xref: /openbmc/linux/fs/udf/super.c (revision f5029f62)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    https://www.ecma.ch/
15  *    https://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 
61 #include "udf_sb.h"
62 #include "udf_i.h"
63 
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66 
67 enum {
68 	VDS_POS_PRIMARY_VOL_DESC,
69 	VDS_POS_UNALLOC_SPACE_DESC,
70 	VDS_POS_LOGICAL_VOL_DESC,
71 	VDS_POS_IMP_USE_VOL_DESC,
72 	VDS_POS_LENGTH
73 };
74 
75 #define VSD_FIRST_SECTOR_OFFSET		32768
76 #define VSD_MAX_SECTOR_OFFSET		0x800000
77 
78 /*
79  * Maximum number of Terminating Descriptor / Logical Volume Integrity
80  * Descriptor redirections. The chosen numbers are arbitrary - just that we
81  * hopefully don't limit any real use of rewritten inode on write-once media
82  * but avoid looping for too long on corrupted media.
83  */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86 
87 enum { UDF_MAX_LINKS = 0xffff };
88 
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static void udf_open_lvid(struct super_block *);
96 static void udf_close_lvid(struct super_block *);
97 static unsigned int udf_count_free(struct super_block *);
98 static int udf_statfs(struct dentry *, struct kstatfs *);
99 static int udf_show_options(struct seq_file *, struct dentry *);
100 
101 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
102 {
103 	struct logicalVolIntegrityDesc *lvid;
104 	unsigned int partnum;
105 	unsigned int offset;
106 
107 	if (!UDF_SB(sb)->s_lvid_bh)
108 		return NULL;
109 	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
110 	partnum = le32_to_cpu(lvid->numOfPartitions);
111 	/* The offset is to skip freeSpaceTable and sizeTable arrays */
112 	offset = partnum * 2 * sizeof(uint32_t);
113 	return (struct logicalVolIntegrityDescImpUse *)
114 					(((uint8_t *)(lvid + 1)) + offset);
115 }
116 
117 /* UDF filesystem type */
118 static struct dentry *udf_mount(struct file_system_type *fs_type,
119 		      int flags, const char *dev_name, void *data)
120 {
121 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
122 }
123 
124 static struct file_system_type udf_fstype = {
125 	.owner		= THIS_MODULE,
126 	.name		= "udf",
127 	.mount		= udf_mount,
128 	.kill_sb	= kill_block_super,
129 	.fs_flags	= FS_REQUIRES_DEV,
130 };
131 MODULE_ALIAS_FS("udf");
132 
133 static struct kmem_cache *udf_inode_cachep;
134 
135 static struct inode *udf_alloc_inode(struct super_block *sb)
136 {
137 	struct udf_inode_info *ei;
138 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
139 	if (!ei)
140 		return NULL;
141 
142 	ei->i_unique = 0;
143 	ei->i_lenExtents = 0;
144 	ei->i_lenStreams = 0;
145 	ei->i_next_alloc_block = 0;
146 	ei->i_next_alloc_goal = 0;
147 	ei->i_strat4096 = 0;
148 	ei->i_streamdir = 0;
149 	init_rwsem(&ei->i_data_sem);
150 	ei->cached_extent.lstart = -1;
151 	spin_lock_init(&ei->i_extent_cache_lock);
152 
153 	return &ei->vfs_inode;
154 }
155 
156 static void udf_free_in_core_inode(struct inode *inode)
157 {
158 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
159 }
160 
161 static void init_once(void *foo)
162 {
163 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
164 
165 	ei->i_data = NULL;
166 	inode_init_once(&ei->vfs_inode);
167 }
168 
169 static int __init init_inodecache(void)
170 {
171 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
172 					     sizeof(struct udf_inode_info),
173 					     0, (SLAB_RECLAIM_ACCOUNT |
174 						 SLAB_MEM_SPREAD |
175 						 SLAB_ACCOUNT),
176 					     init_once);
177 	if (!udf_inode_cachep)
178 		return -ENOMEM;
179 	return 0;
180 }
181 
182 static void destroy_inodecache(void)
183 {
184 	/*
185 	 * Make sure all delayed rcu free inodes are flushed before we
186 	 * destroy cache.
187 	 */
188 	rcu_barrier();
189 	kmem_cache_destroy(udf_inode_cachep);
190 }
191 
192 /* Superblock operations */
193 static const struct super_operations udf_sb_ops = {
194 	.alloc_inode	= udf_alloc_inode,
195 	.free_inode	= udf_free_in_core_inode,
196 	.write_inode	= udf_write_inode,
197 	.evict_inode	= udf_evict_inode,
198 	.put_super	= udf_put_super,
199 	.sync_fs	= udf_sync_fs,
200 	.statfs		= udf_statfs,
201 	.remount_fs	= udf_remount_fs,
202 	.show_options	= udf_show_options,
203 };
204 
205 struct udf_options {
206 	unsigned char novrs;
207 	unsigned int blocksize;
208 	unsigned int session;
209 	unsigned int lastblock;
210 	unsigned int anchor;
211 	unsigned int flags;
212 	umode_t umask;
213 	kgid_t gid;
214 	kuid_t uid;
215 	umode_t fmode;
216 	umode_t dmode;
217 	struct nls_table *nls_map;
218 };
219 
220 static int __init init_udf_fs(void)
221 {
222 	int err;
223 
224 	err = init_inodecache();
225 	if (err)
226 		goto out1;
227 	err = register_filesystem(&udf_fstype);
228 	if (err)
229 		goto out;
230 
231 	return 0;
232 
233 out:
234 	destroy_inodecache();
235 
236 out1:
237 	return err;
238 }
239 
240 static void __exit exit_udf_fs(void)
241 {
242 	unregister_filesystem(&udf_fstype);
243 	destroy_inodecache();
244 }
245 
246 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
247 {
248 	struct udf_sb_info *sbi = UDF_SB(sb);
249 
250 	sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
251 	if (!sbi->s_partmaps) {
252 		sbi->s_partitions = 0;
253 		return -ENOMEM;
254 	}
255 
256 	sbi->s_partitions = count;
257 	return 0;
258 }
259 
260 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
261 {
262 	int i;
263 	int nr_groups = bitmap->s_nr_groups;
264 
265 	for (i = 0; i < nr_groups; i++)
266 		brelse(bitmap->s_block_bitmap[i]);
267 
268 	kvfree(bitmap);
269 }
270 
271 static void udf_free_partition(struct udf_part_map *map)
272 {
273 	int i;
274 	struct udf_meta_data *mdata;
275 
276 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
277 		iput(map->s_uspace.s_table);
278 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
279 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
280 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
281 		for (i = 0; i < 4; i++)
282 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
283 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
284 		mdata = &map->s_type_specific.s_metadata;
285 		iput(mdata->s_metadata_fe);
286 		mdata->s_metadata_fe = NULL;
287 
288 		iput(mdata->s_mirror_fe);
289 		mdata->s_mirror_fe = NULL;
290 
291 		iput(mdata->s_bitmap_fe);
292 		mdata->s_bitmap_fe = NULL;
293 	}
294 }
295 
296 static void udf_sb_free_partitions(struct super_block *sb)
297 {
298 	struct udf_sb_info *sbi = UDF_SB(sb);
299 	int i;
300 
301 	if (!sbi->s_partmaps)
302 		return;
303 	for (i = 0; i < sbi->s_partitions; i++)
304 		udf_free_partition(&sbi->s_partmaps[i]);
305 	kfree(sbi->s_partmaps);
306 	sbi->s_partmaps = NULL;
307 }
308 
309 static int udf_show_options(struct seq_file *seq, struct dentry *root)
310 {
311 	struct super_block *sb = root->d_sb;
312 	struct udf_sb_info *sbi = UDF_SB(sb);
313 
314 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
315 		seq_puts(seq, ",nostrict");
316 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
317 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
318 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
319 		seq_puts(seq, ",unhide");
320 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
321 		seq_puts(seq, ",undelete");
322 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
323 		seq_puts(seq, ",noadinicb");
324 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
325 		seq_puts(seq, ",shortad");
326 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
327 		seq_puts(seq, ",uid=forget");
328 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
329 		seq_puts(seq, ",gid=forget");
330 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
331 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
332 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
333 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
334 	if (sbi->s_umask != 0)
335 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
336 	if (sbi->s_fmode != UDF_INVALID_MODE)
337 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
338 	if (sbi->s_dmode != UDF_INVALID_MODE)
339 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
340 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
341 		seq_printf(seq, ",session=%d", sbi->s_session);
342 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
343 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
344 	if (sbi->s_anchor != 0)
345 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
346 	if (sbi->s_nls_map)
347 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
348 	else
349 		seq_puts(seq, ",iocharset=utf8");
350 
351 	return 0;
352 }
353 
354 /*
355  * udf_parse_options
356  *
357  * PURPOSE
358  *	Parse mount options.
359  *
360  * DESCRIPTION
361  *	The following mount options are supported:
362  *
363  *	gid=		Set the default group.
364  *	umask=		Set the default umask.
365  *	mode=		Set the default file permissions.
366  *	dmode=		Set the default directory permissions.
367  *	uid=		Set the default user.
368  *	bs=		Set the block size.
369  *	unhide		Show otherwise hidden files.
370  *	undelete	Show deleted files in lists.
371  *	adinicb		Embed data in the inode (default)
372  *	noadinicb	Don't embed data in the inode
373  *	shortad		Use short ad's
374  *	longad		Use long ad's (default)
375  *	nostrict	Unset strict conformance
376  *	iocharset=	Set the NLS character set
377  *
378  *	The remaining are for debugging and disaster recovery:
379  *
380  *	novrs		Skip volume sequence recognition
381  *
382  *	The following expect a offset from 0.
383  *
384  *	session=	Set the CDROM session (default= last session)
385  *	anchor=		Override standard anchor location. (default= 256)
386  *	volume=		Override the VolumeDesc location. (unused)
387  *	partition=	Override the PartitionDesc location. (unused)
388  *	lastblock=	Set the last block of the filesystem/
389  *
390  *	The following expect a offset from the partition root.
391  *
392  *	fileset=	Override the fileset block location. (unused)
393  *	rootdir=	Override the root directory location. (unused)
394  *		WARNING: overriding the rootdir to a non-directory may
395  *		yield highly unpredictable results.
396  *
397  * PRE-CONDITIONS
398  *	options		Pointer to mount options string.
399  *	uopts		Pointer to mount options variable.
400  *
401  * POST-CONDITIONS
402  *	<return>	1	Mount options parsed okay.
403  *	<return>	0	Error parsing mount options.
404  *
405  * HISTORY
406  *	July 1, 1997 - Andrew E. Mileski
407  *	Written, tested, and released.
408  */
409 
410 enum {
411 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
412 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
413 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
414 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
415 	Opt_rootdir, Opt_utf8, Opt_iocharset,
416 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
417 	Opt_fmode, Opt_dmode
418 };
419 
420 static const match_table_t tokens = {
421 	{Opt_novrs,	"novrs"},
422 	{Opt_nostrict,	"nostrict"},
423 	{Opt_bs,	"bs=%u"},
424 	{Opt_unhide,	"unhide"},
425 	{Opt_undelete,	"undelete"},
426 	{Opt_noadinicb,	"noadinicb"},
427 	{Opt_adinicb,	"adinicb"},
428 	{Opt_shortad,	"shortad"},
429 	{Opt_longad,	"longad"},
430 	{Opt_uforget,	"uid=forget"},
431 	{Opt_uignore,	"uid=ignore"},
432 	{Opt_gforget,	"gid=forget"},
433 	{Opt_gignore,	"gid=ignore"},
434 	{Opt_gid,	"gid=%u"},
435 	{Opt_uid,	"uid=%u"},
436 	{Opt_umask,	"umask=%o"},
437 	{Opt_session,	"session=%u"},
438 	{Opt_lastblock,	"lastblock=%u"},
439 	{Opt_anchor,	"anchor=%u"},
440 	{Opt_volume,	"volume=%u"},
441 	{Opt_partition,	"partition=%u"},
442 	{Opt_fileset,	"fileset=%u"},
443 	{Opt_rootdir,	"rootdir=%u"},
444 	{Opt_utf8,	"utf8"},
445 	{Opt_iocharset,	"iocharset=%s"},
446 	{Opt_fmode,     "mode=%o"},
447 	{Opt_dmode,     "dmode=%o"},
448 	{Opt_err,	NULL}
449 };
450 
451 static int udf_parse_options(char *options, struct udf_options *uopt,
452 			     bool remount)
453 {
454 	char *p;
455 	int option;
456 	unsigned int uv;
457 
458 	uopt->novrs = 0;
459 	uopt->session = 0xFFFFFFFF;
460 	uopt->lastblock = 0;
461 	uopt->anchor = 0;
462 
463 	if (!options)
464 		return 1;
465 
466 	while ((p = strsep(&options, ",")) != NULL) {
467 		substring_t args[MAX_OPT_ARGS];
468 		int token;
469 		unsigned n;
470 		if (!*p)
471 			continue;
472 
473 		token = match_token(p, tokens, args);
474 		switch (token) {
475 		case Opt_novrs:
476 			uopt->novrs = 1;
477 			break;
478 		case Opt_bs:
479 			if (match_int(&args[0], &option))
480 				return 0;
481 			n = option;
482 			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
483 				return 0;
484 			uopt->blocksize = n;
485 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
486 			break;
487 		case Opt_unhide:
488 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
489 			break;
490 		case Opt_undelete:
491 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
492 			break;
493 		case Opt_noadinicb:
494 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
495 			break;
496 		case Opt_adinicb:
497 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
498 			break;
499 		case Opt_shortad:
500 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
501 			break;
502 		case Opt_longad:
503 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
504 			break;
505 		case Opt_gid:
506 			if (match_uint(args, &uv))
507 				return 0;
508 			uopt->gid = make_kgid(current_user_ns(), uv);
509 			if (!gid_valid(uopt->gid))
510 				return 0;
511 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
512 			break;
513 		case Opt_uid:
514 			if (match_uint(args, &uv))
515 				return 0;
516 			uopt->uid = make_kuid(current_user_ns(), uv);
517 			if (!uid_valid(uopt->uid))
518 				return 0;
519 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
520 			break;
521 		case Opt_umask:
522 			if (match_octal(args, &option))
523 				return 0;
524 			uopt->umask = option;
525 			break;
526 		case Opt_nostrict:
527 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
528 			break;
529 		case Opt_session:
530 			if (match_int(args, &option))
531 				return 0;
532 			uopt->session = option;
533 			if (!remount)
534 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
535 			break;
536 		case Opt_lastblock:
537 			if (match_int(args, &option))
538 				return 0;
539 			uopt->lastblock = option;
540 			if (!remount)
541 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
542 			break;
543 		case Opt_anchor:
544 			if (match_int(args, &option))
545 				return 0;
546 			uopt->anchor = option;
547 			break;
548 		case Opt_volume:
549 		case Opt_partition:
550 		case Opt_fileset:
551 		case Opt_rootdir:
552 			/* Ignored (never implemented properly) */
553 			break;
554 		case Opt_utf8:
555 			if (!remount) {
556 				unload_nls(uopt->nls_map);
557 				uopt->nls_map = NULL;
558 			}
559 			break;
560 		case Opt_iocharset:
561 			if (!remount) {
562 				unload_nls(uopt->nls_map);
563 				uopt->nls_map = NULL;
564 			}
565 			/* When nls_map is not loaded then UTF-8 is used */
566 			if (!remount && strcmp(args[0].from, "utf8") != 0) {
567 				uopt->nls_map = load_nls(args[0].from);
568 				if (!uopt->nls_map) {
569 					pr_err("iocharset %s not found\n",
570 						args[0].from);
571 					return 0;
572 				}
573 			}
574 			break;
575 		case Opt_uforget:
576 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
577 			break;
578 		case Opt_uignore:
579 		case Opt_gignore:
580 			/* These options are superseeded by uid=<number> */
581 			break;
582 		case Opt_gforget:
583 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
584 			break;
585 		case Opt_fmode:
586 			if (match_octal(args, &option))
587 				return 0;
588 			uopt->fmode = option & 0777;
589 			break;
590 		case Opt_dmode:
591 			if (match_octal(args, &option))
592 				return 0;
593 			uopt->dmode = option & 0777;
594 			break;
595 		default:
596 			pr_err("bad mount option \"%s\" or missing value\n", p);
597 			return 0;
598 		}
599 	}
600 	return 1;
601 }
602 
603 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
604 {
605 	struct udf_options uopt;
606 	struct udf_sb_info *sbi = UDF_SB(sb);
607 	int error = 0;
608 
609 	if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
610 		return -EACCES;
611 
612 	sync_filesystem(sb);
613 
614 	uopt.flags = sbi->s_flags;
615 	uopt.uid   = sbi->s_uid;
616 	uopt.gid   = sbi->s_gid;
617 	uopt.umask = sbi->s_umask;
618 	uopt.fmode = sbi->s_fmode;
619 	uopt.dmode = sbi->s_dmode;
620 	uopt.nls_map = NULL;
621 
622 	if (!udf_parse_options(options, &uopt, true))
623 		return -EINVAL;
624 
625 	write_lock(&sbi->s_cred_lock);
626 	sbi->s_flags = uopt.flags;
627 	sbi->s_uid   = uopt.uid;
628 	sbi->s_gid   = uopt.gid;
629 	sbi->s_umask = uopt.umask;
630 	sbi->s_fmode = uopt.fmode;
631 	sbi->s_dmode = uopt.dmode;
632 	write_unlock(&sbi->s_cred_lock);
633 
634 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
635 		goto out_unlock;
636 
637 	if (*flags & SB_RDONLY)
638 		udf_close_lvid(sb);
639 	else
640 		udf_open_lvid(sb);
641 
642 out_unlock:
643 	return error;
644 }
645 
646 /*
647  * Check VSD descriptor. Returns -1 in case we are at the end of volume
648  * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
649  * we found one of NSR descriptors we are looking for.
650  */
651 static int identify_vsd(const struct volStructDesc *vsd)
652 {
653 	int ret = 0;
654 
655 	if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
656 		switch (vsd->structType) {
657 		case 0:
658 			udf_debug("ISO9660 Boot Record found\n");
659 			break;
660 		case 1:
661 			udf_debug("ISO9660 Primary Volume Descriptor found\n");
662 			break;
663 		case 2:
664 			udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
665 			break;
666 		case 3:
667 			udf_debug("ISO9660 Volume Partition Descriptor found\n");
668 			break;
669 		case 255:
670 			udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
671 			break;
672 		default:
673 			udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
674 			break;
675 		}
676 	} else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
677 		; /* ret = 0 */
678 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
679 		ret = 1;
680 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
681 		ret = 1;
682 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
683 		; /* ret = 0 */
684 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
685 		; /* ret = 0 */
686 	else {
687 		/* TEA01 or invalid id : end of volume recognition area */
688 		ret = -1;
689 	}
690 
691 	return ret;
692 }
693 
694 /*
695  * Check Volume Structure Descriptors (ECMA 167 2/9.1)
696  * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
697  * @return   1 if NSR02 or NSR03 found,
698  *	    -1 if first sector read error, 0 otherwise
699  */
700 static int udf_check_vsd(struct super_block *sb)
701 {
702 	struct volStructDesc *vsd = NULL;
703 	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
704 	int sectorsize;
705 	struct buffer_head *bh = NULL;
706 	int nsr = 0;
707 	struct udf_sb_info *sbi;
708 	loff_t session_offset;
709 
710 	sbi = UDF_SB(sb);
711 	if (sb->s_blocksize < sizeof(struct volStructDesc))
712 		sectorsize = sizeof(struct volStructDesc);
713 	else
714 		sectorsize = sb->s_blocksize;
715 
716 	session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits;
717 	sector += session_offset;
718 
719 	udf_debug("Starting at sector %u (%lu byte sectors)\n",
720 		  (unsigned int)(sector >> sb->s_blocksize_bits),
721 		  sb->s_blocksize);
722 	/* Process the sequence (if applicable). The hard limit on the sector
723 	 * offset is arbitrary, hopefully large enough so that all valid UDF
724 	 * filesystems will be recognised. There is no mention of an upper
725 	 * bound to the size of the volume recognition area in the standard.
726 	 *  The limit will prevent the code to read all the sectors of a
727 	 * specially crafted image (like a bluray disc full of CD001 sectors),
728 	 * potentially causing minutes or even hours of uninterruptible I/O
729 	 * activity. This actually happened with uninitialised SSD partitions
730 	 * (all 0xFF) before the check for the limit and all valid IDs were
731 	 * added */
732 	for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
733 		/* Read a block */
734 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
735 		if (!bh)
736 			break;
737 
738 		vsd = (struct volStructDesc *)(bh->b_data +
739 					      (sector & (sb->s_blocksize - 1)));
740 		nsr = identify_vsd(vsd);
741 		/* Found NSR or end? */
742 		if (nsr) {
743 			brelse(bh);
744 			break;
745 		}
746 		/*
747 		 * Special handling for improperly formatted VRS (e.g., Win10)
748 		 * where components are separated by 2048 bytes even though
749 		 * sectors are 4K
750 		 */
751 		if (sb->s_blocksize == 4096) {
752 			nsr = identify_vsd(vsd + 1);
753 			/* Ignore unknown IDs... */
754 			if (nsr < 0)
755 				nsr = 0;
756 		}
757 		brelse(bh);
758 	}
759 
760 	if (nsr > 0)
761 		return 1;
762 	else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET)
763 		return -1;
764 	else
765 		return 0;
766 }
767 
768 static int udf_verify_domain_identifier(struct super_block *sb,
769 					struct regid *ident, char *dname)
770 {
771 	struct domainIdentSuffix *suffix;
772 
773 	if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
774 		udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
775 		goto force_ro;
776 	}
777 	if (ident->flags & ENTITYID_FLAGS_DIRTY) {
778 		udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
779 			 dname);
780 		goto force_ro;
781 	}
782 	suffix = (struct domainIdentSuffix *)ident->identSuffix;
783 	if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
784 	    (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
785 		if (!sb_rdonly(sb)) {
786 			udf_warn(sb, "Descriptor for %s marked write protected."
787 				 " Forcing read only mount.\n", dname);
788 		}
789 		goto force_ro;
790 	}
791 	return 0;
792 
793 force_ro:
794 	if (!sb_rdonly(sb))
795 		return -EACCES;
796 	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
797 	return 0;
798 }
799 
800 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
801 			    struct kernel_lb_addr *root)
802 {
803 	int ret;
804 
805 	ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
806 	if (ret < 0)
807 		return ret;
808 
809 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
810 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
811 
812 	udf_debug("Rootdir at block=%u, partition=%u\n",
813 		  root->logicalBlockNum, root->partitionReferenceNum);
814 	return 0;
815 }
816 
817 static int udf_find_fileset(struct super_block *sb,
818 			    struct kernel_lb_addr *fileset,
819 			    struct kernel_lb_addr *root)
820 {
821 	struct buffer_head *bh = NULL;
822 	uint16_t ident;
823 	int ret;
824 
825 	if (fileset->logicalBlockNum == 0xFFFFFFFF &&
826 	    fileset->partitionReferenceNum == 0xFFFF)
827 		return -EINVAL;
828 
829 	bh = udf_read_ptagged(sb, fileset, 0, &ident);
830 	if (!bh)
831 		return -EIO;
832 	if (ident != TAG_IDENT_FSD) {
833 		brelse(bh);
834 		return -EINVAL;
835 	}
836 
837 	udf_debug("Fileset at block=%u, partition=%u\n",
838 		  fileset->logicalBlockNum, fileset->partitionReferenceNum);
839 
840 	UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
841 	ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
842 	brelse(bh);
843 	return ret;
844 }
845 
846 /*
847  * Load primary Volume Descriptor Sequence
848  *
849  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
850  * should be tried.
851  */
852 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
853 {
854 	struct primaryVolDesc *pvoldesc;
855 	uint8_t *outstr;
856 	struct buffer_head *bh;
857 	uint16_t ident;
858 	int ret;
859 	struct timestamp *ts;
860 
861 	outstr = kmalloc(128, GFP_NOFS);
862 	if (!outstr)
863 		return -ENOMEM;
864 
865 	bh = udf_read_tagged(sb, block, block, &ident);
866 	if (!bh) {
867 		ret = -EAGAIN;
868 		goto out2;
869 	}
870 
871 	if (ident != TAG_IDENT_PVD) {
872 		ret = -EIO;
873 		goto out_bh;
874 	}
875 
876 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
877 
878 	udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
879 			      pvoldesc->recordingDateAndTime);
880 	ts = &pvoldesc->recordingDateAndTime;
881 	udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
882 		  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
883 		  ts->minute, le16_to_cpu(ts->typeAndTimezone));
884 
885 	ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
886 	if (ret < 0) {
887 		strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
888 		pr_warn("incorrect volume identification, setting to "
889 			"'InvalidName'\n");
890 	} else {
891 		strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
892 	}
893 	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
894 
895 	ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
896 	if (ret < 0) {
897 		ret = 0;
898 		goto out_bh;
899 	}
900 	outstr[ret] = 0;
901 	udf_debug("volSetIdent[] = '%s'\n", outstr);
902 
903 	ret = 0;
904 out_bh:
905 	brelse(bh);
906 out2:
907 	kfree(outstr);
908 	return ret;
909 }
910 
911 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
912 					u32 meta_file_loc, u32 partition_ref)
913 {
914 	struct kernel_lb_addr addr;
915 	struct inode *metadata_fe;
916 
917 	addr.logicalBlockNum = meta_file_loc;
918 	addr.partitionReferenceNum = partition_ref;
919 
920 	metadata_fe = udf_iget_special(sb, &addr);
921 
922 	if (IS_ERR(metadata_fe)) {
923 		udf_warn(sb, "metadata inode efe not found\n");
924 		return metadata_fe;
925 	}
926 	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
927 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
928 		iput(metadata_fe);
929 		return ERR_PTR(-EIO);
930 	}
931 
932 	return metadata_fe;
933 }
934 
935 static int udf_load_metadata_files(struct super_block *sb, int partition,
936 				   int type1_index)
937 {
938 	struct udf_sb_info *sbi = UDF_SB(sb);
939 	struct udf_part_map *map;
940 	struct udf_meta_data *mdata;
941 	struct kernel_lb_addr addr;
942 	struct inode *fe;
943 
944 	map = &sbi->s_partmaps[partition];
945 	mdata = &map->s_type_specific.s_metadata;
946 	mdata->s_phys_partition_ref = type1_index;
947 
948 	/* metadata address */
949 	udf_debug("Metadata file location: block = %u part = %u\n",
950 		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
951 
952 	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
953 					 mdata->s_phys_partition_ref);
954 	if (IS_ERR(fe)) {
955 		/* mirror file entry */
956 		udf_debug("Mirror metadata file location: block = %u part = %u\n",
957 			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
958 
959 		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
960 						 mdata->s_phys_partition_ref);
961 
962 		if (IS_ERR(fe)) {
963 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
964 			return PTR_ERR(fe);
965 		}
966 		mdata->s_mirror_fe = fe;
967 	} else
968 		mdata->s_metadata_fe = fe;
969 
970 
971 	/*
972 	 * bitmap file entry
973 	 * Note:
974 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
975 	*/
976 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
977 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
978 		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
979 
980 		udf_debug("Bitmap file location: block = %u part = %u\n",
981 			  addr.logicalBlockNum, addr.partitionReferenceNum);
982 
983 		fe = udf_iget_special(sb, &addr);
984 		if (IS_ERR(fe)) {
985 			if (sb_rdonly(sb))
986 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
987 			else {
988 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
989 				return PTR_ERR(fe);
990 			}
991 		} else
992 			mdata->s_bitmap_fe = fe;
993 	}
994 
995 	udf_debug("udf_load_metadata_files Ok\n");
996 	return 0;
997 }
998 
999 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1000 {
1001 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1002 	return DIV_ROUND_UP(map->s_partition_len +
1003 			    (sizeof(struct spaceBitmapDesc) << 3),
1004 			    sb->s_blocksize * 8);
1005 }
1006 
1007 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1008 {
1009 	struct udf_bitmap *bitmap;
1010 	int nr_groups = udf_compute_nr_groups(sb, index);
1011 
1012 	bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups),
1013 			  GFP_KERNEL);
1014 	if (!bitmap)
1015 		return NULL;
1016 
1017 	bitmap->s_nr_groups = nr_groups;
1018 	return bitmap;
1019 }
1020 
1021 static int check_partition_desc(struct super_block *sb,
1022 				struct partitionDesc *p,
1023 				struct udf_part_map *map)
1024 {
1025 	bool umap, utable, fmap, ftable;
1026 	struct partitionHeaderDesc *phd;
1027 
1028 	switch (le32_to_cpu(p->accessType)) {
1029 	case PD_ACCESS_TYPE_READ_ONLY:
1030 	case PD_ACCESS_TYPE_WRITE_ONCE:
1031 	case PD_ACCESS_TYPE_NONE:
1032 		goto force_ro;
1033 	}
1034 
1035 	/* No Partition Header Descriptor? */
1036 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1037 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1038 		goto force_ro;
1039 
1040 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1041 	utable = phd->unallocSpaceTable.extLength;
1042 	umap = phd->unallocSpaceBitmap.extLength;
1043 	ftable = phd->freedSpaceTable.extLength;
1044 	fmap = phd->freedSpaceBitmap.extLength;
1045 
1046 	/* No allocation info? */
1047 	if (!utable && !umap && !ftable && !fmap)
1048 		goto force_ro;
1049 
1050 	/* We don't support blocks that require erasing before overwrite */
1051 	if (ftable || fmap)
1052 		goto force_ro;
1053 	/* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1054 	if (utable && umap)
1055 		goto force_ro;
1056 
1057 	if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1058 	    map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1059 	    map->s_partition_type == UDF_METADATA_MAP25)
1060 		goto force_ro;
1061 
1062 	return 0;
1063 force_ro:
1064 	if (!sb_rdonly(sb))
1065 		return -EACCES;
1066 	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1067 	return 0;
1068 }
1069 
1070 static int udf_fill_partdesc_info(struct super_block *sb,
1071 		struct partitionDesc *p, int p_index)
1072 {
1073 	struct udf_part_map *map;
1074 	struct udf_sb_info *sbi = UDF_SB(sb);
1075 	struct partitionHeaderDesc *phd;
1076 	int err;
1077 
1078 	map = &sbi->s_partmaps[p_index];
1079 
1080 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1081 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1082 
1083 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1084 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1085 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1086 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1087 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1088 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1089 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1090 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1091 
1092 	udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1093 		  p_index, map->s_partition_type,
1094 		  map->s_partition_root, map->s_partition_len);
1095 
1096 	err = check_partition_desc(sb, p, map);
1097 	if (err)
1098 		return err;
1099 
1100 	/*
1101 	 * Skip loading allocation info it we cannot ever write to the fs.
1102 	 * This is a correctness thing as we may have decided to force ro mount
1103 	 * to avoid allocation info we don't support.
1104 	 */
1105 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1106 		return 0;
1107 
1108 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1109 	if (phd->unallocSpaceTable.extLength) {
1110 		struct kernel_lb_addr loc = {
1111 			.logicalBlockNum = le32_to_cpu(
1112 				phd->unallocSpaceTable.extPosition),
1113 			.partitionReferenceNum = p_index,
1114 		};
1115 		struct inode *inode;
1116 
1117 		inode = udf_iget_special(sb, &loc);
1118 		if (IS_ERR(inode)) {
1119 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1120 				  p_index);
1121 			return PTR_ERR(inode);
1122 		}
1123 		map->s_uspace.s_table = inode;
1124 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1125 		udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1126 			  p_index, map->s_uspace.s_table->i_ino);
1127 	}
1128 
1129 	if (phd->unallocSpaceBitmap.extLength) {
1130 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1131 		if (!bitmap)
1132 			return -ENOMEM;
1133 		map->s_uspace.s_bitmap = bitmap;
1134 		bitmap->s_extPosition = le32_to_cpu(
1135 				phd->unallocSpaceBitmap.extPosition);
1136 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1137 		udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1138 			  p_index, bitmap->s_extPosition);
1139 	}
1140 
1141 	return 0;
1142 }
1143 
1144 static void udf_find_vat_block(struct super_block *sb, int p_index,
1145 			       int type1_index, sector_t start_block)
1146 {
1147 	struct udf_sb_info *sbi = UDF_SB(sb);
1148 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1149 	sector_t vat_block;
1150 	struct kernel_lb_addr ino;
1151 	struct inode *inode;
1152 
1153 	/*
1154 	 * VAT file entry is in the last recorded block. Some broken disks have
1155 	 * it a few blocks before so try a bit harder...
1156 	 */
1157 	ino.partitionReferenceNum = type1_index;
1158 	for (vat_block = start_block;
1159 	     vat_block >= map->s_partition_root &&
1160 	     vat_block >= start_block - 3; vat_block--) {
1161 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1162 		inode = udf_iget_special(sb, &ino);
1163 		if (!IS_ERR(inode)) {
1164 			sbi->s_vat_inode = inode;
1165 			break;
1166 		}
1167 	}
1168 }
1169 
1170 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1171 {
1172 	struct udf_sb_info *sbi = UDF_SB(sb);
1173 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1174 	struct buffer_head *bh = NULL;
1175 	struct udf_inode_info *vati;
1176 	uint32_t pos;
1177 	struct virtualAllocationTable20 *vat20;
1178 	sector_t blocks = sb_bdev_nr_blocks(sb);
1179 
1180 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1181 	if (!sbi->s_vat_inode &&
1182 	    sbi->s_last_block != blocks - 1) {
1183 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1184 			  (unsigned long)sbi->s_last_block,
1185 			  (unsigned long)blocks - 1);
1186 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1187 	}
1188 	if (!sbi->s_vat_inode)
1189 		return -EIO;
1190 
1191 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1192 		map->s_type_specific.s_virtual.s_start_offset = 0;
1193 		map->s_type_specific.s_virtual.s_num_entries =
1194 			(sbi->s_vat_inode->i_size - 36) >> 2;
1195 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1196 		vati = UDF_I(sbi->s_vat_inode);
1197 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1198 			pos = udf_block_map(sbi->s_vat_inode, 0);
1199 			bh = sb_bread(sb, pos);
1200 			if (!bh)
1201 				return -EIO;
1202 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1203 		} else {
1204 			vat20 = (struct virtualAllocationTable20 *)
1205 							vati->i_data;
1206 		}
1207 
1208 		map->s_type_specific.s_virtual.s_start_offset =
1209 			le16_to_cpu(vat20->lengthHeader);
1210 		map->s_type_specific.s_virtual.s_num_entries =
1211 			(sbi->s_vat_inode->i_size -
1212 				map->s_type_specific.s_virtual.
1213 					s_start_offset) >> 2;
1214 		brelse(bh);
1215 	}
1216 	return 0;
1217 }
1218 
1219 /*
1220  * Load partition descriptor block
1221  *
1222  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1223  * sequence.
1224  */
1225 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1226 {
1227 	struct buffer_head *bh;
1228 	struct partitionDesc *p;
1229 	struct udf_part_map *map;
1230 	struct udf_sb_info *sbi = UDF_SB(sb);
1231 	int i, type1_idx;
1232 	uint16_t partitionNumber;
1233 	uint16_t ident;
1234 	int ret;
1235 
1236 	bh = udf_read_tagged(sb, block, block, &ident);
1237 	if (!bh)
1238 		return -EAGAIN;
1239 	if (ident != TAG_IDENT_PD) {
1240 		ret = 0;
1241 		goto out_bh;
1242 	}
1243 
1244 	p = (struct partitionDesc *)bh->b_data;
1245 	partitionNumber = le16_to_cpu(p->partitionNumber);
1246 
1247 	/* First scan for TYPE1 and SPARABLE partitions */
1248 	for (i = 0; i < sbi->s_partitions; i++) {
1249 		map = &sbi->s_partmaps[i];
1250 		udf_debug("Searching map: (%u == %u)\n",
1251 			  map->s_partition_num, partitionNumber);
1252 		if (map->s_partition_num == partitionNumber &&
1253 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1254 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1255 			break;
1256 	}
1257 
1258 	if (i >= sbi->s_partitions) {
1259 		udf_debug("Partition (%u) not found in partition map\n",
1260 			  partitionNumber);
1261 		ret = 0;
1262 		goto out_bh;
1263 	}
1264 
1265 	ret = udf_fill_partdesc_info(sb, p, i);
1266 	if (ret < 0)
1267 		goto out_bh;
1268 
1269 	/*
1270 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1271 	 * PHYSICAL partitions are already set up
1272 	 */
1273 	type1_idx = i;
1274 	map = NULL; /* supress 'maybe used uninitialized' warning */
1275 	for (i = 0; i < sbi->s_partitions; i++) {
1276 		map = &sbi->s_partmaps[i];
1277 
1278 		if (map->s_partition_num == partitionNumber &&
1279 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1280 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1281 		     map->s_partition_type == UDF_METADATA_MAP25))
1282 			break;
1283 	}
1284 
1285 	if (i >= sbi->s_partitions) {
1286 		ret = 0;
1287 		goto out_bh;
1288 	}
1289 
1290 	ret = udf_fill_partdesc_info(sb, p, i);
1291 	if (ret < 0)
1292 		goto out_bh;
1293 
1294 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1295 		ret = udf_load_metadata_files(sb, i, type1_idx);
1296 		if (ret < 0) {
1297 			udf_err(sb, "error loading MetaData partition map %d\n",
1298 				i);
1299 			goto out_bh;
1300 		}
1301 	} else {
1302 		/*
1303 		 * If we have a partition with virtual map, we don't handle
1304 		 * writing to it (we overwrite blocks instead of relocating
1305 		 * them).
1306 		 */
1307 		if (!sb_rdonly(sb)) {
1308 			ret = -EACCES;
1309 			goto out_bh;
1310 		}
1311 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1312 		ret = udf_load_vat(sb, i, type1_idx);
1313 		if (ret < 0)
1314 			goto out_bh;
1315 	}
1316 	ret = 0;
1317 out_bh:
1318 	/* In case loading failed, we handle cleanup in udf_fill_super */
1319 	brelse(bh);
1320 	return ret;
1321 }
1322 
1323 static int udf_load_sparable_map(struct super_block *sb,
1324 				 struct udf_part_map *map,
1325 				 struct sparablePartitionMap *spm)
1326 {
1327 	uint32_t loc;
1328 	uint16_t ident;
1329 	struct sparingTable *st;
1330 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1331 	int i;
1332 	struct buffer_head *bh;
1333 
1334 	map->s_partition_type = UDF_SPARABLE_MAP15;
1335 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1336 	if (!is_power_of_2(sdata->s_packet_len)) {
1337 		udf_err(sb, "error loading logical volume descriptor: "
1338 			"Invalid packet length %u\n",
1339 			(unsigned)sdata->s_packet_len);
1340 		return -EIO;
1341 	}
1342 	if (spm->numSparingTables > 4) {
1343 		udf_err(sb, "error loading logical volume descriptor: "
1344 			"Too many sparing tables (%d)\n",
1345 			(int)spm->numSparingTables);
1346 		return -EIO;
1347 	}
1348 	if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1349 		udf_err(sb, "error loading logical volume descriptor: "
1350 			"Too big sparing table size (%u)\n",
1351 			le32_to_cpu(spm->sizeSparingTable));
1352 		return -EIO;
1353 	}
1354 
1355 	for (i = 0; i < spm->numSparingTables; i++) {
1356 		loc = le32_to_cpu(spm->locSparingTable[i]);
1357 		bh = udf_read_tagged(sb, loc, loc, &ident);
1358 		if (!bh)
1359 			continue;
1360 
1361 		st = (struct sparingTable *)bh->b_data;
1362 		if (ident != 0 ||
1363 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1364 			    strlen(UDF_ID_SPARING)) ||
1365 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1366 							sb->s_blocksize) {
1367 			brelse(bh);
1368 			continue;
1369 		}
1370 
1371 		sdata->s_spar_map[i] = bh;
1372 	}
1373 	map->s_partition_func = udf_get_pblock_spar15;
1374 	return 0;
1375 }
1376 
1377 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1378 			       struct kernel_lb_addr *fileset)
1379 {
1380 	struct logicalVolDesc *lvd;
1381 	int i, offset;
1382 	uint8_t type;
1383 	struct udf_sb_info *sbi = UDF_SB(sb);
1384 	struct genericPartitionMap *gpm;
1385 	uint16_t ident;
1386 	struct buffer_head *bh;
1387 	unsigned int table_len;
1388 	int ret;
1389 
1390 	bh = udf_read_tagged(sb, block, block, &ident);
1391 	if (!bh)
1392 		return -EAGAIN;
1393 	BUG_ON(ident != TAG_IDENT_LVD);
1394 	lvd = (struct logicalVolDesc *)bh->b_data;
1395 	table_len = le32_to_cpu(lvd->mapTableLength);
1396 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1397 		udf_err(sb, "error loading logical volume descriptor: "
1398 			"Partition table too long (%u > %lu)\n", table_len,
1399 			sb->s_blocksize - sizeof(*lvd));
1400 		ret = -EIO;
1401 		goto out_bh;
1402 	}
1403 
1404 	ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1405 					   "logical volume");
1406 	if (ret)
1407 		goto out_bh;
1408 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1409 	if (ret)
1410 		goto out_bh;
1411 
1412 	for (i = 0, offset = 0;
1413 	     i < sbi->s_partitions && offset < table_len;
1414 	     i++, offset += gpm->partitionMapLength) {
1415 		struct udf_part_map *map = &sbi->s_partmaps[i];
1416 		gpm = (struct genericPartitionMap *)
1417 				&(lvd->partitionMaps[offset]);
1418 		type = gpm->partitionMapType;
1419 		if (type == 1) {
1420 			struct genericPartitionMap1 *gpm1 =
1421 				(struct genericPartitionMap1 *)gpm;
1422 			map->s_partition_type = UDF_TYPE1_MAP15;
1423 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1424 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1425 			map->s_partition_func = NULL;
1426 		} else if (type == 2) {
1427 			struct udfPartitionMap2 *upm2 =
1428 						(struct udfPartitionMap2 *)gpm;
1429 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1430 						strlen(UDF_ID_VIRTUAL))) {
1431 				u16 suf =
1432 					le16_to_cpu(((__le16 *)upm2->partIdent.
1433 							identSuffix)[0]);
1434 				if (suf < 0x0200) {
1435 					map->s_partition_type =
1436 							UDF_VIRTUAL_MAP15;
1437 					map->s_partition_func =
1438 							udf_get_pblock_virt15;
1439 				} else {
1440 					map->s_partition_type =
1441 							UDF_VIRTUAL_MAP20;
1442 					map->s_partition_func =
1443 							udf_get_pblock_virt20;
1444 				}
1445 			} else if (!strncmp(upm2->partIdent.ident,
1446 						UDF_ID_SPARABLE,
1447 						strlen(UDF_ID_SPARABLE))) {
1448 				ret = udf_load_sparable_map(sb, map,
1449 					(struct sparablePartitionMap *)gpm);
1450 				if (ret < 0)
1451 					goto out_bh;
1452 			} else if (!strncmp(upm2->partIdent.ident,
1453 						UDF_ID_METADATA,
1454 						strlen(UDF_ID_METADATA))) {
1455 				struct udf_meta_data *mdata =
1456 					&map->s_type_specific.s_metadata;
1457 				struct metadataPartitionMap *mdm =
1458 						(struct metadataPartitionMap *)
1459 						&(lvd->partitionMaps[offset]);
1460 				udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1461 					  i, type, UDF_ID_METADATA);
1462 
1463 				map->s_partition_type = UDF_METADATA_MAP25;
1464 				map->s_partition_func = udf_get_pblock_meta25;
1465 
1466 				mdata->s_meta_file_loc   =
1467 					le32_to_cpu(mdm->metadataFileLoc);
1468 				mdata->s_mirror_file_loc =
1469 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1470 				mdata->s_bitmap_file_loc =
1471 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1472 				mdata->s_alloc_unit_size =
1473 					le32_to_cpu(mdm->allocUnitSize);
1474 				mdata->s_align_unit_size =
1475 					le16_to_cpu(mdm->alignUnitSize);
1476 				if (mdm->flags & 0x01)
1477 					mdata->s_flags |= MF_DUPLICATE_MD;
1478 
1479 				udf_debug("Metadata Ident suffix=0x%x\n",
1480 					  le16_to_cpu(*(__le16 *)
1481 						      mdm->partIdent.identSuffix));
1482 				udf_debug("Metadata part num=%u\n",
1483 					  le16_to_cpu(mdm->partitionNum));
1484 				udf_debug("Metadata part alloc unit size=%u\n",
1485 					  le32_to_cpu(mdm->allocUnitSize));
1486 				udf_debug("Metadata file loc=%u\n",
1487 					  le32_to_cpu(mdm->metadataFileLoc));
1488 				udf_debug("Mirror file loc=%u\n",
1489 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1490 				udf_debug("Bitmap file loc=%u\n",
1491 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1492 				udf_debug("Flags: %d %u\n",
1493 					  mdata->s_flags, mdm->flags);
1494 			} else {
1495 				udf_debug("Unknown ident: %s\n",
1496 					  upm2->partIdent.ident);
1497 				continue;
1498 			}
1499 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1500 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1501 		}
1502 		udf_debug("Partition (%d:%u) type %u on volume %u\n",
1503 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1504 	}
1505 
1506 	if (fileset) {
1507 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1508 
1509 		*fileset = lelb_to_cpu(la->extLocation);
1510 		udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1511 			  fileset->logicalBlockNum,
1512 			  fileset->partitionReferenceNum);
1513 	}
1514 	if (lvd->integritySeqExt.extLength)
1515 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1516 	ret = 0;
1517 
1518 	if (!sbi->s_lvid_bh) {
1519 		/* We can't generate unique IDs without a valid LVID */
1520 		if (sb_rdonly(sb)) {
1521 			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1522 		} else {
1523 			udf_warn(sb, "Damaged or missing LVID, forcing "
1524 				     "readonly mount\n");
1525 			ret = -EACCES;
1526 		}
1527 	}
1528 out_bh:
1529 	brelse(bh);
1530 	return ret;
1531 }
1532 
1533 /*
1534  * Find the prevailing Logical Volume Integrity Descriptor.
1535  */
1536 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1537 {
1538 	struct buffer_head *bh, *final_bh;
1539 	uint16_t ident;
1540 	struct udf_sb_info *sbi = UDF_SB(sb);
1541 	struct logicalVolIntegrityDesc *lvid;
1542 	int indirections = 0;
1543 	u32 parts, impuselen;
1544 
1545 	while (++indirections <= UDF_MAX_LVID_NESTING) {
1546 		final_bh = NULL;
1547 		while (loc.extLength > 0 &&
1548 			(bh = udf_read_tagged(sb, loc.extLocation,
1549 					loc.extLocation, &ident))) {
1550 			if (ident != TAG_IDENT_LVID) {
1551 				brelse(bh);
1552 				break;
1553 			}
1554 
1555 			brelse(final_bh);
1556 			final_bh = bh;
1557 
1558 			loc.extLength -= sb->s_blocksize;
1559 			loc.extLocation++;
1560 		}
1561 
1562 		if (!final_bh)
1563 			return;
1564 
1565 		brelse(sbi->s_lvid_bh);
1566 		sbi->s_lvid_bh = final_bh;
1567 
1568 		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1569 		if (lvid->nextIntegrityExt.extLength == 0)
1570 			goto check;
1571 
1572 		loc = leea_to_cpu(lvid->nextIntegrityExt);
1573 	}
1574 
1575 	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1576 		UDF_MAX_LVID_NESTING);
1577 out_err:
1578 	brelse(sbi->s_lvid_bh);
1579 	sbi->s_lvid_bh = NULL;
1580 	return;
1581 check:
1582 	parts = le32_to_cpu(lvid->numOfPartitions);
1583 	impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1584 	if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1585 	    sizeof(struct logicalVolIntegrityDesc) + impuselen +
1586 	    2 * parts * sizeof(u32) > sb->s_blocksize) {
1587 		udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1588 			 "ignoring.\n", parts, impuselen);
1589 		goto out_err;
1590 	}
1591 }
1592 
1593 /*
1594  * Step for reallocation of table of partition descriptor sequence numbers.
1595  * Must be power of 2.
1596  */
1597 #define PART_DESC_ALLOC_STEP 32
1598 
1599 struct part_desc_seq_scan_data {
1600 	struct udf_vds_record rec;
1601 	u32 partnum;
1602 };
1603 
1604 struct desc_seq_scan_data {
1605 	struct udf_vds_record vds[VDS_POS_LENGTH];
1606 	unsigned int size_part_descs;
1607 	unsigned int num_part_descs;
1608 	struct part_desc_seq_scan_data *part_descs_loc;
1609 };
1610 
1611 static struct udf_vds_record *handle_partition_descriptor(
1612 				struct buffer_head *bh,
1613 				struct desc_seq_scan_data *data)
1614 {
1615 	struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1616 	int partnum;
1617 	int i;
1618 
1619 	partnum = le16_to_cpu(desc->partitionNumber);
1620 	for (i = 0; i < data->num_part_descs; i++)
1621 		if (partnum == data->part_descs_loc[i].partnum)
1622 			return &(data->part_descs_loc[i].rec);
1623 	if (data->num_part_descs >= data->size_part_descs) {
1624 		struct part_desc_seq_scan_data *new_loc;
1625 		unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1626 
1627 		new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1628 		if (!new_loc)
1629 			return ERR_PTR(-ENOMEM);
1630 		memcpy(new_loc, data->part_descs_loc,
1631 		       data->size_part_descs * sizeof(*new_loc));
1632 		kfree(data->part_descs_loc);
1633 		data->part_descs_loc = new_loc;
1634 		data->size_part_descs = new_size;
1635 	}
1636 	return &(data->part_descs_loc[data->num_part_descs++].rec);
1637 }
1638 
1639 
1640 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1641 		struct buffer_head *bh, struct desc_seq_scan_data *data)
1642 {
1643 	switch (ident) {
1644 	case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1645 		return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1646 	case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1647 		return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1648 	case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1649 		return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1650 	case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1651 		return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1652 	case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1653 		return handle_partition_descriptor(bh, data);
1654 	}
1655 	return NULL;
1656 }
1657 
1658 /*
1659  * Process a main/reserve volume descriptor sequence.
1660  *   @block		First block of first extent of the sequence.
1661  *   @lastblock		Lastblock of first extent of the sequence.
1662  *   @fileset		There we store extent containing root fileset
1663  *
1664  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1665  * sequence
1666  */
1667 static noinline int udf_process_sequence(
1668 		struct super_block *sb,
1669 		sector_t block, sector_t lastblock,
1670 		struct kernel_lb_addr *fileset)
1671 {
1672 	struct buffer_head *bh = NULL;
1673 	struct udf_vds_record *curr;
1674 	struct generic_desc *gd;
1675 	struct volDescPtr *vdp;
1676 	bool done = false;
1677 	uint32_t vdsn;
1678 	uint16_t ident;
1679 	int ret;
1680 	unsigned int indirections = 0;
1681 	struct desc_seq_scan_data data;
1682 	unsigned int i;
1683 
1684 	memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1685 	data.size_part_descs = PART_DESC_ALLOC_STEP;
1686 	data.num_part_descs = 0;
1687 	data.part_descs_loc = kcalloc(data.size_part_descs,
1688 				      sizeof(*data.part_descs_loc),
1689 				      GFP_KERNEL);
1690 	if (!data.part_descs_loc)
1691 		return -ENOMEM;
1692 
1693 	/*
1694 	 * Read the main descriptor sequence and find which descriptors
1695 	 * are in it.
1696 	 */
1697 	for (; (!done && block <= lastblock); block++) {
1698 		bh = udf_read_tagged(sb, block, block, &ident);
1699 		if (!bh)
1700 			break;
1701 
1702 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1703 		gd = (struct generic_desc *)bh->b_data;
1704 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1705 		switch (ident) {
1706 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1707 			if (++indirections > UDF_MAX_TD_NESTING) {
1708 				udf_err(sb, "too many Volume Descriptor "
1709 					"Pointers (max %u supported)\n",
1710 					UDF_MAX_TD_NESTING);
1711 				brelse(bh);
1712 				ret = -EIO;
1713 				goto out;
1714 			}
1715 
1716 			vdp = (struct volDescPtr *)bh->b_data;
1717 			block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1718 			lastblock = le32_to_cpu(
1719 				vdp->nextVolDescSeqExt.extLength) >>
1720 				sb->s_blocksize_bits;
1721 			lastblock += block - 1;
1722 			/* For loop is going to increment 'block' again */
1723 			block--;
1724 			break;
1725 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1726 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1727 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1728 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1729 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1730 			curr = get_volume_descriptor_record(ident, bh, &data);
1731 			if (IS_ERR(curr)) {
1732 				brelse(bh);
1733 				ret = PTR_ERR(curr);
1734 				goto out;
1735 			}
1736 			/* Descriptor we don't care about? */
1737 			if (!curr)
1738 				break;
1739 			if (vdsn >= curr->volDescSeqNum) {
1740 				curr->volDescSeqNum = vdsn;
1741 				curr->block = block;
1742 			}
1743 			break;
1744 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1745 			done = true;
1746 			break;
1747 		}
1748 		brelse(bh);
1749 	}
1750 	/*
1751 	 * Now read interesting descriptors again and process them
1752 	 * in a suitable order
1753 	 */
1754 	if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1755 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1756 		ret = -EAGAIN;
1757 		goto out;
1758 	}
1759 	ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1760 	if (ret < 0)
1761 		goto out;
1762 
1763 	if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1764 		ret = udf_load_logicalvol(sb,
1765 				data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1766 				fileset);
1767 		if (ret < 0)
1768 			goto out;
1769 	}
1770 
1771 	/* Now handle prevailing Partition Descriptors */
1772 	for (i = 0; i < data.num_part_descs; i++) {
1773 		ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1774 		if (ret < 0)
1775 			goto out;
1776 	}
1777 	ret = 0;
1778 out:
1779 	kfree(data.part_descs_loc);
1780 	return ret;
1781 }
1782 
1783 /*
1784  * Load Volume Descriptor Sequence described by anchor in bh
1785  *
1786  * Returns <0 on error, 0 on success
1787  */
1788 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1789 			     struct kernel_lb_addr *fileset)
1790 {
1791 	struct anchorVolDescPtr *anchor;
1792 	sector_t main_s, main_e, reserve_s, reserve_e;
1793 	int ret;
1794 
1795 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1796 
1797 	/* Locate the main sequence */
1798 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1799 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1800 	main_e = main_e >> sb->s_blocksize_bits;
1801 	main_e += main_s - 1;
1802 
1803 	/* Locate the reserve sequence */
1804 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1805 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1806 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1807 	reserve_e += reserve_s - 1;
1808 
1809 	/* Process the main & reserve sequences */
1810 	/* responsible for finding the PartitionDesc(s) */
1811 	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1812 	if (ret != -EAGAIN)
1813 		return ret;
1814 	udf_sb_free_partitions(sb);
1815 	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1816 	if (ret < 0) {
1817 		udf_sb_free_partitions(sb);
1818 		/* No sequence was OK, return -EIO */
1819 		if (ret == -EAGAIN)
1820 			ret = -EIO;
1821 	}
1822 	return ret;
1823 }
1824 
1825 /*
1826  * Check whether there is an anchor block in the given block and
1827  * load Volume Descriptor Sequence if so.
1828  *
1829  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1830  * block
1831  */
1832 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1833 				  struct kernel_lb_addr *fileset)
1834 {
1835 	struct buffer_head *bh;
1836 	uint16_t ident;
1837 	int ret;
1838 
1839 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1840 	    udf_fixed_to_variable(block) >= sb_bdev_nr_blocks(sb))
1841 		return -EAGAIN;
1842 
1843 	bh = udf_read_tagged(sb, block, block, &ident);
1844 	if (!bh)
1845 		return -EAGAIN;
1846 	if (ident != TAG_IDENT_AVDP) {
1847 		brelse(bh);
1848 		return -EAGAIN;
1849 	}
1850 	ret = udf_load_sequence(sb, bh, fileset);
1851 	brelse(bh);
1852 	return ret;
1853 }
1854 
1855 /*
1856  * Search for an anchor volume descriptor pointer.
1857  *
1858  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1859  * of anchors.
1860  */
1861 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1862 			    struct kernel_lb_addr *fileset)
1863 {
1864 	sector_t last[6];
1865 	int i;
1866 	struct udf_sb_info *sbi = UDF_SB(sb);
1867 	int last_count = 0;
1868 	int ret;
1869 
1870 	/* First try user provided anchor */
1871 	if (sbi->s_anchor) {
1872 		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1873 		if (ret != -EAGAIN)
1874 			return ret;
1875 	}
1876 	/*
1877 	 * according to spec, anchor is in either:
1878 	 *     block 256
1879 	 *     lastblock-256
1880 	 *     lastblock
1881 	 *  however, if the disc isn't closed, it could be 512.
1882 	 */
1883 	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1884 	if (ret != -EAGAIN)
1885 		return ret;
1886 	/*
1887 	 * The trouble is which block is the last one. Drives often misreport
1888 	 * this so we try various possibilities.
1889 	 */
1890 	last[last_count++] = *lastblock;
1891 	if (*lastblock >= 1)
1892 		last[last_count++] = *lastblock - 1;
1893 	last[last_count++] = *lastblock + 1;
1894 	if (*lastblock >= 2)
1895 		last[last_count++] = *lastblock - 2;
1896 	if (*lastblock >= 150)
1897 		last[last_count++] = *lastblock - 150;
1898 	if (*lastblock >= 152)
1899 		last[last_count++] = *lastblock - 152;
1900 
1901 	for (i = 0; i < last_count; i++) {
1902 		if (last[i] >= sb_bdev_nr_blocks(sb))
1903 			continue;
1904 		ret = udf_check_anchor_block(sb, last[i], fileset);
1905 		if (ret != -EAGAIN) {
1906 			if (!ret)
1907 				*lastblock = last[i];
1908 			return ret;
1909 		}
1910 		if (last[i] < 256)
1911 			continue;
1912 		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1913 		if (ret != -EAGAIN) {
1914 			if (!ret)
1915 				*lastblock = last[i];
1916 			return ret;
1917 		}
1918 	}
1919 
1920 	/* Finally try block 512 in case media is open */
1921 	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1922 }
1923 
1924 /*
1925  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1926  * area specified by it. The function expects sbi->s_lastblock to be the last
1927  * block on the media.
1928  *
1929  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1930  * was not found.
1931  */
1932 static int udf_find_anchor(struct super_block *sb,
1933 			   struct kernel_lb_addr *fileset)
1934 {
1935 	struct udf_sb_info *sbi = UDF_SB(sb);
1936 	sector_t lastblock = sbi->s_last_block;
1937 	int ret;
1938 
1939 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1940 	if (ret != -EAGAIN)
1941 		goto out;
1942 
1943 	/* No anchor found? Try VARCONV conversion of block numbers */
1944 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1945 	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1946 	/* Firstly, we try to not convert number of the last block */
1947 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1948 	if (ret != -EAGAIN)
1949 		goto out;
1950 
1951 	lastblock = sbi->s_last_block;
1952 	/* Secondly, we try with converted number of the last block */
1953 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1954 	if (ret < 0) {
1955 		/* VARCONV didn't help. Clear it. */
1956 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1957 	}
1958 out:
1959 	if (ret == 0)
1960 		sbi->s_last_block = lastblock;
1961 	return ret;
1962 }
1963 
1964 /*
1965  * Check Volume Structure Descriptor, find Anchor block and load Volume
1966  * Descriptor Sequence.
1967  *
1968  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1969  * block was not found.
1970  */
1971 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1972 			int silent, struct kernel_lb_addr *fileset)
1973 {
1974 	struct udf_sb_info *sbi = UDF_SB(sb);
1975 	int nsr = 0;
1976 	int ret;
1977 
1978 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1979 		if (!silent)
1980 			udf_warn(sb, "Bad block size\n");
1981 		return -EINVAL;
1982 	}
1983 	sbi->s_last_block = uopt->lastblock;
1984 	if (!uopt->novrs) {
1985 		/* Check that it is NSR02 compliant */
1986 		nsr = udf_check_vsd(sb);
1987 		if (!nsr) {
1988 			if (!silent)
1989 				udf_warn(sb, "No VRS found\n");
1990 			return -EINVAL;
1991 		}
1992 		if (nsr == -1)
1993 			udf_debug("Failed to read sector at offset %d. "
1994 				  "Assuming open disc. Skipping validity "
1995 				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1996 		if (!sbi->s_last_block)
1997 			sbi->s_last_block = udf_get_last_block(sb);
1998 	} else {
1999 		udf_debug("Validity check skipped because of novrs option\n");
2000 	}
2001 
2002 	/* Look for anchor block and load Volume Descriptor Sequence */
2003 	sbi->s_anchor = uopt->anchor;
2004 	ret = udf_find_anchor(sb, fileset);
2005 	if (ret < 0) {
2006 		if (!silent && ret == -EAGAIN)
2007 			udf_warn(sb, "No anchor found\n");
2008 		return ret;
2009 	}
2010 	return 0;
2011 }
2012 
2013 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2014 {
2015 	struct timespec64 ts;
2016 
2017 	ktime_get_real_ts64(&ts);
2018 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2019 	lvid->descTag.descCRC = cpu_to_le16(
2020 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2021 			le16_to_cpu(lvid->descTag.descCRCLength)));
2022 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2023 }
2024 
2025 static void udf_open_lvid(struct super_block *sb)
2026 {
2027 	struct udf_sb_info *sbi = UDF_SB(sb);
2028 	struct buffer_head *bh = sbi->s_lvid_bh;
2029 	struct logicalVolIntegrityDesc *lvid;
2030 	struct logicalVolIntegrityDescImpUse *lvidiu;
2031 
2032 	if (!bh)
2033 		return;
2034 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2035 	lvidiu = udf_sb_lvidiu(sb);
2036 	if (!lvidiu)
2037 		return;
2038 
2039 	mutex_lock(&sbi->s_alloc_mutex);
2040 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2041 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2042 	if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2043 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2044 	else
2045 		UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2046 
2047 	udf_finalize_lvid(lvid);
2048 	mark_buffer_dirty(bh);
2049 	sbi->s_lvid_dirty = 0;
2050 	mutex_unlock(&sbi->s_alloc_mutex);
2051 	/* Make opening of filesystem visible on the media immediately */
2052 	sync_dirty_buffer(bh);
2053 }
2054 
2055 static void udf_close_lvid(struct super_block *sb)
2056 {
2057 	struct udf_sb_info *sbi = UDF_SB(sb);
2058 	struct buffer_head *bh = sbi->s_lvid_bh;
2059 	struct logicalVolIntegrityDesc *lvid;
2060 	struct logicalVolIntegrityDescImpUse *lvidiu;
2061 
2062 	if (!bh)
2063 		return;
2064 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2065 	lvidiu = udf_sb_lvidiu(sb);
2066 	if (!lvidiu)
2067 		return;
2068 
2069 	mutex_lock(&sbi->s_alloc_mutex);
2070 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2071 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2072 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2073 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2074 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2075 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2076 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2077 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2078 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2079 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2080 
2081 	/*
2082 	 * We set buffer uptodate unconditionally here to avoid spurious
2083 	 * warnings from mark_buffer_dirty() when previous EIO has marked
2084 	 * the buffer as !uptodate
2085 	 */
2086 	set_buffer_uptodate(bh);
2087 	udf_finalize_lvid(lvid);
2088 	mark_buffer_dirty(bh);
2089 	sbi->s_lvid_dirty = 0;
2090 	mutex_unlock(&sbi->s_alloc_mutex);
2091 	/* Make closing of filesystem visible on the media immediately */
2092 	sync_dirty_buffer(bh);
2093 }
2094 
2095 u64 lvid_get_unique_id(struct super_block *sb)
2096 {
2097 	struct buffer_head *bh;
2098 	struct udf_sb_info *sbi = UDF_SB(sb);
2099 	struct logicalVolIntegrityDesc *lvid;
2100 	struct logicalVolHeaderDesc *lvhd;
2101 	u64 uniqueID;
2102 	u64 ret;
2103 
2104 	bh = sbi->s_lvid_bh;
2105 	if (!bh)
2106 		return 0;
2107 
2108 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2109 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2110 
2111 	mutex_lock(&sbi->s_alloc_mutex);
2112 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2113 	if (!(++uniqueID & 0xFFFFFFFF))
2114 		uniqueID += 16;
2115 	lvhd->uniqueID = cpu_to_le64(uniqueID);
2116 	udf_updated_lvid(sb);
2117 	mutex_unlock(&sbi->s_alloc_mutex);
2118 
2119 	return ret;
2120 }
2121 
2122 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2123 {
2124 	int ret = -EINVAL;
2125 	struct inode *inode = NULL;
2126 	struct udf_options uopt;
2127 	struct kernel_lb_addr rootdir, fileset;
2128 	struct udf_sb_info *sbi;
2129 	bool lvid_open = false;
2130 
2131 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2132 	/* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2133 	uopt.uid = make_kuid(current_user_ns(), overflowuid);
2134 	uopt.gid = make_kgid(current_user_ns(), overflowgid);
2135 	uopt.umask = 0;
2136 	uopt.fmode = UDF_INVALID_MODE;
2137 	uopt.dmode = UDF_INVALID_MODE;
2138 	uopt.nls_map = NULL;
2139 
2140 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2141 	if (!sbi)
2142 		return -ENOMEM;
2143 
2144 	sb->s_fs_info = sbi;
2145 
2146 	mutex_init(&sbi->s_alloc_mutex);
2147 
2148 	if (!udf_parse_options((char *)options, &uopt, false))
2149 		goto parse_options_failure;
2150 
2151 	fileset.logicalBlockNum = 0xFFFFFFFF;
2152 	fileset.partitionReferenceNum = 0xFFFF;
2153 
2154 	sbi->s_flags = uopt.flags;
2155 	sbi->s_uid = uopt.uid;
2156 	sbi->s_gid = uopt.gid;
2157 	sbi->s_umask = uopt.umask;
2158 	sbi->s_fmode = uopt.fmode;
2159 	sbi->s_dmode = uopt.dmode;
2160 	sbi->s_nls_map = uopt.nls_map;
2161 	rwlock_init(&sbi->s_cred_lock);
2162 
2163 	if (uopt.session == 0xFFFFFFFF)
2164 		sbi->s_session = udf_get_last_session(sb);
2165 	else
2166 		sbi->s_session = uopt.session;
2167 
2168 	udf_debug("Multi-session=%d\n", sbi->s_session);
2169 
2170 	/* Fill in the rest of the superblock */
2171 	sb->s_op = &udf_sb_ops;
2172 	sb->s_export_op = &udf_export_ops;
2173 
2174 	sb->s_magic = UDF_SUPER_MAGIC;
2175 	sb->s_time_gran = 1000;
2176 
2177 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2178 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2179 	} else {
2180 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2181 		while (uopt.blocksize <= 4096) {
2182 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2183 			if (ret < 0) {
2184 				if (!silent && ret != -EACCES) {
2185 					pr_notice("Scanning with blocksize %u failed\n",
2186 						  uopt.blocksize);
2187 				}
2188 				brelse(sbi->s_lvid_bh);
2189 				sbi->s_lvid_bh = NULL;
2190 				/*
2191 				 * EACCES is special - we want to propagate to
2192 				 * upper layers that we cannot handle RW mount.
2193 				 */
2194 				if (ret == -EACCES)
2195 					break;
2196 			} else
2197 				break;
2198 
2199 			uopt.blocksize <<= 1;
2200 		}
2201 	}
2202 	if (ret < 0) {
2203 		if (ret == -EAGAIN) {
2204 			udf_warn(sb, "No partition found (1)\n");
2205 			ret = -EINVAL;
2206 		}
2207 		goto error_out;
2208 	}
2209 
2210 	udf_debug("Lastblock=%u\n", sbi->s_last_block);
2211 
2212 	if (sbi->s_lvid_bh) {
2213 		struct logicalVolIntegrityDescImpUse *lvidiu =
2214 							udf_sb_lvidiu(sb);
2215 		uint16_t minUDFReadRev;
2216 		uint16_t minUDFWriteRev;
2217 
2218 		if (!lvidiu) {
2219 			ret = -EINVAL;
2220 			goto error_out;
2221 		}
2222 		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2223 		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2224 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2225 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2226 				minUDFReadRev,
2227 				UDF_MAX_READ_VERSION);
2228 			ret = -EINVAL;
2229 			goto error_out;
2230 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2231 			if (!sb_rdonly(sb)) {
2232 				ret = -EACCES;
2233 				goto error_out;
2234 			}
2235 			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2236 		}
2237 
2238 		sbi->s_udfrev = minUDFWriteRev;
2239 
2240 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2241 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2242 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2243 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2244 	}
2245 
2246 	if (!sbi->s_partitions) {
2247 		udf_warn(sb, "No partition found (2)\n");
2248 		ret = -EINVAL;
2249 		goto error_out;
2250 	}
2251 
2252 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2253 			UDF_PART_FLAG_READ_ONLY) {
2254 		if (!sb_rdonly(sb)) {
2255 			ret = -EACCES;
2256 			goto error_out;
2257 		}
2258 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2259 	}
2260 
2261 	ret = udf_find_fileset(sb, &fileset, &rootdir);
2262 	if (ret < 0) {
2263 		udf_warn(sb, "No fileset found\n");
2264 		goto error_out;
2265 	}
2266 
2267 	if (!silent) {
2268 		struct timestamp ts;
2269 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2270 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2271 			 sbi->s_volume_ident,
2272 			 le16_to_cpu(ts.year), ts.month, ts.day,
2273 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2274 	}
2275 	if (!sb_rdonly(sb)) {
2276 		udf_open_lvid(sb);
2277 		lvid_open = true;
2278 	}
2279 
2280 	/* Assign the root inode */
2281 	/* assign inodes by physical block number */
2282 	/* perhaps it's not extensible enough, but for now ... */
2283 	inode = udf_iget(sb, &rootdir);
2284 	if (IS_ERR(inode)) {
2285 		udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2286 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2287 		ret = PTR_ERR(inode);
2288 		goto error_out;
2289 	}
2290 
2291 	/* Allocate a dentry for the root inode */
2292 	sb->s_root = d_make_root(inode);
2293 	if (!sb->s_root) {
2294 		udf_err(sb, "Couldn't allocate root dentry\n");
2295 		ret = -ENOMEM;
2296 		goto error_out;
2297 	}
2298 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2299 	sb->s_max_links = UDF_MAX_LINKS;
2300 	return 0;
2301 
2302 error_out:
2303 	iput(sbi->s_vat_inode);
2304 parse_options_failure:
2305 	unload_nls(uopt.nls_map);
2306 	if (lvid_open)
2307 		udf_close_lvid(sb);
2308 	brelse(sbi->s_lvid_bh);
2309 	udf_sb_free_partitions(sb);
2310 	kfree(sbi);
2311 	sb->s_fs_info = NULL;
2312 
2313 	return ret;
2314 }
2315 
2316 void _udf_err(struct super_block *sb, const char *function,
2317 	      const char *fmt, ...)
2318 {
2319 	struct va_format vaf;
2320 	va_list args;
2321 
2322 	va_start(args, fmt);
2323 
2324 	vaf.fmt = fmt;
2325 	vaf.va = &args;
2326 
2327 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2328 
2329 	va_end(args);
2330 }
2331 
2332 void _udf_warn(struct super_block *sb, const char *function,
2333 	       const char *fmt, ...)
2334 {
2335 	struct va_format vaf;
2336 	va_list args;
2337 
2338 	va_start(args, fmt);
2339 
2340 	vaf.fmt = fmt;
2341 	vaf.va = &args;
2342 
2343 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2344 
2345 	va_end(args);
2346 }
2347 
2348 static void udf_put_super(struct super_block *sb)
2349 {
2350 	struct udf_sb_info *sbi;
2351 
2352 	sbi = UDF_SB(sb);
2353 
2354 	iput(sbi->s_vat_inode);
2355 	unload_nls(sbi->s_nls_map);
2356 	if (!sb_rdonly(sb))
2357 		udf_close_lvid(sb);
2358 	brelse(sbi->s_lvid_bh);
2359 	udf_sb_free_partitions(sb);
2360 	mutex_destroy(&sbi->s_alloc_mutex);
2361 	kfree(sb->s_fs_info);
2362 	sb->s_fs_info = NULL;
2363 }
2364 
2365 static int udf_sync_fs(struct super_block *sb, int wait)
2366 {
2367 	struct udf_sb_info *sbi = UDF_SB(sb);
2368 
2369 	mutex_lock(&sbi->s_alloc_mutex);
2370 	if (sbi->s_lvid_dirty) {
2371 		struct buffer_head *bh = sbi->s_lvid_bh;
2372 		struct logicalVolIntegrityDesc *lvid;
2373 
2374 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2375 		udf_finalize_lvid(lvid);
2376 
2377 		/*
2378 		 * Blockdevice will be synced later so we don't have to submit
2379 		 * the buffer for IO
2380 		 */
2381 		mark_buffer_dirty(bh);
2382 		sbi->s_lvid_dirty = 0;
2383 	}
2384 	mutex_unlock(&sbi->s_alloc_mutex);
2385 
2386 	return 0;
2387 }
2388 
2389 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2390 {
2391 	struct super_block *sb = dentry->d_sb;
2392 	struct udf_sb_info *sbi = UDF_SB(sb);
2393 	struct logicalVolIntegrityDescImpUse *lvidiu;
2394 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2395 
2396 	lvidiu = udf_sb_lvidiu(sb);
2397 	buf->f_type = UDF_SUPER_MAGIC;
2398 	buf->f_bsize = sb->s_blocksize;
2399 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2400 	buf->f_bfree = udf_count_free(sb);
2401 	buf->f_bavail = buf->f_bfree;
2402 	/*
2403 	 * Let's pretend each free block is also a free 'inode' since UDF does
2404 	 * not have separate preallocated table of inodes.
2405 	 */
2406 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2407 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2408 			+ buf->f_bfree;
2409 	buf->f_ffree = buf->f_bfree;
2410 	buf->f_namelen = UDF_NAME_LEN;
2411 	buf->f_fsid = u64_to_fsid(id);
2412 
2413 	return 0;
2414 }
2415 
2416 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2417 					  struct udf_bitmap *bitmap)
2418 {
2419 	struct buffer_head *bh = NULL;
2420 	unsigned int accum = 0;
2421 	int index;
2422 	udf_pblk_t block = 0, newblock;
2423 	struct kernel_lb_addr loc;
2424 	uint32_t bytes;
2425 	uint8_t *ptr;
2426 	uint16_t ident;
2427 	struct spaceBitmapDesc *bm;
2428 
2429 	loc.logicalBlockNum = bitmap->s_extPosition;
2430 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2431 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2432 
2433 	if (!bh) {
2434 		udf_err(sb, "udf_count_free failed\n");
2435 		goto out;
2436 	} else if (ident != TAG_IDENT_SBD) {
2437 		brelse(bh);
2438 		udf_err(sb, "udf_count_free failed\n");
2439 		goto out;
2440 	}
2441 
2442 	bm = (struct spaceBitmapDesc *)bh->b_data;
2443 	bytes = le32_to_cpu(bm->numOfBytes);
2444 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2445 	ptr = (uint8_t *)bh->b_data;
2446 
2447 	while (bytes > 0) {
2448 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2449 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2450 					cur_bytes * 8);
2451 		bytes -= cur_bytes;
2452 		if (bytes) {
2453 			brelse(bh);
2454 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2455 			bh = udf_tread(sb, newblock);
2456 			if (!bh) {
2457 				udf_debug("read failed\n");
2458 				goto out;
2459 			}
2460 			index = 0;
2461 			ptr = (uint8_t *)bh->b_data;
2462 		}
2463 	}
2464 	brelse(bh);
2465 out:
2466 	return accum;
2467 }
2468 
2469 static unsigned int udf_count_free_table(struct super_block *sb,
2470 					 struct inode *table)
2471 {
2472 	unsigned int accum = 0;
2473 	uint32_t elen;
2474 	struct kernel_lb_addr eloc;
2475 	int8_t etype;
2476 	struct extent_position epos;
2477 
2478 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2479 	epos.block = UDF_I(table)->i_location;
2480 	epos.offset = sizeof(struct unallocSpaceEntry);
2481 	epos.bh = NULL;
2482 
2483 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2484 		accum += (elen >> table->i_sb->s_blocksize_bits);
2485 
2486 	brelse(epos.bh);
2487 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2488 
2489 	return accum;
2490 }
2491 
2492 static unsigned int udf_count_free(struct super_block *sb)
2493 {
2494 	unsigned int accum = 0;
2495 	struct udf_sb_info *sbi = UDF_SB(sb);
2496 	struct udf_part_map *map;
2497 	unsigned int part = sbi->s_partition;
2498 	int ptype = sbi->s_partmaps[part].s_partition_type;
2499 
2500 	if (ptype == UDF_METADATA_MAP25) {
2501 		part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2502 							s_phys_partition_ref;
2503 	} else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2504 		/*
2505 		 * Filesystems with VAT are append-only and we cannot write to
2506  		 * them. Let's just report 0 here.
2507 		 */
2508 		return 0;
2509 	}
2510 
2511 	if (sbi->s_lvid_bh) {
2512 		struct logicalVolIntegrityDesc *lvid =
2513 			(struct logicalVolIntegrityDesc *)
2514 			sbi->s_lvid_bh->b_data;
2515 		if (le32_to_cpu(lvid->numOfPartitions) > part) {
2516 			accum = le32_to_cpu(
2517 					lvid->freeSpaceTable[part]);
2518 			if (accum == 0xFFFFFFFF)
2519 				accum = 0;
2520 		}
2521 	}
2522 
2523 	if (accum)
2524 		return accum;
2525 
2526 	map = &sbi->s_partmaps[part];
2527 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2528 		accum += udf_count_free_bitmap(sb,
2529 					       map->s_uspace.s_bitmap);
2530 	}
2531 	if (accum)
2532 		return accum;
2533 
2534 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2535 		accum += udf_count_free_table(sb,
2536 					      map->s_uspace.s_table);
2537 	}
2538 	return accum;
2539 }
2540 
2541 MODULE_AUTHOR("Ben Fennema");
2542 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2543 MODULE_LICENSE("GPL");
2544 module_init(init_udf_fs)
2545 module_exit(exit_udf_fs)
2546