1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/vfs.h> 52 #include <linux/vmalloc.h> 53 #include <linux/errno.h> 54 #include <linux/mount.h> 55 #include <linux/seq_file.h> 56 #include <linux/bitmap.h> 57 #include <linux/crc-itu-t.h> 58 #include <linux/log2.h> 59 #include <asm/byteorder.h> 60 61 #include "udf_sb.h" 62 #include "udf_i.h" 63 64 #include <linux/init.h> 65 #include <linux/uaccess.h> 66 67 enum { 68 VDS_POS_PRIMARY_VOL_DESC, 69 VDS_POS_UNALLOC_SPACE_DESC, 70 VDS_POS_LOGICAL_VOL_DESC, 71 VDS_POS_IMP_USE_VOL_DESC, 72 VDS_POS_LENGTH 73 }; 74 75 #define VSD_FIRST_SECTOR_OFFSET 32768 76 #define VSD_MAX_SECTOR_OFFSET 0x800000 77 78 /* 79 * Maximum number of Terminating Descriptor / Logical Volume Integrity 80 * Descriptor redirections. The chosen numbers are arbitrary - just that we 81 * hopefully don't limit any real use of rewritten inode on write-once media 82 * but avoid looping for too long on corrupted media. 83 */ 84 #define UDF_MAX_TD_NESTING 64 85 #define UDF_MAX_LVID_NESTING 1000 86 87 enum { UDF_MAX_LINKS = 0xffff }; 88 89 /* These are the "meat" - everything else is stuffing */ 90 static int udf_fill_super(struct super_block *, void *, int); 91 static void udf_put_super(struct super_block *); 92 static int udf_sync_fs(struct super_block *, int); 93 static int udf_remount_fs(struct super_block *, int *, char *); 94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 95 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 96 struct kernel_lb_addr *); 97 static void udf_load_fileset(struct super_block *, struct buffer_head *, 98 struct kernel_lb_addr *); 99 static void udf_open_lvid(struct super_block *); 100 static void udf_close_lvid(struct super_block *); 101 static unsigned int udf_count_free(struct super_block *); 102 static int udf_statfs(struct dentry *, struct kstatfs *); 103 static int udf_show_options(struct seq_file *, struct dentry *); 104 105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb) 106 { 107 struct logicalVolIntegrityDesc *lvid; 108 unsigned int partnum; 109 unsigned int offset; 110 111 if (!UDF_SB(sb)->s_lvid_bh) 112 return NULL; 113 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data; 114 partnum = le32_to_cpu(lvid->numOfPartitions); 115 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) - 116 offsetof(struct logicalVolIntegrityDesc, impUse)) / 117 (2 * sizeof(uint32_t)) < partnum) { 118 udf_err(sb, "Logical volume integrity descriptor corrupted " 119 "(numOfPartitions = %u)!\n", partnum); 120 return NULL; 121 } 122 /* The offset is to skip freeSpaceTable and sizeTable arrays */ 123 offset = partnum * 2 * sizeof(uint32_t); 124 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 125 } 126 127 /* UDF filesystem type */ 128 static struct dentry *udf_mount(struct file_system_type *fs_type, 129 int flags, const char *dev_name, void *data) 130 { 131 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 132 } 133 134 static struct file_system_type udf_fstype = { 135 .owner = THIS_MODULE, 136 .name = "udf", 137 .mount = udf_mount, 138 .kill_sb = kill_block_super, 139 .fs_flags = FS_REQUIRES_DEV, 140 }; 141 MODULE_ALIAS_FS("udf"); 142 143 static struct kmem_cache *udf_inode_cachep; 144 145 static struct inode *udf_alloc_inode(struct super_block *sb) 146 { 147 struct udf_inode_info *ei; 148 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 149 if (!ei) 150 return NULL; 151 152 ei->i_unique = 0; 153 ei->i_lenExtents = 0; 154 ei->i_next_alloc_block = 0; 155 ei->i_next_alloc_goal = 0; 156 ei->i_strat4096 = 0; 157 init_rwsem(&ei->i_data_sem); 158 ei->cached_extent.lstart = -1; 159 spin_lock_init(&ei->i_extent_cache_lock); 160 161 return &ei->vfs_inode; 162 } 163 164 static void udf_i_callback(struct rcu_head *head) 165 { 166 struct inode *inode = container_of(head, struct inode, i_rcu); 167 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 168 } 169 170 static void udf_destroy_inode(struct inode *inode) 171 { 172 call_rcu(&inode->i_rcu, udf_i_callback); 173 } 174 175 static void init_once(void *foo) 176 { 177 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 178 179 ei->i_ext.i_data = NULL; 180 inode_init_once(&ei->vfs_inode); 181 } 182 183 static int __init init_inodecache(void) 184 { 185 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 186 sizeof(struct udf_inode_info), 187 0, (SLAB_RECLAIM_ACCOUNT | 188 SLAB_MEM_SPREAD | 189 SLAB_ACCOUNT), 190 init_once); 191 if (!udf_inode_cachep) 192 return -ENOMEM; 193 return 0; 194 } 195 196 static void destroy_inodecache(void) 197 { 198 /* 199 * Make sure all delayed rcu free inodes are flushed before we 200 * destroy cache. 201 */ 202 rcu_barrier(); 203 kmem_cache_destroy(udf_inode_cachep); 204 } 205 206 /* Superblock operations */ 207 static const struct super_operations udf_sb_ops = { 208 .alloc_inode = udf_alloc_inode, 209 .destroy_inode = udf_destroy_inode, 210 .write_inode = udf_write_inode, 211 .evict_inode = udf_evict_inode, 212 .put_super = udf_put_super, 213 .sync_fs = udf_sync_fs, 214 .statfs = udf_statfs, 215 .remount_fs = udf_remount_fs, 216 .show_options = udf_show_options, 217 }; 218 219 struct udf_options { 220 unsigned char novrs; 221 unsigned int blocksize; 222 unsigned int session; 223 unsigned int lastblock; 224 unsigned int anchor; 225 unsigned int flags; 226 umode_t umask; 227 kgid_t gid; 228 kuid_t uid; 229 umode_t fmode; 230 umode_t dmode; 231 struct nls_table *nls_map; 232 }; 233 234 static int __init init_udf_fs(void) 235 { 236 int err; 237 238 err = init_inodecache(); 239 if (err) 240 goto out1; 241 err = register_filesystem(&udf_fstype); 242 if (err) 243 goto out; 244 245 return 0; 246 247 out: 248 destroy_inodecache(); 249 250 out1: 251 return err; 252 } 253 254 static void __exit exit_udf_fs(void) 255 { 256 unregister_filesystem(&udf_fstype); 257 destroy_inodecache(); 258 } 259 260 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 261 { 262 struct udf_sb_info *sbi = UDF_SB(sb); 263 264 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL); 265 if (!sbi->s_partmaps) { 266 sbi->s_partitions = 0; 267 return -ENOMEM; 268 } 269 270 sbi->s_partitions = count; 271 return 0; 272 } 273 274 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 275 { 276 int i; 277 int nr_groups = bitmap->s_nr_groups; 278 279 for (i = 0; i < nr_groups; i++) 280 if (bitmap->s_block_bitmap[i]) 281 brelse(bitmap->s_block_bitmap[i]); 282 283 kvfree(bitmap); 284 } 285 286 static void udf_free_partition(struct udf_part_map *map) 287 { 288 int i; 289 struct udf_meta_data *mdata; 290 291 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 292 iput(map->s_uspace.s_table); 293 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 294 iput(map->s_fspace.s_table); 295 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 296 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 297 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 298 udf_sb_free_bitmap(map->s_fspace.s_bitmap); 299 if (map->s_partition_type == UDF_SPARABLE_MAP15) 300 for (i = 0; i < 4; i++) 301 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 302 else if (map->s_partition_type == UDF_METADATA_MAP25) { 303 mdata = &map->s_type_specific.s_metadata; 304 iput(mdata->s_metadata_fe); 305 mdata->s_metadata_fe = NULL; 306 307 iput(mdata->s_mirror_fe); 308 mdata->s_mirror_fe = NULL; 309 310 iput(mdata->s_bitmap_fe); 311 mdata->s_bitmap_fe = NULL; 312 } 313 } 314 315 static void udf_sb_free_partitions(struct super_block *sb) 316 { 317 struct udf_sb_info *sbi = UDF_SB(sb); 318 int i; 319 320 if (!sbi->s_partmaps) 321 return; 322 for (i = 0; i < sbi->s_partitions; i++) 323 udf_free_partition(&sbi->s_partmaps[i]); 324 kfree(sbi->s_partmaps); 325 sbi->s_partmaps = NULL; 326 } 327 328 static int udf_show_options(struct seq_file *seq, struct dentry *root) 329 { 330 struct super_block *sb = root->d_sb; 331 struct udf_sb_info *sbi = UDF_SB(sb); 332 333 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 334 seq_puts(seq, ",nostrict"); 335 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 336 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 337 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 338 seq_puts(seq, ",unhide"); 339 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 340 seq_puts(seq, ",undelete"); 341 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 342 seq_puts(seq, ",noadinicb"); 343 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 344 seq_puts(seq, ",shortad"); 345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 346 seq_puts(seq, ",uid=forget"); 347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 348 seq_puts(seq, ",gid=forget"); 349 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 350 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 351 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 352 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 353 if (sbi->s_umask != 0) 354 seq_printf(seq, ",umask=%ho", sbi->s_umask); 355 if (sbi->s_fmode != UDF_INVALID_MODE) 356 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 357 if (sbi->s_dmode != UDF_INVALID_MODE) 358 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 359 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 360 seq_printf(seq, ",session=%d", sbi->s_session); 361 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 362 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 363 if (sbi->s_anchor != 0) 364 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 365 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 366 seq_puts(seq, ",utf8"); 367 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 368 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 369 370 return 0; 371 } 372 373 /* 374 * udf_parse_options 375 * 376 * PURPOSE 377 * Parse mount options. 378 * 379 * DESCRIPTION 380 * The following mount options are supported: 381 * 382 * gid= Set the default group. 383 * umask= Set the default umask. 384 * mode= Set the default file permissions. 385 * dmode= Set the default directory permissions. 386 * uid= Set the default user. 387 * bs= Set the block size. 388 * unhide Show otherwise hidden files. 389 * undelete Show deleted files in lists. 390 * adinicb Embed data in the inode (default) 391 * noadinicb Don't embed data in the inode 392 * shortad Use short ad's 393 * longad Use long ad's (default) 394 * nostrict Unset strict conformance 395 * iocharset= Set the NLS character set 396 * 397 * The remaining are for debugging and disaster recovery: 398 * 399 * novrs Skip volume sequence recognition 400 * 401 * The following expect a offset from 0. 402 * 403 * session= Set the CDROM session (default= last session) 404 * anchor= Override standard anchor location. (default= 256) 405 * volume= Override the VolumeDesc location. (unused) 406 * partition= Override the PartitionDesc location. (unused) 407 * lastblock= Set the last block of the filesystem/ 408 * 409 * The following expect a offset from the partition root. 410 * 411 * fileset= Override the fileset block location. (unused) 412 * rootdir= Override the root directory location. (unused) 413 * WARNING: overriding the rootdir to a non-directory may 414 * yield highly unpredictable results. 415 * 416 * PRE-CONDITIONS 417 * options Pointer to mount options string. 418 * uopts Pointer to mount options variable. 419 * 420 * POST-CONDITIONS 421 * <return> 1 Mount options parsed okay. 422 * <return> 0 Error parsing mount options. 423 * 424 * HISTORY 425 * July 1, 1997 - Andrew E. Mileski 426 * Written, tested, and released. 427 */ 428 429 enum { 430 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 431 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 432 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 433 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 434 Opt_rootdir, Opt_utf8, Opt_iocharset, 435 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 436 Opt_fmode, Opt_dmode 437 }; 438 439 static const match_table_t tokens = { 440 {Opt_novrs, "novrs"}, 441 {Opt_nostrict, "nostrict"}, 442 {Opt_bs, "bs=%u"}, 443 {Opt_unhide, "unhide"}, 444 {Opt_undelete, "undelete"}, 445 {Opt_noadinicb, "noadinicb"}, 446 {Opt_adinicb, "adinicb"}, 447 {Opt_shortad, "shortad"}, 448 {Opt_longad, "longad"}, 449 {Opt_uforget, "uid=forget"}, 450 {Opt_uignore, "uid=ignore"}, 451 {Opt_gforget, "gid=forget"}, 452 {Opt_gignore, "gid=ignore"}, 453 {Opt_gid, "gid=%u"}, 454 {Opt_uid, "uid=%u"}, 455 {Opt_umask, "umask=%o"}, 456 {Opt_session, "session=%u"}, 457 {Opt_lastblock, "lastblock=%u"}, 458 {Opt_anchor, "anchor=%u"}, 459 {Opt_volume, "volume=%u"}, 460 {Opt_partition, "partition=%u"}, 461 {Opt_fileset, "fileset=%u"}, 462 {Opt_rootdir, "rootdir=%u"}, 463 {Opt_utf8, "utf8"}, 464 {Opt_iocharset, "iocharset=%s"}, 465 {Opt_fmode, "mode=%o"}, 466 {Opt_dmode, "dmode=%o"}, 467 {Opt_err, NULL} 468 }; 469 470 static int udf_parse_options(char *options, struct udf_options *uopt, 471 bool remount) 472 { 473 char *p; 474 int option; 475 476 uopt->novrs = 0; 477 uopt->session = 0xFFFFFFFF; 478 uopt->lastblock = 0; 479 uopt->anchor = 0; 480 481 if (!options) 482 return 1; 483 484 while ((p = strsep(&options, ",")) != NULL) { 485 substring_t args[MAX_OPT_ARGS]; 486 int token; 487 unsigned n; 488 if (!*p) 489 continue; 490 491 token = match_token(p, tokens, args); 492 switch (token) { 493 case Opt_novrs: 494 uopt->novrs = 1; 495 break; 496 case Opt_bs: 497 if (match_int(&args[0], &option)) 498 return 0; 499 n = option; 500 if (n != 512 && n != 1024 && n != 2048 && n != 4096) 501 return 0; 502 uopt->blocksize = n; 503 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 504 break; 505 case Opt_unhide: 506 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 507 break; 508 case Opt_undelete: 509 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 510 break; 511 case Opt_noadinicb: 512 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 513 break; 514 case Opt_adinicb: 515 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 516 break; 517 case Opt_shortad: 518 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 519 break; 520 case Opt_longad: 521 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 522 break; 523 case Opt_gid: 524 if (match_int(args, &option)) 525 return 0; 526 uopt->gid = make_kgid(current_user_ns(), option); 527 if (!gid_valid(uopt->gid)) 528 return 0; 529 uopt->flags |= (1 << UDF_FLAG_GID_SET); 530 break; 531 case Opt_uid: 532 if (match_int(args, &option)) 533 return 0; 534 uopt->uid = make_kuid(current_user_ns(), option); 535 if (!uid_valid(uopt->uid)) 536 return 0; 537 uopt->flags |= (1 << UDF_FLAG_UID_SET); 538 break; 539 case Opt_umask: 540 if (match_octal(args, &option)) 541 return 0; 542 uopt->umask = option; 543 break; 544 case Opt_nostrict: 545 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 546 break; 547 case Opt_session: 548 if (match_int(args, &option)) 549 return 0; 550 uopt->session = option; 551 if (!remount) 552 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 553 break; 554 case Opt_lastblock: 555 if (match_int(args, &option)) 556 return 0; 557 uopt->lastblock = option; 558 if (!remount) 559 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 560 break; 561 case Opt_anchor: 562 if (match_int(args, &option)) 563 return 0; 564 uopt->anchor = option; 565 break; 566 case Opt_volume: 567 case Opt_partition: 568 case Opt_fileset: 569 case Opt_rootdir: 570 /* Ignored (never implemented properly) */ 571 break; 572 case Opt_utf8: 573 uopt->flags |= (1 << UDF_FLAG_UTF8); 574 break; 575 case Opt_iocharset: 576 if (!remount) { 577 if (uopt->nls_map) 578 unload_nls(uopt->nls_map); 579 uopt->nls_map = load_nls(args[0].from); 580 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 581 } 582 break; 583 case Opt_uforget: 584 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 585 break; 586 case Opt_uignore: 587 case Opt_gignore: 588 /* These options are superseeded by uid=<number> */ 589 break; 590 case Opt_gforget: 591 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 592 break; 593 case Opt_fmode: 594 if (match_octal(args, &option)) 595 return 0; 596 uopt->fmode = option & 0777; 597 break; 598 case Opt_dmode: 599 if (match_octal(args, &option)) 600 return 0; 601 uopt->dmode = option & 0777; 602 break; 603 default: 604 pr_err("bad mount option \"%s\" or missing value\n", p); 605 return 0; 606 } 607 } 608 return 1; 609 } 610 611 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 612 { 613 struct udf_options uopt; 614 struct udf_sb_info *sbi = UDF_SB(sb); 615 int error = 0; 616 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb); 617 618 sync_filesystem(sb); 619 if (lvidiu) { 620 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev); 621 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & SB_RDONLY)) 622 return -EACCES; 623 } 624 625 uopt.flags = sbi->s_flags; 626 uopt.uid = sbi->s_uid; 627 uopt.gid = sbi->s_gid; 628 uopt.umask = sbi->s_umask; 629 uopt.fmode = sbi->s_fmode; 630 uopt.dmode = sbi->s_dmode; 631 uopt.nls_map = NULL; 632 633 if (!udf_parse_options(options, &uopt, true)) 634 return -EINVAL; 635 636 write_lock(&sbi->s_cred_lock); 637 sbi->s_flags = uopt.flags; 638 sbi->s_uid = uopt.uid; 639 sbi->s_gid = uopt.gid; 640 sbi->s_umask = uopt.umask; 641 sbi->s_fmode = uopt.fmode; 642 sbi->s_dmode = uopt.dmode; 643 write_unlock(&sbi->s_cred_lock); 644 645 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 646 goto out_unlock; 647 648 if (*flags & SB_RDONLY) 649 udf_close_lvid(sb); 650 else 651 udf_open_lvid(sb); 652 653 out_unlock: 654 return error; 655 } 656 657 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 658 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 659 static loff_t udf_check_vsd(struct super_block *sb) 660 { 661 struct volStructDesc *vsd = NULL; 662 loff_t sector = VSD_FIRST_SECTOR_OFFSET; 663 int sectorsize; 664 struct buffer_head *bh = NULL; 665 int nsr02 = 0; 666 int nsr03 = 0; 667 struct udf_sb_info *sbi; 668 669 sbi = UDF_SB(sb); 670 if (sb->s_blocksize < sizeof(struct volStructDesc)) 671 sectorsize = sizeof(struct volStructDesc); 672 else 673 sectorsize = sb->s_blocksize; 674 675 sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits); 676 677 udf_debug("Starting at sector %u (%lu byte sectors)\n", 678 (unsigned int)(sector >> sb->s_blocksize_bits), 679 sb->s_blocksize); 680 /* Process the sequence (if applicable). The hard limit on the sector 681 * offset is arbitrary, hopefully large enough so that all valid UDF 682 * filesystems will be recognised. There is no mention of an upper 683 * bound to the size of the volume recognition area in the standard. 684 * The limit will prevent the code to read all the sectors of a 685 * specially crafted image (like a bluray disc full of CD001 sectors), 686 * potentially causing minutes or even hours of uninterruptible I/O 687 * activity. This actually happened with uninitialised SSD partitions 688 * (all 0xFF) before the check for the limit and all valid IDs were 689 * added */ 690 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET; 691 sector += sectorsize) { 692 /* Read a block */ 693 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 694 if (!bh) 695 break; 696 697 /* Look for ISO descriptors */ 698 vsd = (struct volStructDesc *)(bh->b_data + 699 (sector & (sb->s_blocksize - 1))); 700 701 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 702 VSD_STD_ID_LEN)) { 703 switch (vsd->structType) { 704 case 0: 705 udf_debug("ISO9660 Boot Record found\n"); 706 break; 707 case 1: 708 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 709 break; 710 case 2: 711 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 712 break; 713 case 3: 714 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 715 break; 716 case 255: 717 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 718 break; 719 default: 720 udf_debug("ISO9660 VRS (%u) found\n", 721 vsd->structType); 722 break; 723 } 724 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 725 VSD_STD_ID_LEN)) 726 ; /* nothing */ 727 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 728 VSD_STD_ID_LEN)) { 729 brelse(bh); 730 break; 731 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 732 VSD_STD_ID_LEN)) 733 nsr02 = sector; 734 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 735 VSD_STD_ID_LEN)) 736 nsr03 = sector; 737 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2, 738 VSD_STD_ID_LEN)) 739 ; /* nothing */ 740 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02, 741 VSD_STD_ID_LEN)) 742 ; /* nothing */ 743 else { 744 /* invalid id : end of volume recognition area */ 745 brelse(bh); 746 break; 747 } 748 brelse(bh); 749 } 750 751 if (nsr03) 752 return nsr03; 753 else if (nsr02) 754 return nsr02; 755 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) == 756 VSD_FIRST_SECTOR_OFFSET) 757 return -1; 758 else 759 return 0; 760 } 761 762 static int udf_find_fileset(struct super_block *sb, 763 struct kernel_lb_addr *fileset, 764 struct kernel_lb_addr *root) 765 { 766 struct buffer_head *bh = NULL; 767 long lastblock; 768 uint16_t ident; 769 struct udf_sb_info *sbi; 770 771 if (fileset->logicalBlockNum != 0xFFFFFFFF || 772 fileset->partitionReferenceNum != 0xFFFF) { 773 bh = udf_read_ptagged(sb, fileset, 0, &ident); 774 775 if (!bh) { 776 return 1; 777 } else if (ident != TAG_IDENT_FSD) { 778 brelse(bh); 779 return 1; 780 } 781 782 } 783 784 sbi = UDF_SB(sb); 785 if (!bh) { 786 /* Search backwards through the partitions */ 787 struct kernel_lb_addr newfileset; 788 789 /* --> cvg: FIXME - is it reasonable? */ 790 return 1; 791 792 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1; 793 (newfileset.partitionReferenceNum != 0xFFFF && 794 fileset->logicalBlockNum == 0xFFFFFFFF && 795 fileset->partitionReferenceNum == 0xFFFF); 796 newfileset.partitionReferenceNum--) { 797 lastblock = sbi->s_partmaps 798 [newfileset.partitionReferenceNum] 799 .s_partition_len; 800 newfileset.logicalBlockNum = 0; 801 802 do { 803 bh = udf_read_ptagged(sb, &newfileset, 0, 804 &ident); 805 if (!bh) { 806 newfileset.logicalBlockNum++; 807 continue; 808 } 809 810 switch (ident) { 811 case TAG_IDENT_SBD: 812 { 813 struct spaceBitmapDesc *sp; 814 sp = (struct spaceBitmapDesc *) 815 bh->b_data; 816 newfileset.logicalBlockNum += 1 + 817 ((le32_to_cpu(sp->numOfBytes) + 818 sizeof(struct spaceBitmapDesc) 819 - 1) >> sb->s_blocksize_bits); 820 brelse(bh); 821 break; 822 } 823 case TAG_IDENT_FSD: 824 *fileset = newfileset; 825 break; 826 default: 827 newfileset.logicalBlockNum++; 828 brelse(bh); 829 bh = NULL; 830 break; 831 } 832 } while (newfileset.logicalBlockNum < lastblock && 833 fileset->logicalBlockNum == 0xFFFFFFFF && 834 fileset->partitionReferenceNum == 0xFFFF); 835 } 836 } 837 838 if ((fileset->logicalBlockNum != 0xFFFFFFFF || 839 fileset->partitionReferenceNum != 0xFFFF) && bh) { 840 udf_debug("Fileset at block=%u, partition=%u\n", 841 fileset->logicalBlockNum, 842 fileset->partitionReferenceNum); 843 844 sbi->s_partition = fileset->partitionReferenceNum; 845 udf_load_fileset(sb, bh, root); 846 brelse(bh); 847 return 0; 848 } 849 return 1; 850 } 851 852 /* 853 * Load primary Volume Descriptor Sequence 854 * 855 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence 856 * should be tried. 857 */ 858 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 859 { 860 struct primaryVolDesc *pvoldesc; 861 uint8_t *outstr; 862 struct buffer_head *bh; 863 uint16_t ident; 864 int ret = -ENOMEM; 865 #ifdef UDFFS_DEBUG 866 struct timestamp *ts; 867 #endif 868 869 outstr = kmalloc(128, GFP_NOFS); 870 if (!outstr) 871 return -ENOMEM; 872 873 bh = udf_read_tagged(sb, block, block, &ident); 874 if (!bh) { 875 ret = -EAGAIN; 876 goto out2; 877 } 878 879 if (ident != TAG_IDENT_PVD) { 880 ret = -EIO; 881 goto out_bh; 882 } 883 884 pvoldesc = (struct primaryVolDesc *)bh->b_data; 885 886 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 887 pvoldesc->recordingDateAndTime); 888 #ifdef UDFFS_DEBUG 889 ts = &pvoldesc->recordingDateAndTime; 890 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 891 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 892 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 893 #endif 894 895 896 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32); 897 if (ret < 0) 898 goto out_bh; 899 900 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret); 901 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident); 902 903 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128); 904 if (ret < 0) 905 goto out_bh; 906 907 outstr[ret] = 0; 908 udf_debug("volSetIdent[] = '%s'\n", outstr); 909 910 ret = 0; 911 out_bh: 912 brelse(bh); 913 out2: 914 kfree(outstr); 915 return ret; 916 } 917 918 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 919 u32 meta_file_loc, u32 partition_ref) 920 { 921 struct kernel_lb_addr addr; 922 struct inode *metadata_fe; 923 924 addr.logicalBlockNum = meta_file_loc; 925 addr.partitionReferenceNum = partition_ref; 926 927 metadata_fe = udf_iget_special(sb, &addr); 928 929 if (IS_ERR(metadata_fe)) { 930 udf_warn(sb, "metadata inode efe not found\n"); 931 return metadata_fe; 932 } 933 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 934 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 935 iput(metadata_fe); 936 return ERR_PTR(-EIO); 937 } 938 939 return metadata_fe; 940 } 941 942 static int udf_load_metadata_files(struct super_block *sb, int partition, 943 int type1_index) 944 { 945 struct udf_sb_info *sbi = UDF_SB(sb); 946 struct udf_part_map *map; 947 struct udf_meta_data *mdata; 948 struct kernel_lb_addr addr; 949 struct inode *fe; 950 951 map = &sbi->s_partmaps[partition]; 952 mdata = &map->s_type_specific.s_metadata; 953 mdata->s_phys_partition_ref = type1_index; 954 955 /* metadata address */ 956 udf_debug("Metadata file location: block = %u part = %u\n", 957 mdata->s_meta_file_loc, mdata->s_phys_partition_ref); 958 959 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc, 960 mdata->s_phys_partition_ref); 961 if (IS_ERR(fe)) { 962 /* mirror file entry */ 963 udf_debug("Mirror metadata file location: block = %u part = %u\n", 964 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref); 965 966 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc, 967 mdata->s_phys_partition_ref); 968 969 if (IS_ERR(fe)) { 970 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 971 return PTR_ERR(fe); 972 } 973 mdata->s_mirror_fe = fe; 974 } else 975 mdata->s_metadata_fe = fe; 976 977 978 /* 979 * bitmap file entry 980 * Note: 981 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 982 */ 983 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 984 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 985 addr.partitionReferenceNum = mdata->s_phys_partition_ref; 986 987 udf_debug("Bitmap file location: block = %u part = %u\n", 988 addr.logicalBlockNum, addr.partitionReferenceNum); 989 990 fe = udf_iget_special(sb, &addr); 991 if (IS_ERR(fe)) { 992 if (sb_rdonly(sb)) 993 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 994 else { 995 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 996 return PTR_ERR(fe); 997 } 998 } else 999 mdata->s_bitmap_fe = fe; 1000 } 1001 1002 udf_debug("udf_load_metadata_files Ok\n"); 1003 return 0; 1004 } 1005 1006 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 1007 struct kernel_lb_addr *root) 1008 { 1009 struct fileSetDesc *fset; 1010 1011 fset = (struct fileSetDesc *)bh->b_data; 1012 1013 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 1014 1015 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 1016 1017 udf_debug("Rootdir at block=%u, partition=%u\n", 1018 root->logicalBlockNum, root->partitionReferenceNum); 1019 } 1020 1021 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 1022 { 1023 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 1024 return DIV_ROUND_UP(map->s_partition_len + 1025 (sizeof(struct spaceBitmapDesc) << 3), 1026 sb->s_blocksize * 8); 1027 } 1028 1029 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 1030 { 1031 struct udf_bitmap *bitmap; 1032 int nr_groups; 1033 int size; 1034 1035 nr_groups = udf_compute_nr_groups(sb, index); 1036 size = sizeof(struct udf_bitmap) + 1037 (sizeof(struct buffer_head *) * nr_groups); 1038 1039 if (size <= PAGE_SIZE) 1040 bitmap = kzalloc(size, GFP_KERNEL); 1041 else 1042 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */ 1043 1044 if (!bitmap) 1045 return NULL; 1046 1047 bitmap->s_nr_groups = nr_groups; 1048 return bitmap; 1049 } 1050 1051 static int udf_fill_partdesc_info(struct super_block *sb, 1052 struct partitionDesc *p, int p_index) 1053 { 1054 struct udf_part_map *map; 1055 struct udf_sb_info *sbi = UDF_SB(sb); 1056 struct partitionHeaderDesc *phd; 1057 1058 map = &sbi->s_partmaps[p_index]; 1059 1060 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1061 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1062 1063 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1064 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1065 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1066 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1067 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1068 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1069 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1070 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1071 1072 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n", 1073 p_index, map->s_partition_type, 1074 map->s_partition_root, map->s_partition_len); 1075 1076 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1077 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1078 return 0; 1079 1080 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1081 if (phd->unallocSpaceTable.extLength) { 1082 struct kernel_lb_addr loc = { 1083 .logicalBlockNum = le32_to_cpu( 1084 phd->unallocSpaceTable.extPosition), 1085 .partitionReferenceNum = p_index, 1086 }; 1087 struct inode *inode; 1088 1089 inode = udf_iget_special(sb, &loc); 1090 if (IS_ERR(inode)) { 1091 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1092 p_index); 1093 return PTR_ERR(inode); 1094 } 1095 map->s_uspace.s_table = inode; 1096 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1097 udf_debug("unallocSpaceTable (part %d) @ %lu\n", 1098 p_index, map->s_uspace.s_table->i_ino); 1099 } 1100 1101 if (phd->unallocSpaceBitmap.extLength) { 1102 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1103 if (!bitmap) 1104 return -ENOMEM; 1105 map->s_uspace.s_bitmap = bitmap; 1106 bitmap->s_extPosition = le32_to_cpu( 1107 phd->unallocSpaceBitmap.extPosition); 1108 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1109 udf_debug("unallocSpaceBitmap (part %d) @ %u\n", 1110 p_index, bitmap->s_extPosition); 1111 } 1112 1113 if (phd->partitionIntegrityTable.extLength) 1114 udf_debug("partitionIntegrityTable (part %d)\n", p_index); 1115 1116 if (phd->freedSpaceTable.extLength) { 1117 struct kernel_lb_addr loc = { 1118 .logicalBlockNum = le32_to_cpu( 1119 phd->freedSpaceTable.extPosition), 1120 .partitionReferenceNum = p_index, 1121 }; 1122 struct inode *inode; 1123 1124 inode = udf_iget_special(sb, &loc); 1125 if (IS_ERR(inode)) { 1126 udf_debug("cannot load freedSpaceTable (part %d)\n", 1127 p_index); 1128 return PTR_ERR(inode); 1129 } 1130 map->s_fspace.s_table = inode; 1131 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; 1132 udf_debug("freedSpaceTable (part %d) @ %lu\n", 1133 p_index, map->s_fspace.s_table->i_ino); 1134 } 1135 1136 if (phd->freedSpaceBitmap.extLength) { 1137 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1138 if (!bitmap) 1139 return -ENOMEM; 1140 map->s_fspace.s_bitmap = bitmap; 1141 bitmap->s_extPosition = le32_to_cpu( 1142 phd->freedSpaceBitmap.extPosition); 1143 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; 1144 udf_debug("freedSpaceBitmap (part %d) @ %u\n", 1145 p_index, bitmap->s_extPosition); 1146 } 1147 return 0; 1148 } 1149 1150 static void udf_find_vat_block(struct super_block *sb, int p_index, 1151 int type1_index, sector_t start_block) 1152 { 1153 struct udf_sb_info *sbi = UDF_SB(sb); 1154 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1155 sector_t vat_block; 1156 struct kernel_lb_addr ino; 1157 struct inode *inode; 1158 1159 /* 1160 * VAT file entry is in the last recorded block. Some broken disks have 1161 * it a few blocks before so try a bit harder... 1162 */ 1163 ino.partitionReferenceNum = type1_index; 1164 for (vat_block = start_block; 1165 vat_block >= map->s_partition_root && 1166 vat_block >= start_block - 3; vat_block--) { 1167 ino.logicalBlockNum = vat_block - map->s_partition_root; 1168 inode = udf_iget_special(sb, &ino); 1169 if (!IS_ERR(inode)) { 1170 sbi->s_vat_inode = inode; 1171 break; 1172 } 1173 } 1174 } 1175 1176 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1177 { 1178 struct udf_sb_info *sbi = UDF_SB(sb); 1179 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1180 struct buffer_head *bh = NULL; 1181 struct udf_inode_info *vati; 1182 uint32_t pos; 1183 struct virtualAllocationTable20 *vat20; 1184 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >> 1185 sb->s_blocksize_bits; 1186 1187 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1188 if (!sbi->s_vat_inode && 1189 sbi->s_last_block != blocks - 1) { 1190 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1191 (unsigned long)sbi->s_last_block, 1192 (unsigned long)blocks - 1); 1193 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1194 } 1195 if (!sbi->s_vat_inode) 1196 return -EIO; 1197 1198 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1199 map->s_type_specific.s_virtual.s_start_offset = 0; 1200 map->s_type_specific.s_virtual.s_num_entries = 1201 (sbi->s_vat_inode->i_size - 36) >> 2; 1202 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1203 vati = UDF_I(sbi->s_vat_inode); 1204 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1205 pos = udf_block_map(sbi->s_vat_inode, 0); 1206 bh = sb_bread(sb, pos); 1207 if (!bh) 1208 return -EIO; 1209 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1210 } else { 1211 vat20 = (struct virtualAllocationTable20 *) 1212 vati->i_ext.i_data; 1213 } 1214 1215 map->s_type_specific.s_virtual.s_start_offset = 1216 le16_to_cpu(vat20->lengthHeader); 1217 map->s_type_specific.s_virtual.s_num_entries = 1218 (sbi->s_vat_inode->i_size - 1219 map->s_type_specific.s_virtual. 1220 s_start_offset) >> 2; 1221 brelse(bh); 1222 } 1223 return 0; 1224 } 1225 1226 /* 1227 * Load partition descriptor block 1228 * 1229 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor 1230 * sequence. 1231 */ 1232 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1233 { 1234 struct buffer_head *bh; 1235 struct partitionDesc *p; 1236 struct udf_part_map *map; 1237 struct udf_sb_info *sbi = UDF_SB(sb); 1238 int i, type1_idx; 1239 uint16_t partitionNumber; 1240 uint16_t ident; 1241 int ret; 1242 1243 bh = udf_read_tagged(sb, block, block, &ident); 1244 if (!bh) 1245 return -EAGAIN; 1246 if (ident != TAG_IDENT_PD) { 1247 ret = 0; 1248 goto out_bh; 1249 } 1250 1251 p = (struct partitionDesc *)bh->b_data; 1252 partitionNumber = le16_to_cpu(p->partitionNumber); 1253 1254 /* First scan for TYPE1 and SPARABLE partitions */ 1255 for (i = 0; i < sbi->s_partitions; i++) { 1256 map = &sbi->s_partmaps[i]; 1257 udf_debug("Searching map: (%u == %u)\n", 1258 map->s_partition_num, partitionNumber); 1259 if (map->s_partition_num == partitionNumber && 1260 (map->s_partition_type == UDF_TYPE1_MAP15 || 1261 map->s_partition_type == UDF_SPARABLE_MAP15)) 1262 break; 1263 } 1264 1265 if (i >= sbi->s_partitions) { 1266 udf_debug("Partition (%u) not found in partition map\n", 1267 partitionNumber); 1268 ret = 0; 1269 goto out_bh; 1270 } 1271 1272 ret = udf_fill_partdesc_info(sb, p, i); 1273 if (ret < 0) 1274 goto out_bh; 1275 1276 /* 1277 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1278 * PHYSICAL partitions are already set up 1279 */ 1280 type1_idx = i; 1281 #ifdef UDFFS_DEBUG 1282 map = NULL; /* supress 'maybe used uninitialized' warning */ 1283 #endif 1284 for (i = 0; i < sbi->s_partitions; i++) { 1285 map = &sbi->s_partmaps[i]; 1286 1287 if (map->s_partition_num == partitionNumber && 1288 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1289 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1290 map->s_partition_type == UDF_METADATA_MAP25)) 1291 break; 1292 } 1293 1294 if (i >= sbi->s_partitions) { 1295 ret = 0; 1296 goto out_bh; 1297 } 1298 1299 ret = udf_fill_partdesc_info(sb, p, i); 1300 if (ret < 0) 1301 goto out_bh; 1302 1303 if (map->s_partition_type == UDF_METADATA_MAP25) { 1304 ret = udf_load_metadata_files(sb, i, type1_idx); 1305 if (ret < 0) { 1306 udf_err(sb, "error loading MetaData partition map %d\n", 1307 i); 1308 goto out_bh; 1309 } 1310 } else { 1311 /* 1312 * If we have a partition with virtual map, we don't handle 1313 * writing to it (we overwrite blocks instead of relocating 1314 * them). 1315 */ 1316 if (!sb_rdonly(sb)) { 1317 ret = -EACCES; 1318 goto out_bh; 1319 } 1320 ret = udf_load_vat(sb, i, type1_idx); 1321 if (ret < 0) 1322 goto out_bh; 1323 } 1324 ret = 0; 1325 out_bh: 1326 /* In case loading failed, we handle cleanup in udf_fill_super */ 1327 brelse(bh); 1328 return ret; 1329 } 1330 1331 static int udf_load_sparable_map(struct super_block *sb, 1332 struct udf_part_map *map, 1333 struct sparablePartitionMap *spm) 1334 { 1335 uint32_t loc; 1336 uint16_t ident; 1337 struct sparingTable *st; 1338 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1339 int i; 1340 struct buffer_head *bh; 1341 1342 map->s_partition_type = UDF_SPARABLE_MAP15; 1343 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1344 if (!is_power_of_2(sdata->s_packet_len)) { 1345 udf_err(sb, "error loading logical volume descriptor: " 1346 "Invalid packet length %u\n", 1347 (unsigned)sdata->s_packet_len); 1348 return -EIO; 1349 } 1350 if (spm->numSparingTables > 4) { 1351 udf_err(sb, "error loading logical volume descriptor: " 1352 "Too many sparing tables (%d)\n", 1353 (int)spm->numSparingTables); 1354 return -EIO; 1355 } 1356 1357 for (i = 0; i < spm->numSparingTables; i++) { 1358 loc = le32_to_cpu(spm->locSparingTable[i]); 1359 bh = udf_read_tagged(sb, loc, loc, &ident); 1360 if (!bh) 1361 continue; 1362 1363 st = (struct sparingTable *)bh->b_data; 1364 if (ident != 0 || 1365 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1366 strlen(UDF_ID_SPARING)) || 1367 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1368 sb->s_blocksize) { 1369 brelse(bh); 1370 continue; 1371 } 1372 1373 sdata->s_spar_map[i] = bh; 1374 } 1375 map->s_partition_func = udf_get_pblock_spar15; 1376 return 0; 1377 } 1378 1379 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1380 struct kernel_lb_addr *fileset) 1381 { 1382 struct logicalVolDesc *lvd; 1383 int i, offset; 1384 uint8_t type; 1385 struct udf_sb_info *sbi = UDF_SB(sb); 1386 struct genericPartitionMap *gpm; 1387 uint16_t ident; 1388 struct buffer_head *bh; 1389 unsigned int table_len; 1390 int ret; 1391 1392 bh = udf_read_tagged(sb, block, block, &ident); 1393 if (!bh) 1394 return -EAGAIN; 1395 BUG_ON(ident != TAG_IDENT_LVD); 1396 lvd = (struct logicalVolDesc *)bh->b_data; 1397 table_len = le32_to_cpu(lvd->mapTableLength); 1398 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1399 udf_err(sb, "error loading logical volume descriptor: " 1400 "Partition table too long (%u > %lu)\n", table_len, 1401 sb->s_blocksize - sizeof(*lvd)); 1402 ret = -EIO; 1403 goto out_bh; 1404 } 1405 1406 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1407 if (ret) 1408 goto out_bh; 1409 1410 for (i = 0, offset = 0; 1411 i < sbi->s_partitions && offset < table_len; 1412 i++, offset += gpm->partitionMapLength) { 1413 struct udf_part_map *map = &sbi->s_partmaps[i]; 1414 gpm = (struct genericPartitionMap *) 1415 &(lvd->partitionMaps[offset]); 1416 type = gpm->partitionMapType; 1417 if (type == 1) { 1418 struct genericPartitionMap1 *gpm1 = 1419 (struct genericPartitionMap1 *)gpm; 1420 map->s_partition_type = UDF_TYPE1_MAP15; 1421 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1422 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1423 map->s_partition_func = NULL; 1424 } else if (type == 2) { 1425 struct udfPartitionMap2 *upm2 = 1426 (struct udfPartitionMap2 *)gpm; 1427 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1428 strlen(UDF_ID_VIRTUAL))) { 1429 u16 suf = 1430 le16_to_cpu(((__le16 *)upm2->partIdent. 1431 identSuffix)[0]); 1432 if (suf < 0x0200) { 1433 map->s_partition_type = 1434 UDF_VIRTUAL_MAP15; 1435 map->s_partition_func = 1436 udf_get_pblock_virt15; 1437 } else { 1438 map->s_partition_type = 1439 UDF_VIRTUAL_MAP20; 1440 map->s_partition_func = 1441 udf_get_pblock_virt20; 1442 } 1443 } else if (!strncmp(upm2->partIdent.ident, 1444 UDF_ID_SPARABLE, 1445 strlen(UDF_ID_SPARABLE))) { 1446 ret = udf_load_sparable_map(sb, map, 1447 (struct sparablePartitionMap *)gpm); 1448 if (ret < 0) 1449 goto out_bh; 1450 } else if (!strncmp(upm2->partIdent.ident, 1451 UDF_ID_METADATA, 1452 strlen(UDF_ID_METADATA))) { 1453 struct udf_meta_data *mdata = 1454 &map->s_type_specific.s_metadata; 1455 struct metadataPartitionMap *mdm = 1456 (struct metadataPartitionMap *) 1457 &(lvd->partitionMaps[offset]); 1458 udf_debug("Parsing Logical vol part %d type %u id=%s\n", 1459 i, type, UDF_ID_METADATA); 1460 1461 map->s_partition_type = UDF_METADATA_MAP25; 1462 map->s_partition_func = udf_get_pblock_meta25; 1463 1464 mdata->s_meta_file_loc = 1465 le32_to_cpu(mdm->metadataFileLoc); 1466 mdata->s_mirror_file_loc = 1467 le32_to_cpu(mdm->metadataMirrorFileLoc); 1468 mdata->s_bitmap_file_loc = 1469 le32_to_cpu(mdm->metadataBitmapFileLoc); 1470 mdata->s_alloc_unit_size = 1471 le32_to_cpu(mdm->allocUnitSize); 1472 mdata->s_align_unit_size = 1473 le16_to_cpu(mdm->alignUnitSize); 1474 if (mdm->flags & 0x01) 1475 mdata->s_flags |= MF_DUPLICATE_MD; 1476 1477 udf_debug("Metadata Ident suffix=0x%x\n", 1478 le16_to_cpu(*(__le16 *) 1479 mdm->partIdent.identSuffix)); 1480 udf_debug("Metadata part num=%u\n", 1481 le16_to_cpu(mdm->partitionNum)); 1482 udf_debug("Metadata part alloc unit size=%u\n", 1483 le32_to_cpu(mdm->allocUnitSize)); 1484 udf_debug("Metadata file loc=%u\n", 1485 le32_to_cpu(mdm->metadataFileLoc)); 1486 udf_debug("Mirror file loc=%u\n", 1487 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1488 udf_debug("Bitmap file loc=%u\n", 1489 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1490 udf_debug("Flags: %d %u\n", 1491 mdata->s_flags, mdm->flags); 1492 } else { 1493 udf_debug("Unknown ident: %s\n", 1494 upm2->partIdent.ident); 1495 continue; 1496 } 1497 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1498 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1499 } 1500 udf_debug("Partition (%d:%u) type %u on volume %u\n", 1501 i, map->s_partition_num, type, map->s_volumeseqnum); 1502 } 1503 1504 if (fileset) { 1505 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1506 1507 *fileset = lelb_to_cpu(la->extLocation); 1508 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n", 1509 fileset->logicalBlockNum, 1510 fileset->partitionReferenceNum); 1511 } 1512 if (lvd->integritySeqExt.extLength) 1513 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1514 ret = 0; 1515 out_bh: 1516 brelse(bh); 1517 return ret; 1518 } 1519 1520 /* 1521 * Find the prevailing Logical Volume Integrity Descriptor. 1522 */ 1523 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1524 { 1525 struct buffer_head *bh, *final_bh; 1526 uint16_t ident; 1527 struct udf_sb_info *sbi = UDF_SB(sb); 1528 struct logicalVolIntegrityDesc *lvid; 1529 int indirections = 0; 1530 1531 while (++indirections <= UDF_MAX_LVID_NESTING) { 1532 final_bh = NULL; 1533 while (loc.extLength > 0 && 1534 (bh = udf_read_tagged(sb, loc.extLocation, 1535 loc.extLocation, &ident))) { 1536 if (ident != TAG_IDENT_LVID) { 1537 brelse(bh); 1538 break; 1539 } 1540 1541 brelse(final_bh); 1542 final_bh = bh; 1543 1544 loc.extLength -= sb->s_blocksize; 1545 loc.extLocation++; 1546 } 1547 1548 if (!final_bh) 1549 return; 1550 1551 brelse(sbi->s_lvid_bh); 1552 sbi->s_lvid_bh = final_bh; 1553 1554 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data; 1555 if (lvid->nextIntegrityExt.extLength == 0) 1556 return; 1557 1558 loc = leea_to_cpu(lvid->nextIntegrityExt); 1559 } 1560 1561 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n", 1562 UDF_MAX_LVID_NESTING); 1563 brelse(sbi->s_lvid_bh); 1564 sbi->s_lvid_bh = NULL; 1565 } 1566 1567 /* 1568 * Step for reallocation of table of partition descriptor sequence numbers. 1569 * Must be power of 2. 1570 */ 1571 #define PART_DESC_ALLOC_STEP 32 1572 1573 struct desc_seq_scan_data { 1574 struct udf_vds_record vds[VDS_POS_LENGTH]; 1575 unsigned int size_part_descs; 1576 struct udf_vds_record *part_descs_loc; 1577 }; 1578 1579 static struct udf_vds_record *handle_partition_descriptor( 1580 struct buffer_head *bh, 1581 struct desc_seq_scan_data *data) 1582 { 1583 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data; 1584 int partnum; 1585 1586 partnum = le16_to_cpu(desc->partitionNumber); 1587 if (partnum >= data->size_part_descs) { 1588 struct udf_vds_record *new_loc; 1589 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP); 1590 1591 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL); 1592 if (!new_loc) 1593 return ERR_PTR(-ENOMEM); 1594 memcpy(new_loc, data->part_descs_loc, 1595 data->size_part_descs * sizeof(*new_loc)); 1596 kfree(data->part_descs_loc); 1597 data->part_descs_loc = new_loc; 1598 data->size_part_descs = new_size; 1599 } 1600 return &(data->part_descs_loc[partnum]); 1601 } 1602 1603 1604 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident, 1605 struct buffer_head *bh, struct desc_seq_scan_data *data) 1606 { 1607 switch (ident) { 1608 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1609 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]); 1610 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1611 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]); 1612 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1613 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]); 1614 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1615 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]); 1616 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1617 return handle_partition_descriptor(bh, data); 1618 } 1619 return NULL; 1620 } 1621 1622 /* 1623 * Process a main/reserve volume descriptor sequence. 1624 * @block First block of first extent of the sequence. 1625 * @lastblock Lastblock of first extent of the sequence. 1626 * @fileset There we store extent containing root fileset 1627 * 1628 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor 1629 * sequence 1630 */ 1631 static noinline int udf_process_sequence( 1632 struct super_block *sb, 1633 sector_t block, sector_t lastblock, 1634 struct kernel_lb_addr *fileset) 1635 { 1636 struct buffer_head *bh = NULL; 1637 struct udf_vds_record *curr; 1638 struct generic_desc *gd; 1639 struct volDescPtr *vdp; 1640 bool done = false; 1641 uint32_t vdsn; 1642 uint16_t ident; 1643 int ret; 1644 unsigned int indirections = 0; 1645 struct desc_seq_scan_data data; 1646 unsigned int i; 1647 1648 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1649 data.size_part_descs = PART_DESC_ALLOC_STEP; 1650 data.part_descs_loc = kcalloc(data.size_part_descs, 1651 sizeof(*data.part_descs_loc), 1652 GFP_KERNEL); 1653 if (!data.part_descs_loc) 1654 return -ENOMEM; 1655 1656 /* 1657 * Read the main descriptor sequence and find which descriptors 1658 * are in it. 1659 */ 1660 for (; (!done && block <= lastblock); block++) { 1661 1662 bh = udf_read_tagged(sb, block, block, &ident); 1663 if (!bh) 1664 break; 1665 1666 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1667 gd = (struct generic_desc *)bh->b_data; 1668 vdsn = le32_to_cpu(gd->volDescSeqNum); 1669 switch (ident) { 1670 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1671 if (++indirections > UDF_MAX_TD_NESTING) { 1672 udf_err(sb, "too many Volume Descriptor " 1673 "Pointers (max %u supported)\n", 1674 UDF_MAX_TD_NESTING); 1675 brelse(bh); 1676 return -EIO; 1677 } 1678 1679 vdp = (struct volDescPtr *)bh->b_data; 1680 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation); 1681 lastblock = le32_to_cpu( 1682 vdp->nextVolDescSeqExt.extLength) >> 1683 sb->s_blocksize_bits; 1684 lastblock += block - 1; 1685 /* For loop is going to increment 'block' again */ 1686 block--; 1687 break; 1688 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1689 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1690 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1691 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1692 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1693 curr = get_volume_descriptor_record(ident, bh, &data); 1694 if (IS_ERR(curr)) { 1695 brelse(bh); 1696 return PTR_ERR(curr); 1697 } 1698 /* Descriptor we don't care about? */ 1699 if (!curr) 1700 break; 1701 if (vdsn >= curr->volDescSeqNum) { 1702 curr->volDescSeqNum = vdsn; 1703 curr->block = block; 1704 } 1705 break; 1706 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1707 done = true; 1708 break; 1709 } 1710 brelse(bh); 1711 } 1712 /* 1713 * Now read interesting descriptors again and process them 1714 * in a suitable order 1715 */ 1716 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1717 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1718 return -EAGAIN; 1719 } 1720 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block); 1721 if (ret < 0) 1722 return ret; 1723 1724 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) { 1725 ret = udf_load_logicalvol(sb, 1726 data.vds[VDS_POS_LOGICAL_VOL_DESC].block, 1727 fileset); 1728 if (ret < 0) 1729 return ret; 1730 } 1731 1732 /* Now handle prevailing Partition Descriptors */ 1733 for (i = 0; i < data.size_part_descs; i++) { 1734 if (data.part_descs_loc[i].block) { 1735 ret = udf_load_partdesc(sb, 1736 data.part_descs_loc[i].block); 1737 if (ret < 0) 1738 return ret; 1739 } 1740 } 1741 1742 return 0; 1743 } 1744 1745 /* 1746 * Load Volume Descriptor Sequence described by anchor in bh 1747 * 1748 * Returns <0 on error, 0 on success 1749 */ 1750 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1751 struct kernel_lb_addr *fileset) 1752 { 1753 struct anchorVolDescPtr *anchor; 1754 sector_t main_s, main_e, reserve_s, reserve_e; 1755 int ret; 1756 1757 anchor = (struct anchorVolDescPtr *)bh->b_data; 1758 1759 /* Locate the main sequence */ 1760 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1761 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1762 main_e = main_e >> sb->s_blocksize_bits; 1763 main_e += main_s - 1; 1764 1765 /* Locate the reserve sequence */ 1766 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1767 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1768 reserve_e = reserve_e >> sb->s_blocksize_bits; 1769 reserve_e += reserve_s - 1; 1770 1771 /* Process the main & reserve sequences */ 1772 /* responsible for finding the PartitionDesc(s) */ 1773 ret = udf_process_sequence(sb, main_s, main_e, fileset); 1774 if (ret != -EAGAIN) 1775 return ret; 1776 udf_sb_free_partitions(sb); 1777 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1778 if (ret < 0) { 1779 udf_sb_free_partitions(sb); 1780 /* No sequence was OK, return -EIO */ 1781 if (ret == -EAGAIN) 1782 ret = -EIO; 1783 } 1784 return ret; 1785 } 1786 1787 /* 1788 * Check whether there is an anchor block in the given block and 1789 * load Volume Descriptor Sequence if so. 1790 * 1791 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor 1792 * block 1793 */ 1794 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1795 struct kernel_lb_addr *fileset) 1796 { 1797 struct buffer_head *bh; 1798 uint16_t ident; 1799 int ret; 1800 1801 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1802 udf_fixed_to_variable(block) >= 1803 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits) 1804 return -EAGAIN; 1805 1806 bh = udf_read_tagged(sb, block, block, &ident); 1807 if (!bh) 1808 return -EAGAIN; 1809 if (ident != TAG_IDENT_AVDP) { 1810 brelse(bh); 1811 return -EAGAIN; 1812 } 1813 ret = udf_load_sequence(sb, bh, fileset); 1814 brelse(bh); 1815 return ret; 1816 } 1817 1818 /* 1819 * Search for an anchor volume descriptor pointer. 1820 * 1821 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set 1822 * of anchors. 1823 */ 1824 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock, 1825 struct kernel_lb_addr *fileset) 1826 { 1827 sector_t last[6]; 1828 int i; 1829 struct udf_sb_info *sbi = UDF_SB(sb); 1830 int last_count = 0; 1831 int ret; 1832 1833 /* First try user provided anchor */ 1834 if (sbi->s_anchor) { 1835 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset); 1836 if (ret != -EAGAIN) 1837 return ret; 1838 } 1839 /* 1840 * according to spec, anchor is in either: 1841 * block 256 1842 * lastblock-256 1843 * lastblock 1844 * however, if the disc isn't closed, it could be 512. 1845 */ 1846 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset); 1847 if (ret != -EAGAIN) 1848 return ret; 1849 /* 1850 * The trouble is which block is the last one. Drives often misreport 1851 * this so we try various possibilities. 1852 */ 1853 last[last_count++] = *lastblock; 1854 if (*lastblock >= 1) 1855 last[last_count++] = *lastblock - 1; 1856 last[last_count++] = *lastblock + 1; 1857 if (*lastblock >= 2) 1858 last[last_count++] = *lastblock - 2; 1859 if (*lastblock >= 150) 1860 last[last_count++] = *lastblock - 150; 1861 if (*lastblock >= 152) 1862 last[last_count++] = *lastblock - 152; 1863 1864 for (i = 0; i < last_count; i++) { 1865 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >> 1866 sb->s_blocksize_bits) 1867 continue; 1868 ret = udf_check_anchor_block(sb, last[i], fileset); 1869 if (ret != -EAGAIN) { 1870 if (!ret) 1871 *lastblock = last[i]; 1872 return ret; 1873 } 1874 if (last[i] < 256) 1875 continue; 1876 ret = udf_check_anchor_block(sb, last[i] - 256, fileset); 1877 if (ret != -EAGAIN) { 1878 if (!ret) 1879 *lastblock = last[i]; 1880 return ret; 1881 } 1882 } 1883 1884 /* Finally try block 512 in case media is open */ 1885 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset); 1886 } 1887 1888 /* 1889 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1890 * area specified by it. The function expects sbi->s_lastblock to be the last 1891 * block on the media. 1892 * 1893 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor 1894 * was not found. 1895 */ 1896 static int udf_find_anchor(struct super_block *sb, 1897 struct kernel_lb_addr *fileset) 1898 { 1899 struct udf_sb_info *sbi = UDF_SB(sb); 1900 sector_t lastblock = sbi->s_last_block; 1901 int ret; 1902 1903 ret = udf_scan_anchors(sb, &lastblock, fileset); 1904 if (ret != -EAGAIN) 1905 goto out; 1906 1907 /* No anchor found? Try VARCONV conversion of block numbers */ 1908 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1909 lastblock = udf_variable_to_fixed(sbi->s_last_block); 1910 /* Firstly, we try to not convert number of the last block */ 1911 ret = udf_scan_anchors(sb, &lastblock, fileset); 1912 if (ret != -EAGAIN) 1913 goto out; 1914 1915 lastblock = sbi->s_last_block; 1916 /* Secondly, we try with converted number of the last block */ 1917 ret = udf_scan_anchors(sb, &lastblock, fileset); 1918 if (ret < 0) { 1919 /* VARCONV didn't help. Clear it. */ 1920 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1921 } 1922 out: 1923 if (ret == 0) 1924 sbi->s_last_block = lastblock; 1925 return ret; 1926 } 1927 1928 /* 1929 * Check Volume Structure Descriptor, find Anchor block and load Volume 1930 * Descriptor Sequence. 1931 * 1932 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor 1933 * block was not found. 1934 */ 1935 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1936 int silent, struct kernel_lb_addr *fileset) 1937 { 1938 struct udf_sb_info *sbi = UDF_SB(sb); 1939 loff_t nsr_off; 1940 int ret; 1941 1942 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1943 if (!silent) 1944 udf_warn(sb, "Bad block size\n"); 1945 return -EINVAL; 1946 } 1947 sbi->s_last_block = uopt->lastblock; 1948 if (!uopt->novrs) { 1949 /* Check that it is NSR02 compliant */ 1950 nsr_off = udf_check_vsd(sb); 1951 if (!nsr_off) { 1952 if (!silent) 1953 udf_warn(sb, "No VRS found\n"); 1954 return -EINVAL; 1955 } 1956 if (nsr_off == -1) 1957 udf_debug("Failed to read sector at offset %d. " 1958 "Assuming open disc. Skipping validity " 1959 "check\n", VSD_FIRST_SECTOR_OFFSET); 1960 if (!sbi->s_last_block) 1961 sbi->s_last_block = udf_get_last_block(sb); 1962 } else { 1963 udf_debug("Validity check skipped because of novrs option\n"); 1964 } 1965 1966 /* Look for anchor block and load Volume Descriptor Sequence */ 1967 sbi->s_anchor = uopt->anchor; 1968 ret = udf_find_anchor(sb, fileset); 1969 if (ret < 0) { 1970 if (!silent && ret == -EAGAIN) 1971 udf_warn(sb, "No anchor found\n"); 1972 return ret; 1973 } 1974 return 0; 1975 } 1976 1977 static void udf_open_lvid(struct super_block *sb) 1978 { 1979 struct udf_sb_info *sbi = UDF_SB(sb); 1980 struct buffer_head *bh = sbi->s_lvid_bh; 1981 struct logicalVolIntegrityDesc *lvid; 1982 struct logicalVolIntegrityDescImpUse *lvidiu; 1983 struct timespec64 ts; 1984 1985 if (!bh) 1986 return; 1987 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1988 lvidiu = udf_sb_lvidiu(sb); 1989 if (!lvidiu) 1990 return; 1991 1992 mutex_lock(&sbi->s_alloc_mutex); 1993 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1994 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1995 ktime_get_real_ts64(&ts); 1996 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts); 1997 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE) 1998 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 1999 else 2000 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT); 2001 2002 lvid->descTag.descCRC = cpu_to_le16( 2003 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 2004 le16_to_cpu(lvid->descTag.descCRCLength))); 2005 2006 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 2007 mark_buffer_dirty(bh); 2008 sbi->s_lvid_dirty = 0; 2009 mutex_unlock(&sbi->s_alloc_mutex); 2010 /* Make opening of filesystem visible on the media immediately */ 2011 sync_dirty_buffer(bh); 2012 } 2013 2014 static void udf_close_lvid(struct super_block *sb) 2015 { 2016 struct udf_sb_info *sbi = UDF_SB(sb); 2017 struct buffer_head *bh = sbi->s_lvid_bh; 2018 struct logicalVolIntegrityDesc *lvid; 2019 struct logicalVolIntegrityDescImpUse *lvidiu; 2020 struct timespec64 ts; 2021 2022 if (!bh) 2023 return; 2024 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2025 lvidiu = udf_sb_lvidiu(sb); 2026 if (!lvidiu) 2027 return; 2028 2029 mutex_lock(&sbi->s_alloc_mutex); 2030 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2031 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2032 ktime_get_real_ts64(&ts); 2033 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts); 2034 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 2035 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 2036 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 2037 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 2038 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 2039 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 2040 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT)) 2041 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 2042 2043 lvid->descTag.descCRC = cpu_to_le16( 2044 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 2045 le16_to_cpu(lvid->descTag.descCRCLength))); 2046 2047 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 2048 /* 2049 * We set buffer uptodate unconditionally here to avoid spurious 2050 * warnings from mark_buffer_dirty() when previous EIO has marked 2051 * the buffer as !uptodate 2052 */ 2053 set_buffer_uptodate(bh); 2054 mark_buffer_dirty(bh); 2055 sbi->s_lvid_dirty = 0; 2056 mutex_unlock(&sbi->s_alloc_mutex); 2057 /* Make closing of filesystem visible on the media immediately */ 2058 sync_dirty_buffer(bh); 2059 } 2060 2061 u64 lvid_get_unique_id(struct super_block *sb) 2062 { 2063 struct buffer_head *bh; 2064 struct udf_sb_info *sbi = UDF_SB(sb); 2065 struct logicalVolIntegrityDesc *lvid; 2066 struct logicalVolHeaderDesc *lvhd; 2067 u64 uniqueID; 2068 u64 ret; 2069 2070 bh = sbi->s_lvid_bh; 2071 if (!bh) 2072 return 0; 2073 2074 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2075 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 2076 2077 mutex_lock(&sbi->s_alloc_mutex); 2078 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 2079 if (!(++uniqueID & 0xFFFFFFFF)) 2080 uniqueID += 16; 2081 lvhd->uniqueID = cpu_to_le64(uniqueID); 2082 mutex_unlock(&sbi->s_alloc_mutex); 2083 mark_buffer_dirty(bh); 2084 2085 return ret; 2086 } 2087 2088 static int udf_fill_super(struct super_block *sb, void *options, int silent) 2089 { 2090 int ret = -EINVAL; 2091 struct inode *inode = NULL; 2092 struct udf_options uopt; 2093 struct kernel_lb_addr rootdir, fileset; 2094 struct udf_sb_info *sbi; 2095 bool lvid_open = false; 2096 2097 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 2098 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */ 2099 uopt.uid = make_kuid(current_user_ns(), overflowuid); 2100 uopt.gid = make_kgid(current_user_ns(), overflowgid); 2101 uopt.umask = 0; 2102 uopt.fmode = UDF_INVALID_MODE; 2103 uopt.dmode = UDF_INVALID_MODE; 2104 uopt.nls_map = NULL; 2105 2106 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 2107 if (!sbi) 2108 return -ENOMEM; 2109 2110 sb->s_fs_info = sbi; 2111 2112 mutex_init(&sbi->s_alloc_mutex); 2113 2114 if (!udf_parse_options((char *)options, &uopt, false)) 2115 goto parse_options_failure; 2116 2117 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 2118 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 2119 udf_err(sb, "utf8 cannot be combined with iocharset\n"); 2120 goto parse_options_failure; 2121 } 2122 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 2123 uopt.nls_map = load_nls_default(); 2124 if (!uopt.nls_map) 2125 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 2126 else 2127 udf_debug("Using default NLS map\n"); 2128 } 2129 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 2130 uopt.flags |= (1 << UDF_FLAG_UTF8); 2131 2132 fileset.logicalBlockNum = 0xFFFFFFFF; 2133 fileset.partitionReferenceNum = 0xFFFF; 2134 2135 sbi->s_flags = uopt.flags; 2136 sbi->s_uid = uopt.uid; 2137 sbi->s_gid = uopt.gid; 2138 sbi->s_umask = uopt.umask; 2139 sbi->s_fmode = uopt.fmode; 2140 sbi->s_dmode = uopt.dmode; 2141 sbi->s_nls_map = uopt.nls_map; 2142 rwlock_init(&sbi->s_cred_lock); 2143 2144 if (uopt.session == 0xFFFFFFFF) 2145 sbi->s_session = udf_get_last_session(sb); 2146 else 2147 sbi->s_session = uopt.session; 2148 2149 udf_debug("Multi-session=%d\n", sbi->s_session); 2150 2151 /* Fill in the rest of the superblock */ 2152 sb->s_op = &udf_sb_ops; 2153 sb->s_export_op = &udf_export_ops; 2154 2155 sb->s_magic = UDF_SUPER_MAGIC; 2156 sb->s_time_gran = 1000; 2157 2158 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2159 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2160 } else { 2161 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2162 while (uopt.blocksize <= 4096) { 2163 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2164 if (ret < 0) { 2165 if (!silent && ret != -EACCES) { 2166 pr_notice("Scanning with blocksize %u failed\n", 2167 uopt.blocksize); 2168 } 2169 brelse(sbi->s_lvid_bh); 2170 sbi->s_lvid_bh = NULL; 2171 /* 2172 * EACCES is special - we want to propagate to 2173 * upper layers that we cannot handle RW mount. 2174 */ 2175 if (ret == -EACCES) 2176 break; 2177 } else 2178 break; 2179 2180 uopt.blocksize <<= 1; 2181 } 2182 } 2183 if (ret < 0) { 2184 if (ret == -EAGAIN) { 2185 udf_warn(sb, "No partition found (1)\n"); 2186 ret = -EINVAL; 2187 } 2188 goto error_out; 2189 } 2190 2191 udf_debug("Lastblock=%u\n", sbi->s_last_block); 2192 2193 if (sbi->s_lvid_bh) { 2194 struct logicalVolIntegrityDescImpUse *lvidiu = 2195 udf_sb_lvidiu(sb); 2196 uint16_t minUDFReadRev; 2197 uint16_t minUDFWriteRev; 2198 2199 if (!lvidiu) { 2200 ret = -EINVAL; 2201 goto error_out; 2202 } 2203 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2204 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2205 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2206 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2207 minUDFReadRev, 2208 UDF_MAX_READ_VERSION); 2209 ret = -EINVAL; 2210 goto error_out; 2211 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION && 2212 !sb_rdonly(sb)) { 2213 ret = -EACCES; 2214 goto error_out; 2215 } 2216 2217 sbi->s_udfrev = minUDFWriteRev; 2218 2219 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2220 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2221 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2222 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2223 } 2224 2225 if (!sbi->s_partitions) { 2226 udf_warn(sb, "No partition found (2)\n"); 2227 ret = -EINVAL; 2228 goto error_out; 2229 } 2230 2231 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2232 UDF_PART_FLAG_READ_ONLY && 2233 !sb_rdonly(sb)) { 2234 ret = -EACCES; 2235 goto error_out; 2236 } 2237 2238 if (udf_find_fileset(sb, &fileset, &rootdir)) { 2239 udf_warn(sb, "No fileset found\n"); 2240 ret = -EINVAL; 2241 goto error_out; 2242 } 2243 2244 if (!silent) { 2245 struct timestamp ts; 2246 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2247 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2248 sbi->s_volume_ident, 2249 le16_to_cpu(ts.year), ts.month, ts.day, 2250 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2251 } 2252 if (!sb_rdonly(sb)) { 2253 udf_open_lvid(sb); 2254 lvid_open = true; 2255 } 2256 2257 /* Assign the root inode */ 2258 /* assign inodes by physical block number */ 2259 /* perhaps it's not extensible enough, but for now ... */ 2260 inode = udf_iget(sb, &rootdir); 2261 if (IS_ERR(inode)) { 2262 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n", 2263 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2264 ret = PTR_ERR(inode); 2265 goto error_out; 2266 } 2267 2268 /* Allocate a dentry for the root inode */ 2269 sb->s_root = d_make_root(inode); 2270 if (!sb->s_root) { 2271 udf_err(sb, "Couldn't allocate root dentry\n"); 2272 ret = -ENOMEM; 2273 goto error_out; 2274 } 2275 sb->s_maxbytes = MAX_LFS_FILESIZE; 2276 sb->s_max_links = UDF_MAX_LINKS; 2277 return 0; 2278 2279 error_out: 2280 iput(sbi->s_vat_inode); 2281 parse_options_failure: 2282 if (uopt.nls_map) 2283 unload_nls(uopt.nls_map); 2284 if (lvid_open) 2285 udf_close_lvid(sb); 2286 brelse(sbi->s_lvid_bh); 2287 udf_sb_free_partitions(sb); 2288 kfree(sbi); 2289 sb->s_fs_info = NULL; 2290 2291 return ret; 2292 } 2293 2294 void _udf_err(struct super_block *sb, const char *function, 2295 const char *fmt, ...) 2296 { 2297 struct va_format vaf; 2298 va_list args; 2299 2300 va_start(args, fmt); 2301 2302 vaf.fmt = fmt; 2303 vaf.va = &args; 2304 2305 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2306 2307 va_end(args); 2308 } 2309 2310 void _udf_warn(struct super_block *sb, const char *function, 2311 const char *fmt, ...) 2312 { 2313 struct va_format vaf; 2314 va_list args; 2315 2316 va_start(args, fmt); 2317 2318 vaf.fmt = fmt; 2319 vaf.va = &args; 2320 2321 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2322 2323 va_end(args); 2324 } 2325 2326 static void udf_put_super(struct super_block *sb) 2327 { 2328 struct udf_sb_info *sbi; 2329 2330 sbi = UDF_SB(sb); 2331 2332 iput(sbi->s_vat_inode); 2333 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2334 unload_nls(sbi->s_nls_map); 2335 if (!sb_rdonly(sb)) 2336 udf_close_lvid(sb); 2337 brelse(sbi->s_lvid_bh); 2338 udf_sb_free_partitions(sb); 2339 mutex_destroy(&sbi->s_alloc_mutex); 2340 kfree(sb->s_fs_info); 2341 sb->s_fs_info = NULL; 2342 } 2343 2344 static int udf_sync_fs(struct super_block *sb, int wait) 2345 { 2346 struct udf_sb_info *sbi = UDF_SB(sb); 2347 2348 mutex_lock(&sbi->s_alloc_mutex); 2349 if (sbi->s_lvid_dirty) { 2350 /* 2351 * Blockdevice will be synced later so we don't have to submit 2352 * the buffer for IO 2353 */ 2354 mark_buffer_dirty(sbi->s_lvid_bh); 2355 sbi->s_lvid_dirty = 0; 2356 } 2357 mutex_unlock(&sbi->s_alloc_mutex); 2358 2359 return 0; 2360 } 2361 2362 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2363 { 2364 struct super_block *sb = dentry->d_sb; 2365 struct udf_sb_info *sbi = UDF_SB(sb); 2366 struct logicalVolIntegrityDescImpUse *lvidiu; 2367 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2368 2369 lvidiu = udf_sb_lvidiu(sb); 2370 buf->f_type = UDF_SUPER_MAGIC; 2371 buf->f_bsize = sb->s_blocksize; 2372 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2373 buf->f_bfree = udf_count_free(sb); 2374 buf->f_bavail = buf->f_bfree; 2375 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2376 le32_to_cpu(lvidiu->numDirs)) : 0) 2377 + buf->f_bfree; 2378 buf->f_ffree = buf->f_bfree; 2379 buf->f_namelen = UDF_NAME_LEN; 2380 buf->f_fsid.val[0] = (u32)id; 2381 buf->f_fsid.val[1] = (u32)(id >> 32); 2382 2383 return 0; 2384 } 2385 2386 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2387 struct udf_bitmap *bitmap) 2388 { 2389 struct buffer_head *bh = NULL; 2390 unsigned int accum = 0; 2391 int index; 2392 udf_pblk_t block = 0, newblock; 2393 struct kernel_lb_addr loc; 2394 uint32_t bytes; 2395 uint8_t *ptr; 2396 uint16_t ident; 2397 struct spaceBitmapDesc *bm; 2398 2399 loc.logicalBlockNum = bitmap->s_extPosition; 2400 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2401 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2402 2403 if (!bh) { 2404 udf_err(sb, "udf_count_free failed\n"); 2405 goto out; 2406 } else if (ident != TAG_IDENT_SBD) { 2407 brelse(bh); 2408 udf_err(sb, "udf_count_free failed\n"); 2409 goto out; 2410 } 2411 2412 bm = (struct spaceBitmapDesc *)bh->b_data; 2413 bytes = le32_to_cpu(bm->numOfBytes); 2414 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2415 ptr = (uint8_t *)bh->b_data; 2416 2417 while (bytes > 0) { 2418 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2419 accum += bitmap_weight((const unsigned long *)(ptr + index), 2420 cur_bytes * 8); 2421 bytes -= cur_bytes; 2422 if (bytes) { 2423 brelse(bh); 2424 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2425 bh = udf_tread(sb, newblock); 2426 if (!bh) { 2427 udf_debug("read failed\n"); 2428 goto out; 2429 } 2430 index = 0; 2431 ptr = (uint8_t *)bh->b_data; 2432 } 2433 } 2434 brelse(bh); 2435 out: 2436 return accum; 2437 } 2438 2439 static unsigned int udf_count_free_table(struct super_block *sb, 2440 struct inode *table) 2441 { 2442 unsigned int accum = 0; 2443 uint32_t elen; 2444 struct kernel_lb_addr eloc; 2445 int8_t etype; 2446 struct extent_position epos; 2447 2448 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2449 epos.block = UDF_I(table)->i_location; 2450 epos.offset = sizeof(struct unallocSpaceEntry); 2451 epos.bh = NULL; 2452 2453 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2454 accum += (elen >> table->i_sb->s_blocksize_bits); 2455 2456 brelse(epos.bh); 2457 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2458 2459 return accum; 2460 } 2461 2462 static unsigned int udf_count_free(struct super_block *sb) 2463 { 2464 unsigned int accum = 0; 2465 struct udf_sb_info *sbi; 2466 struct udf_part_map *map; 2467 2468 sbi = UDF_SB(sb); 2469 if (sbi->s_lvid_bh) { 2470 struct logicalVolIntegrityDesc *lvid = 2471 (struct logicalVolIntegrityDesc *) 2472 sbi->s_lvid_bh->b_data; 2473 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2474 accum = le32_to_cpu( 2475 lvid->freeSpaceTable[sbi->s_partition]); 2476 if (accum == 0xFFFFFFFF) 2477 accum = 0; 2478 } 2479 } 2480 2481 if (accum) 2482 return accum; 2483 2484 map = &sbi->s_partmaps[sbi->s_partition]; 2485 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2486 accum += udf_count_free_bitmap(sb, 2487 map->s_uspace.s_bitmap); 2488 } 2489 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 2490 accum += udf_count_free_bitmap(sb, 2491 map->s_fspace.s_bitmap); 2492 } 2493 if (accum) 2494 return accum; 2495 2496 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2497 accum += udf_count_free_table(sb, 2498 map->s_uspace.s_table); 2499 } 2500 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 2501 accum += udf_count_free_table(sb, 2502 map->s_fspace.s_table); 2503 } 2504 2505 return accum; 2506 } 2507 2508 MODULE_AUTHOR("Ben Fennema"); 2509 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 2510 MODULE_LICENSE("GPL"); 2511 module_init(init_udf_fs) 2512 module_exit(exit_udf_fs) 2513