));
793 
794 	ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
795 	ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode->i_atime.tv_sec);
796 	ufs_inode->ui_atime.tv_usec = 0;
797 	ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb, inode->i_ctime.tv_sec);
798 	ufs_inode->ui_ctime.tv_usec = 0;
799 	ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode->i_mtime.tv_sec);
800 	ufs_inode->ui_mtime.tv_usec = 0;
801 	ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks);
802 	ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
803 	ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation);
804 
805 	if ((UFS_SB(sb)->s_flags & UFS_UID_MASK) == UFS_UID_EFT) {
806 		ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow);
807 		ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag);
808 	}
809 
810 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
811 		/* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
812 		ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0];
813 	} else if (inode->i_blocks) {
814 		memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.i_data,
815 		       sizeof(ufs_inode->ui_u2.ui_addr));
816 	}
817 	else {
818 		memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink,
819 		       sizeof(ufs_inode->ui_u2.ui_symlink));
820 	}
821 
822 	if (!inode->i_nlink)
823 		memset (ufs_inode, 0, sizeof(struct ufs_inode));
824 }
825 
826 static void ufs2_update_inode(struct inode *inode, struct ufs2_inode *ufs_inode)
827 {
828 	struct super_block *sb = inode->i_sb;
829  	struct ufs_inode_info *ufsi = UFS_I(inode);
830 
831 	UFSD("ENTER\n");
832 	ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
833 	ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
834 
835 	ufs_inode->ui_uid = cpu_to_fs32(sb, i_uid_read(inode));
836 	ufs_inode->ui_gid = cpu_to_fs32(sb, i_gid_read(inode));
837 
838 	ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
839 	ufs_inode->ui_atime = cpu_to_fs64(sb, inode->i_atime.tv_sec);
840 	ufs_inode->ui_atimensec = cpu_to_fs32(sb, inode->i_atime.tv_nsec);
841 	ufs_inode->ui_ctime = cpu_to_fs64(sb, inode->i_ctime.tv_sec);
842 	ufs_inode->ui_ctimensec = cpu_to_fs32(sb, inode->i_ctime.tv_nsec);
843 	ufs_inode->ui_mtime = cpu_to_fs64(sb, inode->i_mtime.tv_sec);
844 	ufs_inode->ui_mtimensec = cpu_to_fs32(sb, inode->i_mtime.tv_nsec);
845 
846 	ufs_inode->ui_blocks = cpu_to_fs64(sb, inode->i_blocks);
847 	ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
848 	ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation);
849 
850 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
851 		/* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
852 		ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.u2_i_data[0];
853 	} else if (inode->i_blocks) {
854 		memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.u2_i_data,
855 		       sizeof(ufs_inode->ui_u2.ui_addr));
856 	} else {
857 		memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink,
858 		       sizeof(ufs_inode->ui_u2.ui_symlink));
859  	}
860 
861 	if (!inode->i_nlink)
862 		memset (ufs_inode, 0, sizeof(struct ufs2_inode));
863 	UFSD("EXIT\n");
864 }
865 
866 static int ufs_update_inode(struct inode * inode, int do_sync)
867 {
868 	struct super_block *sb = inode->i_sb;
869 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
870 	struct buffer_head * bh;
871 
872 	UFSD("ENTER, ino %lu\n", inode->i_ino);
873 
874 	if (inode->i_ino < UFS_ROOTINO ||
875 	    inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
876 		ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino);
877 		return -1;
878 	}
879 
880 	bh = sb_bread(sb, ufs_inotofsba(inode->i_ino));
881 	if (!bh) {
882 		ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino);
883 		return -1;
884 	}
885 	if (uspi->fs_magic == UFS2_MAGIC) {
886 		struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
887 
888 		ufs2_update_inode(inode,
889 				  ufs2_inode + ufs_inotofsbo(inode->i_ino));
890 	} else {
891 		struct ufs_inode *ufs_inode = (struct ufs_inode *) bh->b_data;
892 
893 		ufs1_update_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino));
894 	}
895 
896 	mark_buffer_dirty(bh);
897 	if (do_sync)
898 		sync_dirty_buffer(bh);
899 	brelse (bh);
900 
901 	UFSD("EXIT\n");
902 	return 0;
903 }
904 
905 int ufs_write_inode(struct inode *inode, struct writeback_control *wbc)
906 {
907 	return ufs_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
908 }
909 
910 int ufs_sync_inode (struct inode *inode)
911 {
912 	return ufs_update_inode (inode, 1);
913 }
914 
915 void ufs_evict_inode(struct inode * inode)
916 {
917 	int want_delete = 0;
918 
919 	if (!inode->i_nlink && !is_bad_inode(inode))
920 		want_delete = 1;
921 
922 	truncate_inode_pages_final(&inode->i_data);
923 	if (want_delete) {
924 		inode->i_size = 0;
925 		if (inode->i_blocks)
926 			ufs_truncate_blocks(inode);
927 	}
928 
929 	invalidate_inode_buffers(inode);
930 	clear_inode(inode);
931 
932 	if (want_delete)
933 		ufs_free_inode(inode);
934 }
935 
936 struct to_free {
937 	struct inode *inode;
938 	u64 to;
939 	unsigned count;
940 };
941 
942 static inline void free_data(struct to_free *ctx, u64 from, unsigned count)
943 {
944 	if (ctx->count && ctx->to != from) {
945 		ufs_free_blocks(ctx->inode, ctx->to - ctx->count, ctx->count);
946 		ctx->count = 0;
947 	}
948 	ctx->count += count;
949 	ctx->to = from + count;
950 }
951 
952 #define DIRECT_BLOCK ((inode->i_size + uspi->s_bsize - 1) >> uspi->s_bshift)
953 #define DIRECT_FRAGMENT ((inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift)
954 
955 static void ufs_trunc_direct(struct inode *inode)
956 {
957 	struct ufs_inode_info *ufsi = UFS_I(inode);
958 	struct super_block * sb;
959 	struct ufs_sb_private_info * uspi;
960 	void *p;
961 	u64 frag1, frag2, frag3, frag4, block1, block2;
962 	struct to_free ctx = {.inode = inode};
963 	unsigned i, tmp;
964 
965 	UFSD("ENTER: ino %lu\n", inode->i_ino);
966 
967 	sb = inode->i_sb;
968 	uspi = UFS_SB(sb)->s_uspi;
969 
970 	frag1 = DIRECT_FRAGMENT;
971 	frag4 = min_t(u64, UFS_NDIR_FRAGMENT, ufsi->i_lastfrag);
972 	frag2 = ((frag1 & uspi->s_fpbmask) ? ((frag1 | uspi->s_fpbmask) + 1) : frag1);
973 	frag3 = frag4 & ~uspi->s_fpbmask;
974 	block1 = block2 = 0;
975 	if (frag2 > frag3) {
976 		frag2 = frag4;
977 		frag3 = frag4 = 0;
978 	} else if (frag2 < frag3) {
979 		block1 = ufs_fragstoblks (frag2);
980 		block2 = ufs_fragstoblks (frag3);
981 	}
982 
983 	UFSD("ino %lu, frag1 %llu, frag2 %llu, block1 %llu, block2 %llu,"
984 	     " frag3 %llu, frag4 %llu\n", inode->i_ino,
985 	     (unsigned long long)frag1, (unsigned long long)frag2,
986 	     (unsigned long long)block1, (unsigned long long)block2,
987 	     (unsigned long long)frag3, (unsigned long long)frag4);
988 
989 	if (frag1 >= frag2)
990 		goto next1;
991 
992 	/*
993 	 * Free first free fragments
994 	 */
995 	p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag1));
996 	tmp = ufs_data_ptr_to_cpu(sb, p);
997 	if (!tmp )
998 		ufs_panic (sb, "ufs_trunc_direct", "internal error");
999 	frag2 -= frag1;
1000 	frag1 = ufs_fragnum (frag1);
1001 
1002 	ufs_free_fragments(inode, tmp + frag1, frag2);
1003 
1004 next1:
1005 	/*
1006 	 * Free whole blocks
1007 	 */
1008 	for (i = block1 ; i < block2; i++) {
1009 		p = ufs_get_direct_data_ptr(uspi, ufsi, i);
1010 		tmp = ufs_data_ptr_to_cpu(sb, p);
1011 		if (!tmp)
1012 			continue;
1013 		write_seqlock(&ufsi->meta_lock);
1014 		ufs_data_ptr_clear(uspi, p);
1015 		write_sequnlock(&ufsi->meta_lock);
1016 
1017 		free_data(&ctx, tmp, uspi->s_fpb);
1018 	}
1019 
1020 	free_data(&ctx, 0, 0);
1021 
1022 	if (frag3 >= frag4)
1023 		goto next3;
1024 
1025 	/*
1026 	 * Free last free fragments
1027 	 */
1028 	p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag3));
1029 	tmp = ufs_data_ptr_to_cpu(sb, p);
1030 	if (!tmp )
1031 		ufs_panic(sb, "ufs_truncate_direct", "internal error");
1032 	frag4 = ufs_fragnum (frag4);
1033 	write_seqlock(&ufsi->meta_lock);
1034 	ufs_data_ptr_clear(uspi, p);
1035 	write_sequnlock(&ufsi->meta_lock);
1036 
1037 	ufs_free_fragments (inode, tmp, frag4);
1038  next3:
1039 
1040 	UFSD("EXIT: ino %lu\n", inode->i_ino);
1041 }
1042 
1043 static void free_full_branch(struct inode *inode, u64 ind_block, int depth)
1044 {
1045 	struct super_block *sb = inode->i_sb;
1046 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
1047 	struct ufs_buffer_head *ubh = ubh_bread(sb, ind_block, uspi->s_bsize);
1048 	unsigned i;
1049 
1050 	if (!ubh)
1051 		return;
1052 
1053 	if (--depth) {
1054 		for (i = 0; i < uspi->s_apb; i++) {
1055 			void *p = ubh_get_data_ptr(uspi, ubh, i);
1056 			u64 block = ufs_data_ptr_to_cpu(sb, p);
1057 			if (block)
1058 				free_full_branch(inode, block, depth);
1059 		}
1060 	} else {
1061 		struct to_free ctx = {.inode = inode};
1062 
1063 		for (i = 0; i < uspi->s_apb; i++) {
1064 			void *p = ubh_get_data_ptr(uspi, ubh, i);
1065 			u64 block = ufs_data_ptr_to_cpu(sb, p);
1066 			if (block)
1067 				free_data(&ctx, block, uspi->s_fpb);
1068 		}
1069 		free_data(&ctx, 0, 0);
1070 	}
1071 
1072 	ubh_bforget(ubh);
1073 	ufs_free_blocks(inode, ind_block, uspi->s_fpb);
1074 }
1075 
1076 static void free_branch_tail(struct inode *inode, unsigned from, struct ufs_buffer_head *ubh, int depth)
1077 {
1078 	struct super_block *sb = inode->i_sb;
1079 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
1080 	unsigned i;
1081 
1082 	if (--depth) {
1083 		for (i = from; i < uspi->s_apb ; i++) {
1084 			void *p = ubh_get_data_ptr(uspi, ubh, i);
1085 			u64 block = ufs_data_ptr_to_cpu(sb, p);
1086 			if (block) {
1087 				write_seqlock(&UFS_I(inode)->meta_lock);
1088 				ufs_data_ptr_clear(uspi, p);
1089 				write_sequnlock(&UFS_I(inode)->meta_lock);
1090 				ubh_mark_buffer_dirty(ubh);
1091 				free_full_branch(inode, block, depth);
1092 			}
1093 		}
1094 	} else {
1095 		struct to_free ctx = {.inode = inode};
1096 
1097 		for (i = from; i < uspi->s_apb; i++) {
1098 			void *p = ubh_get_data_ptr(uspi, ubh, i);
1099 			u64 block = ufs_data_ptr_to_cpu(sb, p);
1100 			if (block) {
1101 				write_seqlock(&UFS_I(inode)->meta_lock);
1102 				ufs_data_ptr_clear(uspi, p);
1103 				write_sequnlock(&UFS_I(inode)->meta_lock);
1104 				ubh_mark_buffer_dirty(ubh);
1105 				free_data(&ctx, block, uspi->s_fpb);
1106 			}
1107 		}
1108 		free_data(&ctx, 0, 0);
1109 	}
1110 	if (IS_SYNC(inode) && ubh_buffer_dirty(ubh))
1111 		ubh_sync_block(ubh);
1112 	ubh_brelse(ubh);
1113 }
1114 
1115 static int ufs_alloc_lastblock(struct inode *inode, loff_t size)
1116 {
1117 	int err = 0;
1118 	struct super_block *sb = inode->i_sb;
1119 	struct address_space *mapping = inode->i_mapping;
1120 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
1121 	unsigned i, end;
1122 	sector_t lastfrag;
1123 	struct page *lastpage;
1124 	struct buffer_head *bh;
1125 	u64 phys64;
1126 
1127 	lastfrag = (size + uspi->s_fsize - 1) >> uspi->s_fshift;
1128 
1129 	if (!lastfrag)
1130 		goto out;
1131 
1132 	lastfrag--;
1133 
1134 	lastpage = ufs_get_locked_page(mapping, lastfrag >>
1135 				       (PAGE_CACHE_SHIFT - inode->i_blkbits));
1136        if (IS_ERR(lastpage)) {
1137                err = -EIO;
1138                goto out;
1139        }
1140 
1141        end = lastfrag & ((1 << (PAGE_CACHE_SHIFT - inode->i_blkbits)) - 1);
1142        bh = page_buffers(lastpage);
1143        for (i = 0; i < end; ++i)
1144                bh = bh->b_this_page;
1145 
1146 
1147        err = ufs_getfrag_block(inode, lastfrag, bh, 1);
1148 
1149        if (unlikely(err))
1150 	       goto out_unlock;
1151 
1152        if (buffer_new(bh)) {
1153 	       clear_buffer_new(bh);
1154 	       unmap_underlying_metadata(bh->b_bdev,
1155 					 bh->b_blocknr);
1156 	       /*
1157 		* we do not zeroize fragment, because of
1158 		* if it maped to hole, it already contains zeroes
1159 		*/
1160 	       set_buffer_uptodate(bh);
1161 	       mark_buffer_dirty(bh);
1162 	       set_page_dirty(lastpage);
1163        }
1164 
1165        if (lastfrag >= UFS_IND_FRAGMENT) {
1166 	       end = uspi->s_fpb - ufs_fragnum(lastfrag) - 1;
1167 	       phys64 = bh->b_blocknr + 1;
1168 	       for (i = 0; i < end; ++i) {
1169 		       bh = sb_getblk(sb, i + phys64);
1170 		       lock_buffer(bh);
1171 		       memset(bh->b_data, 0, sb->s_blocksize);
1172 		       set_buffer_uptodate(bh);
1173 		       mark_buffer_dirty(bh);
1174 		       unlock_buffer(bh);
1175 		       sync_dirty_buffer(bh);
1176 		       brelse(bh);
1177 	       }
1178        }
1179 out_unlock:
1180        ufs_put_locked_page(lastpage);
1181 out:
1182        return err;
1183 }
1184 
1185 static void __ufs_truncate_blocks(struct inode *inode)
1186 {
1187 	struct ufs_inode_info *ufsi = UFS_I(inode);
1188 	struct super_block *sb = inode->i_sb;
1189 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
1190 	unsigned offsets[4];
1191 	int depth = ufs_block_to_path(inode, DIRECT_BLOCK, offsets);
1192 	int depth2;
1193 	unsigned i;
1194 	struct ufs_buffer_head *ubh[3];
1195 	void *p;
1196 	u64 block;
1197 
1198 	if (!depth)
1199 		return;
1200 
1201 	/* find the last non-zero in offsets[] */
1202 	for (depth2 = depth - 1; depth2; depth2--)
1203 		if (offsets[depth2])
1204 			break;
1205 
1206 	mutex_lock(&ufsi->truncate_mutex);
1207 	if (depth == 1) {
1208 		ufs_trunc_direct(inode);
1209 		offsets[0] = UFS_IND_BLOCK;
1210 	} else {
1211 		/* get the blocks that should be partially emptied */
1212 		p = ufs_get_direct_data_ptr(uspi, ufsi, offsets[0]);
1213 		for (i = 0; i < depth2; i++) {
1214 			offsets[i]++;	/* next branch is fully freed */
1215 			block = ufs_data_ptr_to_cpu(sb, p);
1216 			if (!block)
1217 				break;
1218 			ubh[i] = ubh_bread(sb, block, uspi->s_bsize);
1219 			if (!ubh[i]) {
1220 				write_seqlock(&ufsi->meta_lock);
1221 				ufs_data_ptr_clear(uspi, p);
1222 				write_sequnlock(&ufsi->meta_lock);
1223 				break;
1224 			}
1225 			p = ubh_get_data_ptr(uspi, ubh[i], offsets[i + 1]);
1226 		}
1227 		while (i--)
1228 			free_branch_tail(inode, offsets[i + 1], ubh[i], depth - i - 1);
1229 	}
1230 	for (i = offsets[0]; i <= UFS_TIND_BLOCK; i++) {
1231 		p = ufs_get_direct_data_ptr(uspi, ufsi, i);
1232 		block = ufs_data_ptr_to_cpu(sb, p);
1233 		if (block) {
1234 			write_seqlock(&ufsi->meta_lock);
1235 			ufs_data_ptr_clear(uspi, p);
1236 			write_sequnlock(&ufsi->meta_lock);
1237 			free_full_branch(inode, block, i - UFS_IND_BLOCK + 1);
1238 		}
1239 	}
1240 	ufsi->i_lastfrag = DIRECT_FRAGMENT;
1241 	mark_inode_dirty(inode);
1242 	mutex_unlock(&ufsi->truncate_mutex);
1243 }
1244 
1245 static int ufs_truncate(struct inode *inode, loff_t size)
1246 {
1247 	int err = 0;
1248 
1249 	UFSD("ENTER: ino %lu, i_size: %llu, old_i_size: %llu\n",
1250 	     inode->i_ino, (unsigned long long)size,
1251 	     (unsigned long long)i_size_read(inode));
1252 
1253 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1254 	      S_ISLNK(inode->i_mode)))
1255 		return -EINVAL;
1256 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1257 		return -EPERM;
1258 
1259 	err = ufs_alloc_lastblock(inode, size);
1260 
1261 	if (err)
1262 		goto out;
1263 
1264 	block_truncate_page(inode->i_mapping, size, ufs_getfrag_block);
1265 
1266 	truncate_setsize(inode, size);
1267 
1268 	__ufs_truncate_blocks(inode);
1269 	inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1270 	mark_inode_dirty(inode);
1271 out:
1272 	UFSD("EXIT: err %d\n", err);
1273 	return err;
1274 }
1275 
1276 void ufs_truncate_blocks(struct inode *inode)
1277 {
1278 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1279 	      S_ISLNK(inode->i_mode)))
1280 		return;
1281 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1282 		return;
1283 	__ufs_truncate_blocks(inode);
1284 }
1285 
1286 int ufs_setattr(struct dentry *dentry, struct iattr *attr)
1287 {
1288 	struct inode *inode = d_inode(dentry);
1289 	unsigned int ia_valid = attr->ia_valid;
1290 	int error;
1291 
1292 	error = inode_change_ok(inode, attr);
1293 	if (error)
1294 		return error;
1295 
1296 	if (ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
1297 		error = ufs_truncate(inode, attr->ia_size);
1298 		if (error)
1299 			return error;
1300 	}
1301 
1302 	setattr_copy(inode, attr);
1303 	mark_inode_dirty(inode);
1304 	return 0;
1305 }
1306 
1307 const struct inode_operations ufs_file_inode_operations = {
1308 	.setattr = ufs_setattr,
1309 };
1310