xref: /openbmc/linux/fs/udf/super.c (revision f125e2d4)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 
61 #include "udf_sb.h"
62 #include "udf_i.h"
63 
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66 
67 enum {
68 	VDS_POS_PRIMARY_VOL_DESC,
69 	VDS_POS_UNALLOC_SPACE_DESC,
70 	VDS_POS_LOGICAL_VOL_DESC,
71 	VDS_POS_IMP_USE_VOL_DESC,
72 	VDS_POS_LENGTH
73 };
74 
75 #define VSD_FIRST_SECTOR_OFFSET		32768
76 #define VSD_MAX_SECTOR_OFFSET		0x800000
77 
78 /*
79  * Maximum number of Terminating Descriptor / Logical Volume Integrity
80  * Descriptor redirections. The chosen numbers are arbitrary - just that we
81  * hopefully don't limit any real use of rewritten inode on write-once media
82  * but avoid looping for too long on corrupted media.
83  */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86 
87 enum { UDF_MAX_LINKS = 0xffff };
88 
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static void udf_open_lvid(struct super_block *);
96 static void udf_close_lvid(struct super_block *);
97 static unsigned int udf_count_free(struct super_block *);
98 static int udf_statfs(struct dentry *, struct kstatfs *);
99 static int udf_show_options(struct seq_file *, struct dentry *);
100 
101 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
102 {
103 	struct logicalVolIntegrityDesc *lvid;
104 	unsigned int partnum;
105 	unsigned int offset;
106 
107 	if (!UDF_SB(sb)->s_lvid_bh)
108 		return NULL;
109 	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
110 	partnum = le32_to_cpu(lvid->numOfPartitions);
111 	if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
112 	     offsetof(struct logicalVolIntegrityDesc, impUse)) /
113 	     (2 * sizeof(uint32_t)) < partnum) {
114 		udf_err(sb, "Logical volume integrity descriptor corrupted "
115 			"(numOfPartitions = %u)!\n", partnum);
116 		return NULL;
117 	}
118 	/* The offset is to skip freeSpaceTable and sizeTable arrays */
119 	offset = partnum * 2 * sizeof(uint32_t);
120 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
121 }
122 
123 /* UDF filesystem type */
124 static struct dentry *udf_mount(struct file_system_type *fs_type,
125 		      int flags, const char *dev_name, void *data)
126 {
127 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
128 }
129 
130 static struct file_system_type udf_fstype = {
131 	.owner		= THIS_MODULE,
132 	.name		= "udf",
133 	.mount		= udf_mount,
134 	.kill_sb	= kill_block_super,
135 	.fs_flags	= FS_REQUIRES_DEV,
136 };
137 MODULE_ALIAS_FS("udf");
138 
139 static struct kmem_cache *udf_inode_cachep;
140 
141 static struct inode *udf_alloc_inode(struct super_block *sb)
142 {
143 	struct udf_inode_info *ei;
144 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
145 	if (!ei)
146 		return NULL;
147 
148 	ei->i_unique = 0;
149 	ei->i_lenExtents = 0;
150 	ei->i_lenStreams = 0;
151 	ei->i_next_alloc_block = 0;
152 	ei->i_next_alloc_goal = 0;
153 	ei->i_strat4096 = 0;
154 	ei->i_streamdir = 0;
155 	init_rwsem(&ei->i_data_sem);
156 	ei->cached_extent.lstart = -1;
157 	spin_lock_init(&ei->i_extent_cache_lock);
158 
159 	return &ei->vfs_inode;
160 }
161 
162 static void udf_free_in_core_inode(struct inode *inode)
163 {
164 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
165 }
166 
167 static void init_once(void *foo)
168 {
169 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
170 
171 	ei->i_ext.i_data = NULL;
172 	inode_init_once(&ei->vfs_inode);
173 }
174 
175 static int __init init_inodecache(void)
176 {
177 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
178 					     sizeof(struct udf_inode_info),
179 					     0, (SLAB_RECLAIM_ACCOUNT |
180 						 SLAB_MEM_SPREAD |
181 						 SLAB_ACCOUNT),
182 					     init_once);
183 	if (!udf_inode_cachep)
184 		return -ENOMEM;
185 	return 0;
186 }
187 
188 static void destroy_inodecache(void)
189 {
190 	/*
191 	 * Make sure all delayed rcu free inodes are flushed before we
192 	 * destroy cache.
193 	 */
194 	rcu_barrier();
195 	kmem_cache_destroy(udf_inode_cachep);
196 }
197 
198 /* Superblock operations */
199 static const struct super_operations udf_sb_ops = {
200 	.alloc_inode	= udf_alloc_inode,
201 	.free_inode	= udf_free_in_core_inode,
202 	.write_inode	= udf_write_inode,
203 	.evict_inode	= udf_evict_inode,
204 	.put_super	= udf_put_super,
205 	.sync_fs	= udf_sync_fs,
206 	.statfs		= udf_statfs,
207 	.remount_fs	= udf_remount_fs,
208 	.show_options	= udf_show_options,
209 };
210 
211 struct udf_options {
212 	unsigned char novrs;
213 	unsigned int blocksize;
214 	unsigned int session;
215 	unsigned int lastblock;
216 	unsigned int anchor;
217 	unsigned int flags;
218 	umode_t umask;
219 	kgid_t gid;
220 	kuid_t uid;
221 	umode_t fmode;
222 	umode_t dmode;
223 	struct nls_table *nls_map;
224 };
225 
226 static int __init init_udf_fs(void)
227 {
228 	int err;
229 
230 	err = init_inodecache();
231 	if (err)
232 		goto out1;
233 	err = register_filesystem(&udf_fstype);
234 	if (err)
235 		goto out;
236 
237 	return 0;
238 
239 out:
240 	destroy_inodecache();
241 
242 out1:
243 	return err;
244 }
245 
246 static void __exit exit_udf_fs(void)
247 {
248 	unregister_filesystem(&udf_fstype);
249 	destroy_inodecache();
250 }
251 
252 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
253 {
254 	struct udf_sb_info *sbi = UDF_SB(sb);
255 
256 	sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
257 	if (!sbi->s_partmaps) {
258 		sbi->s_partitions = 0;
259 		return -ENOMEM;
260 	}
261 
262 	sbi->s_partitions = count;
263 	return 0;
264 }
265 
266 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
267 {
268 	int i;
269 	int nr_groups = bitmap->s_nr_groups;
270 
271 	for (i = 0; i < nr_groups; i++)
272 		brelse(bitmap->s_block_bitmap[i]);
273 
274 	kvfree(bitmap);
275 }
276 
277 static void udf_free_partition(struct udf_part_map *map)
278 {
279 	int i;
280 	struct udf_meta_data *mdata;
281 
282 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
283 		iput(map->s_uspace.s_table);
284 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
285 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
286 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
287 		for (i = 0; i < 4; i++)
288 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
289 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
290 		mdata = &map->s_type_specific.s_metadata;
291 		iput(mdata->s_metadata_fe);
292 		mdata->s_metadata_fe = NULL;
293 
294 		iput(mdata->s_mirror_fe);
295 		mdata->s_mirror_fe = NULL;
296 
297 		iput(mdata->s_bitmap_fe);
298 		mdata->s_bitmap_fe = NULL;
299 	}
300 }
301 
302 static void udf_sb_free_partitions(struct super_block *sb)
303 {
304 	struct udf_sb_info *sbi = UDF_SB(sb);
305 	int i;
306 
307 	if (!sbi->s_partmaps)
308 		return;
309 	for (i = 0; i < sbi->s_partitions; i++)
310 		udf_free_partition(&sbi->s_partmaps[i]);
311 	kfree(sbi->s_partmaps);
312 	sbi->s_partmaps = NULL;
313 }
314 
315 static int udf_show_options(struct seq_file *seq, struct dentry *root)
316 {
317 	struct super_block *sb = root->d_sb;
318 	struct udf_sb_info *sbi = UDF_SB(sb);
319 
320 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
321 		seq_puts(seq, ",nostrict");
322 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
323 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
324 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
325 		seq_puts(seq, ",unhide");
326 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
327 		seq_puts(seq, ",undelete");
328 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
329 		seq_puts(seq, ",noadinicb");
330 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
331 		seq_puts(seq, ",shortad");
332 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
333 		seq_puts(seq, ",uid=forget");
334 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
335 		seq_puts(seq, ",gid=forget");
336 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
337 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
338 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
339 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
340 	if (sbi->s_umask != 0)
341 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
342 	if (sbi->s_fmode != UDF_INVALID_MODE)
343 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
344 	if (sbi->s_dmode != UDF_INVALID_MODE)
345 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
346 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
347 		seq_printf(seq, ",session=%d", sbi->s_session);
348 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
349 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
350 	if (sbi->s_anchor != 0)
351 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
352 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
353 		seq_puts(seq, ",utf8");
354 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
355 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
356 
357 	return 0;
358 }
359 
360 /*
361  * udf_parse_options
362  *
363  * PURPOSE
364  *	Parse mount options.
365  *
366  * DESCRIPTION
367  *	The following mount options are supported:
368  *
369  *	gid=		Set the default group.
370  *	umask=		Set the default umask.
371  *	mode=		Set the default file permissions.
372  *	dmode=		Set the default directory permissions.
373  *	uid=		Set the default user.
374  *	bs=		Set the block size.
375  *	unhide		Show otherwise hidden files.
376  *	undelete	Show deleted files in lists.
377  *	adinicb		Embed data in the inode (default)
378  *	noadinicb	Don't embed data in the inode
379  *	shortad		Use short ad's
380  *	longad		Use long ad's (default)
381  *	nostrict	Unset strict conformance
382  *	iocharset=	Set the NLS character set
383  *
384  *	The remaining are for debugging and disaster recovery:
385  *
386  *	novrs		Skip volume sequence recognition
387  *
388  *	The following expect a offset from 0.
389  *
390  *	session=	Set the CDROM session (default= last session)
391  *	anchor=		Override standard anchor location. (default= 256)
392  *	volume=		Override the VolumeDesc location. (unused)
393  *	partition=	Override the PartitionDesc location. (unused)
394  *	lastblock=	Set the last block of the filesystem/
395  *
396  *	The following expect a offset from the partition root.
397  *
398  *	fileset=	Override the fileset block location. (unused)
399  *	rootdir=	Override the root directory location. (unused)
400  *		WARNING: overriding the rootdir to a non-directory may
401  *		yield highly unpredictable results.
402  *
403  * PRE-CONDITIONS
404  *	options		Pointer to mount options string.
405  *	uopts		Pointer to mount options variable.
406  *
407  * POST-CONDITIONS
408  *	<return>	1	Mount options parsed okay.
409  *	<return>	0	Error parsing mount options.
410  *
411  * HISTORY
412  *	July 1, 1997 - Andrew E. Mileski
413  *	Written, tested, and released.
414  */
415 
416 enum {
417 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
418 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
419 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
420 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
421 	Opt_rootdir, Opt_utf8, Opt_iocharset,
422 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
423 	Opt_fmode, Opt_dmode
424 };
425 
426 static const match_table_t tokens = {
427 	{Opt_novrs,	"novrs"},
428 	{Opt_nostrict,	"nostrict"},
429 	{Opt_bs,	"bs=%u"},
430 	{Opt_unhide,	"unhide"},
431 	{Opt_undelete,	"undelete"},
432 	{Opt_noadinicb,	"noadinicb"},
433 	{Opt_adinicb,	"adinicb"},
434 	{Opt_shortad,	"shortad"},
435 	{Opt_longad,	"longad"},
436 	{Opt_uforget,	"uid=forget"},
437 	{Opt_uignore,	"uid=ignore"},
438 	{Opt_gforget,	"gid=forget"},
439 	{Opt_gignore,	"gid=ignore"},
440 	{Opt_gid,	"gid=%u"},
441 	{Opt_uid,	"uid=%u"},
442 	{Opt_umask,	"umask=%o"},
443 	{Opt_session,	"session=%u"},
444 	{Opt_lastblock,	"lastblock=%u"},
445 	{Opt_anchor,	"anchor=%u"},
446 	{Opt_volume,	"volume=%u"},
447 	{Opt_partition,	"partition=%u"},
448 	{Opt_fileset,	"fileset=%u"},
449 	{Opt_rootdir,	"rootdir=%u"},
450 	{Opt_utf8,	"utf8"},
451 	{Opt_iocharset,	"iocharset=%s"},
452 	{Opt_fmode,     "mode=%o"},
453 	{Opt_dmode,     "dmode=%o"},
454 	{Opt_err,	NULL}
455 };
456 
457 static int udf_parse_options(char *options, struct udf_options *uopt,
458 			     bool remount)
459 {
460 	char *p;
461 	int option;
462 
463 	uopt->novrs = 0;
464 	uopt->session = 0xFFFFFFFF;
465 	uopt->lastblock = 0;
466 	uopt->anchor = 0;
467 
468 	if (!options)
469 		return 1;
470 
471 	while ((p = strsep(&options, ",")) != NULL) {
472 		substring_t args[MAX_OPT_ARGS];
473 		int token;
474 		unsigned n;
475 		if (!*p)
476 			continue;
477 
478 		token = match_token(p, tokens, args);
479 		switch (token) {
480 		case Opt_novrs:
481 			uopt->novrs = 1;
482 			break;
483 		case Opt_bs:
484 			if (match_int(&args[0], &option))
485 				return 0;
486 			n = option;
487 			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
488 				return 0;
489 			uopt->blocksize = n;
490 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
491 			break;
492 		case Opt_unhide:
493 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
494 			break;
495 		case Opt_undelete:
496 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
497 			break;
498 		case Opt_noadinicb:
499 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
500 			break;
501 		case Opt_adinicb:
502 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
503 			break;
504 		case Opt_shortad:
505 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
506 			break;
507 		case Opt_longad:
508 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
509 			break;
510 		case Opt_gid:
511 			if (match_int(args, &option))
512 				return 0;
513 			uopt->gid = make_kgid(current_user_ns(), option);
514 			if (!gid_valid(uopt->gid))
515 				return 0;
516 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
517 			break;
518 		case Opt_uid:
519 			if (match_int(args, &option))
520 				return 0;
521 			uopt->uid = make_kuid(current_user_ns(), option);
522 			if (!uid_valid(uopt->uid))
523 				return 0;
524 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
525 			break;
526 		case Opt_umask:
527 			if (match_octal(args, &option))
528 				return 0;
529 			uopt->umask = option;
530 			break;
531 		case Opt_nostrict:
532 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
533 			break;
534 		case Opt_session:
535 			if (match_int(args, &option))
536 				return 0;
537 			uopt->session = option;
538 			if (!remount)
539 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
540 			break;
541 		case Opt_lastblock:
542 			if (match_int(args, &option))
543 				return 0;
544 			uopt->lastblock = option;
545 			if (!remount)
546 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
547 			break;
548 		case Opt_anchor:
549 			if (match_int(args, &option))
550 				return 0;
551 			uopt->anchor = option;
552 			break;
553 		case Opt_volume:
554 		case Opt_partition:
555 		case Opt_fileset:
556 		case Opt_rootdir:
557 			/* Ignored (never implemented properly) */
558 			break;
559 		case Opt_utf8:
560 			uopt->flags |= (1 << UDF_FLAG_UTF8);
561 			break;
562 		case Opt_iocharset:
563 			if (!remount) {
564 				if (uopt->nls_map)
565 					unload_nls(uopt->nls_map);
566 				/*
567 				 * load_nls() failure is handled later in
568 				 * udf_fill_super() after all options are
569 				 * parsed.
570 				 */
571 				uopt->nls_map = load_nls(args[0].from);
572 				uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
573 			}
574 			break;
575 		case Opt_uforget:
576 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
577 			break;
578 		case Opt_uignore:
579 		case Opt_gignore:
580 			/* These options are superseeded by uid=<number> */
581 			break;
582 		case Opt_gforget:
583 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
584 			break;
585 		case Opt_fmode:
586 			if (match_octal(args, &option))
587 				return 0;
588 			uopt->fmode = option & 0777;
589 			break;
590 		case Opt_dmode:
591 			if (match_octal(args, &option))
592 				return 0;
593 			uopt->dmode = option & 0777;
594 			break;
595 		default:
596 			pr_err("bad mount option \"%s\" or missing value\n", p);
597 			return 0;
598 		}
599 	}
600 	return 1;
601 }
602 
603 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
604 {
605 	struct udf_options uopt;
606 	struct udf_sb_info *sbi = UDF_SB(sb);
607 	int error = 0;
608 
609 	if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
610 		return -EACCES;
611 
612 	sync_filesystem(sb);
613 
614 	uopt.flags = sbi->s_flags;
615 	uopt.uid   = sbi->s_uid;
616 	uopt.gid   = sbi->s_gid;
617 	uopt.umask = sbi->s_umask;
618 	uopt.fmode = sbi->s_fmode;
619 	uopt.dmode = sbi->s_dmode;
620 	uopt.nls_map = NULL;
621 
622 	if (!udf_parse_options(options, &uopt, true))
623 		return -EINVAL;
624 
625 	write_lock(&sbi->s_cred_lock);
626 	sbi->s_flags = uopt.flags;
627 	sbi->s_uid   = uopt.uid;
628 	sbi->s_gid   = uopt.gid;
629 	sbi->s_umask = uopt.umask;
630 	sbi->s_fmode = uopt.fmode;
631 	sbi->s_dmode = uopt.dmode;
632 	write_unlock(&sbi->s_cred_lock);
633 
634 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
635 		goto out_unlock;
636 
637 	if (*flags & SB_RDONLY)
638 		udf_close_lvid(sb);
639 	else
640 		udf_open_lvid(sb);
641 
642 out_unlock:
643 	return error;
644 }
645 
646 /*
647  * Check VSD descriptor. Returns -1 in case we are at the end of volume
648  * recognition area, 0 if the descriptor is valid but non-interesting, 1 if
649  * we found one of NSR descriptors we are looking for.
650  */
651 static int identify_vsd(const struct volStructDesc *vsd)
652 {
653 	int ret = 0;
654 
655 	if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
656 		switch (vsd->structType) {
657 		case 0:
658 			udf_debug("ISO9660 Boot Record found\n");
659 			break;
660 		case 1:
661 			udf_debug("ISO9660 Primary Volume Descriptor found\n");
662 			break;
663 		case 2:
664 			udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
665 			break;
666 		case 3:
667 			udf_debug("ISO9660 Volume Partition Descriptor found\n");
668 			break;
669 		case 255:
670 			udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
671 			break;
672 		default:
673 			udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
674 			break;
675 		}
676 	} else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
677 		; /* ret = 0 */
678 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
679 		ret = 1;
680 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
681 		ret = 1;
682 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
683 		; /* ret = 0 */
684 	else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
685 		; /* ret = 0 */
686 	else {
687 		/* TEA01 or invalid id : end of volume recognition area */
688 		ret = -1;
689 	}
690 
691 	return ret;
692 }
693 
694 /*
695  * Check Volume Structure Descriptors (ECMA 167 2/9.1)
696  * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
697  * @return   1 if NSR02 or NSR03 found,
698  *	    -1 if first sector read error, 0 otherwise
699  */
700 static int udf_check_vsd(struct super_block *sb)
701 {
702 	struct volStructDesc *vsd = NULL;
703 	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
704 	int sectorsize;
705 	struct buffer_head *bh = NULL;
706 	int nsr = 0;
707 	struct udf_sb_info *sbi;
708 
709 	sbi = UDF_SB(sb);
710 	if (sb->s_blocksize < sizeof(struct volStructDesc))
711 		sectorsize = sizeof(struct volStructDesc);
712 	else
713 		sectorsize = sb->s_blocksize;
714 
715 	sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
716 
717 	udf_debug("Starting at sector %u (%lu byte sectors)\n",
718 		  (unsigned int)(sector >> sb->s_blocksize_bits),
719 		  sb->s_blocksize);
720 	/* Process the sequence (if applicable). The hard limit on the sector
721 	 * offset is arbitrary, hopefully large enough so that all valid UDF
722 	 * filesystems will be recognised. There is no mention of an upper
723 	 * bound to the size of the volume recognition area in the standard.
724 	 *  The limit will prevent the code to read all the sectors of a
725 	 * specially crafted image (like a bluray disc full of CD001 sectors),
726 	 * potentially causing minutes or even hours of uninterruptible I/O
727 	 * activity. This actually happened with uninitialised SSD partitions
728 	 * (all 0xFF) before the check for the limit and all valid IDs were
729 	 * added */
730 	for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
731 		/* Read a block */
732 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
733 		if (!bh)
734 			break;
735 
736 		vsd = (struct volStructDesc *)(bh->b_data +
737 					      (sector & (sb->s_blocksize - 1)));
738 		nsr = identify_vsd(vsd);
739 		/* Found NSR or end? */
740 		if (nsr) {
741 			brelse(bh);
742 			break;
743 		}
744 		/*
745 		 * Special handling for improperly formatted VRS (e.g., Win10)
746 		 * where components are separated by 2048 bytes even though
747 		 * sectors are 4K
748 		 */
749 		if (sb->s_blocksize == 4096) {
750 			nsr = identify_vsd(vsd + 1);
751 			/* Ignore unknown IDs... */
752 			if (nsr < 0)
753 				nsr = 0;
754 		}
755 		brelse(bh);
756 	}
757 
758 	if (nsr > 0)
759 		return 1;
760 	else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
761 			VSD_FIRST_SECTOR_OFFSET)
762 		return -1;
763 	else
764 		return 0;
765 }
766 
767 static int udf_verify_domain_identifier(struct super_block *sb,
768 					struct regid *ident, char *dname)
769 {
770 	struct domainIdentSuffix *suffix;
771 
772 	if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
773 		udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
774 		goto force_ro;
775 	}
776 	if (ident->flags & ENTITYID_FLAGS_DIRTY) {
777 		udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
778 			 dname);
779 		goto force_ro;
780 	}
781 	suffix = (struct domainIdentSuffix *)ident->identSuffix;
782 	if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
783 	    (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
784 		if (!sb_rdonly(sb)) {
785 			udf_warn(sb, "Descriptor for %s marked write protected."
786 				 " Forcing read only mount.\n", dname);
787 		}
788 		goto force_ro;
789 	}
790 	return 0;
791 
792 force_ro:
793 	if (!sb_rdonly(sb))
794 		return -EACCES;
795 	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
796 	return 0;
797 }
798 
799 static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
800 			    struct kernel_lb_addr *root)
801 {
802 	int ret;
803 
804 	ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
805 	if (ret < 0)
806 		return ret;
807 
808 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
809 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
810 
811 	udf_debug("Rootdir at block=%u, partition=%u\n",
812 		  root->logicalBlockNum, root->partitionReferenceNum);
813 	return 0;
814 }
815 
816 static int udf_find_fileset(struct super_block *sb,
817 			    struct kernel_lb_addr *fileset,
818 			    struct kernel_lb_addr *root)
819 {
820 	struct buffer_head *bh = NULL;
821 	uint16_t ident;
822 	int ret;
823 
824 	if (fileset->logicalBlockNum == 0xFFFFFFFF &&
825 	    fileset->partitionReferenceNum == 0xFFFF)
826 		return -EINVAL;
827 
828 	bh = udf_read_ptagged(sb, fileset, 0, &ident);
829 	if (!bh)
830 		return -EIO;
831 	if (ident != TAG_IDENT_FSD) {
832 		brelse(bh);
833 		return -EINVAL;
834 	}
835 
836 	udf_debug("Fileset at block=%u, partition=%u\n",
837 		  fileset->logicalBlockNum, fileset->partitionReferenceNum);
838 
839 	UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
840 	ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
841 	brelse(bh);
842 	return ret;
843 }
844 
845 /*
846  * Load primary Volume Descriptor Sequence
847  *
848  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
849  * should be tried.
850  */
851 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
852 {
853 	struct primaryVolDesc *pvoldesc;
854 	uint8_t *outstr;
855 	struct buffer_head *bh;
856 	uint16_t ident;
857 	int ret = -ENOMEM;
858 	struct timestamp *ts;
859 
860 	outstr = kmalloc(128, GFP_NOFS);
861 	if (!outstr)
862 		return -ENOMEM;
863 
864 	bh = udf_read_tagged(sb, block, block, &ident);
865 	if (!bh) {
866 		ret = -EAGAIN;
867 		goto out2;
868 	}
869 
870 	if (ident != TAG_IDENT_PVD) {
871 		ret = -EIO;
872 		goto out_bh;
873 	}
874 
875 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
876 
877 	udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
878 			      pvoldesc->recordingDateAndTime);
879 	ts = &pvoldesc->recordingDateAndTime;
880 	udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
881 		  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
882 		  ts->minute, le16_to_cpu(ts->typeAndTimezone));
883 
884 	ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
885 	if (ret < 0) {
886 		strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
887 		pr_warn("incorrect volume identification, setting to "
888 			"'InvalidName'\n");
889 	} else {
890 		strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
891 	}
892 	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
893 
894 	ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
895 	if (ret < 0) {
896 		ret = 0;
897 		goto out_bh;
898 	}
899 	outstr[ret] = 0;
900 	udf_debug("volSetIdent[] = '%s'\n", outstr);
901 
902 	ret = 0;
903 out_bh:
904 	brelse(bh);
905 out2:
906 	kfree(outstr);
907 	return ret;
908 }
909 
910 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
911 					u32 meta_file_loc, u32 partition_ref)
912 {
913 	struct kernel_lb_addr addr;
914 	struct inode *metadata_fe;
915 
916 	addr.logicalBlockNum = meta_file_loc;
917 	addr.partitionReferenceNum = partition_ref;
918 
919 	metadata_fe = udf_iget_special(sb, &addr);
920 
921 	if (IS_ERR(metadata_fe)) {
922 		udf_warn(sb, "metadata inode efe not found\n");
923 		return metadata_fe;
924 	}
925 	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
926 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
927 		iput(metadata_fe);
928 		return ERR_PTR(-EIO);
929 	}
930 
931 	return metadata_fe;
932 }
933 
934 static int udf_load_metadata_files(struct super_block *sb, int partition,
935 				   int type1_index)
936 {
937 	struct udf_sb_info *sbi = UDF_SB(sb);
938 	struct udf_part_map *map;
939 	struct udf_meta_data *mdata;
940 	struct kernel_lb_addr addr;
941 	struct inode *fe;
942 
943 	map = &sbi->s_partmaps[partition];
944 	mdata = &map->s_type_specific.s_metadata;
945 	mdata->s_phys_partition_ref = type1_index;
946 
947 	/* metadata address */
948 	udf_debug("Metadata file location: block = %u part = %u\n",
949 		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
950 
951 	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
952 					 mdata->s_phys_partition_ref);
953 	if (IS_ERR(fe)) {
954 		/* mirror file entry */
955 		udf_debug("Mirror metadata file location: block = %u part = %u\n",
956 			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
957 
958 		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
959 						 mdata->s_phys_partition_ref);
960 
961 		if (IS_ERR(fe)) {
962 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
963 			return PTR_ERR(fe);
964 		}
965 		mdata->s_mirror_fe = fe;
966 	} else
967 		mdata->s_metadata_fe = fe;
968 
969 
970 	/*
971 	 * bitmap file entry
972 	 * Note:
973 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
974 	*/
975 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
976 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
977 		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
978 
979 		udf_debug("Bitmap file location: block = %u part = %u\n",
980 			  addr.logicalBlockNum, addr.partitionReferenceNum);
981 
982 		fe = udf_iget_special(sb, &addr);
983 		if (IS_ERR(fe)) {
984 			if (sb_rdonly(sb))
985 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
986 			else {
987 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
988 				return PTR_ERR(fe);
989 			}
990 		} else
991 			mdata->s_bitmap_fe = fe;
992 	}
993 
994 	udf_debug("udf_load_metadata_files Ok\n");
995 	return 0;
996 }
997 
998 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
999 {
1000 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1001 	return DIV_ROUND_UP(map->s_partition_len +
1002 			    (sizeof(struct spaceBitmapDesc) << 3),
1003 			    sb->s_blocksize * 8);
1004 }
1005 
1006 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1007 {
1008 	struct udf_bitmap *bitmap;
1009 	int nr_groups;
1010 	int size;
1011 
1012 	nr_groups = udf_compute_nr_groups(sb, index);
1013 	size = sizeof(struct udf_bitmap) +
1014 		(sizeof(struct buffer_head *) * nr_groups);
1015 
1016 	if (size <= PAGE_SIZE)
1017 		bitmap = kzalloc(size, GFP_KERNEL);
1018 	else
1019 		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1020 
1021 	if (!bitmap)
1022 		return NULL;
1023 
1024 	bitmap->s_nr_groups = nr_groups;
1025 	return bitmap;
1026 }
1027 
1028 static int check_partition_desc(struct super_block *sb,
1029 				struct partitionDesc *p,
1030 				struct udf_part_map *map)
1031 {
1032 	bool umap, utable, fmap, ftable;
1033 	struct partitionHeaderDesc *phd;
1034 
1035 	switch (le32_to_cpu(p->accessType)) {
1036 	case PD_ACCESS_TYPE_READ_ONLY:
1037 	case PD_ACCESS_TYPE_WRITE_ONCE:
1038 	case PD_ACCESS_TYPE_NONE:
1039 		goto force_ro;
1040 	}
1041 
1042 	/* No Partition Header Descriptor? */
1043 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1044 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1045 		goto force_ro;
1046 
1047 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1048 	utable = phd->unallocSpaceTable.extLength;
1049 	umap = phd->unallocSpaceBitmap.extLength;
1050 	ftable = phd->freedSpaceTable.extLength;
1051 	fmap = phd->freedSpaceBitmap.extLength;
1052 
1053 	/* No allocation info? */
1054 	if (!utable && !umap && !ftable && !fmap)
1055 		goto force_ro;
1056 
1057 	/* We don't support blocks that require erasing before overwrite */
1058 	if (ftable || fmap)
1059 		goto force_ro;
1060 	/* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1061 	if (utable && umap)
1062 		goto force_ro;
1063 
1064 	if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1065 	    map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1066 	    map->s_partition_type == UDF_METADATA_MAP25)
1067 		goto force_ro;
1068 
1069 	return 0;
1070 force_ro:
1071 	if (!sb_rdonly(sb))
1072 		return -EACCES;
1073 	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1074 	return 0;
1075 }
1076 
1077 static int udf_fill_partdesc_info(struct super_block *sb,
1078 		struct partitionDesc *p, int p_index)
1079 {
1080 	struct udf_part_map *map;
1081 	struct udf_sb_info *sbi = UDF_SB(sb);
1082 	struct partitionHeaderDesc *phd;
1083 	int err;
1084 
1085 	map = &sbi->s_partmaps[p_index];
1086 
1087 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1088 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1089 
1090 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1091 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1092 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1093 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1094 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1095 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1096 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1097 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1098 
1099 	udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1100 		  p_index, map->s_partition_type,
1101 		  map->s_partition_root, map->s_partition_len);
1102 
1103 	err = check_partition_desc(sb, p, map);
1104 	if (err)
1105 		return err;
1106 
1107 	/*
1108 	 * Skip loading allocation info it we cannot ever write to the fs.
1109 	 * This is a correctness thing as we may have decided to force ro mount
1110 	 * to avoid allocation info we don't support.
1111 	 */
1112 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1113 		return 0;
1114 
1115 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1116 	if (phd->unallocSpaceTable.extLength) {
1117 		struct kernel_lb_addr loc = {
1118 			.logicalBlockNum = le32_to_cpu(
1119 				phd->unallocSpaceTable.extPosition),
1120 			.partitionReferenceNum = p_index,
1121 		};
1122 		struct inode *inode;
1123 
1124 		inode = udf_iget_special(sb, &loc);
1125 		if (IS_ERR(inode)) {
1126 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1127 				  p_index);
1128 			return PTR_ERR(inode);
1129 		}
1130 		map->s_uspace.s_table = inode;
1131 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1132 		udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1133 			  p_index, map->s_uspace.s_table->i_ino);
1134 	}
1135 
1136 	if (phd->unallocSpaceBitmap.extLength) {
1137 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1138 		if (!bitmap)
1139 			return -ENOMEM;
1140 		map->s_uspace.s_bitmap = bitmap;
1141 		bitmap->s_extPosition = le32_to_cpu(
1142 				phd->unallocSpaceBitmap.extPosition);
1143 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1144 		udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1145 			  p_index, bitmap->s_extPosition);
1146 	}
1147 
1148 	return 0;
1149 }
1150 
1151 static void udf_find_vat_block(struct super_block *sb, int p_index,
1152 			       int type1_index, sector_t start_block)
1153 {
1154 	struct udf_sb_info *sbi = UDF_SB(sb);
1155 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1156 	sector_t vat_block;
1157 	struct kernel_lb_addr ino;
1158 	struct inode *inode;
1159 
1160 	/*
1161 	 * VAT file entry is in the last recorded block. Some broken disks have
1162 	 * it a few blocks before so try a bit harder...
1163 	 */
1164 	ino.partitionReferenceNum = type1_index;
1165 	for (vat_block = start_block;
1166 	     vat_block >= map->s_partition_root &&
1167 	     vat_block >= start_block - 3; vat_block--) {
1168 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1169 		inode = udf_iget_special(sb, &ino);
1170 		if (!IS_ERR(inode)) {
1171 			sbi->s_vat_inode = inode;
1172 			break;
1173 		}
1174 	}
1175 }
1176 
1177 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1178 {
1179 	struct udf_sb_info *sbi = UDF_SB(sb);
1180 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1181 	struct buffer_head *bh = NULL;
1182 	struct udf_inode_info *vati;
1183 	uint32_t pos;
1184 	struct virtualAllocationTable20 *vat20;
1185 	sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1186 			  sb->s_blocksize_bits;
1187 
1188 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1189 	if (!sbi->s_vat_inode &&
1190 	    sbi->s_last_block != blocks - 1) {
1191 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1192 			  (unsigned long)sbi->s_last_block,
1193 			  (unsigned long)blocks - 1);
1194 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1195 	}
1196 	if (!sbi->s_vat_inode)
1197 		return -EIO;
1198 
1199 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1200 		map->s_type_specific.s_virtual.s_start_offset = 0;
1201 		map->s_type_specific.s_virtual.s_num_entries =
1202 			(sbi->s_vat_inode->i_size - 36) >> 2;
1203 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1204 		vati = UDF_I(sbi->s_vat_inode);
1205 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1206 			pos = udf_block_map(sbi->s_vat_inode, 0);
1207 			bh = sb_bread(sb, pos);
1208 			if (!bh)
1209 				return -EIO;
1210 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1211 		} else {
1212 			vat20 = (struct virtualAllocationTable20 *)
1213 							vati->i_ext.i_data;
1214 		}
1215 
1216 		map->s_type_specific.s_virtual.s_start_offset =
1217 			le16_to_cpu(vat20->lengthHeader);
1218 		map->s_type_specific.s_virtual.s_num_entries =
1219 			(sbi->s_vat_inode->i_size -
1220 				map->s_type_specific.s_virtual.
1221 					s_start_offset) >> 2;
1222 		brelse(bh);
1223 	}
1224 	return 0;
1225 }
1226 
1227 /*
1228  * Load partition descriptor block
1229  *
1230  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1231  * sequence.
1232  */
1233 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1234 {
1235 	struct buffer_head *bh;
1236 	struct partitionDesc *p;
1237 	struct udf_part_map *map;
1238 	struct udf_sb_info *sbi = UDF_SB(sb);
1239 	int i, type1_idx;
1240 	uint16_t partitionNumber;
1241 	uint16_t ident;
1242 	int ret;
1243 
1244 	bh = udf_read_tagged(sb, block, block, &ident);
1245 	if (!bh)
1246 		return -EAGAIN;
1247 	if (ident != TAG_IDENT_PD) {
1248 		ret = 0;
1249 		goto out_bh;
1250 	}
1251 
1252 	p = (struct partitionDesc *)bh->b_data;
1253 	partitionNumber = le16_to_cpu(p->partitionNumber);
1254 
1255 	/* First scan for TYPE1 and SPARABLE partitions */
1256 	for (i = 0; i < sbi->s_partitions; i++) {
1257 		map = &sbi->s_partmaps[i];
1258 		udf_debug("Searching map: (%u == %u)\n",
1259 			  map->s_partition_num, partitionNumber);
1260 		if (map->s_partition_num == partitionNumber &&
1261 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1262 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1263 			break;
1264 	}
1265 
1266 	if (i >= sbi->s_partitions) {
1267 		udf_debug("Partition (%u) not found in partition map\n",
1268 			  partitionNumber);
1269 		ret = 0;
1270 		goto out_bh;
1271 	}
1272 
1273 	ret = udf_fill_partdesc_info(sb, p, i);
1274 	if (ret < 0)
1275 		goto out_bh;
1276 
1277 	/*
1278 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1279 	 * PHYSICAL partitions are already set up
1280 	 */
1281 	type1_idx = i;
1282 	map = NULL; /* supress 'maybe used uninitialized' warning */
1283 	for (i = 0; i < sbi->s_partitions; i++) {
1284 		map = &sbi->s_partmaps[i];
1285 
1286 		if (map->s_partition_num == partitionNumber &&
1287 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1288 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1289 		     map->s_partition_type == UDF_METADATA_MAP25))
1290 			break;
1291 	}
1292 
1293 	if (i >= sbi->s_partitions) {
1294 		ret = 0;
1295 		goto out_bh;
1296 	}
1297 
1298 	ret = udf_fill_partdesc_info(sb, p, i);
1299 	if (ret < 0)
1300 		goto out_bh;
1301 
1302 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1303 		ret = udf_load_metadata_files(sb, i, type1_idx);
1304 		if (ret < 0) {
1305 			udf_err(sb, "error loading MetaData partition map %d\n",
1306 				i);
1307 			goto out_bh;
1308 		}
1309 	} else {
1310 		/*
1311 		 * If we have a partition with virtual map, we don't handle
1312 		 * writing to it (we overwrite blocks instead of relocating
1313 		 * them).
1314 		 */
1315 		if (!sb_rdonly(sb)) {
1316 			ret = -EACCES;
1317 			goto out_bh;
1318 		}
1319 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1320 		ret = udf_load_vat(sb, i, type1_idx);
1321 		if (ret < 0)
1322 			goto out_bh;
1323 	}
1324 	ret = 0;
1325 out_bh:
1326 	/* In case loading failed, we handle cleanup in udf_fill_super */
1327 	brelse(bh);
1328 	return ret;
1329 }
1330 
1331 static int udf_load_sparable_map(struct super_block *sb,
1332 				 struct udf_part_map *map,
1333 				 struct sparablePartitionMap *spm)
1334 {
1335 	uint32_t loc;
1336 	uint16_t ident;
1337 	struct sparingTable *st;
1338 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1339 	int i;
1340 	struct buffer_head *bh;
1341 
1342 	map->s_partition_type = UDF_SPARABLE_MAP15;
1343 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1344 	if (!is_power_of_2(sdata->s_packet_len)) {
1345 		udf_err(sb, "error loading logical volume descriptor: "
1346 			"Invalid packet length %u\n",
1347 			(unsigned)sdata->s_packet_len);
1348 		return -EIO;
1349 	}
1350 	if (spm->numSparingTables > 4) {
1351 		udf_err(sb, "error loading logical volume descriptor: "
1352 			"Too many sparing tables (%d)\n",
1353 			(int)spm->numSparingTables);
1354 		return -EIO;
1355 	}
1356 
1357 	for (i = 0; i < spm->numSparingTables; i++) {
1358 		loc = le32_to_cpu(spm->locSparingTable[i]);
1359 		bh = udf_read_tagged(sb, loc, loc, &ident);
1360 		if (!bh)
1361 			continue;
1362 
1363 		st = (struct sparingTable *)bh->b_data;
1364 		if (ident != 0 ||
1365 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1366 			    strlen(UDF_ID_SPARING)) ||
1367 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1368 							sb->s_blocksize) {
1369 			brelse(bh);
1370 			continue;
1371 		}
1372 
1373 		sdata->s_spar_map[i] = bh;
1374 	}
1375 	map->s_partition_func = udf_get_pblock_spar15;
1376 	return 0;
1377 }
1378 
1379 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1380 			       struct kernel_lb_addr *fileset)
1381 {
1382 	struct logicalVolDesc *lvd;
1383 	int i, offset;
1384 	uint8_t type;
1385 	struct udf_sb_info *sbi = UDF_SB(sb);
1386 	struct genericPartitionMap *gpm;
1387 	uint16_t ident;
1388 	struct buffer_head *bh;
1389 	unsigned int table_len;
1390 	int ret;
1391 
1392 	bh = udf_read_tagged(sb, block, block, &ident);
1393 	if (!bh)
1394 		return -EAGAIN;
1395 	BUG_ON(ident != TAG_IDENT_LVD);
1396 	lvd = (struct logicalVolDesc *)bh->b_data;
1397 	table_len = le32_to_cpu(lvd->mapTableLength);
1398 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1399 		udf_err(sb, "error loading logical volume descriptor: "
1400 			"Partition table too long (%u > %lu)\n", table_len,
1401 			sb->s_blocksize - sizeof(*lvd));
1402 		ret = -EIO;
1403 		goto out_bh;
1404 	}
1405 
1406 	ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
1407 					   "logical volume");
1408 	if (ret)
1409 		goto out_bh;
1410 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1411 	if (ret)
1412 		goto out_bh;
1413 
1414 	for (i = 0, offset = 0;
1415 	     i < sbi->s_partitions && offset < table_len;
1416 	     i++, offset += gpm->partitionMapLength) {
1417 		struct udf_part_map *map = &sbi->s_partmaps[i];
1418 		gpm = (struct genericPartitionMap *)
1419 				&(lvd->partitionMaps[offset]);
1420 		type = gpm->partitionMapType;
1421 		if (type == 1) {
1422 			struct genericPartitionMap1 *gpm1 =
1423 				(struct genericPartitionMap1 *)gpm;
1424 			map->s_partition_type = UDF_TYPE1_MAP15;
1425 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1426 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1427 			map->s_partition_func = NULL;
1428 		} else if (type == 2) {
1429 			struct udfPartitionMap2 *upm2 =
1430 						(struct udfPartitionMap2 *)gpm;
1431 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1432 						strlen(UDF_ID_VIRTUAL))) {
1433 				u16 suf =
1434 					le16_to_cpu(((__le16 *)upm2->partIdent.
1435 							identSuffix)[0]);
1436 				if (suf < 0x0200) {
1437 					map->s_partition_type =
1438 							UDF_VIRTUAL_MAP15;
1439 					map->s_partition_func =
1440 							udf_get_pblock_virt15;
1441 				} else {
1442 					map->s_partition_type =
1443 							UDF_VIRTUAL_MAP20;
1444 					map->s_partition_func =
1445 							udf_get_pblock_virt20;
1446 				}
1447 			} else if (!strncmp(upm2->partIdent.ident,
1448 						UDF_ID_SPARABLE,
1449 						strlen(UDF_ID_SPARABLE))) {
1450 				ret = udf_load_sparable_map(sb, map,
1451 					(struct sparablePartitionMap *)gpm);
1452 				if (ret < 0)
1453 					goto out_bh;
1454 			} else if (!strncmp(upm2->partIdent.ident,
1455 						UDF_ID_METADATA,
1456 						strlen(UDF_ID_METADATA))) {
1457 				struct udf_meta_data *mdata =
1458 					&map->s_type_specific.s_metadata;
1459 				struct metadataPartitionMap *mdm =
1460 						(struct metadataPartitionMap *)
1461 						&(lvd->partitionMaps[offset]);
1462 				udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1463 					  i, type, UDF_ID_METADATA);
1464 
1465 				map->s_partition_type = UDF_METADATA_MAP25;
1466 				map->s_partition_func = udf_get_pblock_meta25;
1467 
1468 				mdata->s_meta_file_loc   =
1469 					le32_to_cpu(mdm->metadataFileLoc);
1470 				mdata->s_mirror_file_loc =
1471 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1472 				mdata->s_bitmap_file_loc =
1473 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1474 				mdata->s_alloc_unit_size =
1475 					le32_to_cpu(mdm->allocUnitSize);
1476 				mdata->s_align_unit_size =
1477 					le16_to_cpu(mdm->alignUnitSize);
1478 				if (mdm->flags & 0x01)
1479 					mdata->s_flags |= MF_DUPLICATE_MD;
1480 
1481 				udf_debug("Metadata Ident suffix=0x%x\n",
1482 					  le16_to_cpu(*(__le16 *)
1483 						      mdm->partIdent.identSuffix));
1484 				udf_debug("Metadata part num=%u\n",
1485 					  le16_to_cpu(mdm->partitionNum));
1486 				udf_debug("Metadata part alloc unit size=%u\n",
1487 					  le32_to_cpu(mdm->allocUnitSize));
1488 				udf_debug("Metadata file loc=%u\n",
1489 					  le32_to_cpu(mdm->metadataFileLoc));
1490 				udf_debug("Mirror file loc=%u\n",
1491 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1492 				udf_debug("Bitmap file loc=%u\n",
1493 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1494 				udf_debug("Flags: %d %u\n",
1495 					  mdata->s_flags, mdm->flags);
1496 			} else {
1497 				udf_debug("Unknown ident: %s\n",
1498 					  upm2->partIdent.ident);
1499 				continue;
1500 			}
1501 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1502 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1503 		}
1504 		udf_debug("Partition (%d:%u) type %u on volume %u\n",
1505 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1506 	}
1507 
1508 	if (fileset) {
1509 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1510 
1511 		*fileset = lelb_to_cpu(la->extLocation);
1512 		udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1513 			  fileset->logicalBlockNum,
1514 			  fileset->partitionReferenceNum);
1515 	}
1516 	if (lvd->integritySeqExt.extLength)
1517 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1518 	ret = 0;
1519 
1520 	if (!sbi->s_lvid_bh) {
1521 		/* We can't generate unique IDs without a valid LVID */
1522 		if (sb_rdonly(sb)) {
1523 			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1524 		} else {
1525 			udf_warn(sb, "Damaged or missing LVID, forcing "
1526 				     "readonly mount\n");
1527 			ret = -EACCES;
1528 		}
1529 	}
1530 out_bh:
1531 	brelse(bh);
1532 	return ret;
1533 }
1534 
1535 /*
1536  * Find the prevailing Logical Volume Integrity Descriptor.
1537  */
1538 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1539 {
1540 	struct buffer_head *bh, *final_bh;
1541 	uint16_t ident;
1542 	struct udf_sb_info *sbi = UDF_SB(sb);
1543 	struct logicalVolIntegrityDesc *lvid;
1544 	int indirections = 0;
1545 
1546 	while (++indirections <= UDF_MAX_LVID_NESTING) {
1547 		final_bh = NULL;
1548 		while (loc.extLength > 0 &&
1549 			(bh = udf_read_tagged(sb, loc.extLocation,
1550 					loc.extLocation, &ident))) {
1551 			if (ident != TAG_IDENT_LVID) {
1552 				brelse(bh);
1553 				break;
1554 			}
1555 
1556 			brelse(final_bh);
1557 			final_bh = bh;
1558 
1559 			loc.extLength -= sb->s_blocksize;
1560 			loc.extLocation++;
1561 		}
1562 
1563 		if (!final_bh)
1564 			return;
1565 
1566 		brelse(sbi->s_lvid_bh);
1567 		sbi->s_lvid_bh = final_bh;
1568 
1569 		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1570 		if (lvid->nextIntegrityExt.extLength == 0)
1571 			return;
1572 
1573 		loc = leea_to_cpu(lvid->nextIntegrityExt);
1574 	}
1575 
1576 	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1577 		UDF_MAX_LVID_NESTING);
1578 	brelse(sbi->s_lvid_bh);
1579 	sbi->s_lvid_bh = NULL;
1580 }
1581 
1582 /*
1583  * Step for reallocation of table of partition descriptor sequence numbers.
1584  * Must be power of 2.
1585  */
1586 #define PART_DESC_ALLOC_STEP 32
1587 
1588 struct part_desc_seq_scan_data {
1589 	struct udf_vds_record rec;
1590 	u32 partnum;
1591 };
1592 
1593 struct desc_seq_scan_data {
1594 	struct udf_vds_record vds[VDS_POS_LENGTH];
1595 	unsigned int size_part_descs;
1596 	unsigned int num_part_descs;
1597 	struct part_desc_seq_scan_data *part_descs_loc;
1598 };
1599 
1600 static struct udf_vds_record *handle_partition_descriptor(
1601 				struct buffer_head *bh,
1602 				struct desc_seq_scan_data *data)
1603 {
1604 	struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1605 	int partnum;
1606 	int i;
1607 
1608 	partnum = le16_to_cpu(desc->partitionNumber);
1609 	for (i = 0; i < data->num_part_descs; i++)
1610 		if (partnum == data->part_descs_loc[i].partnum)
1611 			return &(data->part_descs_loc[i].rec);
1612 	if (data->num_part_descs >= data->size_part_descs) {
1613 		struct part_desc_seq_scan_data *new_loc;
1614 		unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1615 
1616 		new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1617 		if (!new_loc)
1618 			return ERR_PTR(-ENOMEM);
1619 		memcpy(new_loc, data->part_descs_loc,
1620 		       data->size_part_descs * sizeof(*new_loc));
1621 		kfree(data->part_descs_loc);
1622 		data->part_descs_loc = new_loc;
1623 		data->size_part_descs = new_size;
1624 	}
1625 	return &(data->part_descs_loc[data->num_part_descs++].rec);
1626 }
1627 
1628 
1629 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1630 		struct buffer_head *bh, struct desc_seq_scan_data *data)
1631 {
1632 	switch (ident) {
1633 	case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1634 		return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1635 	case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1636 		return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1637 	case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1638 		return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1639 	case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1640 		return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1641 	case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1642 		return handle_partition_descriptor(bh, data);
1643 	}
1644 	return NULL;
1645 }
1646 
1647 /*
1648  * Process a main/reserve volume descriptor sequence.
1649  *   @block		First block of first extent of the sequence.
1650  *   @lastblock		Lastblock of first extent of the sequence.
1651  *   @fileset		There we store extent containing root fileset
1652  *
1653  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1654  * sequence
1655  */
1656 static noinline int udf_process_sequence(
1657 		struct super_block *sb,
1658 		sector_t block, sector_t lastblock,
1659 		struct kernel_lb_addr *fileset)
1660 {
1661 	struct buffer_head *bh = NULL;
1662 	struct udf_vds_record *curr;
1663 	struct generic_desc *gd;
1664 	struct volDescPtr *vdp;
1665 	bool done = false;
1666 	uint32_t vdsn;
1667 	uint16_t ident;
1668 	int ret;
1669 	unsigned int indirections = 0;
1670 	struct desc_seq_scan_data data;
1671 	unsigned int i;
1672 
1673 	memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1674 	data.size_part_descs = PART_DESC_ALLOC_STEP;
1675 	data.num_part_descs = 0;
1676 	data.part_descs_loc = kcalloc(data.size_part_descs,
1677 				      sizeof(*data.part_descs_loc),
1678 				      GFP_KERNEL);
1679 	if (!data.part_descs_loc)
1680 		return -ENOMEM;
1681 
1682 	/*
1683 	 * Read the main descriptor sequence and find which descriptors
1684 	 * are in it.
1685 	 */
1686 	for (; (!done && block <= lastblock); block++) {
1687 		bh = udf_read_tagged(sb, block, block, &ident);
1688 		if (!bh)
1689 			break;
1690 
1691 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1692 		gd = (struct generic_desc *)bh->b_data;
1693 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1694 		switch (ident) {
1695 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1696 			if (++indirections > UDF_MAX_TD_NESTING) {
1697 				udf_err(sb, "too many Volume Descriptor "
1698 					"Pointers (max %u supported)\n",
1699 					UDF_MAX_TD_NESTING);
1700 				brelse(bh);
1701 				return -EIO;
1702 			}
1703 
1704 			vdp = (struct volDescPtr *)bh->b_data;
1705 			block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1706 			lastblock = le32_to_cpu(
1707 				vdp->nextVolDescSeqExt.extLength) >>
1708 				sb->s_blocksize_bits;
1709 			lastblock += block - 1;
1710 			/* For loop is going to increment 'block' again */
1711 			block--;
1712 			break;
1713 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1714 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1715 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1716 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1717 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1718 			curr = get_volume_descriptor_record(ident, bh, &data);
1719 			if (IS_ERR(curr)) {
1720 				brelse(bh);
1721 				return PTR_ERR(curr);
1722 			}
1723 			/* Descriptor we don't care about? */
1724 			if (!curr)
1725 				break;
1726 			if (vdsn >= curr->volDescSeqNum) {
1727 				curr->volDescSeqNum = vdsn;
1728 				curr->block = block;
1729 			}
1730 			break;
1731 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1732 			done = true;
1733 			break;
1734 		}
1735 		brelse(bh);
1736 	}
1737 	/*
1738 	 * Now read interesting descriptors again and process them
1739 	 * in a suitable order
1740 	 */
1741 	if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1742 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1743 		return -EAGAIN;
1744 	}
1745 	ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1746 	if (ret < 0)
1747 		return ret;
1748 
1749 	if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1750 		ret = udf_load_logicalvol(sb,
1751 				data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1752 				fileset);
1753 		if (ret < 0)
1754 			return ret;
1755 	}
1756 
1757 	/* Now handle prevailing Partition Descriptors */
1758 	for (i = 0; i < data.num_part_descs; i++) {
1759 		ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1760 		if (ret < 0)
1761 			return ret;
1762 	}
1763 
1764 	return 0;
1765 }
1766 
1767 /*
1768  * Load Volume Descriptor Sequence described by anchor in bh
1769  *
1770  * Returns <0 on error, 0 on success
1771  */
1772 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1773 			     struct kernel_lb_addr *fileset)
1774 {
1775 	struct anchorVolDescPtr *anchor;
1776 	sector_t main_s, main_e, reserve_s, reserve_e;
1777 	int ret;
1778 
1779 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1780 
1781 	/* Locate the main sequence */
1782 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1783 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1784 	main_e = main_e >> sb->s_blocksize_bits;
1785 	main_e += main_s - 1;
1786 
1787 	/* Locate the reserve sequence */
1788 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1789 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1790 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1791 	reserve_e += reserve_s - 1;
1792 
1793 	/* Process the main & reserve sequences */
1794 	/* responsible for finding the PartitionDesc(s) */
1795 	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1796 	if (ret != -EAGAIN)
1797 		return ret;
1798 	udf_sb_free_partitions(sb);
1799 	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1800 	if (ret < 0) {
1801 		udf_sb_free_partitions(sb);
1802 		/* No sequence was OK, return -EIO */
1803 		if (ret == -EAGAIN)
1804 			ret = -EIO;
1805 	}
1806 	return ret;
1807 }
1808 
1809 /*
1810  * Check whether there is an anchor block in the given block and
1811  * load Volume Descriptor Sequence if so.
1812  *
1813  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1814  * block
1815  */
1816 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1817 				  struct kernel_lb_addr *fileset)
1818 {
1819 	struct buffer_head *bh;
1820 	uint16_t ident;
1821 	int ret;
1822 
1823 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1824 	    udf_fixed_to_variable(block) >=
1825 	    i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1826 		return -EAGAIN;
1827 
1828 	bh = udf_read_tagged(sb, block, block, &ident);
1829 	if (!bh)
1830 		return -EAGAIN;
1831 	if (ident != TAG_IDENT_AVDP) {
1832 		brelse(bh);
1833 		return -EAGAIN;
1834 	}
1835 	ret = udf_load_sequence(sb, bh, fileset);
1836 	brelse(bh);
1837 	return ret;
1838 }
1839 
1840 /*
1841  * Search for an anchor volume descriptor pointer.
1842  *
1843  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1844  * of anchors.
1845  */
1846 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1847 			    struct kernel_lb_addr *fileset)
1848 {
1849 	sector_t last[6];
1850 	int i;
1851 	struct udf_sb_info *sbi = UDF_SB(sb);
1852 	int last_count = 0;
1853 	int ret;
1854 
1855 	/* First try user provided anchor */
1856 	if (sbi->s_anchor) {
1857 		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1858 		if (ret != -EAGAIN)
1859 			return ret;
1860 	}
1861 	/*
1862 	 * according to spec, anchor is in either:
1863 	 *     block 256
1864 	 *     lastblock-256
1865 	 *     lastblock
1866 	 *  however, if the disc isn't closed, it could be 512.
1867 	 */
1868 	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1869 	if (ret != -EAGAIN)
1870 		return ret;
1871 	/*
1872 	 * The trouble is which block is the last one. Drives often misreport
1873 	 * this so we try various possibilities.
1874 	 */
1875 	last[last_count++] = *lastblock;
1876 	if (*lastblock >= 1)
1877 		last[last_count++] = *lastblock - 1;
1878 	last[last_count++] = *lastblock + 1;
1879 	if (*lastblock >= 2)
1880 		last[last_count++] = *lastblock - 2;
1881 	if (*lastblock >= 150)
1882 		last[last_count++] = *lastblock - 150;
1883 	if (*lastblock >= 152)
1884 		last[last_count++] = *lastblock - 152;
1885 
1886 	for (i = 0; i < last_count; i++) {
1887 		if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1888 				sb->s_blocksize_bits)
1889 			continue;
1890 		ret = udf_check_anchor_block(sb, last[i], fileset);
1891 		if (ret != -EAGAIN) {
1892 			if (!ret)
1893 				*lastblock = last[i];
1894 			return ret;
1895 		}
1896 		if (last[i] < 256)
1897 			continue;
1898 		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1899 		if (ret != -EAGAIN) {
1900 			if (!ret)
1901 				*lastblock = last[i];
1902 			return ret;
1903 		}
1904 	}
1905 
1906 	/* Finally try block 512 in case media is open */
1907 	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1908 }
1909 
1910 /*
1911  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1912  * area specified by it. The function expects sbi->s_lastblock to be the last
1913  * block on the media.
1914  *
1915  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1916  * was not found.
1917  */
1918 static int udf_find_anchor(struct super_block *sb,
1919 			   struct kernel_lb_addr *fileset)
1920 {
1921 	struct udf_sb_info *sbi = UDF_SB(sb);
1922 	sector_t lastblock = sbi->s_last_block;
1923 	int ret;
1924 
1925 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1926 	if (ret != -EAGAIN)
1927 		goto out;
1928 
1929 	/* No anchor found? Try VARCONV conversion of block numbers */
1930 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1931 	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1932 	/* Firstly, we try to not convert number of the last block */
1933 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1934 	if (ret != -EAGAIN)
1935 		goto out;
1936 
1937 	lastblock = sbi->s_last_block;
1938 	/* Secondly, we try with converted number of the last block */
1939 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1940 	if (ret < 0) {
1941 		/* VARCONV didn't help. Clear it. */
1942 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1943 	}
1944 out:
1945 	if (ret == 0)
1946 		sbi->s_last_block = lastblock;
1947 	return ret;
1948 }
1949 
1950 /*
1951  * Check Volume Structure Descriptor, find Anchor block and load Volume
1952  * Descriptor Sequence.
1953  *
1954  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1955  * block was not found.
1956  */
1957 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1958 			int silent, struct kernel_lb_addr *fileset)
1959 {
1960 	struct udf_sb_info *sbi = UDF_SB(sb);
1961 	int nsr = 0;
1962 	int ret;
1963 
1964 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1965 		if (!silent)
1966 			udf_warn(sb, "Bad block size\n");
1967 		return -EINVAL;
1968 	}
1969 	sbi->s_last_block = uopt->lastblock;
1970 	if (!uopt->novrs) {
1971 		/* Check that it is NSR02 compliant */
1972 		nsr = udf_check_vsd(sb);
1973 		if (!nsr) {
1974 			if (!silent)
1975 				udf_warn(sb, "No VRS found\n");
1976 			return -EINVAL;
1977 		}
1978 		if (nsr == -1)
1979 			udf_debug("Failed to read sector at offset %d. "
1980 				  "Assuming open disc. Skipping validity "
1981 				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1982 		if (!sbi->s_last_block)
1983 			sbi->s_last_block = udf_get_last_block(sb);
1984 	} else {
1985 		udf_debug("Validity check skipped because of novrs option\n");
1986 	}
1987 
1988 	/* Look for anchor block and load Volume Descriptor Sequence */
1989 	sbi->s_anchor = uopt->anchor;
1990 	ret = udf_find_anchor(sb, fileset);
1991 	if (ret < 0) {
1992 		if (!silent && ret == -EAGAIN)
1993 			udf_warn(sb, "No anchor found\n");
1994 		return ret;
1995 	}
1996 	return 0;
1997 }
1998 
1999 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
2000 {
2001 	struct timespec64 ts;
2002 
2003 	ktime_get_real_ts64(&ts);
2004 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
2005 	lvid->descTag.descCRC = cpu_to_le16(
2006 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2007 			le16_to_cpu(lvid->descTag.descCRCLength)));
2008 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2009 }
2010 
2011 static void udf_open_lvid(struct super_block *sb)
2012 {
2013 	struct udf_sb_info *sbi = UDF_SB(sb);
2014 	struct buffer_head *bh = sbi->s_lvid_bh;
2015 	struct logicalVolIntegrityDesc *lvid;
2016 	struct logicalVolIntegrityDescImpUse *lvidiu;
2017 
2018 	if (!bh)
2019 		return;
2020 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2021 	lvidiu = udf_sb_lvidiu(sb);
2022 	if (!lvidiu)
2023 		return;
2024 
2025 	mutex_lock(&sbi->s_alloc_mutex);
2026 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2027 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2028 	if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
2029 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2030 	else
2031 		UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
2032 
2033 	udf_finalize_lvid(lvid);
2034 	mark_buffer_dirty(bh);
2035 	sbi->s_lvid_dirty = 0;
2036 	mutex_unlock(&sbi->s_alloc_mutex);
2037 	/* Make opening of filesystem visible on the media immediately */
2038 	sync_dirty_buffer(bh);
2039 }
2040 
2041 static void udf_close_lvid(struct super_block *sb)
2042 {
2043 	struct udf_sb_info *sbi = UDF_SB(sb);
2044 	struct buffer_head *bh = sbi->s_lvid_bh;
2045 	struct logicalVolIntegrityDesc *lvid;
2046 	struct logicalVolIntegrityDescImpUse *lvidiu;
2047 
2048 	if (!bh)
2049 		return;
2050 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2051 	lvidiu = udf_sb_lvidiu(sb);
2052 	if (!lvidiu)
2053 		return;
2054 
2055 	mutex_lock(&sbi->s_alloc_mutex);
2056 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2057 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2058 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2059 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2060 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2061 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2062 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2063 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2064 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2065 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2066 
2067 	/*
2068 	 * We set buffer uptodate unconditionally here to avoid spurious
2069 	 * warnings from mark_buffer_dirty() when previous EIO has marked
2070 	 * the buffer as !uptodate
2071 	 */
2072 	set_buffer_uptodate(bh);
2073 	udf_finalize_lvid(lvid);
2074 	mark_buffer_dirty(bh);
2075 	sbi->s_lvid_dirty = 0;
2076 	mutex_unlock(&sbi->s_alloc_mutex);
2077 	/* Make closing of filesystem visible on the media immediately */
2078 	sync_dirty_buffer(bh);
2079 }
2080 
2081 u64 lvid_get_unique_id(struct super_block *sb)
2082 {
2083 	struct buffer_head *bh;
2084 	struct udf_sb_info *sbi = UDF_SB(sb);
2085 	struct logicalVolIntegrityDesc *lvid;
2086 	struct logicalVolHeaderDesc *lvhd;
2087 	u64 uniqueID;
2088 	u64 ret;
2089 
2090 	bh = sbi->s_lvid_bh;
2091 	if (!bh)
2092 		return 0;
2093 
2094 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2095 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2096 
2097 	mutex_lock(&sbi->s_alloc_mutex);
2098 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2099 	if (!(++uniqueID & 0xFFFFFFFF))
2100 		uniqueID += 16;
2101 	lvhd->uniqueID = cpu_to_le64(uniqueID);
2102 	udf_updated_lvid(sb);
2103 	mutex_unlock(&sbi->s_alloc_mutex);
2104 
2105 	return ret;
2106 }
2107 
2108 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2109 {
2110 	int ret = -EINVAL;
2111 	struct inode *inode = NULL;
2112 	struct udf_options uopt;
2113 	struct kernel_lb_addr rootdir, fileset;
2114 	struct udf_sb_info *sbi;
2115 	bool lvid_open = false;
2116 
2117 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2118 	/* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2119 	uopt.uid = make_kuid(current_user_ns(), overflowuid);
2120 	uopt.gid = make_kgid(current_user_ns(), overflowgid);
2121 	uopt.umask = 0;
2122 	uopt.fmode = UDF_INVALID_MODE;
2123 	uopt.dmode = UDF_INVALID_MODE;
2124 	uopt.nls_map = NULL;
2125 
2126 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2127 	if (!sbi)
2128 		return -ENOMEM;
2129 
2130 	sb->s_fs_info = sbi;
2131 
2132 	mutex_init(&sbi->s_alloc_mutex);
2133 
2134 	if (!udf_parse_options((char *)options, &uopt, false))
2135 		goto parse_options_failure;
2136 
2137 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2138 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2139 		udf_err(sb, "utf8 cannot be combined with iocharset\n");
2140 		goto parse_options_failure;
2141 	}
2142 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2143 		uopt.nls_map = load_nls_default();
2144 		if (!uopt.nls_map)
2145 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2146 		else
2147 			udf_debug("Using default NLS map\n");
2148 	}
2149 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2150 		uopt.flags |= (1 << UDF_FLAG_UTF8);
2151 
2152 	fileset.logicalBlockNum = 0xFFFFFFFF;
2153 	fileset.partitionReferenceNum = 0xFFFF;
2154 
2155 	sbi->s_flags = uopt.flags;
2156 	sbi->s_uid = uopt.uid;
2157 	sbi->s_gid = uopt.gid;
2158 	sbi->s_umask = uopt.umask;
2159 	sbi->s_fmode = uopt.fmode;
2160 	sbi->s_dmode = uopt.dmode;
2161 	sbi->s_nls_map = uopt.nls_map;
2162 	rwlock_init(&sbi->s_cred_lock);
2163 
2164 	if (uopt.session == 0xFFFFFFFF)
2165 		sbi->s_session = udf_get_last_session(sb);
2166 	else
2167 		sbi->s_session = uopt.session;
2168 
2169 	udf_debug("Multi-session=%d\n", sbi->s_session);
2170 
2171 	/* Fill in the rest of the superblock */
2172 	sb->s_op = &udf_sb_ops;
2173 	sb->s_export_op = &udf_export_ops;
2174 
2175 	sb->s_magic = UDF_SUPER_MAGIC;
2176 	sb->s_time_gran = 1000;
2177 
2178 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2179 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2180 	} else {
2181 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2182 		while (uopt.blocksize <= 4096) {
2183 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2184 			if (ret < 0) {
2185 				if (!silent && ret != -EACCES) {
2186 					pr_notice("Scanning with blocksize %u failed\n",
2187 						  uopt.blocksize);
2188 				}
2189 				brelse(sbi->s_lvid_bh);
2190 				sbi->s_lvid_bh = NULL;
2191 				/*
2192 				 * EACCES is special - we want to propagate to
2193 				 * upper layers that we cannot handle RW mount.
2194 				 */
2195 				if (ret == -EACCES)
2196 					break;
2197 			} else
2198 				break;
2199 
2200 			uopt.blocksize <<= 1;
2201 		}
2202 	}
2203 	if (ret < 0) {
2204 		if (ret == -EAGAIN) {
2205 			udf_warn(sb, "No partition found (1)\n");
2206 			ret = -EINVAL;
2207 		}
2208 		goto error_out;
2209 	}
2210 
2211 	udf_debug("Lastblock=%u\n", sbi->s_last_block);
2212 
2213 	if (sbi->s_lvid_bh) {
2214 		struct logicalVolIntegrityDescImpUse *lvidiu =
2215 							udf_sb_lvidiu(sb);
2216 		uint16_t minUDFReadRev;
2217 		uint16_t minUDFWriteRev;
2218 
2219 		if (!lvidiu) {
2220 			ret = -EINVAL;
2221 			goto error_out;
2222 		}
2223 		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2224 		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2225 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2226 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2227 				minUDFReadRev,
2228 				UDF_MAX_READ_VERSION);
2229 			ret = -EINVAL;
2230 			goto error_out;
2231 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2232 			if (!sb_rdonly(sb)) {
2233 				ret = -EACCES;
2234 				goto error_out;
2235 			}
2236 			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2237 		}
2238 
2239 		sbi->s_udfrev = minUDFWriteRev;
2240 
2241 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2242 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2243 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2244 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2245 	}
2246 
2247 	if (!sbi->s_partitions) {
2248 		udf_warn(sb, "No partition found (2)\n");
2249 		ret = -EINVAL;
2250 		goto error_out;
2251 	}
2252 
2253 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2254 			UDF_PART_FLAG_READ_ONLY) {
2255 		if (!sb_rdonly(sb)) {
2256 			ret = -EACCES;
2257 			goto error_out;
2258 		}
2259 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2260 	}
2261 
2262 	ret = udf_find_fileset(sb, &fileset, &rootdir);
2263 	if (ret < 0) {
2264 		udf_warn(sb, "No fileset found\n");
2265 		goto error_out;
2266 	}
2267 
2268 	if (!silent) {
2269 		struct timestamp ts;
2270 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2271 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2272 			 sbi->s_volume_ident,
2273 			 le16_to_cpu(ts.year), ts.month, ts.day,
2274 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2275 	}
2276 	if (!sb_rdonly(sb)) {
2277 		udf_open_lvid(sb);
2278 		lvid_open = true;
2279 	}
2280 
2281 	/* Assign the root inode */
2282 	/* assign inodes by physical block number */
2283 	/* perhaps it's not extensible enough, but for now ... */
2284 	inode = udf_iget(sb, &rootdir);
2285 	if (IS_ERR(inode)) {
2286 		udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2287 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2288 		ret = PTR_ERR(inode);
2289 		goto error_out;
2290 	}
2291 
2292 	/* Allocate a dentry for the root inode */
2293 	sb->s_root = d_make_root(inode);
2294 	if (!sb->s_root) {
2295 		udf_err(sb, "Couldn't allocate root dentry\n");
2296 		ret = -ENOMEM;
2297 		goto error_out;
2298 	}
2299 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2300 	sb->s_max_links = UDF_MAX_LINKS;
2301 	return 0;
2302 
2303 error_out:
2304 	iput(sbi->s_vat_inode);
2305 parse_options_failure:
2306 	if (uopt.nls_map)
2307 		unload_nls(uopt.nls_map);
2308 	if (lvid_open)
2309 		udf_close_lvid(sb);
2310 	brelse(sbi->s_lvid_bh);
2311 	udf_sb_free_partitions(sb);
2312 	kfree(sbi);
2313 	sb->s_fs_info = NULL;
2314 
2315 	return ret;
2316 }
2317 
2318 void _udf_err(struct super_block *sb, const char *function,
2319 	      const char *fmt, ...)
2320 {
2321 	struct va_format vaf;
2322 	va_list args;
2323 
2324 	va_start(args, fmt);
2325 
2326 	vaf.fmt = fmt;
2327 	vaf.va = &args;
2328 
2329 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2330 
2331 	va_end(args);
2332 }
2333 
2334 void _udf_warn(struct super_block *sb, const char *function,
2335 	       const char *fmt, ...)
2336 {
2337 	struct va_format vaf;
2338 	va_list args;
2339 
2340 	va_start(args, fmt);
2341 
2342 	vaf.fmt = fmt;
2343 	vaf.va = &args;
2344 
2345 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2346 
2347 	va_end(args);
2348 }
2349 
2350 static void udf_put_super(struct super_block *sb)
2351 {
2352 	struct udf_sb_info *sbi;
2353 
2354 	sbi = UDF_SB(sb);
2355 
2356 	iput(sbi->s_vat_inode);
2357 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2358 		unload_nls(sbi->s_nls_map);
2359 	if (!sb_rdonly(sb))
2360 		udf_close_lvid(sb);
2361 	brelse(sbi->s_lvid_bh);
2362 	udf_sb_free_partitions(sb);
2363 	mutex_destroy(&sbi->s_alloc_mutex);
2364 	kfree(sb->s_fs_info);
2365 	sb->s_fs_info = NULL;
2366 }
2367 
2368 static int udf_sync_fs(struct super_block *sb, int wait)
2369 {
2370 	struct udf_sb_info *sbi = UDF_SB(sb);
2371 
2372 	mutex_lock(&sbi->s_alloc_mutex);
2373 	if (sbi->s_lvid_dirty) {
2374 		struct buffer_head *bh = sbi->s_lvid_bh;
2375 		struct logicalVolIntegrityDesc *lvid;
2376 
2377 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2378 		udf_finalize_lvid(lvid);
2379 
2380 		/*
2381 		 * Blockdevice will be synced later so we don't have to submit
2382 		 * the buffer for IO
2383 		 */
2384 		mark_buffer_dirty(bh);
2385 		sbi->s_lvid_dirty = 0;
2386 	}
2387 	mutex_unlock(&sbi->s_alloc_mutex);
2388 
2389 	return 0;
2390 }
2391 
2392 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2393 {
2394 	struct super_block *sb = dentry->d_sb;
2395 	struct udf_sb_info *sbi = UDF_SB(sb);
2396 	struct logicalVolIntegrityDescImpUse *lvidiu;
2397 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2398 
2399 	lvidiu = udf_sb_lvidiu(sb);
2400 	buf->f_type = UDF_SUPER_MAGIC;
2401 	buf->f_bsize = sb->s_blocksize;
2402 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2403 	buf->f_bfree = udf_count_free(sb);
2404 	buf->f_bavail = buf->f_bfree;
2405 	/*
2406 	 * Let's pretend each free block is also a free 'inode' since UDF does
2407 	 * not have separate preallocated table of inodes.
2408 	 */
2409 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2410 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2411 			+ buf->f_bfree;
2412 	buf->f_ffree = buf->f_bfree;
2413 	buf->f_namelen = UDF_NAME_LEN;
2414 	buf->f_fsid.val[0] = (u32)id;
2415 	buf->f_fsid.val[1] = (u32)(id >> 32);
2416 
2417 	return 0;
2418 }
2419 
2420 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2421 					  struct udf_bitmap *bitmap)
2422 {
2423 	struct buffer_head *bh = NULL;
2424 	unsigned int accum = 0;
2425 	int index;
2426 	udf_pblk_t block = 0, newblock;
2427 	struct kernel_lb_addr loc;
2428 	uint32_t bytes;
2429 	uint8_t *ptr;
2430 	uint16_t ident;
2431 	struct spaceBitmapDesc *bm;
2432 
2433 	loc.logicalBlockNum = bitmap->s_extPosition;
2434 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2435 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2436 
2437 	if (!bh) {
2438 		udf_err(sb, "udf_count_free failed\n");
2439 		goto out;
2440 	} else if (ident != TAG_IDENT_SBD) {
2441 		brelse(bh);
2442 		udf_err(sb, "udf_count_free failed\n");
2443 		goto out;
2444 	}
2445 
2446 	bm = (struct spaceBitmapDesc *)bh->b_data;
2447 	bytes = le32_to_cpu(bm->numOfBytes);
2448 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2449 	ptr = (uint8_t *)bh->b_data;
2450 
2451 	while (bytes > 0) {
2452 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2453 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2454 					cur_bytes * 8);
2455 		bytes -= cur_bytes;
2456 		if (bytes) {
2457 			brelse(bh);
2458 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2459 			bh = udf_tread(sb, newblock);
2460 			if (!bh) {
2461 				udf_debug("read failed\n");
2462 				goto out;
2463 			}
2464 			index = 0;
2465 			ptr = (uint8_t *)bh->b_data;
2466 		}
2467 	}
2468 	brelse(bh);
2469 out:
2470 	return accum;
2471 }
2472 
2473 static unsigned int udf_count_free_table(struct super_block *sb,
2474 					 struct inode *table)
2475 {
2476 	unsigned int accum = 0;
2477 	uint32_t elen;
2478 	struct kernel_lb_addr eloc;
2479 	int8_t etype;
2480 	struct extent_position epos;
2481 
2482 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2483 	epos.block = UDF_I(table)->i_location;
2484 	epos.offset = sizeof(struct unallocSpaceEntry);
2485 	epos.bh = NULL;
2486 
2487 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2488 		accum += (elen >> table->i_sb->s_blocksize_bits);
2489 
2490 	brelse(epos.bh);
2491 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2492 
2493 	return accum;
2494 }
2495 
2496 static unsigned int udf_count_free(struct super_block *sb)
2497 {
2498 	unsigned int accum = 0;
2499 	struct udf_sb_info *sbi = UDF_SB(sb);
2500 	struct udf_part_map *map;
2501 	unsigned int part = sbi->s_partition;
2502 	int ptype = sbi->s_partmaps[part].s_partition_type;
2503 
2504 	if (ptype == UDF_METADATA_MAP25) {
2505 		part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2506 							s_phys_partition_ref;
2507 	} else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2508 		/*
2509 		 * Filesystems with VAT are append-only and we cannot write to
2510  		 * them. Let's just report 0 here.
2511 		 */
2512 		return 0;
2513 	}
2514 
2515 	if (sbi->s_lvid_bh) {
2516 		struct logicalVolIntegrityDesc *lvid =
2517 			(struct logicalVolIntegrityDesc *)
2518 			sbi->s_lvid_bh->b_data;
2519 		if (le32_to_cpu(lvid->numOfPartitions) > part) {
2520 			accum = le32_to_cpu(
2521 					lvid->freeSpaceTable[part]);
2522 			if (accum == 0xFFFFFFFF)
2523 				accum = 0;
2524 		}
2525 	}
2526 
2527 	if (accum)
2528 		return accum;
2529 
2530 	map = &sbi->s_partmaps[part];
2531 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2532 		accum += udf_count_free_bitmap(sb,
2533 					       map->s_uspace.s_bitmap);
2534 	}
2535 	if (accum)
2536 		return accum;
2537 
2538 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2539 		accum += udf_count_free_table(sb,
2540 					      map->s_uspace.s_table);
2541 	}
2542 	return accum;
2543 }
2544 
2545 MODULE_AUTHOR("Ben Fennema");
2546 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2547 MODULE_LICENSE("GPL");
2548 module_init(init_udf_fs)
2549 module_exit(exit_udf_fs)
2550