xref: /openbmc/linux/fs/ufs/inode.c (revision 0f3c1294)
1 /*
2  *  linux/fs/ufs/inode.c
3  *
4  * Copyright (C) 1998
5  * Daniel Pirkl <daniel.pirkl@email.cz>
6  * Charles University, Faculty of Mathematics and Physics
7  *
8  *  from
9  *
10  *  linux/fs/ext2/inode.c
11  *
12  * Copyright (C) 1992, 1993, 1994, 1995
13  * Remy Card (card@masi.ibp.fr)
14  * Laboratoire MASI - Institut Blaise Pascal
15  * Universite Pierre et Marie Curie (Paris VI)
16  *
17  *  from
18  *
19  *  linux/fs/minix/inode.c
20  *
21  *  Copyright (C) 1991, 1992  Linus Torvalds
22  *
23  *  Goal-directed block allocation by Stephen Tweedie (sct@dcs.ed.ac.uk), 1993
24  *  Big-endian to little-endian byte-swapping/bitmaps by
25  *        David S. Miller (davem@caip.rutgers.edu), 1995
26  */
27 
28 #include <asm/uaccess.h>
29 
30 #include <linux/errno.h>
31 #include <linux/fs.h>
32 #include <linux/time.h>
33 #include <linux/stat.h>
34 #include <linux/string.h>
35 #include <linux/mm.h>
36 #include <linux/buffer_head.h>
37 #include <linux/writeback.h>
38 
39 #include "ufs_fs.h"
40 #include "ufs.h"
41 #include "swab.h"
42 #include "util.h"
43 
44 static int ufs_block_to_path(struct inode *inode, sector_t i_block, unsigned offsets[4])
45 {
46 	struct ufs_sb_private_info *uspi = UFS_SB(inode->i_sb)->s_uspi;
47 	int ptrs = uspi->s_apb;
48 	int ptrs_bits = uspi->s_apbshift;
49 	const long direct_blocks = UFS_NDADDR,
50 		indirect_blocks = ptrs,
51 		double_blocks = (1 << (ptrs_bits * 2));
52 	int n = 0;
53 
54 
55 	UFSD("ptrs=uspi->s_apb = %d,double_blocks=%ld \n",ptrs,double_blocks);
56 	if (i_block < direct_blocks) {
57 		offsets[n++] = i_block;
58 	} else if ((i_block -= direct_blocks) < indirect_blocks) {
59 		offsets[n++] = UFS_IND_BLOCK;
60 		offsets[n++] = i_block;
61 	} else if ((i_block -= indirect_blocks) < double_blocks) {
62 		offsets[n++] = UFS_DIND_BLOCK;
63 		offsets[n++] = i_block >> ptrs_bits;
64 		offsets[n++] = i_block & (ptrs - 1);
65 	} else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
66 		offsets[n++] = UFS_TIND_BLOCK;
67 		offsets[n++] = i_block >> (ptrs_bits * 2);
68 		offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
69 		offsets[n++] = i_block & (ptrs - 1);
70 	} else {
71 		ufs_warning(inode->i_sb, "ufs_block_to_path", "block > big");
72 	}
73 	return n;
74 }
75 
76 typedef struct {
77 	void	*p;
78 	union {
79 		__fs32	key32;
80 		__fs64	key64;
81 	};
82 	struct buffer_head *bh;
83 } Indirect;
84 
85 static inline int grow_chain32(struct ufs_inode_info *ufsi,
86 			       struct buffer_head *bh, __fs32 *v,
87 			       Indirect *from, Indirect *to)
88 {
89 	Indirect *p;
90 	unsigned seq;
91 	to->bh = bh;
92 	do {
93 		seq = read_seqbegin(&ufsi->meta_lock);
94 		to->key32 = *(__fs32 *)(to->p = v);
95 		for (p = from; p <= to && p->key32 == *(__fs32 *)p->p; p++)
96 			;
97 	} while (read_seqretry(&ufsi->meta_lock, seq));
98 	return (p > to);
99 }
100 
101 static inline int grow_chain64(struct ufs_inode_info *ufsi,
102 			       struct buffer_head *bh, __fs64 *v,
103 			       Indirect *from, Indirect *to)
104 {
105 	Indirect *p;
106 	unsigned seq;
107 	to->bh = bh;
108 	do {
109 		seq = read_seqbegin(&ufsi->meta_lock);
110 		to->key64 = *(__fs64 *)(to->p = v);
111 		for (p = from; p <= to && p->key64 == *(__fs64 *)p->p; p++)
112 			;
113 	} while (read_seqretry(&ufsi->meta_lock, seq));
114 	return (p > to);
115 }
116 
117 /*
118  * Returns the location of the fragment from
119  * the beginning of the filesystem.
120  */
121 
122 static u64 ufs_frag_map(struct inode *inode, unsigned offsets[4], int depth)
123 {
124 	struct ufs_inode_info *ufsi = UFS_I(inode);
125 	struct super_block *sb = inode->i_sb;
126 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
127 	u64 mask = (u64) uspi->s_apbmask>>uspi->s_fpbshift;
128 	int shift = uspi->s_apbshift-uspi->s_fpbshift;
129 	Indirect chain[4], *q = chain;
130 	unsigned *p;
131 	unsigned flags = UFS_SB(sb)->s_flags;
132 	u64 res = 0;
133 
134 	UFSD(": uspi->s_fpbshift = %d ,uspi->s_apbmask = %x, mask=%llx\n",
135 		uspi->s_fpbshift, uspi->s_apbmask,
136 		(unsigned long long)mask);
137 
138 	if (depth == 0)
139 		goto no_block;
140 
141 again:
142 	p = offsets;
143 
144 	if ((flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
145 		goto ufs2;
146 
147 	if (!grow_chain32(ufsi, NULL, &ufsi->i_u1.i_data[*p++], chain, q))
148 		goto changed;
149 	if (!q->key32)
150 		goto no_block;
151 	while (--depth) {
152 		__fs32 *ptr;
153 		struct buffer_head *bh;
154 		unsigned n = *p++;
155 
156 		bh = sb_bread(sb, uspi->s_sbbase +
157 				  fs32_to_cpu(sb, q->key32) + (n>>shift));
158 		if (!bh)
159 			goto no_block;
160 		ptr = (__fs32 *)bh->b_data + (n & mask);
161 		if (!grow_chain32(ufsi, bh, ptr, chain, ++q))
162 			goto changed;
163 		if (!q->key32)
164 			goto no_block;
165 	}
166 	res = fs32_to_cpu(sb, q->key32);
167 	goto found;
168 
169 ufs2:
170 	if (!grow_chain64(ufsi, NULL, &ufsi->i_u1.u2_i_data[*p++], chain, q))
171 		goto changed;
172 	if (!q->key64)
173 		goto no_block;
174 
175 	while (--depth) {
176 		__fs64 *ptr;
177 		struct buffer_head *bh;
178 		unsigned n = *p++;
179 
180 		bh = sb_bread(sb, uspi->s_sbbase +
181 				  fs64_to_cpu(sb, q->key64) + (n>>shift));
182 		if (!bh)
183 			goto no_block;
184 		ptr = (__fs64 *)bh->b_data + (n & mask);
185 		if (!grow_chain64(ufsi, bh, ptr, chain, ++q))
186 			goto changed;
187 		if (!q->key64)
188 			goto no_block;
189 	}
190 	res = fs64_to_cpu(sb, q->key64);
191 found:
192 	res += uspi->s_sbbase;
193 no_block:
194 	while (q > chain) {
195 		brelse(q->bh);
196 		q--;
197 	}
198 	return res;
199 
200 changed:
201 	while (q > chain) {
202 		brelse(q->bh);
203 		q--;
204 	}
205 	goto again;
206 }
207 
208 /*
209  * Unpacking tails: we have a file with partial final block and
210  * we had been asked to extend it.  If the fragment being written
211  * is within the same block, we need to extend the tail just to cover
212  * that fragment.  Otherwise the tail is extended to full block.
213  *
214  * Note that we might need to create a _new_ tail, but that will
215  * be handled elsewhere; this is strictly for resizing old
216  * ones.
217  */
218 static bool
219 ufs_extend_tail(struct inode *inode, u64 writes_to,
220 		  int *err, struct page *locked_page)
221 {
222 	struct ufs_inode_info *ufsi = UFS_I(inode);
223 	struct super_block *sb = inode->i_sb;
224 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
225 	unsigned lastfrag = ufsi->i_lastfrag;	/* it's a short file, so unsigned is enough */
226 	unsigned block = ufs_fragstoblks(lastfrag);
227 	unsigned new_size;
228 	void *p;
229 	u64 tmp;
230 
231 	if (writes_to < (lastfrag | uspi->s_fpbmask))
232 		new_size = (writes_to & uspi->s_fpbmask) + 1;
233 	else
234 		new_size = uspi->s_fpb;
235 
236 	p = ufs_get_direct_data_ptr(uspi, ufsi, block);
237 	tmp = ufs_new_fragments(inode, p, lastfrag, ufs_data_ptr_to_cpu(sb, p),
238 				new_size, err, locked_page);
239 	return tmp != 0;
240 }
241 
242 /**
243  * ufs_inode_getfrag() - allocate new fragment(s)
244  * @inode: pointer to inode
245  * @fragment: number of `fragment' which hold pointer
246  *   to new allocated fragment(s)
247  * @new_fragment: number of new allocated fragment(s)
248  * @required: how many fragment(s) we require
249  * @err: we set it if something wrong
250  * @phys: pointer to where we save physical number of new allocated fragments,
251  *   NULL if we allocate not data(indirect blocks for example).
252  * @new: we set it if we allocate new block
253  * @locked_page: for ufs_new_fragments()
254  */
255 static u64
256 ufs_inode_getfrag(struct inode *inode, u64 fragment,
257 		  sector_t new_fragment, unsigned int required, int *err,
258 		  long *phys, int *new, struct page *locked_page)
259 {
260 	struct ufs_inode_info *ufsi = UFS_I(inode);
261 	struct super_block *sb = inode->i_sb;
262 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
263 	unsigned blockoff;
264 	u64 tmp, goal, lastfrag, block;
265 	unsigned nfrags = uspi->s_fpb;
266 	void *p;
267 
268         /* TODO : to be done for write support
269         if ( (flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2)
270              goto ufs2;
271          */
272 
273 	block = ufs_fragstoblks (fragment);
274 	blockoff = ufs_fragnum (fragment);
275 	p = ufs_get_direct_data_ptr(uspi, ufsi, block);
276 	tmp = ufs_data_ptr_to_cpu(sb, p);
277 	if (tmp)
278 		goto out;
279 
280 	lastfrag = ufsi->i_lastfrag;
281 
282 	/* will that be a new tail? */
283 	if (new_fragment < UFS_NDIR_FRAGMENT && new_fragment >= lastfrag)
284 		nfrags = (new_fragment & uspi->s_fpbmask) + 1;
285 
286 	goal = 0;
287 	if (block) {
288 		goal = ufs_data_ptr_to_cpu(sb,
289 				 ufs_get_direct_data_ptr(uspi, ufsi, block - 1));
290 		if (goal)
291 			goal += uspi->s_fpb;
292 	}
293 	tmp = ufs_new_fragments(inode, p, fragment - blockoff,
294 				goal, uspi->s_fpb, err,
295 				phys != NULL ? locked_page : NULL);
296 
297 	if (!tmp) {
298 		*err = -ENOSPC;
299 		return 0;
300 	}
301 
302 	if (phys) {
303 		*err = 0;
304 		*new = 1;
305 	}
306 	inode->i_ctime = CURRENT_TIME_SEC;
307 	if (IS_SYNC(inode))
308 		ufs_sync_inode (inode);
309 	mark_inode_dirty(inode);
310 out:
311 	return tmp + uspi->s_sbbase;
312 
313      /* This part : To be implemented ....
314         Required only for writing, not required for READ-ONLY.
315 ufs2:
316 
317 	u2_block = ufs_fragstoblks(fragment);
318 	u2_blockoff = ufs_fragnum(fragment);
319 	p = ufsi->i_u1.u2_i_data + block;
320 	goal = 0;
321 
322 repeat2:
323 	tmp = fs32_to_cpu(sb, *p);
324 	lastfrag = ufsi->i_lastfrag;
325 
326      */
327 }
328 
329 /**
330  * ufs_inode_getblock() - allocate new block
331  * @inode: pointer to inode
332  * @ind_block: block number of the indirect block
333  * @index: number of pointer within the indirect block
334  * @new_fragment: number of new allocated fragment
335  *  (block will hold this fragment and also uspi->s_fpb-1)
336  * @err: see ufs_inode_getfrag()
337  * @phys: see ufs_inode_getfrag()
338  * @new: see ufs_inode_getfrag()
339  * @locked_page: see ufs_inode_getfrag()
340  */
341 static u64
342 ufs_inode_getblock(struct inode *inode, u64 ind_block,
343 		  unsigned index, sector_t new_fragment, int *err,
344 		  long *phys, int *new, struct page *locked_page)
345 {
346 	struct super_block *sb = inode->i_sb;
347 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
348 	int shift = uspi->s_apbshift - uspi->s_fpbshift;
349 	u64 tmp = 0, goal;
350 	struct buffer_head *bh;
351 	void *p;
352 
353 	if (!ind_block)
354 		return 0;
355 
356 	bh = sb_bread(sb, ind_block + (index >> shift));
357 	if (unlikely(!bh))
358 		return 0;
359 
360 	index &= uspi->s_apbmask >> uspi->s_fpbshift;
361 	if (uspi->fs_magic == UFS2_MAGIC)
362 		p = (__fs64 *)bh->b_data + index;
363 	else
364 		p = (__fs32 *)bh->b_data + index;
365 
366 	tmp = ufs_data_ptr_to_cpu(sb, p);
367 	if (tmp)
368 		goto out;
369 
370 	if (index && (uspi->fs_magic == UFS2_MAGIC ?
371 		      (tmp = fs64_to_cpu(sb, ((__fs64 *)bh->b_data)[index-1])) :
372 		      (tmp = fs32_to_cpu(sb, ((__fs32 *)bh->b_data)[index-1]))))
373 		goal = tmp + uspi->s_fpb;
374 	else
375 		goal = bh->b_blocknr + uspi->s_fpb;
376 	tmp = ufs_new_fragments(inode, p, ufs_blknum(new_fragment), goal,
377 				uspi->s_fpb, err, locked_page);
378 	if (!tmp)
379 		goto out;
380 
381 	if (new)
382 		*new = 1;
383 
384 	mark_buffer_dirty(bh);
385 	if (IS_SYNC(inode))
386 		sync_dirty_buffer(bh);
387 	inode->i_ctime = CURRENT_TIME_SEC;
388 	mark_inode_dirty(inode);
389 out:
390 	brelse (bh);
391 	UFSD("EXIT\n");
392 	if (tmp)
393 		tmp += uspi->s_sbbase;
394 	return tmp;
395 }
396 
397 /**
398  * ufs_getfrag_block() - `get_block_t' function, interface between UFS and
399  * readpage, writepage and so on
400  */
401 
402 static int ufs_getfrag_block(struct inode *inode, sector_t fragment, struct buffer_head *bh_result, int create)
403 {
404 	struct super_block * sb = inode->i_sb;
405 	struct ufs_sb_info * sbi = UFS_SB(sb);
406 	struct ufs_sb_private_info * uspi = sbi->s_uspi;
407 	struct buffer_head * bh;
408 	int ret, err, new;
409 	unsigned offsets[4];
410 	int depth = ufs_block_to_path(inode, fragment >> uspi->s_fpbshift, offsets);
411 	unsigned long ptr,phys;
412 	u64 phys64 = 0;
413 	unsigned frag = fragment & uspi->s_fpbmask;
414 
415 	if (!create) {
416 		phys64 = ufs_frag_map(inode, offsets, depth);
417 		if (phys64) {
418 			phys64 += frag;
419 			map_bh(bh_result, sb, phys64);
420 		}
421 		return 0;
422 	}
423 
424         /* This code entered only while writing ....? */
425 
426 	err = -EIO;
427 	new = 0;
428 	ret = 0;
429 	bh = NULL;
430 
431 	mutex_lock(&UFS_I(inode)->truncate_mutex);
432 
433 	UFSD("ENTER, ino %lu, fragment %llu\n", inode->i_ino, (unsigned long long)fragment);
434 	if (!depth)
435 		goto abort_too_big;
436 
437 	err = 0;
438 
439 	if (UFS_I(inode)->i_lastfrag < UFS_NDIR_FRAGMENT) {
440 		unsigned lastfrag = UFS_I(inode)->i_lastfrag;
441 		unsigned tailfrags = lastfrag & uspi->s_fpbmask;
442 		if (tailfrags && fragment >= lastfrag) {
443 			if (!ufs_extend_tail(inode, fragment,
444 					     &err, bh_result->b_page))
445 				goto abort;
446 		}
447 	}
448 
449 	ptr = fragment;
450 
451 	if (depth == 1) {
452 		phys64 = ufs_inode_getfrag(inode, ptr, fragment, 1, &err, &phys,
453 					&new, bh_result->b_page);
454 		if (phys64) {
455 			phys64 += frag;
456 			phys = phys64;
457 		}
458 		goto out;
459 	}
460 	ptr -= UFS_NDIR_FRAGMENT;
461 	if (depth == 2) {
462 		phys64 = ufs_inode_getfrag(inode,
463 					UFS_IND_FRAGMENT + (ptr >> uspi->s_apbshift),
464 					fragment, uspi->s_fpb, &err, NULL, NULL,
465 					bh_result->b_page);
466 		goto get_indirect;
467 	}
468 	ptr -= 1 << (uspi->s_apbshift + uspi->s_fpbshift);
469 	if (depth == 3) {
470 		phys64 = ufs_inode_getfrag(inode,
471 					UFS_DIND_FRAGMENT + (ptr >> uspi->s_2apbshift),
472 					fragment, uspi->s_fpb, &err, NULL, NULL,
473 					bh_result->b_page);
474 		goto get_double;
475 	}
476 	ptr -= 1 << (uspi->s_2apbshift + uspi->s_fpbshift);
477 	phys64 = ufs_inode_getfrag(inode,
478 				UFS_TIND_FRAGMENT + (ptr >> uspi->s_3apbshift),
479 				fragment, uspi->s_fpb, &err, NULL, NULL,
480 				bh_result->b_page);
481 	phys64 = ufs_inode_getblock(inode, phys64, offsets[1],
482 				fragment, &err, NULL, NULL, NULL);
483 get_double:
484 	phys64 = ufs_inode_getblock(inode, phys64, offsets[depth - 2],
485 				fragment, &err, NULL, NULL, NULL);
486 get_indirect:
487 	phys64 = ufs_inode_getblock(inode, phys64, offsets[depth - 1],
488 				fragment, &err, &phys, &new, bh_result->b_page);
489 	if (phys64) {
490 		phys64 += frag;
491 		phys = phys64;
492 	}
493 out:
494 	if (err)
495 		goto abort;
496 	if (new)
497 		set_buffer_new(bh_result);
498 	map_bh(bh_result, sb, phys);
499 abort:
500 	mutex_unlock(&UFS_I(inode)->truncate_mutex);
501 
502 	return err;
503 
504 abort_too_big:
505 	ufs_warning(sb, "ufs_get_block", "block > big");
506 	goto abort;
507 }
508 
509 static int ufs_writepage(struct page *page, struct writeback_control *wbc)
510 {
511 	return block_write_full_page(page,ufs_getfrag_block,wbc);
512 }
513 
514 static int ufs_readpage(struct file *file, struct page *page)
515 {
516 	return block_read_full_page(page,ufs_getfrag_block);
517 }
518 
519 int ufs_prepare_chunk(struct page *page, loff_t pos, unsigned len)
520 {
521 	return __block_write_begin(page, pos, len, ufs_getfrag_block);
522 }
523 
524 static void ufs_truncate_blocks(struct inode *);
525 
526 static void ufs_write_failed(struct address_space *mapping, loff_t to)
527 {
528 	struct inode *inode = mapping->host;
529 
530 	if (to > inode->i_size) {
531 		truncate_pagecache(inode, inode->i_size);
532 		ufs_truncate_blocks(inode);
533 	}
534 }
535 
536 static int ufs_write_begin(struct file *file, struct address_space *mapping,
537 			loff_t pos, unsigned len, unsigned flags,
538 			struct page **pagep, void **fsdata)
539 {
540 	int ret;
541 
542 	ret = block_write_begin(mapping, pos, len, flags, pagep,
543 				ufs_getfrag_block);
544 	if (unlikely(ret))
545 		ufs_write_failed(mapping, pos + len);
546 
547 	return ret;
548 }
549 
550 static int ufs_write_end(struct file *file, struct address_space *mapping,
551 			loff_t pos, unsigned len, unsigned copied,
552 			struct page *page, void *fsdata)
553 {
554 	int ret;
555 
556 	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
557 	if (ret < len)
558 		ufs_write_failed(mapping, pos + len);
559 	return ret;
560 }
561 
562 static sector_t ufs_bmap(struct address_space *mapping, sector_t block)
563 {
564 	return generic_block_bmap(mapping,block,ufs_getfrag_block);
565 }
566 
567 const struct address_space_operations ufs_aops = {
568 	.readpage = ufs_readpage,
569 	.writepage = ufs_writepage,
570 	.write_begin = ufs_write_begin,
571 	.write_end = ufs_write_end,
572 	.bmap = ufs_bmap
573 };
574 
575 static void ufs_set_inode_ops(struct inode *inode)
576 {
577 	if (S_ISREG(inode->i_mode)) {
578 		inode->i_op = &ufs_file_inode_operations;
579 		inode->i_fop = &ufs_file_operations;
580 		inode->i_mapping->a_ops = &ufs_aops;
581 	} else if (S_ISDIR(inode->i_mode)) {
582 		inode->i_op = &ufs_dir_inode_operations;
583 		inode->i_fop = &ufs_dir_operations;
584 		inode->i_mapping->a_ops = &ufs_aops;
585 	} else if (S_ISLNK(inode->i_mode)) {
586 		if (!inode->i_blocks) {
587 			inode->i_op = &ufs_fast_symlink_inode_operations;
588 			inode->i_link = (char *)UFS_I(inode)->i_u1.i_symlink;
589 		} else {
590 			inode->i_op = &ufs_symlink_inode_operations;
591 			inode->i_mapping->a_ops = &ufs_aops;
592 		}
593 	} else
594 		init_special_inode(inode, inode->i_mode,
595 				   ufs_get_inode_dev(inode->i_sb, UFS_I(inode)));
596 }
597 
598 static int ufs1_read_inode(struct inode *inode, struct ufs_inode *ufs_inode)
599 {
600 	struct ufs_inode_info *ufsi = UFS_I(inode);
601 	struct super_block *sb = inode->i_sb;
602 	umode_t mode;
603 
604 	/*
605 	 * Copy data to the in-core inode.
606 	 */
607 	inode->i_mode = mode = fs16_to_cpu(sb, ufs_inode->ui_mode);
608 	set_nlink(inode, fs16_to_cpu(sb, ufs_inode->ui_nlink));
609 	if (inode->i_nlink == 0) {
610 		ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
611 		return -1;
612 	}
613 
614 	/*
615 	 * Linux now has 32-bit uid and gid, so we can support EFT.
616 	 */
617 	i_uid_write(inode, ufs_get_inode_uid(sb, ufs_inode));
618 	i_gid_write(inode, ufs_get_inode_gid(sb, ufs_inode));
619 
620 	inode->i_size = fs64_to_cpu(sb, ufs_inode->ui_size);
621 	inode->i_atime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_atime.tv_sec);
622 	inode->i_ctime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_ctime.tv_sec);
623 	inode->i_mtime.tv_sec = fs32_to_cpu(sb, ufs_inode->ui_mtime.tv_sec);
624 	inode->i_mtime.tv_nsec = 0;
625 	inode->i_atime.tv_nsec = 0;
626 	inode->i_ctime.tv_nsec = 0;
627 	inode->i_blocks = fs32_to_cpu(sb, ufs_inode->ui_blocks);
628 	inode->i_generation = fs32_to_cpu(sb, ufs_inode->ui_gen);
629 	ufsi->i_flags = fs32_to_cpu(sb, ufs_inode->ui_flags);
630 	ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
631 	ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
632 
633 
634 	if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
635 		memcpy(ufsi->i_u1.i_data, &ufs_inode->ui_u2.ui_addr,
636 		       sizeof(ufs_inode->ui_u2.ui_addr));
637 	} else {
638 		memcpy(ufsi->i_u1.i_symlink, ufs_inode->ui_u2.ui_symlink,
639 		       sizeof(ufs_inode->ui_u2.ui_symlink) - 1);
640 		ufsi->i_u1.i_symlink[sizeof(ufs_inode->ui_u2.ui_symlink) - 1] = 0;
641 	}
642 	return 0;
643 }
644 
645 static int ufs2_read_inode(struct inode *inode, struct ufs2_inode *ufs2_inode)
646 {
647 	struct ufs_inode_info *ufsi = UFS_I(inode);
648 	struct super_block *sb = inode->i_sb;
649 	umode_t mode;
650 
651 	UFSD("Reading ufs2 inode, ino %lu\n", inode->i_ino);
652 	/*
653 	 * Copy data to the in-core inode.
654 	 */
655 	inode->i_mode = mode = fs16_to_cpu(sb, ufs2_inode->ui_mode);
656 	set_nlink(inode, fs16_to_cpu(sb, ufs2_inode->ui_nlink));
657 	if (inode->i_nlink == 0) {
658 		ufs_error (sb, "ufs_read_inode", "inode %lu has zero nlink\n", inode->i_ino);
659 		return -1;
660 	}
661 
662         /*
663          * Linux now has 32-bit uid and gid, so we can support EFT.
664          */
665 	i_uid_write(inode, fs32_to_cpu(sb, ufs2_inode->ui_uid));
666 	i_gid_write(inode, fs32_to_cpu(sb, ufs2_inode->ui_gid));
667 
668 	inode->i_size = fs64_to_cpu(sb, ufs2_inode->ui_size);
669 	inode->i_atime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_atime);
670 	inode->i_ctime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_ctime);
671 	inode->i_mtime.tv_sec = fs64_to_cpu(sb, ufs2_inode->ui_mtime);
672 	inode->i_atime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_atimensec);
673 	inode->i_ctime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_ctimensec);
674 	inode->i_mtime.tv_nsec = fs32_to_cpu(sb, ufs2_inode->ui_mtimensec);
675 	inode->i_blocks = fs64_to_cpu(sb, ufs2_inode->ui_blocks);
676 	inode->i_generation = fs32_to_cpu(sb, ufs2_inode->ui_gen);
677 	ufsi->i_flags = fs32_to_cpu(sb, ufs2_inode->ui_flags);
678 	/*
679 	ufsi->i_shadow = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_shadow);
680 	ufsi->i_oeftflag = fs32_to_cpu(sb, ufs_inode->ui_u3.ui_sun.ui_oeftflag);
681 	*/
682 
683 	if (S_ISCHR(mode) || S_ISBLK(mode) || inode->i_blocks) {
684 		memcpy(ufsi->i_u1.u2_i_data, &ufs2_inode->ui_u2.ui_addr,
685 		       sizeof(ufs2_inode->ui_u2.ui_addr));
686 	} else {
687 		memcpy(ufsi->i_u1.i_symlink, ufs2_inode->ui_u2.ui_symlink,
688 		       sizeof(ufs2_inode->ui_u2.ui_symlink) - 1);
689 		ufsi->i_u1.i_symlink[sizeof(ufs2_inode->ui_u2.ui_symlink) - 1] = 0;
690 	}
691 	return 0;
692 }
693 
694 struct inode *ufs_iget(struct super_block *sb, unsigned long ino)
695 {
696 	struct ufs_inode_info *ufsi;
697 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
698 	struct buffer_head * bh;
699 	struct inode *inode;
700 	int err;
701 
702 	UFSD("ENTER, ino %lu\n", ino);
703 
704 	if (ino < UFS_ROOTINO || ino > (uspi->s_ncg * uspi->s_ipg)) {
705 		ufs_warning(sb, "ufs_read_inode", "bad inode number (%lu)\n",
706 			    ino);
707 		return ERR_PTR(-EIO);
708 	}
709 
710 	inode = iget_locked(sb, ino);
711 	if (!inode)
712 		return ERR_PTR(-ENOMEM);
713 	if (!(inode->i_state & I_NEW))
714 		return inode;
715 
716 	ufsi = UFS_I(inode);
717 
718 	bh = sb_bread(sb, uspi->s_sbbase + ufs_inotofsba(inode->i_ino));
719 	if (!bh) {
720 		ufs_warning(sb, "ufs_read_inode", "unable to read inode %lu\n",
721 			    inode->i_ino);
722 		goto bad_inode;
723 	}
724 	if ((UFS_SB(sb)->s_flags & UFS_TYPE_MASK) == UFS_TYPE_UFS2) {
725 		struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
726 
727 		err = ufs2_read_inode(inode,
728 				      ufs2_inode + ufs_inotofsbo(inode->i_ino));
729 	} else {
730 		struct ufs_inode *ufs_inode = (struct ufs_inode *)bh->b_data;
731 
732 		err = ufs1_read_inode(inode,
733 				      ufs_inode + ufs_inotofsbo(inode->i_ino));
734 	}
735 
736 	if (err)
737 		goto bad_inode;
738 	inode->i_version++;
739 	ufsi->i_lastfrag =
740 		(inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift;
741 	ufsi->i_dir_start_lookup = 0;
742 	ufsi->i_osync = 0;
743 
744 	ufs_set_inode_ops(inode);
745 
746 	brelse(bh);
747 
748 	UFSD("EXIT\n");
749 	unlock_new_inode(inode);
750 	return inode;
751 
752 bad_inode:
753 	iget_failed(inode);
754 	return ERR_PTR(-EIO);
755 }
756 
757 static void ufs1_update_inode(struct inode *inode, struct ufs_inode *ufs_inode)
758 {
759 	struct super_block *sb = inode->i_sb;
760  	struct ufs_inode_info *ufsi = UFS_I(inode);
761 
762 	ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
763 	ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
764 
765 	ufs_set_inode_uid(sb, ufs_inode, i_uid_read(inode));
766 	ufs_set_inode_gid(sb, ufs_inode, i_gid_read(inode));
767 
768 	ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
769 	ufs_inode->ui_atime.tv_sec = cpu_to_fs32(sb, inode->i_atime.tv_sec);
770 	ufs_inode->ui_atime.tv_usec = 0;
771 	ufs_inode->ui_ctime.tv_sec = cpu_to_fs32(sb, inode->i_ctime.tv_sec);
772 	ufs_inode->ui_ctime.tv_usec = 0;
773 	ufs_inode->ui_mtime.tv_sec = cpu_to_fs32(sb, inode->i_mtime.tv_sec);
774 	ufs_inode->ui_mtime.tv_usec = 0;
775 	ufs_inode->ui_blocks = cpu_to_fs32(sb, inode->i_blocks);
776 	ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
777 	ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation);
778 
779 	if ((UFS_SB(sb)->s_flags & UFS_UID_MASK) == UFS_UID_EFT) {
780 		ufs_inode->ui_u3.ui_sun.ui_shadow = cpu_to_fs32(sb, ufsi->i_shadow);
781 		ufs_inode->ui_u3.ui_sun.ui_oeftflag = cpu_to_fs32(sb, ufsi->i_oeftflag);
782 	}
783 
784 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
785 		/* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
786 		ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.i_data[0];
787 	} else if (inode->i_blocks) {
788 		memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.i_data,
789 		       sizeof(ufs_inode->ui_u2.ui_addr));
790 	}
791 	else {
792 		memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink,
793 		       sizeof(ufs_inode->ui_u2.ui_symlink));
794 	}
795 
796 	if (!inode->i_nlink)
797 		memset (ufs_inode, 0, sizeof(struct ufs_inode));
798 }
799 
800 static void ufs2_update_inode(struct inode *inode, struct ufs2_inode *ufs_inode)
801 {
802 	struct super_block *sb = inode->i_sb;
803  	struct ufs_inode_info *ufsi = UFS_I(inode);
804 
805 	UFSD("ENTER\n");
806 	ufs_inode->ui_mode = cpu_to_fs16(sb, inode->i_mode);
807 	ufs_inode->ui_nlink = cpu_to_fs16(sb, inode->i_nlink);
808 
809 	ufs_inode->ui_uid = cpu_to_fs32(sb, i_uid_read(inode));
810 	ufs_inode->ui_gid = cpu_to_fs32(sb, i_gid_read(inode));
811 
812 	ufs_inode->ui_size = cpu_to_fs64(sb, inode->i_size);
813 	ufs_inode->ui_atime = cpu_to_fs64(sb, inode->i_atime.tv_sec);
814 	ufs_inode->ui_atimensec = cpu_to_fs32(sb, inode->i_atime.tv_nsec);
815 	ufs_inode->ui_ctime = cpu_to_fs64(sb, inode->i_ctime.tv_sec);
816 	ufs_inode->ui_ctimensec = cpu_to_fs32(sb, inode->i_ctime.tv_nsec);
817 	ufs_inode->ui_mtime = cpu_to_fs64(sb, inode->i_mtime.tv_sec);
818 	ufs_inode->ui_mtimensec = cpu_to_fs32(sb, inode->i_mtime.tv_nsec);
819 
820 	ufs_inode->ui_blocks = cpu_to_fs64(sb, inode->i_blocks);
821 	ufs_inode->ui_flags = cpu_to_fs32(sb, ufsi->i_flags);
822 	ufs_inode->ui_gen = cpu_to_fs32(sb, inode->i_generation);
823 
824 	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
825 		/* ufs_inode->ui_u2.ui_addr.ui_db[0] = cpu_to_fs32(sb, inode->i_rdev); */
826 		ufs_inode->ui_u2.ui_addr.ui_db[0] = ufsi->i_u1.u2_i_data[0];
827 	} else if (inode->i_blocks) {
828 		memcpy(&ufs_inode->ui_u2.ui_addr, ufsi->i_u1.u2_i_data,
829 		       sizeof(ufs_inode->ui_u2.ui_addr));
830 	} else {
831 		memcpy(&ufs_inode->ui_u2.ui_symlink, ufsi->i_u1.i_symlink,
832 		       sizeof(ufs_inode->ui_u2.ui_symlink));
833  	}
834 
835 	if (!inode->i_nlink)
836 		memset (ufs_inode, 0, sizeof(struct ufs2_inode));
837 	UFSD("EXIT\n");
838 }
839 
840 static int ufs_update_inode(struct inode * inode, int do_sync)
841 {
842 	struct super_block *sb = inode->i_sb;
843 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
844 	struct buffer_head * bh;
845 
846 	UFSD("ENTER, ino %lu\n", inode->i_ino);
847 
848 	if (inode->i_ino < UFS_ROOTINO ||
849 	    inode->i_ino > (uspi->s_ncg * uspi->s_ipg)) {
850 		ufs_warning (sb, "ufs_read_inode", "bad inode number (%lu)\n", inode->i_ino);
851 		return -1;
852 	}
853 
854 	bh = sb_bread(sb, ufs_inotofsba(inode->i_ino));
855 	if (!bh) {
856 		ufs_warning (sb, "ufs_read_inode", "unable to read inode %lu\n", inode->i_ino);
857 		return -1;
858 	}
859 	if (uspi->fs_magic == UFS2_MAGIC) {
860 		struct ufs2_inode *ufs2_inode = (struct ufs2_inode *)bh->b_data;
861 
862 		ufs2_update_inode(inode,
863 				  ufs2_inode + ufs_inotofsbo(inode->i_ino));
864 	} else {
865 		struct ufs_inode *ufs_inode = (struct ufs_inode *) bh->b_data;
866 
867 		ufs1_update_inode(inode, ufs_inode + ufs_inotofsbo(inode->i_ino));
868 	}
869 
870 	mark_buffer_dirty(bh);
871 	if (do_sync)
872 		sync_dirty_buffer(bh);
873 	brelse (bh);
874 
875 	UFSD("EXIT\n");
876 	return 0;
877 }
878 
879 int ufs_write_inode(struct inode *inode, struct writeback_control *wbc)
880 {
881 	return ufs_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
882 }
883 
884 int ufs_sync_inode (struct inode *inode)
885 {
886 	return ufs_update_inode (inode, 1);
887 }
888 
889 void ufs_evict_inode(struct inode * inode)
890 {
891 	int want_delete = 0;
892 
893 	if (!inode->i_nlink && !is_bad_inode(inode))
894 		want_delete = 1;
895 
896 	truncate_inode_pages_final(&inode->i_data);
897 	if (want_delete) {
898 		inode->i_size = 0;
899 		if (inode->i_blocks)
900 			ufs_truncate_blocks(inode);
901 	}
902 
903 	invalidate_inode_buffers(inode);
904 	clear_inode(inode);
905 
906 	if (want_delete)
907 		ufs_free_inode(inode);
908 }
909 
910 struct to_free {
911 	struct inode *inode;
912 	u64 to;
913 	unsigned count;
914 };
915 
916 static inline void free_data(struct to_free *ctx, u64 from, unsigned count)
917 {
918 	if (ctx->count && ctx->to != from) {
919 		ufs_free_blocks(ctx->inode, ctx->to - ctx->count, ctx->count);
920 		ctx->count = 0;
921 	}
922 	ctx->count += count;
923 	ctx->to = from + count;
924 }
925 
926 #define DIRECT_BLOCK ((inode->i_size + uspi->s_bsize - 1) >> uspi->s_bshift)
927 #define DIRECT_FRAGMENT ((inode->i_size + uspi->s_fsize - 1) >> uspi->s_fshift)
928 
929 static void ufs_trunc_direct(struct inode *inode)
930 {
931 	struct ufs_inode_info *ufsi = UFS_I(inode);
932 	struct super_block * sb;
933 	struct ufs_sb_private_info * uspi;
934 	void *p;
935 	u64 frag1, frag2, frag3, frag4, block1, block2;
936 	struct to_free ctx = {.inode = inode};
937 	unsigned i, tmp;
938 
939 	UFSD("ENTER: ino %lu\n", inode->i_ino);
940 
941 	sb = inode->i_sb;
942 	uspi = UFS_SB(sb)->s_uspi;
943 
944 	frag1 = DIRECT_FRAGMENT;
945 	frag4 = min_t(u64, UFS_NDIR_FRAGMENT, ufsi->i_lastfrag);
946 	frag2 = ((frag1 & uspi->s_fpbmask) ? ((frag1 | uspi->s_fpbmask) + 1) : frag1);
947 	frag3 = frag4 & ~uspi->s_fpbmask;
948 	block1 = block2 = 0;
949 	if (frag2 > frag3) {
950 		frag2 = frag4;
951 		frag3 = frag4 = 0;
952 	} else if (frag2 < frag3) {
953 		block1 = ufs_fragstoblks (frag2);
954 		block2 = ufs_fragstoblks (frag3);
955 	}
956 
957 	UFSD("ino %lu, frag1 %llu, frag2 %llu, block1 %llu, block2 %llu,"
958 	     " frag3 %llu, frag4 %llu\n", inode->i_ino,
959 	     (unsigned long long)frag1, (unsigned long long)frag2,
960 	     (unsigned long long)block1, (unsigned long long)block2,
961 	     (unsigned long long)frag3, (unsigned long long)frag4);
962 
963 	if (frag1 >= frag2)
964 		goto next1;
965 
966 	/*
967 	 * Free first free fragments
968 	 */
969 	p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag1));
970 	tmp = ufs_data_ptr_to_cpu(sb, p);
971 	if (!tmp )
972 		ufs_panic (sb, "ufs_trunc_direct", "internal error");
973 	frag2 -= frag1;
974 	frag1 = ufs_fragnum (frag1);
975 
976 	ufs_free_fragments(inode, tmp + frag1, frag2);
977 
978 next1:
979 	/*
980 	 * Free whole blocks
981 	 */
982 	for (i = block1 ; i < block2; i++) {
983 		p = ufs_get_direct_data_ptr(uspi, ufsi, i);
984 		tmp = ufs_data_ptr_to_cpu(sb, p);
985 		if (!tmp)
986 			continue;
987 		write_seqlock(&ufsi->meta_lock);
988 		ufs_data_ptr_clear(uspi, p);
989 		write_sequnlock(&ufsi->meta_lock);
990 
991 		free_data(&ctx, tmp, uspi->s_fpb);
992 	}
993 
994 	free_data(&ctx, 0, 0);
995 
996 	if (frag3 >= frag4)
997 		goto next3;
998 
999 	/*
1000 	 * Free last free fragments
1001 	 */
1002 	p = ufs_get_direct_data_ptr(uspi, ufsi, ufs_fragstoblks(frag3));
1003 	tmp = ufs_data_ptr_to_cpu(sb, p);
1004 	if (!tmp )
1005 		ufs_panic(sb, "ufs_truncate_direct", "internal error");
1006 	frag4 = ufs_fragnum (frag4);
1007 	write_seqlock(&ufsi->meta_lock);
1008 	ufs_data_ptr_clear(uspi, p);
1009 	write_sequnlock(&ufsi->meta_lock);
1010 
1011 	ufs_free_fragments (inode, tmp, frag4);
1012  next3:
1013 
1014 	UFSD("EXIT: ino %lu\n", inode->i_ino);
1015 }
1016 
1017 static void free_full_branch(struct inode *inode, u64 ind_block, int depth)
1018 {
1019 	struct super_block *sb = inode->i_sb;
1020 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
1021 	struct ufs_buffer_head *ubh = ubh_bread(sb, ind_block, uspi->s_bsize);
1022 	unsigned i;
1023 
1024 	if (!ubh)
1025 		return;
1026 
1027 	if (--depth) {
1028 		for (i = 0; i < uspi->s_apb; i++) {
1029 			void *p = ubh_get_data_ptr(uspi, ubh, i);
1030 			u64 block = ufs_data_ptr_to_cpu(sb, p);
1031 			if (block)
1032 				free_full_branch(inode, block, depth);
1033 		}
1034 	} else {
1035 		struct to_free ctx = {.inode = inode};
1036 
1037 		for (i = 0; i < uspi->s_apb; i++) {
1038 			void *p = ubh_get_data_ptr(uspi, ubh, i);
1039 			u64 block = ufs_data_ptr_to_cpu(sb, p);
1040 			if (block)
1041 				free_data(&ctx, block, uspi->s_fpb);
1042 		}
1043 		free_data(&ctx, 0, 0);
1044 	}
1045 
1046 	ubh_bforget(ubh);
1047 	ufs_free_blocks(inode, ind_block, uspi->s_fpb);
1048 }
1049 
1050 static void free_branch_tail(struct inode *inode, unsigned from, struct ufs_buffer_head *ubh, int depth)
1051 {
1052 	struct super_block *sb = inode->i_sb;
1053 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
1054 	unsigned i;
1055 
1056 	if (--depth) {
1057 		for (i = from; i < uspi->s_apb ; i++) {
1058 			void *p = ubh_get_data_ptr(uspi, ubh, i);
1059 			u64 block = ufs_data_ptr_to_cpu(sb, p);
1060 			if (block) {
1061 				write_seqlock(&UFS_I(inode)->meta_lock);
1062 				ufs_data_ptr_clear(uspi, p);
1063 				write_sequnlock(&UFS_I(inode)->meta_lock);
1064 				ubh_mark_buffer_dirty(ubh);
1065 				free_full_branch(inode, block, depth);
1066 			}
1067 		}
1068 	} else {
1069 		struct to_free ctx = {.inode = inode};
1070 
1071 		for (i = from; i < uspi->s_apb; i++) {
1072 			void *p = ubh_get_data_ptr(uspi, ubh, i);
1073 			u64 block = ufs_data_ptr_to_cpu(sb, p);
1074 			if (block) {
1075 				write_seqlock(&UFS_I(inode)->meta_lock);
1076 				ufs_data_ptr_clear(uspi, p);
1077 				write_sequnlock(&UFS_I(inode)->meta_lock);
1078 				ubh_mark_buffer_dirty(ubh);
1079 				free_data(&ctx, block, uspi->s_fpb);
1080 			}
1081 		}
1082 		free_data(&ctx, 0, 0);
1083 	}
1084 	if (IS_SYNC(inode) && ubh_buffer_dirty(ubh))
1085 		ubh_sync_block(ubh);
1086 	ubh_brelse(ubh);
1087 }
1088 
1089 static int ufs_alloc_lastblock(struct inode *inode, loff_t size)
1090 {
1091 	int err = 0;
1092 	struct super_block *sb = inode->i_sb;
1093 	struct address_space *mapping = inode->i_mapping;
1094 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
1095 	unsigned i, end;
1096 	sector_t lastfrag;
1097 	struct page *lastpage;
1098 	struct buffer_head *bh;
1099 	u64 phys64;
1100 
1101 	lastfrag = (size + uspi->s_fsize - 1) >> uspi->s_fshift;
1102 
1103 	if (!lastfrag)
1104 		goto out;
1105 
1106 	lastfrag--;
1107 
1108 	lastpage = ufs_get_locked_page(mapping, lastfrag >>
1109 				       (PAGE_CACHE_SHIFT - inode->i_blkbits));
1110        if (IS_ERR(lastpage)) {
1111                err = -EIO;
1112                goto out;
1113        }
1114 
1115        end = lastfrag & ((1 << (PAGE_CACHE_SHIFT - inode->i_blkbits)) - 1);
1116        bh = page_buffers(lastpage);
1117        for (i = 0; i < end; ++i)
1118                bh = bh->b_this_page;
1119 
1120 
1121        err = ufs_getfrag_block(inode, lastfrag, bh, 1);
1122 
1123        if (unlikely(err))
1124 	       goto out_unlock;
1125 
1126        if (buffer_new(bh)) {
1127 	       clear_buffer_new(bh);
1128 	       unmap_underlying_metadata(bh->b_bdev,
1129 					 bh->b_blocknr);
1130 	       /*
1131 		* we do not zeroize fragment, because of
1132 		* if it maped to hole, it already contains zeroes
1133 		*/
1134 	       set_buffer_uptodate(bh);
1135 	       mark_buffer_dirty(bh);
1136 	       set_page_dirty(lastpage);
1137        }
1138 
1139        if (lastfrag >= UFS_IND_FRAGMENT) {
1140 	       end = uspi->s_fpb - ufs_fragnum(lastfrag) - 1;
1141 	       phys64 = bh->b_blocknr + 1;
1142 	       for (i = 0; i < end; ++i) {
1143 		       bh = sb_getblk(sb, i + phys64);
1144 		       lock_buffer(bh);
1145 		       memset(bh->b_data, 0, sb->s_blocksize);
1146 		       set_buffer_uptodate(bh);
1147 		       mark_buffer_dirty(bh);
1148 		       unlock_buffer(bh);
1149 		       sync_dirty_buffer(bh);
1150 		       brelse(bh);
1151 	       }
1152        }
1153 out_unlock:
1154        ufs_put_locked_page(lastpage);
1155 out:
1156        return err;
1157 }
1158 
1159 static void __ufs_truncate_blocks(struct inode *inode)
1160 {
1161 	struct ufs_inode_info *ufsi = UFS_I(inode);
1162 	struct super_block *sb = inode->i_sb;
1163 	struct ufs_sb_private_info *uspi = UFS_SB(sb)->s_uspi;
1164 	unsigned offsets[4];
1165 	int depth = ufs_block_to_path(inode, DIRECT_BLOCK, offsets);
1166 	int depth2;
1167 	unsigned i;
1168 	struct ufs_buffer_head *ubh[3];
1169 	void *p;
1170 	u64 block;
1171 
1172 	if (!depth)
1173 		return;
1174 
1175 	/* find the last non-zero in offsets[] */
1176 	for (depth2 = depth - 1; depth2; depth2--)
1177 		if (offsets[depth2])
1178 			break;
1179 
1180 	mutex_lock(&ufsi->truncate_mutex);
1181 	if (depth == 1) {
1182 		ufs_trunc_direct(inode);
1183 		offsets[0] = UFS_IND_BLOCK;
1184 	} else {
1185 		/* get the blocks that should be partially emptied */
1186 		p = ufs_get_direct_data_ptr(uspi, ufsi, offsets[0]);
1187 		for (i = 0; i < depth2; i++) {
1188 			offsets[i]++;	/* next branch is fully freed */
1189 			block = ufs_data_ptr_to_cpu(sb, p);
1190 			if (!block)
1191 				break;
1192 			ubh[i] = ubh_bread(sb, block, uspi->s_bsize);
1193 			if (!ubh[i]) {
1194 				write_seqlock(&ufsi->meta_lock);
1195 				ufs_data_ptr_clear(uspi, p);
1196 				write_sequnlock(&ufsi->meta_lock);
1197 				break;
1198 			}
1199 			p = ubh_get_data_ptr(uspi, ubh[i], offsets[i + 1]);
1200 		}
1201 		while (i--)
1202 			free_branch_tail(inode, offsets[i + 1], ubh[i], depth - i - 1);
1203 	}
1204 	for (i = offsets[0]; i <= UFS_TIND_BLOCK; i++) {
1205 		p = ufs_get_direct_data_ptr(uspi, ufsi, i);
1206 		block = ufs_data_ptr_to_cpu(sb, p);
1207 		if (block) {
1208 			write_seqlock(&ufsi->meta_lock);
1209 			ufs_data_ptr_clear(uspi, p);
1210 			write_sequnlock(&ufsi->meta_lock);
1211 			free_full_branch(inode, block, i - UFS_IND_BLOCK + 1);
1212 		}
1213 	}
1214 	ufsi->i_lastfrag = DIRECT_FRAGMENT;
1215 	mark_inode_dirty(inode);
1216 	mutex_unlock(&ufsi->truncate_mutex);
1217 }
1218 
1219 static int ufs_truncate(struct inode *inode, loff_t size)
1220 {
1221 	int err = 0;
1222 
1223 	UFSD("ENTER: ino %lu, i_size: %llu, old_i_size: %llu\n",
1224 	     inode->i_ino, (unsigned long long)size,
1225 	     (unsigned long long)i_size_read(inode));
1226 
1227 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1228 	      S_ISLNK(inode->i_mode)))
1229 		return -EINVAL;
1230 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1231 		return -EPERM;
1232 
1233 	err = ufs_alloc_lastblock(inode, size);
1234 
1235 	if (err)
1236 		goto out;
1237 
1238 	block_truncate_page(inode->i_mapping, size, ufs_getfrag_block);
1239 
1240 	truncate_setsize(inode, size);
1241 
1242 	__ufs_truncate_blocks(inode);
1243 	inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
1244 	mark_inode_dirty(inode);
1245 out:
1246 	UFSD("EXIT: err %d\n", err);
1247 	return err;
1248 }
1249 
1250 void ufs_truncate_blocks(struct inode *inode)
1251 {
1252 	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1253 	      S_ISLNK(inode->i_mode)))
1254 		return;
1255 	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1256 		return;
1257 	__ufs_truncate_blocks(inode);
1258 }
1259 
1260 int ufs_setattr(struct dentry *dentry, struct iattr *attr)
1261 {
1262 	struct inode *inode = d_inode(dentry);
1263 	unsigned int ia_valid = attr->ia_valid;
1264 	int error;
1265 
1266 	error = inode_change_ok(inode, attr);
1267 	if (error)
1268 		return error;
1269 
1270 	if (ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
1271 		error = ufs_truncate(inode, attr->ia_size);
1272 		if (error)
1273 			return error;
1274 	}
1275 
1276 	setattr_copy(inode, attr);
1277 	mark_inode_dirty(inode);
1278 	return 0;
1279 }
1280 
1281 const struct inode_operations ufs_file_inode_operations = {
1282 	.setattr = ufs_setattr,
1283 };
1284