xref: /openbmc/linux/fs/udf/super.c (revision fed8b7e366e7c8f81e957ef91aa8f0a38e038c66)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 
61 #include "udf_sb.h"
62 #include "udf_i.h"
63 
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66 
67 enum {
68 	VDS_POS_PRIMARY_VOL_DESC,
69 	VDS_POS_UNALLOC_SPACE_DESC,
70 	VDS_POS_LOGICAL_VOL_DESC,
71 	VDS_POS_IMP_USE_VOL_DESC,
72 	VDS_POS_LENGTH
73 };
74 
75 #define VSD_FIRST_SECTOR_OFFSET		32768
76 #define VSD_MAX_SECTOR_OFFSET		0x800000
77 
78 /*
79  * Maximum number of Terminating Descriptor / Logical Volume Integrity
80  * Descriptor redirections. The chosen numbers are arbitrary - just that we
81  * hopefully don't limit any real use of rewritten inode on write-once media
82  * but avoid looping for too long on corrupted media.
83  */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86 
87 enum { UDF_MAX_LINKS = 0xffff };
88 
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
96 			    struct kernel_lb_addr *);
97 static void udf_load_fileset(struct super_block *, struct buffer_head *,
98 			     struct kernel_lb_addr *);
99 static void udf_open_lvid(struct super_block *);
100 static void udf_close_lvid(struct super_block *);
101 static unsigned int udf_count_free(struct super_block *);
102 static int udf_statfs(struct dentry *, struct kstatfs *);
103 static int udf_show_options(struct seq_file *, struct dentry *);
104 
105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
106 {
107 	struct logicalVolIntegrityDesc *lvid;
108 	unsigned int partnum;
109 	unsigned int offset;
110 
111 	if (!UDF_SB(sb)->s_lvid_bh)
112 		return NULL;
113 	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
114 	partnum = le32_to_cpu(lvid->numOfPartitions);
115 	if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
116 	     offsetof(struct logicalVolIntegrityDesc, impUse)) /
117 	     (2 * sizeof(uint32_t)) < partnum) {
118 		udf_err(sb, "Logical volume integrity descriptor corrupted "
119 			"(numOfPartitions = %u)!\n", partnum);
120 		return NULL;
121 	}
122 	/* The offset is to skip freeSpaceTable and sizeTable arrays */
123 	offset = partnum * 2 * sizeof(uint32_t);
124 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
125 }
126 
127 /* UDF filesystem type */
128 static struct dentry *udf_mount(struct file_system_type *fs_type,
129 		      int flags, const char *dev_name, void *data)
130 {
131 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
132 }
133 
134 static struct file_system_type udf_fstype = {
135 	.owner		= THIS_MODULE,
136 	.name		= "udf",
137 	.mount		= udf_mount,
138 	.kill_sb	= kill_block_super,
139 	.fs_flags	= FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("udf");
142 
143 static struct kmem_cache *udf_inode_cachep;
144 
145 static struct inode *udf_alloc_inode(struct super_block *sb)
146 {
147 	struct udf_inode_info *ei;
148 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
149 	if (!ei)
150 		return NULL;
151 
152 	ei->i_unique = 0;
153 	ei->i_lenExtents = 0;
154 	ei->i_next_alloc_block = 0;
155 	ei->i_next_alloc_goal = 0;
156 	ei->i_strat4096 = 0;
157 	init_rwsem(&ei->i_data_sem);
158 	ei->cached_extent.lstart = -1;
159 	spin_lock_init(&ei->i_extent_cache_lock);
160 
161 	return &ei->vfs_inode;
162 }
163 
164 static void udf_i_callback(struct rcu_head *head)
165 {
166 	struct inode *inode = container_of(head, struct inode, i_rcu);
167 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
168 }
169 
170 static void udf_destroy_inode(struct inode *inode)
171 {
172 	call_rcu(&inode->i_rcu, udf_i_callback);
173 }
174 
175 static void init_once(void *foo)
176 {
177 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
178 
179 	ei->i_ext.i_data = NULL;
180 	inode_init_once(&ei->vfs_inode);
181 }
182 
183 static int __init init_inodecache(void)
184 {
185 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
186 					     sizeof(struct udf_inode_info),
187 					     0, (SLAB_RECLAIM_ACCOUNT |
188 						 SLAB_MEM_SPREAD |
189 						 SLAB_ACCOUNT),
190 					     init_once);
191 	if (!udf_inode_cachep)
192 		return -ENOMEM;
193 	return 0;
194 }
195 
196 static void destroy_inodecache(void)
197 {
198 	/*
199 	 * Make sure all delayed rcu free inodes are flushed before we
200 	 * destroy cache.
201 	 */
202 	rcu_barrier();
203 	kmem_cache_destroy(udf_inode_cachep);
204 }
205 
206 /* Superblock operations */
207 static const struct super_operations udf_sb_ops = {
208 	.alloc_inode	= udf_alloc_inode,
209 	.destroy_inode	= udf_destroy_inode,
210 	.write_inode	= udf_write_inode,
211 	.evict_inode	= udf_evict_inode,
212 	.put_super	= udf_put_super,
213 	.sync_fs	= udf_sync_fs,
214 	.statfs		= udf_statfs,
215 	.remount_fs	= udf_remount_fs,
216 	.show_options	= udf_show_options,
217 };
218 
219 struct udf_options {
220 	unsigned char novrs;
221 	unsigned int blocksize;
222 	unsigned int session;
223 	unsigned int lastblock;
224 	unsigned int anchor;
225 	unsigned int flags;
226 	umode_t umask;
227 	kgid_t gid;
228 	kuid_t uid;
229 	umode_t fmode;
230 	umode_t dmode;
231 	struct nls_table *nls_map;
232 };
233 
234 static int __init init_udf_fs(void)
235 {
236 	int err;
237 
238 	err = init_inodecache();
239 	if (err)
240 		goto out1;
241 	err = register_filesystem(&udf_fstype);
242 	if (err)
243 		goto out;
244 
245 	return 0;
246 
247 out:
248 	destroy_inodecache();
249 
250 out1:
251 	return err;
252 }
253 
254 static void __exit exit_udf_fs(void)
255 {
256 	unregister_filesystem(&udf_fstype);
257 	destroy_inodecache();
258 }
259 
260 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
261 {
262 	struct udf_sb_info *sbi = UDF_SB(sb);
263 
264 	sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
265 	if (!sbi->s_partmaps) {
266 		sbi->s_partitions = 0;
267 		return -ENOMEM;
268 	}
269 
270 	sbi->s_partitions = count;
271 	return 0;
272 }
273 
274 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
275 {
276 	int i;
277 	int nr_groups = bitmap->s_nr_groups;
278 
279 	for (i = 0; i < nr_groups; i++)
280 		if (bitmap->s_block_bitmap[i])
281 			brelse(bitmap->s_block_bitmap[i]);
282 
283 	kvfree(bitmap);
284 }
285 
286 static void udf_free_partition(struct udf_part_map *map)
287 {
288 	int i;
289 	struct udf_meta_data *mdata;
290 
291 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
292 		iput(map->s_uspace.s_table);
293 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
294 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
295 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
296 		for (i = 0; i < 4; i++)
297 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
298 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
299 		mdata = &map->s_type_specific.s_metadata;
300 		iput(mdata->s_metadata_fe);
301 		mdata->s_metadata_fe = NULL;
302 
303 		iput(mdata->s_mirror_fe);
304 		mdata->s_mirror_fe = NULL;
305 
306 		iput(mdata->s_bitmap_fe);
307 		mdata->s_bitmap_fe = NULL;
308 	}
309 }
310 
311 static void udf_sb_free_partitions(struct super_block *sb)
312 {
313 	struct udf_sb_info *sbi = UDF_SB(sb);
314 	int i;
315 
316 	if (!sbi->s_partmaps)
317 		return;
318 	for (i = 0; i < sbi->s_partitions; i++)
319 		udf_free_partition(&sbi->s_partmaps[i]);
320 	kfree(sbi->s_partmaps);
321 	sbi->s_partmaps = NULL;
322 }
323 
324 static int udf_show_options(struct seq_file *seq, struct dentry *root)
325 {
326 	struct super_block *sb = root->d_sb;
327 	struct udf_sb_info *sbi = UDF_SB(sb);
328 
329 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
330 		seq_puts(seq, ",nostrict");
331 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
332 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
333 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
334 		seq_puts(seq, ",unhide");
335 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
336 		seq_puts(seq, ",undelete");
337 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
338 		seq_puts(seq, ",noadinicb");
339 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
340 		seq_puts(seq, ",shortad");
341 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
342 		seq_puts(seq, ",uid=forget");
343 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
344 		seq_puts(seq, ",gid=forget");
345 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
346 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
347 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
348 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
349 	if (sbi->s_umask != 0)
350 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
351 	if (sbi->s_fmode != UDF_INVALID_MODE)
352 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
353 	if (sbi->s_dmode != UDF_INVALID_MODE)
354 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
355 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
356 		seq_printf(seq, ",session=%d", sbi->s_session);
357 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
358 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
359 	if (sbi->s_anchor != 0)
360 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
361 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
362 		seq_puts(seq, ",utf8");
363 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
364 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
365 
366 	return 0;
367 }
368 
369 /*
370  * udf_parse_options
371  *
372  * PURPOSE
373  *	Parse mount options.
374  *
375  * DESCRIPTION
376  *	The following mount options are supported:
377  *
378  *	gid=		Set the default group.
379  *	umask=		Set the default umask.
380  *	mode=		Set the default file permissions.
381  *	dmode=		Set the default directory permissions.
382  *	uid=		Set the default user.
383  *	bs=		Set the block size.
384  *	unhide		Show otherwise hidden files.
385  *	undelete	Show deleted files in lists.
386  *	adinicb		Embed data in the inode (default)
387  *	noadinicb	Don't embed data in the inode
388  *	shortad		Use short ad's
389  *	longad		Use long ad's (default)
390  *	nostrict	Unset strict conformance
391  *	iocharset=	Set the NLS character set
392  *
393  *	The remaining are for debugging and disaster recovery:
394  *
395  *	novrs		Skip volume sequence recognition
396  *
397  *	The following expect a offset from 0.
398  *
399  *	session=	Set the CDROM session (default= last session)
400  *	anchor=		Override standard anchor location. (default= 256)
401  *	volume=		Override the VolumeDesc location. (unused)
402  *	partition=	Override the PartitionDesc location. (unused)
403  *	lastblock=	Set the last block of the filesystem/
404  *
405  *	The following expect a offset from the partition root.
406  *
407  *	fileset=	Override the fileset block location. (unused)
408  *	rootdir=	Override the root directory location. (unused)
409  *		WARNING: overriding the rootdir to a non-directory may
410  *		yield highly unpredictable results.
411  *
412  * PRE-CONDITIONS
413  *	options		Pointer to mount options string.
414  *	uopts		Pointer to mount options variable.
415  *
416  * POST-CONDITIONS
417  *	<return>	1	Mount options parsed okay.
418  *	<return>	0	Error parsing mount options.
419  *
420  * HISTORY
421  *	July 1, 1997 - Andrew E. Mileski
422  *	Written, tested, and released.
423  */
424 
425 enum {
426 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
427 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
428 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
429 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
430 	Opt_rootdir, Opt_utf8, Opt_iocharset,
431 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
432 	Opt_fmode, Opt_dmode
433 };
434 
435 static const match_table_t tokens = {
436 	{Opt_novrs,	"novrs"},
437 	{Opt_nostrict,	"nostrict"},
438 	{Opt_bs,	"bs=%u"},
439 	{Opt_unhide,	"unhide"},
440 	{Opt_undelete,	"undelete"},
441 	{Opt_noadinicb,	"noadinicb"},
442 	{Opt_adinicb,	"adinicb"},
443 	{Opt_shortad,	"shortad"},
444 	{Opt_longad,	"longad"},
445 	{Opt_uforget,	"uid=forget"},
446 	{Opt_uignore,	"uid=ignore"},
447 	{Opt_gforget,	"gid=forget"},
448 	{Opt_gignore,	"gid=ignore"},
449 	{Opt_gid,	"gid=%u"},
450 	{Opt_uid,	"uid=%u"},
451 	{Opt_umask,	"umask=%o"},
452 	{Opt_session,	"session=%u"},
453 	{Opt_lastblock,	"lastblock=%u"},
454 	{Opt_anchor,	"anchor=%u"},
455 	{Opt_volume,	"volume=%u"},
456 	{Opt_partition,	"partition=%u"},
457 	{Opt_fileset,	"fileset=%u"},
458 	{Opt_rootdir,	"rootdir=%u"},
459 	{Opt_utf8,	"utf8"},
460 	{Opt_iocharset,	"iocharset=%s"},
461 	{Opt_fmode,     "mode=%o"},
462 	{Opt_dmode,     "dmode=%o"},
463 	{Opt_err,	NULL}
464 };
465 
466 static int udf_parse_options(char *options, struct udf_options *uopt,
467 			     bool remount)
468 {
469 	char *p;
470 	int option;
471 
472 	uopt->novrs = 0;
473 	uopt->session = 0xFFFFFFFF;
474 	uopt->lastblock = 0;
475 	uopt->anchor = 0;
476 
477 	if (!options)
478 		return 1;
479 
480 	while ((p = strsep(&options, ",")) != NULL) {
481 		substring_t args[MAX_OPT_ARGS];
482 		int token;
483 		unsigned n;
484 		if (!*p)
485 			continue;
486 
487 		token = match_token(p, tokens, args);
488 		switch (token) {
489 		case Opt_novrs:
490 			uopt->novrs = 1;
491 			break;
492 		case Opt_bs:
493 			if (match_int(&args[0], &option))
494 				return 0;
495 			n = option;
496 			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
497 				return 0;
498 			uopt->blocksize = n;
499 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
500 			break;
501 		case Opt_unhide:
502 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
503 			break;
504 		case Opt_undelete:
505 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
506 			break;
507 		case Opt_noadinicb:
508 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
509 			break;
510 		case Opt_adinicb:
511 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
512 			break;
513 		case Opt_shortad:
514 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
515 			break;
516 		case Opt_longad:
517 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
518 			break;
519 		case Opt_gid:
520 			if (match_int(args, &option))
521 				return 0;
522 			uopt->gid = make_kgid(current_user_ns(), option);
523 			if (!gid_valid(uopt->gid))
524 				return 0;
525 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
526 			break;
527 		case Opt_uid:
528 			if (match_int(args, &option))
529 				return 0;
530 			uopt->uid = make_kuid(current_user_ns(), option);
531 			if (!uid_valid(uopt->uid))
532 				return 0;
533 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
534 			break;
535 		case Opt_umask:
536 			if (match_octal(args, &option))
537 				return 0;
538 			uopt->umask = option;
539 			break;
540 		case Opt_nostrict:
541 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
542 			break;
543 		case Opt_session:
544 			if (match_int(args, &option))
545 				return 0;
546 			uopt->session = option;
547 			if (!remount)
548 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
549 			break;
550 		case Opt_lastblock:
551 			if (match_int(args, &option))
552 				return 0;
553 			uopt->lastblock = option;
554 			if (!remount)
555 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
556 			break;
557 		case Opt_anchor:
558 			if (match_int(args, &option))
559 				return 0;
560 			uopt->anchor = option;
561 			break;
562 		case Opt_volume:
563 		case Opt_partition:
564 		case Opt_fileset:
565 		case Opt_rootdir:
566 			/* Ignored (never implemented properly) */
567 			break;
568 		case Opt_utf8:
569 			uopt->flags |= (1 << UDF_FLAG_UTF8);
570 			break;
571 		case Opt_iocharset:
572 			if (!remount) {
573 				if (uopt->nls_map)
574 					unload_nls(uopt->nls_map);
575 				uopt->nls_map = load_nls(args[0].from);
576 				uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
577 			}
578 			break;
579 		case Opt_uforget:
580 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
581 			break;
582 		case Opt_uignore:
583 		case Opt_gignore:
584 			/* These options are superseeded by uid=<number> */
585 			break;
586 		case Opt_gforget:
587 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
588 			break;
589 		case Opt_fmode:
590 			if (match_octal(args, &option))
591 				return 0;
592 			uopt->fmode = option & 0777;
593 			break;
594 		case Opt_dmode:
595 			if (match_octal(args, &option))
596 				return 0;
597 			uopt->dmode = option & 0777;
598 			break;
599 		default:
600 			pr_err("bad mount option \"%s\" or missing value\n", p);
601 			return 0;
602 		}
603 	}
604 	return 1;
605 }
606 
607 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
608 {
609 	struct udf_options uopt;
610 	struct udf_sb_info *sbi = UDF_SB(sb);
611 	int error = 0;
612 
613 	if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
614 		return -EACCES;
615 
616 	sync_filesystem(sb);
617 
618 	uopt.flags = sbi->s_flags;
619 	uopt.uid   = sbi->s_uid;
620 	uopt.gid   = sbi->s_gid;
621 	uopt.umask = sbi->s_umask;
622 	uopt.fmode = sbi->s_fmode;
623 	uopt.dmode = sbi->s_dmode;
624 	uopt.nls_map = NULL;
625 
626 	if (!udf_parse_options(options, &uopt, true))
627 		return -EINVAL;
628 
629 	write_lock(&sbi->s_cred_lock);
630 	sbi->s_flags = uopt.flags;
631 	sbi->s_uid   = uopt.uid;
632 	sbi->s_gid   = uopt.gid;
633 	sbi->s_umask = uopt.umask;
634 	sbi->s_fmode = uopt.fmode;
635 	sbi->s_dmode = uopt.dmode;
636 	write_unlock(&sbi->s_cred_lock);
637 
638 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
639 		goto out_unlock;
640 
641 	if (*flags & SB_RDONLY)
642 		udf_close_lvid(sb);
643 	else
644 		udf_open_lvid(sb);
645 
646 out_unlock:
647 	return error;
648 }
649 
650 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
651 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
652 static loff_t udf_check_vsd(struct super_block *sb)
653 {
654 	struct volStructDesc *vsd = NULL;
655 	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
656 	int sectorsize;
657 	struct buffer_head *bh = NULL;
658 	int nsr02 = 0;
659 	int nsr03 = 0;
660 	struct udf_sb_info *sbi;
661 
662 	sbi = UDF_SB(sb);
663 	if (sb->s_blocksize < sizeof(struct volStructDesc))
664 		sectorsize = sizeof(struct volStructDesc);
665 	else
666 		sectorsize = sb->s_blocksize;
667 
668 	sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
669 
670 	udf_debug("Starting at sector %u (%lu byte sectors)\n",
671 		  (unsigned int)(sector >> sb->s_blocksize_bits),
672 		  sb->s_blocksize);
673 	/* Process the sequence (if applicable). The hard limit on the sector
674 	 * offset is arbitrary, hopefully large enough so that all valid UDF
675 	 * filesystems will be recognised. There is no mention of an upper
676 	 * bound to the size of the volume recognition area in the standard.
677 	 *  The limit will prevent the code to read all the sectors of a
678 	 * specially crafted image (like a bluray disc full of CD001 sectors),
679 	 * potentially causing minutes or even hours of uninterruptible I/O
680 	 * activity. This actually happened with uninitialised SSD partitions
681 	 * (all 0xFF) before the check for the limit and all valid IDs were
682 	 * added */
683 	for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
684 	     sector += sectorsize) {
685 		/* Read a block */
686 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
687 		if (!bh)
688 			break;
689 
690 		/* Look for ISO  descriptors */
691 		vsd = (struct volStructDesc *)(bh->b_data +
692 					      (sector & (sb->s_blocksize - 1)));
693 
694 		if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
695 				    VSD_STD_ID_LEN)) {
696 			switch (vsd->structType) {
697 			case 0:
698 				udf_debug("ISO9660 Boot Record found\n");
699 				break;
700 			case 1:
701 				udf_debug("ISO9660 Primary Volume Descriptor found\n");
702 				break;
703 			case 2:
704 				udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
705 				break;
706 			case 3:
707 				udf_debug("ISO9660 Volume Partition Descriptor found\n");
708 				break;
709 			case 255:
710 				udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
711 				break;
712 			default:
713 				udf_debug("ISO9660 VRS (%u) found\n",
714 					  vsd->structType);
715 				break;
716 			}
717 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
718 				    VSD_STD_ID_LEN))
719 			; /* nothing */
720 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
721 				    VSD_STD_ID_LEN)) {
722 			brelse(bh);
723 			break;
724 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
725 				    VSD_STD_ID_LEN))
726 			nsr02 = sector;
727 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
728 				    VSD_STD_ID_LEN))
729 			nsr03 = sector;
730 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
731 				    VSD_STD_ID_LEN))
732 			; /* nothing */
733 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
734 				    VSD_STD_ID_LEN))
735 			; /* nothing */
736 		else {
737 			/* invalid id : end of volume recognition area */
738 			brelse(bh);
739 			break;
740 		}
741 		brelse(bh);
742 	}
743 
744 	if (nsr03)
745 		return nsr03;
746 	else if (nsr02)
747 		return nsr02;
748 	else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
749 			VSD_FIRST_SECTOR_OFFSET)
750 		return -1;
751 	else
752 		return 0;
753 }
754 
755 static int udf_find_fileset(struct super_block *sb,
756 			    struct kernel_lb_addr *fileset,
757 			    struct kernel_lb_addr *root)
758 {
759 	struct buffer_head *bh = NULL;
760 	uint16_t ident;
761 
762 	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
763 	    fileset->partitionReferenceNum != 0xFFFF) {
764 		bh = udf_read_ptagged(sb, fileset, 0, &ident);
765 
766 		if (!bh) {
767 			return 1;
768 		} else if (ident != TAG_IDENT_FSD) {
769 			brelse(bh);
770 			return 1;
771 		}
772 
773 		udf_debug("Fileset at block=%u, partition=%u\n",
774 			  fileset->logicalBlockNum,
775 			  fileset->partitionReferenceNum);
776 
777 		UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
778 		udf_load_fileset(sb, bh, root);
779 		brelse(bh);
780 		return 0;
781 	}
782 	return 1;
783 }
784 
785 /*
786  * Load primary Volume Descriptor Sequence
787  *
788  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
789  * should be tried.
790  */
791 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
792 {
793 	struct primaryVolDesc *pvoldesc;
794 	uint8_t *outstr;
795 	struct buffer_head *bh;
796 	uint16_t ident;
797 	int ret = -ENOMEM;
798 #ifdef UDFFS_DEBUG
799 	struct timestamp *ts;
800 #endif
801 
802 	outstr = kmalloc(128, GFP_NOFS);
803 	if (!outstr)
804 		return -ENOMEM;
805 
806 	bh = udf_read_tagged(sb, block, block, &ident);
807 	if (!bh) {
808 		ret = -EAGAIN;
809 		goto out2;
810 	}
811 
812 	if (ident != TAG_IDENT_PVD) {
813 		ret = -EIO;
814 		goto out_bh;
815 	}
816 
817 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
818 
819 	udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
820 			      pvoldesc->recordingDateAndTime);
821 #ifdef UDFFS_DEBUG
822 	ts = &pvoldesc->recordingDateAndTime;
823 	udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
824 		  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
825 		  ts->minute, le16_to_cpu(ts->typeAndTimezone));
826 #endif
827 
828 
829 	ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
830 	if (ret < 0) {
831 		strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
832 		pr_warn("incorrect volume identification, setting to "
833 			"'InvalidName'\n");
834 	} else {
835 		strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
836 	}
837 	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
838 
839 	ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
840 	if (ret < 0) {
841 		ret = 0;
842 		goto out_bh;
843 	}
844 	outstr[ret] = 0;
845 	udf_debug("volSetIdent[] = '%s'\n", outstr);
846 
847 	ret = 0;
848 out_bh:
849 	brelse(bh);
850 out2:
851 	kfree(outstr);
852 	return ret;
853 }
854 
855 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
856 					u32 meta_file_loc, u32 partition_ref)
857 {
858 	struct kernel_lb_addr addr;
859 	struct inode *metadata_fe;
860 
861 	addr.logicalBlockNum = meta_file_loc;
862 	addr.partitionReferenceNum = partition_ref;
863 
864 	metadata_fe = udf_iget_special(sb, &addr);
865 
866 	if (IS_ERR(metadata_fe)) {
867 		udf_warn(sb, "metadata inode efe not found\n");
868 		return metadata_fe;
869 	}
870 	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
871 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
872 		iput(metadata_fe);
873 		return ERR_PTR(-EIO);
874 	}
875 
876 	return metadata_fe;
877 }
878 
879 static int udf_load_metadata_files(struct super_block *sb, int partition,
880 				   int type1_index)
881 {
882 	struct udf_sb_info *sbi = UDF_SB(sb);
883 	struct udf_part_map *map;
884 	struct udf_meta_data *mdata;
885 	struct kernel_lb_addr addr;
886 	struct inode *fe;
887 
888 	map = &sbi->s_partmaps[partition];
889 	mdata = &map->s_type_specific.s_metadata;
890 	mdata->s_phys_partition_ref = type1_index;
891 
892 	/* metadata address */
893 	udf_debug("Metadata file location: block = %u part = %u\n",
894 		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
895 
896 	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
897 					 mdata->s_phys_partition_ref);
898 	if (IS_ERR(fe)) {
899 		/* mirror file entry */
900 		udf_debug("Mirror metadata file location: block = %u part = %u\n",
901 			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
902 
903 		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
904 						 mdata->s_phys_partition_ref);
905 
906 		if (IS_ERR(fe)) {
907 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
908 			return PTR_ERR(fe);
909 		}
910 		mdata->s_mirror_fe = fe;
911 	} else
912 		mdata->s_metadata_fe = fe;
913 
914 
915 	/*
916 	 * bitmap file entry
917 	 * Note:
918 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
919 	*/
920 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
921 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
922 		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
923 
924 		udf_debug("Bitmap file location: block = %u part = %u\n",
925 			  addr.logicalBlockNum, addr.partitionReferenceNum);
926 
927 		fe = udf_iget_special(sb, &addr);
928 		if (IS_ERR(fe)) {
929 			if (sb_rdonly(sb))
930 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
931 			else {
932 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
933 				return PTR_ERR(fe);
934 			}
935 		} else
936 			mdata->s_bitmap_fe = fe;
937 	}
938 
939 	udf_debug("udf_load_metadata_files Ok\n");
940 	return 0;
941 }
942 
943 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
944 			     struct kernel_lb_addr *root)
945 {
946 	struct fileSetDesc *fset;
947 
948 	fset = (struct fileSetDesc *)bh->b_data;
949 
950 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
951 
952 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
953 
954 	udf_debug("Rootdir at block=%u, partition=%u\n",
955 		  root->logicalBlockNum, root->partitionReferenceNum);
956 }
957 
958 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
959 {
960 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
961 	return DIV_ROUND_UP(map->s_partition_len +
962 			    (sizeof(struct spaceBitmapDesc) << 3),
963 			    sb->s_blocksize * 8);
964 }
965 
966 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
967 {
968 	struct udf_bitmap *bitmap;
969 	int nr_groups;
970 	int size;
971 
972 	nr_groups = udf_compute_nr_groups(sb, index);
973 	size = sizeof(struct udf_bitmap) +
974 		(sizeof(struct buffer_head *) * nr_groups);
975 
976 	if (size <= PAGE_SIZE)
977 		bitmap = kzalloc(size, GFP_KERNEL);
978 	else
979 		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
980 
981 	if (!bitmap)
982 		return NULL;
983 
984 	bitmap->s_nr_groups = nr_groups;
985 	return bitmap;
986 }
987 
988 static int check_partition_desc(struct super_block *sb,
989 				struct partitionDesc *p,
990 				struct udf_part_map *map)
991 {
992 	bool umap, utable, fmap, ftable;
993 	struct partitionHeaderDesc *phd;
994 
995 	switch (le32_to_cpu(p->accessType)) {
996 	case PD_ACCESS_TYPE_READ_ONLY:
997 	case PD_ACCESS_TYPE_WRITE_ONCE:
998 	case PD_ACCESS_TYPE_REWRITABLE:
999 	case PD_ACCESS_TYPE_NONE:
1000 		goto force_ro;
1001 	}
1002 
1003 	/* No Partition Header Descriptor? */
1004 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1005 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1006 		goto force_ro;
1007 
1008 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1009 	utable = phd->unallocSpaceTable.extLength;
1010 	umap = phd->unallocSpaceBitmap.extLength;
1011 	ftable = phd->freedSpaceTable.extLength;
1012 	fmap = phd->freedSpaceBitmap.extLength;
1013 
1014 	/* No allocation info? */
1015 	if (!utable && !umap && !ftable && !fmap)
1016 		goto force_ro;
1017 
1018 	/* We don't support blocks that require erasing before overwrite */
1019 	if (ftable || fmap)
1020 		goto force_ro;
1021 	/* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1022 	if (utable && umap)
1023 		goto force_ro;
1024 
1025 	if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1026 	    map->s_partition_type == UDF_VIRTUAL_MAP20)
1027 		goto force_ro;
1028 
1029 	return 0;
1030 force_ro:
1031 	if (!sb_rdonly(sb))
1032 		return -EACCES;
1033 	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1034 	return 0;
1035 }
1036 
1037 static int udf_fill_partdesc_info(struct super_block *sb,
1038 		struct partitionDesc *p, int p_index)
1039 {
1040 	struct udf_part_map *map;
1041 	struct udf_sb_info *sbi = UDF_SB(sb);
1042 	struct partitionHeaderDesc *phd;
1043 	int err;
1044 
1045 	map = &sbi->s_partmaps[p_index];
1046 
1047 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1048 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1049 
1050 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1051 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1052 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1053 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1054 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1055 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1056 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1057 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1058 
1059 	udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1060 		  p_index, map->s_partition_type,
1061 		  map->s_partition_root, map->s_partition_len);
1062 
1063 	err = check_partition_desc(sb, p, map);
1064 	if (err)
1065 		return err;
1066 
1067 	/*
1068 	 * Skip loading allocation info it we cannot ever write to the fs.
1069 	 * This is a correctness thing as we may have decided to force ro mount
1070 	 * to avoid allocation info we don't support.
1071 	 */
1072 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1073 		return 0;
1074 
1075 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1076 	if (phd->unallocSpaceTable.extLength) {
1077 		struct kernel_lb_addr loc = {
1078 			.logicalBlockNum = le32_to_cpu(
1079 				phd->unallocSpaceTable.extPosition),
1080 			.partitionReferenceNum = p_index,
1081 		};
1082 		struct inode *inode;
1083 
1084 		inode = udf_iget_special(sb, &loc);
1085 		if (IS_ERR(inode)) {
1086 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1087 				  p_index);
1088 			return PTR_ERR(inode);
1089 		}
1090 		map->s_uspace.s_table = inode;
1091 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1092 		udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1093 			  p_index, map->s_uspace.s_table->i_ino);
1094 	}
1095 
1096 	if (phd->unallocSpaceBitmap.extLength) {
1097 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1098 		if (!bitmap)
1099 			return -ENOMEM;
1100 		map->s_uspace.s_bitmap = bitmap;
1101 		bitmap->s_extPosition = le32_to_cpu(
1102 				phd->unallocSpaceBitmap.extPosition);
1103 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1104 		udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1105 			  p_index, bitmap->s_extPosition);
1106 	}
1107 
1108 	return 0;
1109 }
1110 
1111 static void udf_find_vat_block(struct super_block *sb, int p_index,
1112 			       int type1_index, sector_t start_block)
1113 {
1114 	struct udf_sb_info *sbi = UDF_SB(sb);
1115 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1116 	sector_t vat_block;
1117 	struct kernel_lb_addr ino;
1118 	struct inode *inode;
1119 
1120 	/*
1121 	 * VAT file entry is in the last recorded block. Some broken disks have
1122 	 * it a few blocks before so try a bit harder...
1123 	 */
1124 	ino.partitionReferenceNum = type1_index;
1125 	for (vat_block = start_block;
1126 	     vat_block >= map->s_partition_root &&
1127 	     vat_block >= start_block - 3; vat_block--) {
1128 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1129 		inode = udf_iget_special(sb, &ino);
1130 		if (!IS_ERR(inode)) {
1131 			sbi->s_vat_inode = inode;
1132 			break;
1133 		}
1134 	}
1135 }
1136 
1137 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1138 {
1139 	struct udf_sb_info *sbi = UDF_SB(sb);
1140 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1141 	struct buffer_head *bh = NULL;
1142 	struct udf_inode_info *vati;
1143 	uint32_t pos;
1144 	struct virtualAllocationTable20 *vat20;
1145 	sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1146 			  sb->s_blocksize_bits;
1147 
1148 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1149 	if (!sbi->s_vat_inode &&
1150 	    sbi->s_last_block != blocks - 1) {
1151 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1152 			  (unsigned long)sbi->s_last_block,
1153 			  (unsigned long)blocks - 1);
1154 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1155 	}
1156 	if (!sbi->s_vat_inode)
1157 		return -EIO;
1158 
1159 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1160 		map->s_type_specific.s_virtual.s_start_offset = 0;
1161 		map->s_type_specific.s_virtual.s_num_entries =
1162 			(sbi->s_vat_inode->i_size - 36) >> 2;
1163 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1164 		vati = UDF_I(sbi->s_vat_inode);
1165 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1166 			pos = udf_block_map(sbi->s_vat_inode, 0);
1167 			bh = sb_bread(sb, pos);
1168 			if (!bh)
1169 				return -EIO;
1170 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1171 		} else {
1172 			vat20 = (struct virtualAllocationTable20 *)
1173 							vati->i_ext.i_data;
1174 		}
1175 
1176 		map->s_type_specific.s_virtual.s_start_offset =
1177 			le16_to_cpu(vat20->lengthHeader);
1178 		map->s_type_specific.s_virtual.s_num_entries =
1179 			(sbi->s_vat_inode->i_size -
1180 				map->s_type_specific.s_virtual.
1181 					s_start_offset) >> 2;
1182 		brelse(bh);
1183 	}
1184 	return 0;
1185 }
1186 
1187 /*
1188  * Load partition descriptor block
1189  *
1190  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1191  * sequence.
1192  */
1193 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1194 {
1195 	struct buffer_head *bh;
1196 	struct partitionDesc *p;
1197 	struct udf_part_map *map;
1198 	struct udf_sb_info *sbi = UDF_SB(sb);
1199 	int i, type1_idx;
1200 	uint16_t partitionNumber;
1201 	uint16_t ident;
1202 	int ret;
1203 
1204 	bh = udf_read_tagged(sb, block, block, &ident);
1205 	if (!bh)
1206 		return -EAGAIN;
1207 	if (ident != TAG_IDENT_PD) {
1208 		ret = 0;
1209 		goto out_bh;
1210 	}
1211 
1212 	p = (struct partitionDesc *)bh->b_data;
1213 	partitionNumber = le16_to_cpu(p->partitionNumber);
1214 
1215 	/* First scan for TYPE1 and SPARABLE partitions */
1216 	for (i = 0; i < sbi->s_partitions; i++) {
1217 		map = &sbi->s_partmaps[i];
1218 		udf_debug("Searching map: (%u == %u)\n",
1219 			  map->s_partition_num, partitionNumber);
1220 		if (map->s_partition_num == partitionNumber &&
1221 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1222 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1223 			break;
1224 	}
1225 
1226 	if (i >= sbi->s_partitions) {
1227 		udf_debug("Partition (%u) not found in partition map\n",
1228 			  partitionNumber);
1229 		ret = 0;
1230 		goto out_bh;
1231 	}
1232 
1233 	ret = udf_fill_partdesc_info(sb, p, i);
1234 	if (ret < 0)
1235 		goto out_bh;
1236 
1237 	/*
1238 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1239 	 * PHYSICAL partitions are already set up
1240 	 */
1241 	type1_idx = i;
1242 #ifdef UDFFS_DEBUG
1243 	map = NULL; /* supress 'maybe used uninitialized' warning */
1244 #endif
1245 	for (i = 0; i < sbi->s_partitions; i++) {
1246 		map = &sbi->s_partmaps[i];
1247 
1248 		if (map->s_partition_num == partitionNumber &&
1249 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1250 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1251 		     map->s_partition_type == UDF_METADATA_MAP25))
1252 			break;
1253 	}
1254 
1255 	if (i >= sbi->s_partitions) {
1256 		ret = 0;
1257 		goto out_bh;
1258 	}
1259 
1260 	ret = udf_fill_partdesc_info(sb, p, i);
1261 	if (ret < 0)
1262 		goto out_bh;
1263 
1264 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1265 		ret = udf_load_metadata_files(sb, i, type1_idx);
1266 		if (ret < 0) {
1267 			udf_err(sb, "error loading MetaData partition map %d\n",
1268 				i);
1269 			goto out_bh;
1270 		}
1271 	} else {
1272 		/*
1273 		 * If we have a partition with virtual map, we don't handle
1274 		 * writing to it (we overwrite blocks instead of relocating
1275 		 * them).
1276 		 */
1277 		if (!sb_rdonly(sb)) {
1278 			ret = -EACCES;
1279 			goto out_bh;
1280 		}
1281 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1282 		ret = udf_load_vat(sb, i, type1_idx);
1283 		if (ret < 0)
1284 			goto out_bh;
1285 	}
1286 	ret = 0;
1287 out_bh:
1288 	/* In case loading failed, we handle cleanup in udf_fill_super */
1289 	brelse(bh);
1290 	return ret;
1291 }
1292 
1293 static int udf_load_sparable_map(struct super_block *sb,
1294 				 struct udf_part_map *map,
1295 				 struct sparablePartitionMap *spm)
1296 {
1297 	uint32_t loc;
1298 	uint16_t ident;
1299 	struct sparingTable *st;
1300 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1301 	int i;
1302 	struct buffer_head *bh;
1303 
1304 	map->s_partition_type = UDF_SPARABLE_MAP15;
1305 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1306 	if (!is_power_of_2(sdata->s_packet_len)) {
1307 		udf_err(sb, "error loading logical volume descriptor: "
1308 			"Invalid packet length %u\n",
1309 			(unsigned)sdata->s_packet_len);
1310 		return -EIO;
1311 	}
1312 	if (spm->numSparingTables > 4) {
1313 		udf_err(sb, "error loading logical volume descriptor: "
1314 			"Too many sparing tables (%d)\n",
1315 			(int)spm->numSparingTables);
1316 		return -EIO;
1317 	}
1318 
1319 	for (i = 0; i < spm->numSparingTables; i++) {
1320 		loc = le32_to_cpu(spm->locSparingTable[i]);
1321 		bh = udf_read_tagged(sb, loc, loc, &ident);
1322 		if (!bh)
1323 			continue;
1324 
1325 		st = (struct sparingTable *)bh->b_data;
1326 		if (ident != 0 ||
1327 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1328 			    strlen(UDF_ID_SPARING)) ||
1329 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1330 							sb->s_blocksize) {
1331 			brelse(bh);
1332 			continue;
1333 		}
1334 
1335 		sdata->s_spar_map[i] = bh;
1336 	}
1337 	map->s_partition_func = udf_get_pblock_spar15;
1338 	return 0;
1339 }
1340 
1341 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1342 			       struct kernel_lb_addr *fileset)
1343 {
1344 	struct logicalVolDesc *lvd;
1345 	int i, offset;
1346 	uint8_t type;
1347 	struct udf_sb_info *sbi = UDF_SB(sb);
1348 	struct genericPartitionMap *gpm;
1349 	uint16_t ident;
1350 	struct buffer_head *bh;
1351 	unsigned int table_len;
1352 	int ret;
1353 
1354 	bh = udf_read_tagged(sb, block, block, &ident);
1355 	if (!bh)
1356 		return -EAGAIN;
1357 	BUG_ON(ident != TAG_IDENT_LVD);
1358 	lvd = (struct logicalVolDesc *)bh->b_data;
1359 	table_len = le32_to_cpu(lvd->mapTableLength);
1360 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1361 		udf_err(sb, "error loading logical volume descriptor: "
1362 			"Partition table too long (%u > %lu)\n", table_len,
1363 			sb->s_blocksize - sizeof(*lvd));
1364 		ret = -EIO;
1365 		goto out_bh;
1366 	}
1367 
1368 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1369 	if (ret)
1370 		goto out_bh;
1371 
1372 	for (i = 0, offset = 0;
1373 	     i < sbi->s_partitions && offset < table_len;
1374 	     i++, offset += gpm->partitionMapLength) {
1375 		struct udf_part_map *map = &sbi->s_partmaps[i];
1376 		gpm = (struct genericPartitionMap *)
1377 				&(lvd->partitionMaps[offset]);
1378 		type = gpm->partitionMapType;
1379 		if (type == 1) {
1380 			struct genericPartitionMap1 *gpm1 =
1381 				(struct genericPartitionMap1 *)gpm;
1382 			map->s_partition_type = UDF_TYPE1_MAP15;
1383 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1384 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1385 			map->s_partition_func = NULL;
1386 		} else if (type == 2) {
1387 			struct udfPartitionMap2 *upm2 =
1388 						(struct udfPartitionMap2 *)gpm;
1389 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1390 						strlen(UDF_ID_VIRTUAL))) {
1391 				u16 suf =
1392 					le16_to_cpu(((__le16 *)upm2->partIdent.
1393 							identSuffix)[0]);
1394 				if (suf < 0x0200) {
1395 					map->s_partition_type =
1396 							UDF_VIRTUAL_MAP15;
1397 					map->s_partition_func =
1398 							udf_get_pblock_virt15;
1399 				} else {
1400 					map->s_partition_type =
1401 							UDF_VIRTUAL_MAP20;
1402 					map->s_partition_func =
1403 							udf_get_pblock_virt20;
1404 				}
1405 			} else if (!strncmp(upm2->partIdent.ident,
1406 						UDF_ID_SPARABLE,
1407 						strlen(UDF_ID_SPARABLE))) {
1408 				ret = udf_load_sparable_map(sb, map,
1409 					(struct sparablePartitionMap *)gpm);
1410 				if (ret < 0)
1411 					goto out_bh;
1412 			} else if (!strncmp(upm2->partIdent.ident,
1413 						UDF_ID_METADATA,
1414 						strlen(UDF_ID_METADATA))) {
1415 				struct udf_meta_data *mdata =
1416 					&map->s_type_specific.s_metadata;
1417 				struct metadataPartitionMap *mdm =
1418 						(struct metadataPartitionMap *)
1419 						&(lvd->partitionMaps[offset]);
1420 				udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1421 					  i, type, UDF_ID_METADATA);
1422 
1423 				map->s_partition_type = UDF_METADATA_MAP25;
1424 				map->s_partition_func = udf_get_pblock_meta25;
1425 
1426 				mdata->s_meta_file_loc   =
1427 					le32_to_cpu(mdm->metadataFileLoc);
1428 				mdata->s_mirror_file_loc =
1429 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1430 				mdata->s_bitmap_file_loc =
1431 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1432 				mdata->s_alloc_unit_size =
1433 					le32_to_cpu(mdm->allocUnitSize);
1434 				mdata->s_align_unit_size =
1435 					le16_to_cpu(mdm->alignUnitSize);
1436 				if (mdm->flags & 0x01)
1437 					mdata->s_flags |= MF_DUPLICATE_MD;
1438 
1439 				udf_debug("Metadata Ident suffix=0x%x\n",
1440 					  le16_to_cpu(*(__le16 *)
1441 						      mdm->partIdent.identSuffix));
1442 				udf_debug("Metadata part num=%u\n",
1443 					  le16_to_cpu(mdm->partitionNum));
1444 				udf_debug("Metadata part alloc unit size=%u\n",
1445 					  le32_to_cpu(mdm->allocUnitSize));
1446 				udf_debug("Metadata file loc=%u\n",
1447 					  le32_to_cpu(mdm->metadataFileLoc));
1448 				udf_debug("Mirror file loc=%u\n",
1449 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1450 				udf_debug("Bitmap file loc=%u\n",
1451 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1452 				udf_debug("Flags: %d %u\n",
1453 					  mdata->s_flags, mdm->flags);
1454 			} else {
1455 				udf_debug("Unknown ident: %s\n",
1456 					  upm2->partIdent.ident);
1457 				continue;
1458 			}
1459 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1460 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1461 		}
1462 		udf_debug("Partition (%d:%u) type %u on volume %u\n",
1463 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1464 	}
1465 
1466 	if (fileset) {
1467 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1468 
1469 		*fileset = lelb_to_cpu(la->extLocation);
1470 		udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1471 			  fileset->logicalBlockNum,
1472 			  fileset->partitionReferenceNum);
1473 	}
1474 	if (lvd->integritySeqExt.extLength)
1475 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1476 	ret = 0;
1477 out_bh:
1478 	brelse(bh);
1479 	return ret;
1480 }
1481 
1482 /*
1483  * Find the prevailing Logical Volume Integrity Descriptor.
1484  */
1485 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1486 {
1487 	struct buffer_head *bh, *final_bh;
1488 	uint16_t ident;
1489 	struct udf_sb_info *sbi = UDF_SB(sb);
1490 	struct logicalVolIntegrityDesc *lvid;
1491 	int indirections = 0;
1492 
1493 	while (++indirections <= UDF_MAX_LVID_NESTING) {
1494 		final_bh = NULL;
1495 		while (loc.extLength > 0 &&
1496 			(bh = udf_read_tagged(sb, loc.extLocation,
1497 					loc.extLocation, &ident))) {
1498 			if (ident != TAG_IDENT_LVID) {
1499 				brelse(bh);
1500 				break;
1501 			}
1502 
1503 			brelse(final_bh);
1504 			final_bh = bh;
1505 
1506 			loc.extLength -= sb->s_blocksize;
1507 			loc.extLocation++;
1508 		}
1509 
1510 		if (!final_bh)
1511 			return;
1512 
1513 		brelse(sbi->s_lvid_bh);
1514 		sbi->s_lvid_bh = final_bh;
1515 
1516 		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1517 		if (lvid->nextIntegrityExt.extLength == 0)
1518 			return;
1519 
1520 		loc = leea_to_cpu(lvid->nextIntegrityExt);
1521 	}
1522 
1523 	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1524 		UDF_MAX_LVID_NESTING);
1525 	brelse(sbi->s_lvid_bh);
1526 	sbi->s_lvid_bh = NULL;
1527 }
1528 
1529 /*
1530  * Step for reallocation of table of partition descriptor sequence numbers.
1531  * Must be power of 2.
1532  */
1533 #define PART_DESC_ALLOC_STEP 32
1534 
1535 struct part_desc_seq_scan_data {
1536 	struct udf_vds_record rec;
1537 	u32 partnum;
1538 };
1539 
1540 struct desc_seq_scan_data {
1541 	struct udf_vds_record vds[VDS_POS_LENGTH];
1542 	unsigned int size_part_descs;
1543 	unsigned int num_part_descs;
1544 	struct part_desc_seq_scan_data *part_descs_loc;
1545 };
1546 
1547 static struct udf_vds_record *handle_partition_descriptor(
1548 				struct buffer_head *bh,
1549 				struct desc_seq_scan_data *data)
1550 {
1551 	struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1552 	int partnum;
1553 	int i;
1554 
1555 	partnum = le16_to_cpu(desc->partitionNumber);
1556 	for (i = 0; i < data->num_part_descs; i++)
1557 		if (partnum == data->part_descs_loc[i].partnum)
1558 			return &(data->part_descs_loc[i].rec);
1559 	if (data->num_part_descs >= data->size_part_descs) {
1560 		struct part_desc_seq_scan_data *new_loc;
1561 		unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1562 
1563 		new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1564 		if (!new_loc)
1565 			return ERR_PTR(-ENOMEM);
1566 		memcpy(new_loc, data->part_descs_loc,
1567 		       data->size_part_descs * sizeof(*new_loc));
1568 		kfree(data->part_descs_loc);
1569 		data->part_descs_loc = new_loc;
1570 		data->size_part_descs = new_size;
1571 	}
1572 	return &(data->part_descs_loc[data->num_part_descs++].rec);
1573 }
1574 
1575 
1576 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1577 		struct buffer_head *bh, struct desc_seq_scan_data *data)
1578 {
1579 	switch (ident) {
1580 	case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1581 		return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1582 	case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1583 		return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1584 	case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1585 		return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1586 	case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1587 		return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1588 	case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1589 		return handle_partition_descriptor(bh, data);
1590 	}
1591 	return NULL;
1592 }
1593 
1594 /*
1595  * Process a main/reserve volume descriptor sequence.
1596  *   @block		First block of first extent of the sequence.
1597  *   @lastblock		Lastblock of first extent of the sequence.
1598  *   @fileset		There we store extent containing root fileset
1599  *
1600  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1601  * sequence
1602  */
1603 static noinline int udf_process_sequence(
1604 		struct super_block *sb,
1605 		sector_t block, sector_t lastblock,
1606 		struct kernel_lb_addr *fileset)
1607 {
1608 	struct buffer_head *bh = NULL;
1609 	struct udf_vds_record *curr;
1610 	struct generic_desc *gd;
1611 	struct volDescPtr *vdp;
1612 	bool done = false;
1613 	uint32_t vdsn;
1614 	uint16_t ident;
1615 	int ret;
1616 	unsigned int indirections = 0;
1617 	struct desc_seq_scan_data data;
1618 	unsigned int i;
1619 
1620 	memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1621 	data.size_part_descs = PART_DESC_ALLOC_STEP;
1622 	data.num_part_descs = 0;
1623 	data.part_descs_loc = kcalloc(data.size_part_descs,
1624 				      sizeof(*data.part_descs_loc),
1625 				      GFP_KERNEL);
1626 	if (!data.part_descs_loc)
1627 		return -ENOMEM;
1628 
1629 	/*
1630 	 * Read the main descriptor sequence and find which descriptors
1631 	 * are in it.
1632 	 */
1633 	for (; (!done && block <= lastblock); block++) {
1634 		bh = udf_read_tagged(sb, block, block, &ident);
1635 		if (!bh)
1636 			break;
1637 
1638 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1639 		gd = (struct generic_desc *)bh->b_data;
1640 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1641 		switch (ident) {
1642 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1643 			if (++indirections > UDF_MAX_TD_NESTING) {
1644 				udf_err(sb, "too many Volume Descriptor "
1645 					"Pointers (max %u supported)\n",
1646 					UDF_MAX_TD_NESTING);
1647 				brelse(bh);
1648 				return -EIO;
1649 			}
1650 
1651 			vdp = (struct volDescPtr *)bh->b_data;
1652 			block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1653 			lastblock = le32_to_cpu(
1654 				vdp->nextVolDescSeqExt.extLength) >>
1655 				sb->s_blocksize_bits;
1656 			lastblock += block - 1;
1657 			/* For loop is going to increment 'block' again */
1658 			block--;
1659 			break;
1660 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1661 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1662 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1663 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1664 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1665 			curr = get_volume_descriptor_record(ident, bh, &data);
1666 			if (IS_ERR(curr)) {
1667 				brelse(bh);
1668 				return PTR_ERR(curr);
1669 			}
1670 			/* Descriptor we don't care about? */
1671 			if (!curr)
1672 				break;
1673 			if (vdsn >= curr->volDescSeqNum) {
1674 				curr->volDescSeqNum = vdsn;
1675 				curr->block = block;
1676 			}
1677 			break;
1678 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1679 			done = true;
1680 			break;
1681 		}
1682 		brelse(bh);
1683 	}
1684 	/*
1685 	 * Now read interesting descriptors again and process them
1686 	 * in a suitable order
1687 	 */
1688 	if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1689 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1690 		return -EAGAIN;
1691 	}
1692 	ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1693 	if (ret < 0)
1694 		return ret;
1695 
1696 	if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1697 		ret = udf_load_logicalvol(sb,
1698 				data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1699 				fileset);
1700 		if (ret < 0)
1701 			return ret;
1702 	}
1703 
1704 	/* Now handle prevailing Partition Descriptors */
1705 	for (i = 0; i < data.num_part_descs; i++) {
1706 		ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1707 		if (ret < 0)
1708 			return ret;
1709 	}
1710 
1711 	return 0;
1712 }
1713 
1714 /*
1715  * Load Volume Descriptor Sequence described by anchor in bh
1716  *
1717  * Returns <0 on error, 0 on success
1718  */
1719 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1720 			     struct kernel_lb_addr *fileset)
1721 {
1722 	struct anchorVolDescPtr *anchor;
1723 	sector_t main_s, main_e, reserve_s, reserve_e;
1724 	int ret;
1725 
1726 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1727 
1728 	/* Locate the main sequence */
1729 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1730 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1731 	main_e = main_e >> sb->s_blocksize_bits;
1732 	main_e += main_s - 1;
1733 
1734 	/* Locate the reserve sequence */
1735 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1736 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1737 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1738 	reserve_e += reserve_s - 1;
1739 
1740 	/* Process the main & reserve sequences */
1741 	/* responsible for finding the PartitionDesc(s) */
1742 	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1743 	if (ret != -EAGAIN)
1744 		return ret;
1745 	udf_sb_free_partitions(sb);
1746 	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1747 	if (ret < 0) {
1748 		udf_sb_free_partitions(sb);
1749 		/* No sequence was OK, return -EIO */
1750 		if (ret == -EAGAIN)
1751 			ret = -EIO;
1752 	}
1753 	return ret;
1754 }
1755 
1756 /*
1757  * Check whether there is an anchor block in the given block and
1758  * load Volume Descriptor Sequence if so.
1759  *
1760  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1761  * block
1762  */
1763 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1764 				  struct kernel_lb_addr *fileset)
1765 {
1766 	struct buffer_head *bh;
1767 	uint16_t ident;
1768 	int ret;
1769 
1770 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1771 	    udf_fixed_to_variable(block) >=
1772 	    i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1773 		return -EAGAIN;
1774 
1775 	bh = udf_read_tagged(sb, block, block, &ident);
1776 	if (!bh)
1777 		return -EAGAIN;
1778 	if (ident != TAG_IDENT_AVDP) {
1779 		brelse(bh);
1780 		return -EAGAIN;
1781 	}
1782 	ret = udf_load_sequence(sb, bh, fileset);
1783 	brelse(bh);
1784 	return ret;
1785 }
1786 
1787 /*
1788  * Search for an anchor volume descriptor pointer.
1789  *
1790  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1791  * of anchors.
1792  */
1793 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1794 			    struct kernel_lb_addr *fileset)
1795 {
1796 	sector_t last[6];
1797 	int i;
1798 	struct udf_sb_info *sbi = UDF_SB(sb);
1799 	int last_count = 0;
1800 	int ret;
1801 
1802 	/* First try user provided anchor */
1803 	if (sbi->s_anchor) {
1804 		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1805 		if (ret != -EAGAIN)
1806 			return ret;
1807 	}
1808 	/*
1809 	 * according to spec, anchor is in either:
1810 	 *     block 256
1811 	 *     lastblock-256
1812 	 *     lastblock
1813 	 *  however, if the disc isn't closed, it could be 512.
1814 	 */
1815 	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1816 	if (ret != -EAGAIN)
1817 		return ret;
1818 	/*
1819 	 * The trouble is which block is the last one. Drives often misreport
1820 	 * this so we try various possibilities.
1821 	 */
1822 	last[last_count++] = *lastblock;
1823 	if (*lastblock >= 1)
1824 		last[last_count++] = *lastblock - 1;
1825 	last[last_count++] = *lastblock + 1;
1826 	if (*lastblock >= 2)
1827 		last[last_count++] = *lastblock - 2;
1828 	if (*lastblock >= 150)
1829 		last[last_count++] = *lastblock - 150;
1830 	if (*lastblock >= 152)
1831 		last[last_count++] = *lastblock - 152;
1832 
1833 	for (i = 0; i < last_count; i++) {
1834 		if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1835 				sb->s_blocksize_bits)
1836 			continue;
1837 		ret = udf_check_anchor_block(sb, last[i], fileset);
1838 		if (ret != -EAGAIN) {
1839 			if (!ret)
1840 				*lastblock = last[i];
1841 			return ret;
1842 		}
1843 		if (last[i] < 256)
1844 			continue;
1845 		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1846 		if (ret != -EAGAIN) {
1847 			if (!ret)
1848 				*lastblock = last[i];
1849 			return ret;
1850 		}
1851 	}
1852 
1853 	/* Finally try block 512 in case media is open */
1854 	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1855 }
1856 
1857 /*
1858  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1859  * area specified by it. The function expects sbi->s_lastblock to be the last
1860  * block on the media.
1861  *
1862  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1863  * was not found.
1864  */
1865 static int udf_find_anchor(struct super_block *sb,
1866 			   struct kernel_lb_addr *fileset)
1867 {
1868 	struct udf_sb_info *sbi = UDF_SB(sb);
1869 	sector_t lastblock = sbi->s_last_block;
1870 	int ret;
1871 
1872 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1873 	if (ret != -EAGAIN)
1874 		goto out;
1875 
1876 	/* No anchor found? Try VARCONV conversion of block numbers */
1877 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1878 	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1879 	/* Firstly, we try to not convert number of the last block */
1880 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1881 	if (ret != -EAGAIN)
1882 		goto out;
1883 
1884 	lastblock = sbi->s_last_block;
1885 	/* Secondly, we try with converted number of the last block */
1886 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1887 	if (ret < 0) {
1888 		/* VARCONV didn't help. Clear it. */
1889 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1890 	}
1891 out:
1892 	if (ret == 0)
1893 		sbi->s_last_block = lastblock;
1894 	return ret;
1895 }
1896 
1897 /*
1898  * Check Volume Structure Descriptor, find Anchor block and load Volume
1899  * Descriptor Sequence.
1900  *
1901  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1902  * block was not found.
1903  */
1904 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1905 			int silent, struct kernel_lb_addr *fileset)
1906 {
1907 	struct udf_sb_info *sbi = UDF_SB(sb);
1908 	loff_t nsr_off;
1909 	int ret;
1910 
1911 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1912 		if (!silent)
1913 			udf_warn(sb, "Bad block size\n");
1914 		return -EINVAL;
1915 	}
1916 	sbi->s_last_block = uopt->lastblock;
1917 	if (!uopt->novrs) {
1918 		/* Check that it is NSR02 compliant */
1919 		nsr_off = udf_check_vsd(sb);
1920 		if (!nsr_off) {
1921 			if (!silent)
1922 				udf_warn(sb, "No VRS found\n");
1923 			return -EINVAL;
1924 		}
1925 		if (nsr_off == -1)
1926 			udf_debug("Failed to read sector at offset %d. "
1927 				  "Assuming open disc. Skipping validity "
1928 				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1929 		if (!sbi->s_last_block)
1930 			sbi->s_last_block = udf_get_last_block(sb);
1931 	} else {
1932 		udf_debug("Validity check skipped because of novrs option\n");
1933 	}
1934 
1935 	/* Look for anchor block and load Volume Descriptor Sequence */
1936 	sbi->s_anchor = uopt->anchor;
1937 	ret = udf_find_anchor(sb, fileset);
1938 	if (ret < 0) {
1939 		if (!silent && ret == -EAGAIN)
1940 			udf_warn(sb, "No anchor found\n");
1941 		return ret;
1942 	}
1943 	return 0;
1944 }
1945 
1946 static void udf_open_lvid(struct super_block *sb)
1947 {
1948 	struct udf_sb_info *sbi = UDF_SB(sb);
1949 	struct buffer_head *bh = sbi->s_lvid_bh;
1950 	struct logicalVolIntegrityDesc *lvid;
1951 	struct logicalVolIntegrityDescImpUse *lvidiu;
1952 	struct timespec64 ts;
1953 
1954 	if (!bh)
1955 		return;
1956 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1957 	lvidiu = udf_sb_lvidiu(sb);
1958 	if (!lvidiu)
1959 		return;
1960 
1961 	mutex_lock(&sbi->s_alloc_mutex);
1962 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1963 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1964 	ktime_get_real_ts64(&ts);
1965 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1966 	if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
1967 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1968 	else
1969 		UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
1970 
1971 	lvid->descTag.descCRC = cpu_to_le16(
1972 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1973 			le16_to_cpu(lvid->descTag.descCRCLength)));
1974 
1975 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1976 	mark_buffer_dirty(bh);
1977 	sbi->s_lvid_dirty = 0;
1978 	mutex_unlock(&sbi->s_alloc_mutex);
1979 	/* Make opening of filesystem visible on the media immediately */
1980 	sync_dirty_buffer(bh);
1981 }
1982 
1983 static void udf_close_lvid(struct super_block *sb)
1984 {
1985 	struct udf_sb_info *sbi = UDF_SB(sb);
1986 	struct buffer_head *bh = sbi->s_lvid_bh;
1987 	struct logicalVolIntegrityDesc *lvid;
1988 	struct logicalVolIntegrityDescImpUse *lvidiu;
1989 	struct timespec64 ts;
1990 
1991 	if (!bh)
1992 		return;
1993 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1994 	lvidiu = udf_sb_lvidiu(sb);
1995 	if (!lvidiu)
1996 		return;
1997 
1998 	mutex_lock(&sbi->s_alloc_mutex);
1999 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2000 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2001 	ktime_get_real_ts64(&ts);
2002 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2003 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2004 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2005 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2006 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2007 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2008 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2009 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2010 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2011 
2012 	lvid->descTag.descCRC = cpu_to_le16(
2013 			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2014 				le16_to_cpu(lvid->descTag.descCRCLength)));
2015 
2016 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2017 	/*
2018 	 * We set buffer uptodate unconditionally here to avoid spurious
2019 	 * warnings from mark_buffer_dirty() when previous EIO has marked
2020 	 * the buffer as !uptodate
2021 	 */
2022 	set_buffer_uptodate(bh);
2023 	mark_buffer_dirty(bh);
2024 	sbi->s_lvid_dirty = 0;
2025 	mutex_unlock(&sbi->s_alloc_mutex);
2026 	/* Make closing of filesystem visible on the media immediately */
2027 	sync_dirty_buffer(bh);
2028 }
2029 
2030 u64 lvid_get_unique_id(struct super_block *sb)
2031 {
2032 	struct buffer_head *bh;
2033 	struct udf_sb_info *sbi = UDF_SB(sb);
2034 	struct logicalVolIntegrityDesc *lvid;
2035 	struct logicalVolHeaderDesc *lvhd;
2036 	u64 uniqueID;
2037 	u64 ret;
2038 
2039 	bh = sbi->s_lvid_bh;
2040 	if (!bh)
2041 		return 0;
2042 
2043 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2044 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2045 
2046 	mutex_lock(&sbi->s_alloc_mutex);
2047 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2048 	if (!(++uniqueID & 0xFFFFFFFF))
2049 		uniqueID += 16;
2050 	lvhd->uniqueID = cpu_to_le64(uniqueID);
2051 	mutex_unlock(&sbi->s_alloc_mutex);
2052 	mark_buffer_dirty(bh);
2053 
2054 	return ret;
2055 }
2056 
2057 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2058 {
2059 	int ret = -EINVAL;
2060 	struct inode *inode = NULL;
2061 	struct udf_options uopt;
2062 	struct kernel_lb_addr rootdir, fileset;
2063 	struct udf_sb_info *sbi;
2064 	bool lvid_open = false;
2065 
2066 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2067 	/* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2068 	uopt.uid = make_kuid(current_user_ns(), overflowuid);
2069 	uopt.gid = make_kgid(current_user_ns(), overflowgid);
2070 	uopt.umask = 0;
2071 	uopt.fmode = UDF_INVALID_MODE;
2072 	uopt.dmode = UDF_INVALID_MODE;
2073 	uopt.nls_map = NULL;
2074 
2075 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2076 	if (!sbi)
2077 		return -ENOMEM;
2078 
2079 	sb->s_fs_info = sbi;
2080 
2081 	mutex_init(&sbi->s_alloc_mutex);
2082 
2083 	if (!udf_parse_options((char *)options, &uopt, false))
2084 		goto parse_options_failure;
2085 
2086 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2087 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2088 		udf_err(sb, "utf8 cannot be combined with iocharset\n");
2089 		goto parse_options_failure;
2090 	}
2091 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2092 		uopt.nls_map = load_nls_default();
2093 		if (!uopt.nls_map)
2094 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2095 		else
2096 			udf_debug("Using default NLS map\n");
2097 	}
2098 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2099 		uopt.flags |= (1 << UDF_FLAG_UTF8);
2100 
2101 	fileset.logicalBlockNum = 0xFFFFFFFF;
2102 	fileset.partitionReferenceNum = 0xFFFF;
2103 
2104 	sbi->s_flags = uopt.flags;
2105 	sbi->s_uid = uopt.uid;
2106 	sbi->s_gid = uopt.gid;
2107 	sbi->s_umask = uopt.umask;
2108 	sbi->s_fmode = uopt.fmode;
2109 	sbi->s_dmode = uopt.dmode;
2110 	sbi->s_nls_map = uopt.nls_map;
2111 	rwlock_init(&sbi->s_cred_lock);
2112 
2113 	if (uopt.session == 0xFFFFFFFF)
2114 		sbi->s_session = udf_get_last_session(sb);
2115 	else
2116 		sbi->s_session = uopt.session;
2117 
2118 	udf_debug("Multi-session=%d\n", sbi->s_session);
2119 
2120 	/* Fill in the rest of the superblock */
2121 	sb->s_op = &udf_sb_ops;
2122 	sb->s_export_op = &udf_export_ops;
2123 
2124 	sb->s_magic = UDF_SUPER_MAGIC;
2125 	sb->s_time_gran = 1000;
2126 
2127 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2128 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2129 	} else {
2130 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2131 		while (uopt.blocksize <= 4096) {
2132 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2133 			if (ret < 0) {
2134 				if (!silent && ret != -EACCES) {
2135 					pr_notice("Scanning with blocksize %u failed\n",
2136 						  uopt.blocksize);
2137 				}
2138 				brelse(sbi->s_lvid_bh);
2139 				sbi->s_lvid_bh = NULL;
2140 				/*
2141 				 * EACCES is special - we want to propagate to
2142 				 * upper layers that we cannot handle RW mount.
2143 				 */
2144 				if (ret == -EACCES)
2145 					break;
2146 			} else
2147 				break;
2148 
2149 			uopt.blocksize <<= 1;
2150 		}
2151 	}
2152 	if (ret < 0) {
2153 		if (ret == -EAGAIN) {
2154 			udf_warn(sb, "No partition found (1)\n");
2155 			ret = -EINVAL;
2156 		}
2157 		goto error_out;
2158 	}
2159 
2160 	udf_debug("Lastblock=%u\n", sbi->s_last_block);
2161 
2162 	if (sbi->s_lvid_bh) {
2163 		struct logicalVolIntegrityDescImpUse *lvidiu =
2164 							udf_sb_lvidiu(sb);
2165 		uint16_t minUDFReadRev;
2166 		uint16_t minUDFWriteRev;
2167 
2168 		if (!lvidiu) {
2169 			ret = -EINVAL;
2170 			goto error_out;
2171 		}
2172 		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2173 		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2174 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2175 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2176 				minUDFReadRev,
2177 				UDF_MAX_READ_VERSION);
2178 			ret = -EINVAL;
2179 			goto error_out;
2180 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2181 			if (!sb_rdonly(sb)) {
2182 				ret = -EACCES;
2183 				goto error_out;
2184 			}
2185 			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2186 		}
2187 
2188 		sbi->s_udfrev = minUDFWriteRev;
2189 
2190 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2191 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2192 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2193 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2194 	}
2195 
2196 	if (!sbi->s_partitions) {
2197 		udf_warn(sb, "No partition found (2)\n");
2198 		ret = -EINVAL;
2199 		goto error_out;
2200 	}
2201 
2202 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2203 			UDF_PART_FLAG_READ_ONLY) {
2204 		if (!sb_rdonly(sb)) {
2205 			ret = -EACCES;
2206 			goto error_out;
2207 		}
2208 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2209 	}
2210 
2211 	if (udf_find_fileset(sb, &fileset, &rootdir)) {
2212 		udf_warn(sb, "No fileset found\n");
2213 		ret = -EINVAL;
2214 		goto error_out;
2215 	}
2216 
2217 	if (!silent) {
2218 		struct timestamp ts;
2219 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2220 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2221 			 sbi->s_volume_ident,
2222 			 le16_to_cpu(ts.year), ts.month, ts.day,
2223 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2224 	}
2225 	if (!sb_rdonly(sb)) {
2226 		udf_open_lvid(sb);
2227 		lvid_open = true;
2228 	}
2229 
2230 	/* Assign the root inode */
2231 	/* assign inodes by physical block number */
2232 	/* perhaps it's not extensible enough, but for now ... */
2233 	inode = udf_iget(sb, &rootdir);
2234 	if (IS_ERR(inode)) {
2235 		udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2236 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2237 		ret = PTR_ERR(inode);
2238 		goto error_out;
2239 	}
2240 
2241 	/* Allocate a dentry for the root inode */
2242 	sb->s_root = d_make_root(inode);
2243 	if (!sb->s_root) {
2244 		udf_err(sb, "Couldn't allocate root dentry\n");
2245 		ret = -ENOMEM;
2246 		goto error_out;
2247 	}
2248 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2249 	sb->s_max_links = UDF_MAX_LINKS;
2250 	return 0;
2251 
2252 error_out:
2253 	iput(sbi->s_vat_inode);
2254 parse_options_failure:
2255 	if (uopt.nls_map)
2256 		unload_nls(uopt.nls_map);
2257 	if (lvid_open)
2258 		udf_close_lvid(sb);
2259 	brelse(sbi->s_lvid_bh);
2260 	udf_sb_free_partitions(sb);
2261 	kfree(sbi);
2262 	sb->s_fs_info = NULL;
2263 
2264 	return ret;
2265 }
2266 
2267 void _udf_err(struct super_block *sb, const char *function,
2268 	      const char *fmt, ...)
2269 {
2270 	struct va_format vaf;
2271 	va_list args;
2272 
2273 	va_start(args, fmt);
2274 
2275 	vaf.fmt = fmt;
2276 	vaf.va = &args;
2277 
2278 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2279 
2280 	va_end(args);
2281 }
2282 
2283 void _udf_warn(struct super_block *sb, const char *function,
2284 	       const char *fmt, ...)
2285 {
2286 	struct va_format vaf;
2287 	va_list args;
2288 
2289 	va_start(args, fmt);
2290 
2291 	vaf.fmt = fmt;
2292 	vaf.va = &args;
2293 
2294 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2295 
2296 	va_end(args);
2297 }
2298 
2299 static void udf_put_super(struct super_block *sb)
2300 {
2301 	struct udf_sb_info *sbi;
2302 
2303 	sbi = UDF_SB(sb);
2304 
2305 	iput(sbi->s_vat_inode);
2306 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2307 		unload_nls(sbi->s_nls_map);
2308 	if (!sb_rdonly(sb))
2309 		udf_close_lvid(sb);
2310 	brelse(sbi->s_lvid_bh);
2311 	udf_sb_free_partitions(sb);
2312 	mutex_destroy(&sbi->s_alloc_mutex);
2313 	kfree(sb->s_fs_info);
2314 	sb->s_fs_info = NULL;
2315 }
2316 
2317 static int udf_sync_fs(struct super_block *sb, int wait)
2318 {
2319 	struct udf_sb_info *sbi = UDF_SB(sb);
2320 
2321 	mutex_lock(&sbi->s_alloc_mutex);
2322 	if (sbi->s_lvid_dirty) {
2323 		/*
2324 		 * Blockdevice will be synced later so we don't have to submit
2325 		 * the buffer for IO
2326 		 */
2327 		mark_buffer_dirty(sbi->s_lvid_bh);
2328 		sbi->s_lvid_dirty = 0;
2329 	}
2330 	mutex_unlock(&sbi->s_alloc_mutex);
2331 
2332 	return 0;
2333 }
2334 
2335 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2336 {
2337 	struct super_block *sb = dentry->d_sb;
2338 	struct udf_sb_info *sbi = UDF_SB(sb);
2339 	struct logicalVolIntegrityDescImpUse *lvidiu;
2340 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2341 
2342 	lvidiu = udf_sb_lvidiu(sb);
2343 	buf->f_type = UDF_SUPER_MAGIC;
2344 	buf->f_bsize = sb->s_blocksize;
2345 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2346 	buf->f_bfree = udf_count_free(sb);
2347 	buf->f_bavail = buf->f_bfree;
2348 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2349 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2350 			+ buf->f_bfree;
2351 	buf->f_ffree = buf->f_bfree;
2352 	buf->f_namelen = UDF_NAME_LEN;
2353 	buf->f_fsid.val[0] = (u32)id;
2354 	buf->f_fsid.val[1] = (u32)(id >> 32);
2355 
2356 	return 0;
2357 }
2358 
2359 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2360 					  struct udf_bitmap *bitmap)
2361 {
2362 	struct buffer_head *bh = NULL;
2363 	unsigned int accum = 0;
2364 	int index;
2365 	udf_pblk_t block = 0, newblock;
2366 	struct kernel_lb_addr loc;
2367 	uint32_t bytes;
2368 	uint8_t *ptr;
2369 	uint16_t ident;
2370 	struct spaceBitmapDesc *bm;
2371 
2372 	loc.logicalBlockNum = bitmap->s_extPosition;
2373 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2374 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2375 
2376 	if (!bh) {
2377 		udf_err(sb, "udf_count_free failed\n");
2378 		goto out;
2379 	} else if (ident != TAG_IDENT_SBD) {
2380 		brelse(bh);
2381 		udf_err(sb, "udf_count_free failed\n");
2382 		goto out;
2383 	}
2384 
2385 	bm = (struct spaceBitmapDesc *)bh->b_data;
2386 	bytes = le32_to_cpu(bm->numOfBytes);
2387 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2388 	ptr = (uint8_t *)bh->b_data;
2389 
2390 	while (bytes > 0) {
2391 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2392 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2393 					cur_bytes * 8);
2394 		bytes -= cur_bytes;
2395 		if (bytes) {
2396 			brelse(bh);
2397 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2398 			bh = udf_tread(sb, newblock);
2399 			if (!bh) {
2400 				udf_debug("read failed\n");
2401 				goto out;
2402 			}
2403 			index = 0;
2404 			ptr = (uint8_t *)bh->b_data;
2405 		}
2406 	}
2407 	brelse(bh);
2408 out:
2409 	return accum;
2410 }
2411 
2412 static unsigned int udf_count_free_table(struct super_block *sb,
2413 					 struct inode *table)
2414 {
2415 	unsigned int accum = 0;
2416 	uint32_t elen;
2417 	struct kernel_lb_addr eloc;
2418 	int8_t etype;
2419 	struct extent_position epos;
2420 
2421 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2422 	epos.block = UDF_I(table)->i_location;
2423 	epos.offset = sizeof(struct unallocSpaceEntry);
2424 	epos.bh = NULL;
2425 
2426 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2427 		accum += (elen >> table->i_sb->s_blocksize_bits);
2428 
2429 	brelse(epos.bh);
2430 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2431 
2432 	return accum;
2433 }
2434 
2435 static unsigned int udf_count_free(struct super_block *sb)
2436 {
2437 	unsigned int accum = 0;
2438 	struct udf_sb_info *sbi;
2439 	struct udf_part_map *map;
2440 
2441 	sbi = UDF_SB(sb);
2442 	if (sbi->s_lvid_bh) {
2443 		struct logicalVolIntegrityDesc *lvid =
2444 			(struct logicalVolIntegrityDesc *)
2445 			sbi->s_lvid_bh->b_data;
2446 		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2447 			accum = le32_to_cpu(
2448 					lvid->freeSpaceTable[sbi->s_partition]);
2449 			if (accum == 0xFFFFFFFF)
2450 				accum = 0;
2451 		}
2452 	}
2453 
2454 	if (accum)
2455 		return accum;
2456 
2457 	map = &sbi->s_partmaps[sbi->s_partition];
2458 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2459 		accum += udf_count_free_bitmap(sb,
2460 					       map->s_uspace.s_bitmap);
2461 	}
2462 	if (accum)
2463 		return accum;
2464 
2465 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2466 		accum += udf_count_free_table(sb,
2467 					      map->s_uspace.s_table);
2468 	}
2469 	return accum;
2470 }
2471 
2472 MODULE_AUTHOR("Ben Fennema");
2473 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2474 MODULE_LICENSE("GPL");
2475 module_init(init_udf_fs)
2476 module_exit(exit_udf_fs)
2477