1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/fs/ufs/inode.c 4 * 5 * Copyright (C) 1998 6 * Daniel Pirkl <daniel.pirkl@email.cz> 7 * Charles University, Faculty of Mathematics and Physics 8 * 9 * from 10 * 11 * linux/fs/ext2/inode.c 12 * 13 * Copyright (C) 1992, 1993, 1994, 1995 14 * Remy Card (card@masi.ibp.fr) 15 * Laboratoire MASI - Institut Blaise Pascal 16 * Universite Pierre et Marie Curie (Paris VI) 17 * 18 * from 19 * 20 * linux/fs/minix/inode.c 21 * 22 * Copyright (C) 1991, 1992 Linus Torvalds 23 * 24 * Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993 25 * Big-endian to little-endian byte-swapping/bitmaps by 26 * David S. Miller (davem@caip.rutgers.edu), 1995 27 */ 28 29 #include <linux/uaccess.h> 30 31 #include <linux/errno.h> 32 #include <linux/fs.h> 33 #include <linux/time.h> 34 #include <linux/stat.h> 35 #include <linux/string.h> 36 #include <linux/mm.h> 37 #include <linux/buffer_head.h> 38 #include <linux/writeback.h> 39 #include <linux/iversion.h> 40 41 #include "ufs_fs.h" 42 #include "ufs.h" 43 #include "swab.h" 44 #include "util.h" 45 46 static int ufs_block_to_path(struct inode *inode, sector_t i_block, unsigned offsets[4]) 47 { 48 struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi; 49 int ptrs = uspi->s_apb; 50 int ptrs_bits = uspi->s_apbshift; 51 const long direct_blocks = UFS_NDADDR, 52 indirect_blocks = ptrs, 53 double_blocks = (1 << (ptrs_bits * 2)); 54 int n = 0; 55 56 57 UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks); 58 if (i_block < direct_blocks) { 59 offsets[n++] = i_block; 60 } else if ((i_block -= direct_blocks) < indirect_blocks) { 61 offsets[n++] = UFS_IND_BLOCK; 62 offsets[n++] = i_block; 63 } else if ((i_block -= indirect_blocks) < double_blocks) { 64 offsets[n++] = UFS_DIND_BLOCK; 65 offsets[n++] = i_block >> ptrs_bits; 66 offsets[n++] = i_block & (ptrs - 1); 67 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) { 68 offsets[n++] = UFS_TIND_BLOCK; 69 offsets[n++] = i_block >> (ptrs_bits * 2); 70 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1); 71 offsets[n++] = i_block & (ptrs - 1); 72 } else { 73 ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big"); 74 } 75 return n; 76 } 77 78 typedef struct { 79 void *p; 80 union { 81 __fs32 key32; 82 __fs64 key64; 83 }; 84 struct buffer_head *bh; 85 } Indirect; 86 87 static inline int grow_chain32(struct ufs_inode_info *ufsi, 88 struct buffer_head *bh, __fs32 *v, 89 Indirect *from, Indirect *to) 90 { 91 Indirect *p; 92 unsigned seq; 93 to->bh = bh; 94 do { 95 seq = read_seqbegin(&ufsi->meta_lock); 96 to->key32 = *(__fs32 *)(to->p = v); 97 for (p = from; p <= to && p->key32 == *(__fs32 *)p->p; p++) 98 ; 99 } while (read_seqretry(&ufsi->meta_lock, seq)); 100 return (p > to); 101 } 102 103 static inline int grow_chain64(struct ufs_inode_info *ufsi, 104 struct buffer_head *bh, __fs64 *v, 105 Indirect *from, Indirect *to) 106 { 107 Indirect *p; 108 unsigned seq; 109 to->bh = bh; 110 do { 111 seq = read_seqbegin(&ufsi->meta_lock); 112 to->key64 = *(__fs64 *)(to->p = v); 113 for (p = from; p <= to && p->key64 == *(__fs64 *)p->p; p++) 114 ; 115 } while (read_seqretry(&ufsi->meta_lock, seq)); 116 return (p > to); 117 } 118 119 /* 120 * Returns the location of the fragment from 121 * the beginning of the filesystem. 122 */ 123 124 static u64 ufs_frag_map(struct inode *inode, unsigned offsets[4], int depth) 125 { 126 struct ufs_inode_info *ufsi = UFS_I(inode); 127 struct super_block *sb = inode->i_sb; 128 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 129 u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift; 130 int shift = uspi->s_apbshift-uspi->s_fpbshift; 131 Indirect chain[4], *q = chain; 132 unsigned *p; 133 unsigned flags = UFS_SB(sb)->s_flags; 134 u64 res = 0; 135 136 UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n", 137 uspi->s_fpbshift, uspi->s_apbmask, 138 (unsigned long long)mask); 139 140 if (depth == 0) 141 goto no_block; 142 143 again: 144 p = offsets; 145 146 if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) 147 goto ufs2; 148 149 if (!grow_chain32(ufsi, NULL, &ufsi->i_u1.i_data[*p++], chain, q)) 150 goto changed; 151 if (!q->key32) 152 goto no_block; 153 while (--depth) { 154 __fs32 *ptr; 155 struct buffer_head *bh; 156 unsigned n = *p++; 157 158 bh = sb_bread(sb, uspi->s_sbbase + 159 fs32_to_cpu(sb, q->key32) + (n>>shift)); 160 if (!bh) 161 goto no_block; 162 ptr = (__fs32 *)bh->b_data + (n & mask); 163 if (!grow_chain32(ufsi, bh, ptr, chain, ++q)) 164 goto changed; 165 if (!q->key32) 166 goto no_block; 167 } 168 res = fs32_to_cpu(sb, q->key32); 169 goto found; 170 171 ufs2: 172 if (!grow_chain64(ufsi, NULL, &ufsi->i_u1.u2_i_data[*p++], chain, q)) 173 goto changed; 174 if (!q->key64) 175 goto no_block; 176 177 while (--depth) { 178 __fs64 *ptr; 179 struct buffer_head *bh; 180 unsigned n = *p++; 181 182 bh = sb_bread(sb, uspi->s_sbbase + 183 fs64_to_cpu(sb, q->key64) + (n>>shift)); 184 if (!bh) 185 goto no_block; 186 ptr = (__fs64 *)bh->b_data + (n & mask); 187 if (!grow_chain64(ufsi, bh, ptr, chain, ++q)) 188 goto changed; 189 if (!q->key64) 190 goto no_block; 191 } 192 res = fs64_to_cpu(sb, q->key64); 193 found: 194 res += uspi->s_sbbase; 195 no_block: 196 while (q > chain) { 197 brelse(q->bh); 198 q--; 199 } 200 return res; 201 202 changed: 203 while (q > chain) { 204 brelse(q->bh); 205 q--; 206 } 207 goto again; 208 } 209 210 /* 211 * Unpacking tails: we have a file with partial final block and 212 * we had been asked to extend it. If the fragment being written 213 * is within the same block, we need to extend the tail just to cover 214 * that fragment. Otherwise the tail is extended to full block. 215 * 216 * Note that we might need to create a _new_ tail, but that will 217 * be handled elsewhere; this is strictly for resizing old 218 * ones. 219 */ 220 static bool 221 ufs_extend_tail(struct inode *inode, u64 writes_to, 222 int *err, struct page *locked_page) 223 { 224 struct ufs_inode_info *ufsi = UFS_I(inode); 225 struct super_block *sb = inode->i_sb; 226 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 227 unsigned lastfrag = ufsi->i_lastfrag; /* it's a short file, so unsigned is enough */ 228 unsigned block = ufs_fragstoblks(lastfrag); 229 unsigned new_size; 230 void *p; 231 u64 tmp; 232 233 if (writes_to < (lastfrag | uspi->s_fpbmask)) 234 new_size = (writes_to & uspi->s_fpbmask) + 1; 235 else 236 new_size = uspi->s_fpb; 237 238 p = ufs_get_direct_data_ptr(uspi, ufsi, block); 239 tmp = ufs_new_fragments(inode, p, lastfrag, ufs_data_ptr_to_cpu(sb, p), 240 new_size - (lastfrag & uspi->s_fpbmask), err, 241 locked_page); 242 return tmp != 0; 243 } 244 245 /** 246 * ufs_inode_getfrag() - allocate new fragment(s) 247 * @inode: pointer to inode 248 * @index: number of block pointer within the inode's array. 249 * @new_fragment: number of new allocated fragment(s) 250 * @err: we set it if something wrong 251 * @new: we set it if we allocate new block 252 * @locked_page: for ufs_new_fragments() 253 */ 254 static u64 255 ufs_inode_getfrag(struct inode *inode, unsigned index, 256 sector_t new_fragment, int *err, 257 int *new, struct page *locked_page) 258 { 259 struct ufs_inode_info *ufsi = UFS_I(inode); 260 struct super_block *sb = inode->i_sb; 261 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 262 u64 tmp, goal, lastfrag; 263 unsigned nfrags = uspi->s_fpb; 264 void *p; 265 266 /* TODO : to be done for write support 267 if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) 268 goto ufs2; 269 */ 270 271 p = ufs_get_direct_data_ptr(uspi, ufsi, index); 272 tmp = ufs_data_ptr_to_cpu(sb, p); 273 if (tmp) 274 goto out; 275 276 lastfrag = ufsi->i_lastfrag; 277 278 /* will that be a new tail? */ 279 if (new_fragment < UFS_NDIR_FRAGMENT && new_fragment >= lastfrag) 280 nfrags = (new_fragment & uspi->s_fpbmask) + 1; 281 282 goal = 0; 283 if (index) { 284 goal = ufs_data_ptr_to_cpu(sb, 285 ufs_get_direct_data_ptr(uspi, ufsi, index - 1)); 286 if (goal) 287 goal += uspi->s_fpb; 288 } 289 tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), 290 goal, nfrags, err, locked_page); 291 292 if (!tmp) { 293 *err = -ENOSPC; 294 return 0; 295 } 296 297 if (new) 298 *new = 1; 299 inode->i_ctime = current_time(inode); 300 if (IS_SYNC(inode)) 301 ufs_sync_inode (inode); 302 mark_inode_dirty(inode); 303 out: 304 return tmp + uspi->s_sbbase; 305 306 /* This part : To be implemented .... 307 Required only for writing, not required for READ-ONLY. 308 ufs2: 309 310 u2_block = ufs_fragstoblks(fragment); 311 u2_blockoff = ufs_fragnum(fragment); 312 p = ufsi->i_u1.u2_i_data + block; 313 goal = 0; 314 315 repeat2: 316 tmp = fs32_to_cpu(sb, *p); 317 lastfrag = ufsi->i_lastfrag; 318 319 */ 320 } 321 322 /** 323 * ufs_inode_getblock() - allocate new block 324 * @inode: pointer to inode 325 * @ind_block: block number of the indirect block 326 * @index: number of pointer within the indirect block 327 * @new_fragment: number of new allocated fragment 328 * (block will hold this fragment and also uspi->s_fpb-1) 329 * @err: see ufs_inode_getfrag() 330 * @new: see ufs_inode_getfrag() 331 * @locked_page: see ufs_inode_getfrag() 332 */ 333 static u64 334 ufs_inode_getblock(struct inode *inode, u64 ind_block, 335 unsigned index, sector_t new_fragment, int *err, 336 int *new, struct page *locked_page) 337 { 338 struct super_block *sb = inode->i_sb; 339 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 340 int shift = uspi->s_apbshift - uspi->s_fpbshift; 341 u64 tmp = 0, goal; 342 struct buffer_head *bh; 343 void *p; 344 345 if (!ind_block) 346 return 0; 347 348 bh = sb_bread(sb, ind_block + (index >> shift)); 349 if (unlikely(!bh)) { 350 *err = -EIO; 351 return 0; 352 } 353 354 index &= uspi->s_apbmask >> uspi->s_fpbshift; 355 if (uspi->fs_magic == UFS2_MAGIC) 356 p = (__fs64 *)bh->b_data + index; 357 else 358 p = (__fs32 *)bh->b_data + index; 359 360 tmp = ufs_data_ptr_to_cpu(sb, p); 361 if (tmp) 362 goto out; 363 364 if (index && (uspi->fs_magic == UFS2_MAGIC ? 365 (tmp = fs64_to_cpu(sb, ((__fs64 *)bh->b_data)[index-1])) : 366 (tmp = fs32_to_cpu(sb, ((__fs32 *)bh->b_data)[index-1])))) 367 goal = tmp + uspi->s_fpb; 368 else 369 goal = bh->b_blocknr + uspi->s_fpb; 370 tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal, 371 uspi->s_fpb, err, locked_page); 372 if (!tmp) 373 goto out; 374 375 if (new) 376 *new = 1; 377 378 mark_buffer_dirty(bh); 379 if (IS_SYNC(inode)) 380 sync_dirty_buffer(bh); 381 inode->i_ctime = current_time(inode); 382 mark_inode_dirty(inode); 383 out: 384 brelse (bh); 385 UFSD("EXIT\n"); 386 if (tmp) 387 tmp += uspi->s_sbbase; 388 return tmp; 389 } 390 391 /** 392 * ufs_getfrag_block() - `get_block_t' function, interface between UFS and 393 * read_folio, writepage and so on 394 */ 395 396 static int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create) 397 { 398 struct super_block *sb = inode->i_sb; 399 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 400 int err = 0, new = 0; 401 unsigned offsets[4]; 402 int depth = ufs_block_to_path(inode, fragment >> uspi->s_fpbshift, offsets); 403 u64 phys64 = 0; 404 unsigned frag = fragment & uspi->s_fpbmask; 405 406 phys64 = ufs_frag_map(inode, offsets, depth); 407 if (!create) 408 goto done; 409 410 if (phys64) { 411 if (fragment >= UFS_NDIR_FRAGMENT) 412 goto done; 413 read_seqlock_excl(&UFS_I(inode)->meta_lock); 414 if (fragment < UFS_I(inode)->i_lastfrag) { 415 read_sequnlock_excl(&UFS_I(inode)->meta_lock); 416 goto done; 417 } 418 read_sequnlock_excl(&UFS_I(inode)->meta_lock); 419 } 420 /* This code entered only while writing ....? */ 421 422 mutex_lock(&UFS_I(inode)->truncate_mutex); 423 424 UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment); 425 if (unlikely(!depth)) { 426 ufs_warning(sb, "ufs_get_block", "block > big"); 427 err = -EIO; 428 goto out; 429 } 430 431 if (UFS_I(inode)->i_lastfrag < UFS_NDIR_FRAGMENT) { 432 unsigned lastfrag = UFS_I(inode)->i_lastfrag; 433 unsigned tailfrags = lastfrag & uspi->s_fpbmask; 434 if (tailfrags && fragment >= lastfrag) { 435 if (!ufs_extend_tail(inode, fragment, 436 &err, bh_result->b_page)) 437 goto out; 438 } 439 } 440 441 if (depth == 1) { 442 phys64 = ufs_inode_getfrag(inode, offsets[0], fragment, 443 &err, &new, bh_result->b_page); 444 } else { 445 int i; 446 phys64 = ufs_inode_getfrag(inode, offsets[0], fragment, 447 &err, NULL, NULL); 448 for (i = 1; i < depth - 1; i++) 449 phys64 = ufs_inode_getblock(inode, phys64, offsets[i], 450 fragment, &err, NULL, NULL); 451 phys64 = ufs_inode_getblock(inode, phys64, offsets[depth - 1], 452 fragment, &err, &new, bh_result->b_page); 453 } 454 out: 455 if (phys64) { 456 phys64 += frag; 457 map_bh(bh_result, sb, phys64); 458 if (new) 459 set_buffer_new(bh_result); 460 } 461 mutex_unlock(&UFS_I(inode)->truncate_mutex); 462 return err; 463 464 done: 465 if (phys64) 466 map_bh(bh_result, sb, phys64 + frag); 467 return 0; 468 } 469 470 static int ufs_writepage(struct page *page, struct writeback_control *wbc) 471 { 472 return block_write_full_page(page,ufs_getfrag_block,wbc); 473 } 474 475 static int ufs_read_folio(struct file *file, struct folio *folio) 476 { 477 return block_read_full_folio(folio, ufs_getfrag_block); 478 } 479 480 int ufs_prepare_chunk(struct page *page, loff_t pos, unsigned len) 481 { 482 return __block_write_begin(page, pos, len, ufs_getfrag_block); 483 } 484 485 static void ufs_truncate_blocks(struct inode *); 486 487 static void ufs_write_failed(struct address_space *mapping, loff_t to) 488 { 489 struct inode *inode = mapping->host; 490 491 if (to > inode->i_size) { 492 truncate_pagecache(inode, inode->i_size); 493 ufs_truncate_blocks(inode); 494 } 495 } 496 497 static int ufs_write_begin(struct file *file, struct address_space *mapping, 498 loff_t pos, unsigned len, 499 struct page **pagep, void **fsdata) 500 { 501 int ret; 502 503 ret = block_write_begin(mapping, pos, len, pagep, ufs_getfrag_block); 504 if (unlikely(ret)) 505 ufs_write_failed(mapping, pos + len); 506 507 return ret; 508 } 509 510 static int ufs_write_end(struct file *file, struct address_space *mapping, 511 loff_t pos, unsigned len, unsigned copied, 512 struct page *page, void *fsdata) 513 { 514 int ret; 515 516 ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata); 517 if (ret < len) 518 ufs_write_failed(mapping, pos + len); 519 return ret; 520 } 521 522 static sector_t ufs_bmap(struct address_space *mapping, sector_t block) 523 { 524 return generic_block_bmap(mapping,block,ufs_getfrag_block); 525 } 526 527 const struct address_space_operations ufs_aops = { 528 .dirty_folio = block_dirty_folio, 529 .invalidate_folio = block_invalidate_folio, 530 .read_folio = ufs_read_folio, 531 .writepage = ufs_writepage, 532 .write_begin = ufs_write_begin, 533 .write_end = ufs_write_end, 534 .bmap = ufs_bmap 535 }; 536 537 static void ufs_set_inode_ops(struct inode *inode) 538 { 539 if (S_ISREG(inode->i_mode)) { 540 inode->i_op = &ufs_file_inode_operations; 541 inode->i_fop = &ufs_file_operations; 542 inode->i_mapping->a_ops = &ufs_aops; 543 } else if (S_ISDIR(inode->i_mode)) { 544 inode->i_op = &ufs_dir_inode_operations; 545 inode->i_fop = &ufs_dir_operations; 546 inode->i_mapping->a_ops = &ufs_aops; 547 } else if (S_ISLNK(inode->i_mode)) { 548 if (!inode->i_blocks) { 549 inode->i_link = (char *)UFS_I(inode)->i_u1.i_symlink; 550 inode->i_op = &simple_symlink_inode_operations; 551 } else { 552 inode->i_mapping->a_ops = &ufs_aops; 553 inode->i_op = &page_symlink_inode_operations; 554 inode_nohighmem(inode); 555 } 556 } else 557 init_special_inode(inode, inode->i_mode, 558 ufs_get_inode_dev(inode->i_sb, UFS_I(inode))); 559 } 560 561 static int ufs1_read_inode(struct inode *inode, struct ufs_inode *ufs_inode) 562 { 563 struct ufs_inode_info *ufsi = UFS_I(inode); 564 struct super_block *sb = inode->i_sb; 565 umode_t mode; 566 567 /* 568 * Copy data to the in-core inode. 569 */ 570 inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode); 571 set_nlink(inode, fs16_to_cpu(sb, ufs_inode->ui_nlink)); 572 if (inode->i_nlink == 0) 573 return -ESTALE; 574 575 /* 576 * Linux now has 32-bit uid and gid, so we can support EFT. 577 */ 578 i_uid_write(inode, ufs_get_inode_uid(sb, ufs_inode)); 579 i_gid_write(inode, ufs_get_inode_gid(sb, ufs_inode)); 580 581 inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size); 582 inode->i_atime.tv_sec = (signed)fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec); 583 inode->i_ctime.tv_sec = (signed)fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec); 584 inode->i_mtime.tv_sec = (signed)fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec); 585 inode->i_mtime.tv_nsec = 0; 586 inode->i_atime.tv_nsec = 0; 587 inode->i_ctime.tv_nsec = 0; 588 inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks); 589 inode->i_generation = fs32_to_cpu(sb, ufs_inode->ui_gen); 590 ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags); 591 ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow); 592 ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag); 593 594 595 if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) { 596 memcpy(ufsi->i_u1.i_data, &ufs_inode->ui_u2.ui_addr, 597 sizeof(ufs_inode->ui_u2.ui_addr)); 598 } else { 599 memcpy(ufsi->i_u1.i_symlink, ufs_inode->ui_u2.ui_symlink, 600 sizeof(ufs_inode->ui_u2.ui_symlink) - 1); 601 ufsi->i_u1.i_symlink[sizeof(ufs_inode->ui_u2.ui_symlink) - 1] = 0; 602 } 603 return 0; 604 } 605 606 static int ufs2_read_inode(struct inode *inode, struct ufs2_inode *ufs2_inode) 607 { 608 struct ufs_inode_info *ufsi = UFS_I(inode); 609 struct super_block *sb = inode->i_sb; 610 umode_t mode; 611 612 UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino); 613 /* 614 * Copy data to the in-core inode. 615 */ 616 inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode); 617 set_nlink(inode, fs16_to_cpu(sb, ufs2_inode->ui_nlink)); 618 if (inode->i_nlink == 0) 619 return -ESTALE; 620 621 /* 622 * Linux now has 32-bit uid and gid, so we can support EFT. 623 */ 624 i_uid_write(inode, fs32_to_cpu(sb, ufs2_inode->ui_uid)); 625 i_gid_write(inode, fs32_to_cpu(sb, ufs2_inode->ui_gid)); 626 627 inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size); 628 inode->i_atime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_atime); 629 inode->i_ctime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_ctime); 630 inode->i_mtime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_mtime); 631 inode->i_atime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_atimensec); 632 inode->i_ctime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_ctimensec); 633 inode->i_mtime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_mtimensec); 634 inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks); 635 inode->i_generation = fs32_to_cpu(sb, ufs2_inode->ui_gen); 636 ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags); 637 /* 638 ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow); 639 ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag); 640 */ 641 642 if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) { 643 memcpy(ufsi->i_u1.u2_i_data, &ufs2_inode->ui_u2.ui_addr, 644 sizeof(ufs2_inode->ui_u2.ui_addr)); 645 } else { 646 memcpy(ufsi->i_u1.i_symlink, ufs2_inode->ui_u2.ui_symlink, 647 sizeof(ufs2_inode->ui_u2.ui_symlink) - 1); 648 ufsi->i_u1.i_symlink[sizeof(ufs2_inode->ui_u2.ui_symlink) - 1] = 0; 649 } 650 return 0; 651 } 652 653 struct inode *ufs_iget(struct super_block *sb, unsigned long ino) 654 { 655 struct ufs_inode_info *ufsi; 656 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 657 struct buffer_head * bh; 658 struct inode *inode; 659 int err = -EIO; 660 661 UFSD("ENTER, ino %lu\n", ino); 662 663 if (ino < UFS_ROOTINO || ino > (uspi->s_ncg * uspi->s_ipg)) { 664 ufs_warning(sb, "ufs_read_inode", "bad inode number (%lu)\n", 665 ino); 666 return ERR_PTR(-EIO); 667 } 668 669 inode = iget_locked(sb, ino); 670 if (!inode) 671 return ERR_PTR(-ENOMEM); 672 if (!(inode->i_state & I_NEW)) 673 return inode; 674 675 ufsi = UFS_I(inode); 676 677 bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino)); 678 if (!bh) { 679 ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n", 680 inode->i_ino); 681 goto bad_inode; 682 } 683 if ((UFS_SB(sb)->s_flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) { 684 struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data; 685 686 err = ufs2_read_inode(inode, 687 ufs2_inode + ufs_inotofsbo(inode->i_ino)); 688 } else { 689 struct ufs_inode *ufs_inode = (struct ufs_inode *)bh->b_data; 690 691 err = ufs1_read_inode(inode, 692 ufs_inode + ufs_inotofsbo(inode->i_ino)); 693 } 694 brelse(bh); 695 if (err) 696 goto bad_inode; 697 698 inode_inc_iversion(inode); 699 ufsi->i_lastfrag = 700 (inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift; 701 ufsi->i_dir_start_lookup = 0; 702 ufsi->i_osync = 0; 703 704 ufs_set_inode_ops(inode); 705 706 UFSD("EXIT\n"); 707 unlock_new_inode(inode); 708 return inode; 709 710 bad_inode: 711 iget_failed(inode); 712 return ERR_PTR(err); 713 } 714 715 static void ufs1_update_inode(struct inode *inode, struct ufs_inode *ufs_inode) 716 { 717 struct super_block *sb = inode->i_sb; 718 struct ufs_inode_info *ufsi = UFS_I(inode); 719 720 ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode); 721 ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink); 722 723 ufs_set_inode_uid(sb, ufs_inode, i_uid_read(inode)); 724 ufs_set_inode_gid(sb, ufs_inode, i_gid_read(inode)); 725 726 ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size); 727 ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode->i_atime.tv_sec); 728 ufs_inode->ui_atime.tv_usec = 0; 729 ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb, inode->i_ctime.tv_sec); 730 ufs_inode->ui_ctime.tv_usec = 0; 731 ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode->i_mtime.tv_sec); 732 ufs_inode->ui_mtime.tv_usec = 0; 733 ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks); 734 ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags); 735 ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation); 736 737 if ((UFS_SB(sb)->s_flags & UFS_UID_MASK) == UFS_UID_EFT) { 738 ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow); 739 ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag); 740 } 741 742 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 743 /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */ 744 ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0]; 745 } else if (inode->i_blocks) { 746 memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.i_data, 747 sizeof(ufs_inode->ui_u2.ui_addr)); 748 } 749 else { 750 memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink, 751 sizeof(ufs_inode->ui_u2.ui_symlink)); 752 } 753 754 if (!inode->i_nlink) 755 memset (ufs_inode, 0, sizeof(struct ufs_inode)); 756 } 757 758 static void ufs2_update_inode(struct inode *inode, struct ufs2_inode *ufs_inode) 759 { 760 struct super_block *sb = inode->i_sb; 761 struct ufs_inode_info *ufsi = UFS_I(inode); 762 763 UFSD("ENTER\n"); 764 ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode); 765 ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink); 766 767 ufs_inode->ui_uid = cpu_to_fs32(sb, i_uid_read(inode)); 768 ufs_inode->ui_gid = cpu_to_fs32(sb, i_gid_read(inode)); 769 770 ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size); 771 ufs_inode->ui_atime = cpu_to_fs64(sb, inode->i_atime.tv_sec); 772 ufs_inode->ui_atimensec = cpu_to_fs32(sb, inode->i_atime.tv_nsec); 773 ufs_inode->ui_ctime = cpu_to_fs64(sb, inode->i_ctime.tv_sec); 774 ufs_inode->ui_ctimensec = cpu_to_fs32(sb, inode->i_ctime.tv_nsec); 775 ufs_inode->ui_mtime = cpu_to_fs64(sb, inode->i_mtime.tv_sec); 776 ufs_inode->ui_mtimensec = cpu_to_fs32(sb, inode->i_mtime.tv_nsec); 777 778 ufs_inode->ui_blocks = cpu_to_fs64(sb, inode->i_blocks); 779 ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags); 780 ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation); 781 782 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 783 /* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */ 784 ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.u2_i_data[0]; 785 } else if (inode->i_blocks) { 786 memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.u2_i_data, 787 sizeof(ufs_inode->ui_u2.ui_addr)); 788 } else { 789 memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink, 790 sizeof(ufs_inode->ui_u2.ui_symlink)); 791 } 792 793 if (!inode->i_nlink) 794 memset (ufs_inode, 0, sizeof(struct ufs2_inode)); 795 UFSD("EXIT\n"); 796 } 797 798 static int ufs_update_inode(struct inode * inode, int do_sync) 799 { 800 struct super_block *sb = inode->i_sb; 801 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 802 struct buffer_head * bh; 803 804 UFSD("ENTER, ino %lu\n", inode->i_ino); 805 806 if (inode->i_ino < UFS_ROOTINO || 807 inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) { 808 ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino); 809 return -1; 810 } 811 812 bh = sb_bread(sb, ufs_inotofsba(inode->i_ino)); 813 if (!bh) { 814 ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino); 815 return -1; 816 } 817 if (uspi->fs_magic == UFS2_MAGIC) { 818 struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data; 819 820 ufs2_update_inode(inode, 821 ufs2_inode + ufs_inotofsbo(inode->i_ino)); 822 } else { 823 struct ufs_inode *ufs_inode = (struct ufs_inode *) bh->b_data; 824 825 ufs1_update_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino)); 826 } 827 828 mark_buffer_dirty(bh); 829 if (do_sync) 830 sync_dirty_buffer(bh); 831 brelse (bh); 832 833 UFSD("EXIT\n"); 834 return 0; 835 } 836 837 int ufs_write_inode(struct inode *inode, struct writeback_control *wbc) 838 { 839 return ufs_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 840 } 841 842 int ufs_sync_inode (struct inode *inode) 843 { 844 return ufs_update_inode (inode, 1); 845 } 846 847 void ufs_evict_inode(struct inode * inode) 848 { 849 int want_delete = 0; 850 851 if (!inode->i_nlink && !is_bad_inode(inode)) 852 want_delete = 1; 853 854 truncate_inode_pages_final(&inode->i_data); 855 if (want_delete) { 856 inode->i_size = 0; 857 if (inode->i_blocks && 858 (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 859 S_ISLNK(inode->i_mode))) 860 ufs_truncate_blocks(inode); 861 ufs_update_inode(inode, inode_needs_sync(inode)); 862 } 863 864 invalidate_inode_buffers(inode); 865 clear_inode(inode); 866 867 if (want_delete) 868 ufs_free_inode(inode); 869 } 870 871 struct to_free { 872 struct inode *inode; 873 u64 to; 874 unsigned count; 875 }; 876 877 static inline void free_data(struct to_free *ctx, u64 from, unsigned count) 878 { 879 if (ctx->count && ctx->to != from) { 880 ufs_free_blocks(ctx->inode, ctx->to - ctx->count, ctx->count); 881 ctx->count = 0; 882 } 883 ctx->count += count; 884 ctx->to = from + count; 885 } 886 887 #define DIRECT_FRAGMENT ((inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift) 888 889 static void ufs_trunc_direct(struct inode *inode) 890 { 891 struct ufs_inode_info *ufsi = UFS_I(inode); 892 struct super_block * sb; 893 struct ufs_sb_private_info * uspi; 894 void *p; 895 u64 frag1, frag2, frag3, frag4, block1, block2; 896 struct to_free ctx = {.inode = inode}; 897 unsigned i, tmp; 898 899 UFSD("ENTER: ino %lu\n", inode->i_ino); 900 901 sb = inode->i_sb; 902 uspi = UFS_SB(sb)->s_uspi; 903 904 frag1 = DIRECT_FRAGMENT; 905 frag4 = min_t(u64, UFS_NDIR_FRAGMENT, ufsi->i_lastfrag); 906 frag2 = ((frag1 & uspi->s_fpbmask) ? ((frag1 | uspi->s_fpbmask) + 1) : frag1); 907 frag3 = frag4 & ~uspi->s_fpbmask; 908 block1 = block2 = 0; 909 if (frag2 > frag3) { 910 frag2 = frag4; 911 frag3 = frag4 = 0; 912 } else if (frag2 < frag3) { 913 block1 = ufs_fragstoblks (frag2); 914 block2 = ufs_fragstoblks (frag3); 915 } 916 917 UFSD("ino %lu, frag1 %llu, frag2 %llu, block1 %llu, block2 %llu," 918 " frag3 %llu, frag4 %llu\n", inode->i_ino, 919 (unsigned long long)frag1, (unsigned long long)frag2, 920 (unsigned long long)block1, (unsigned long long)block2, 921 (unsigned long long)frag3, (unsigned long long)frag4); 922 923 if (frag1 >= frag2) 924 goto next1; 925 926 /* 927 * Free first free fragments 928 */ 929 p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag1)); 930 tmp = ufs_data_ptr_to_cpu(sb, p); 931 if (!tmp ) 932 ufs_panic (sb, "ufs_trunc_direct", "internal error"); 933 frag2 -= frag1; 934 frag1 = ufs_fragnum (frag1); 935 936 ufs_free_fragments(inode, tmp + frag1, frag2); 937 938 next1: 939 /* 940 * Free whole blocks 941 */ 942 for (i = block1 ; i < block2; i++) { 943 p = ufs_get_direct_data_ptr(uspi, ufsi, i); 944 tmp = ufs_data_ptr_to_cpu(sb, p); 945 if (!tmp) 946 continue; 947 write_seqlock(&ufsi->meta_lock); 948 ufs_data_ptr_clear(uspi, p); 949 write_sequnlock(&ufsi->meta_lock); 950 951 free_data(&ctx, tmp, uspi->s_fpb); 952 } 953 954 free_data(&ctx, 0, 0); 955 956 if (frag3 >= frag4) 957 goto next3; 958 959 /* 960 * Free last free fragments 961 */ 962 p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag3)); 963 tmp = ufs_data_ptr_to_cpu(sb, p); 964 if (!tmp ) 965 ufs_panic(sb, "ufs_truncate_direct", "internal error"); 966 frag4 = ufs_fragnum (frag4); 967 write_seqlock(&ufsi->meta_lock); 968 ufs_data_ptr_clear(uspi, p); 969 write_sequnlock(&ufsi->meta_lock); 970 971 ufs_free_fragments (inode, tmp, frag4); 972 next3: 973 974 UFSD("EXIT: ino %lu\n", inode->i_ino); 975 } 976 977 static void free_full_branch(struct inode *inode, u64 ind_block, int depth) 978 { 979 struct super_block *sb = inode->i_sb; 980 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 981 struct ufs_buffer_head *ubh = ubh_bread(sb, ind_block, uspi->s_bsize); 982 unsigned i; 983 984 if (!ubh) 985 return; 986 987 if (--depth) { 988 for (i = 0; i < uspi->s_apb; i++) { 989 void *p = ubh_get_data_ptr(uspi, ubh, i); 990 u64 block = ufs_data_ptr_to_cpu(sb, p); 991 if (block) 992 free_full_branch(inode, block, depth); 993 } 994 } else { 995 struct to_free ctx = {.inode = inode}; 996 997 for (i = 0; i < uspi->s_apb; i++) { 998 void *p = ubh_get_data_ptr(uspi, ubh, i); 999 u64 block = ufs_data_ptr_to_cpu(sb, p); 1000 if (block) 1001 free_data(&ctx, block, uspi->s_fpb); 1002 } 1003 free_data(&ctx, 0, 0); 1004 } 1005 1006 ubh_bforget(ubh); 1007 ufs_free_blocks(inode, ind_block, uspi->s_fpb); 1008 } 1009 1010 static void free_branch_tail(struct inode *inode, unsigned from, struct ufs_buffer_head *ubh, int depth) 1011 { 1012 struct super_block *sb = inode->i_sb; 1013 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 1014 unsigned i; 1015 1016 if (--depth) { 1017 for (i = from; i < uspi->s_apb ; i++) { 1018 void *p = ubh_get_data_ptr(uspi, ubh, i); 1019 u64 block = ufs_data_ptr_to_cpu(sb, p); 1020 if (block) { 1021 write_seqlock(&UFS_I(inode)->meta_lock); 1022 ufs_data_ptr_clear(uspi, p); 1023 write_sequnlock(&UFS_I(inode)->meta_lock); 1024 ubh_mark_buffer_dirty(ubh); 1025 free_full_branch(inode, block, depth); 1026 } 1027 } 1028 } else { 1029 struct to_free ctx = {.inode = inode}; 1030 1031 for (i = from; i < uspi->s_apb; i++) { 1032 void *p = ubh_get_data_ptr(uspi, ubh, i); 1033 u64 block = ufs_data_ptr_to_cpu(sb, p); 1034 if (block) { 1035 write_seqlock(&UFS_I(inode)->meta_lock); 1036 ufs_data_ptr_clear(uspi, p); 1037 write_sequnlock(&UFS_I(inode)->meta_lock); 1038 ubh_mark_buffer_dirty(ubh); 1039 free_data(&ctx, block, uspi->s_fpb); 1040 } 1041 } 1042 free_data(&ctx, 0, 0); 1043 } 1044 if (IS_SYNC(inode) && ubh_buffer_dirty(ubh)) 1045 ubh_sync_block(ubh); 1046 ubh_brelse(ubh); 1047 } 1048 1049 static int ufs_alloc_lastblock(struct inode *inode, loff_t size) 1050 { 1051 int err = 0; 1052 struct super_block *sb = inode->i_sb; 1053 struct address_space *mapping = inode->i_mapping; 1054 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 1055 unsigned i, end; 1056 sector_t lastfrag; 1057 struct page *lastpage; 1058 struct buffer_head *bh; 1059 u64 phys64; 1060 1061 lastfrag = (size + uspi->s_fsize - 1) >> uspi->s_fshift; 1062 1063 if (!lastfrag) 1064 goto out; 1065 1066 lastfrag--; 1067 1068 lastpage = ufs_get_locked_page(mapping, lastfrag >> 1069 (PAGE_SHIFT - inode->i_blkbits)); 1070 if (IS_ERR(lastpage)) { 1071 err = -EIO; 1072 goto out; 1073 } 1074 1075 end = lastfrag & ((1 << (PAGE_SHIFT - inode->i_blkbits)) - 1); 1076 bh = page_buffers(lastpage); 1077 for (i = 0; i < end; ++i) 1078 bh = bh->b_this_page; 1079 1080 1081 err = ufs_getfrag_block(inode, lastfrag, bh, 1); 1082 1083 if (unlikely(err)) 1084 goto out_unlock; 1085 1086 if (buffer_new(bh)) { 1087 clear_buffer_new(bh); 1088 clean_bdev_bh_alias(bh); 1089 /* 1090 * we do not zeroize fragment, because of 1091 * if it maped to hole, it already contains zeroes 1092 */ 1093 set_buffer_uptodate(bh); 1094 mark_buffer_dirty(bh); 1095 set_page_dirty(lastpage); 1096 } 1097 1098 if (lastfrag >= UFS_IND_FRAGMENT) { 1099 end = uspi->s_fpb - ufs_fragnum(lastfrag) - 1; 1100 phys64 = bh->b_blocknr + 1; 1101 for (i = 0; i < end; ++i) { 1102 bh = sb_getblk(sb, i + phys64); 1103 lock_buffer(bh); 1104 memset(bh->b_data, 0, sb->s_blocksize); 1105 set_buffer_uptodate(bh); 1106 mark_buffer_dirty(bh); 1107 unlock_buffer(bh); 1108 sync_dirty_buffer(bh); 1109 brelse(bh); 1110 } 1111 } 1112 out_unlock: 1113 ufs_put_locked_page(lastpage); 1114 out: 1115 return err; 1116 } 1117 1118 static void ufs_truncate_blocks(struct inode *inode) 1119 { 1120 struct ufs_inode_info *ufsi = UFS_I(inode); 1121 struct super_block *sb = inode->i_sb; 1122 struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi; 1123 unsigned offsets[4]; 1124 int depth; 1125 int depth2; 1126 unsigned i; 1127 struct ufs_buffer_head *ubh[3]; 1128 void *p; 1129 u64 block; 1130 1131 if (inode->i_size) { 1132 sector_t last = (inode->i_size - 1) >> uspi->s_bshift; 1133 depth = ufs_block_to_path(inode, last, offsets); 1134 if (!depth) 1135 return; 1136 } else { 1137 depth = 1; 1138 } 1139 1140 for (depth2 = depth - 1; depth2; depth2--) 1141 if (offsets[depth2] != uspi->s_apb - 1) 1142 break; 1143 1144 mutex_lock(&ufsi->truncate_mutex); 1145 if (depth == 1) { 1146 ufs_trunc_direct(inode); 1147 offsets[0] = UFS_IND_BLOCK; 1148 } else { 1149 /* get the blocks that should be partially emptied */ 1150 p = ufs_get_direct_data_ptr(uspi, ufsi, offsets[0]++); 1151 for (i = 0; i < depth2; i++) { 1152 block = ufs_data_ptr_to_cpu(sb, p); 1153 if (!block) 1154 break; 1155 ubh[i] = ubh_bread(sb, block, uspi->s_bsize); 1156 if (!ubh[i]) { 1157 write_seqlock(&ufsi->meta_lock); 1158 ufs_data_ptr_clear(uspi, p); 1159 write_sequnlock(&ufsi->meta_lock); 1160 break; 1161 } 1162 p = ubh_get_data_ptr(uspi, ubh[i], offsets[i + 1]++); 1163 } 1164 while (i--) 1165 free_branch_tail(inode, offsets[i + 1], ubh[i], depth - i - 1); 1166 } 1167 for (i = offsets[0]; i <= UFS_TIND_BLOCK; i++) { 1168 p = ufs_get_direct_data_ptr(uspi, ufsi, i); 1169 block = ufs_data_ptr_to_cpu(sb, p); 1170 if (block) { 1171 write_seqlock(&ufsi->meta_lock); 1172 ufs_data_ptr_clear(uspi, p); 1173 write_sequnlock(&ufsi->meta_lock); 1174 free_full_branch(inode, block, i - UFS_IND_BLOCK + 1); 1175 } 1176 } 1177 read_seqlock_excl(&ufsi->meta_lock); 1178 ufsi->i_lastfrag = DIRECT_FRAGMENT; 1179 read_sequnlock_excl(&ufsi->meta_lock); 1180 mark_inode_dirty(inode); 1181 mutex_unlock(&ufsi->truncate_mutex); 1182 } 1183 1184 static int ufs_truncate(struct inode *inode, loff_t size) 1185 { 1186 int err = 0; 1187 1188 UFSD("ENTER: ino %lu, i_size: %llu, old_i_size: %llu\n", 1189 inode->i_ino, (unsigned long long)size, 1190 (unsigned long long)i_size_read(inode)); 1191 1192 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1193 S_ISLNK(inode->i_mode))) 1194 return -EINVAL; 1195 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1196 return -EPERM; 1197 1198 err = ufs_alloc_lastblock(inode, size); 1199 1200 if (err) 1201 goto out; 1202 1203 block_truncate_page(inode->i_mapping, size, ufs_getfrag_block); 1204 1205 truncate_setsize(inode, size); 1206 1207 ufs_truncate_blocks(inode); 1208 inode->i_mtime = inode->i_ctime = current_time(inode); 1209 mark_inode_dirty(inode); 1210 out: 1211 UFSD("EXIT: err %d\n", err); 1212 return err; 1213 } 1214 1215 int ufs_setattr(struct user_namespace *mnt_userns, struct dentry *dentry, 1216 struct iattr *attr) 1217 { 1218 struct inode *inode = d_inode(dentry); 1219 unsigned int ia_valid = attr->ia_valid; 1220 int error; 1221 1222 error = setattr_prepare(&init_user_ns, dentry, attr); 1223 if (error) 1224 return error; 1225 1226 if (ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) { 1227 error = ufs_truncate(inode, attr->ia_size); 1228 if (error) 1229 return error; 1230 } 1231 1232 setattr_copy(&init_user_ns, inode, attr); 1233 mark_inode_dirty(inode); 1234 return 0; 1235 } 1236 1237 const struct inode_operations ufs_file_inode_operations = { 1238 .setattr = ufs_setattr, 1239 }; 1240