xref: /openbmc/linux/fs/udf/super.c (revision f0702555)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 
61 #include "udf_sb.h"
62 #include "udf_i.h"
63 
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66 
67 #define VDS_POS_PRIMARY_VOL_DESC	0
68 #define VDS_POS_UNALLOC_SPACE_DESC	1
69 #define VDS_POS_LOGICAL_VOL_DESC	2
70 #define VDS_POS_PARTITION_DESC		3
71 #define VDS_POS_IMP_USE_VOL_DESC	4
72 #define VDS_POS_VOL_DESC_PTR		5
73 #define VDS_POS_TERMINATING_DESC	6
74 #define VDS_POS_LENGTH			7
75 
76 #define UDF_DEFAULT_BLOCKSIZE 2048
77 
78 #define VSD_FIRST_SECTOR_OFFSET		32768
79 #define VSD_MAX_SECTOR_OFFSET		0x800000
80 
81 /*
82  * Maximum number of Terminating Descriptor / Logical Volume Integrity
83  * Descriptor redirections. The chosen numbers are arbitrary - just that we
84  * hopefully don't limit any real use of rewritten inode on write-once media
85  * but avoid looping for too long on corrupted media.
86  */
87 #define UDF_MAX_TD_NESTING 64
88 #define UDF_MAX_LVID_NESTING 1000
89 
90 enum { UDF_MAX_LINKS = 0xffff };
91 
92 /* These are the "meat" - everything else is stuffing */
93 static int udf_fill_super(struct super_block *, void *, int);
94 static void udf_put_super(struct super_block *);
95 static int udf_sync_fs(struct super_block *, int);
96 static int udf_remount_fs(struct super_block *, int *, char *);
97 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
98 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
99 			    struct kernel_lb_addr *);
100 static void udf_load_fileset(struct super_block *, struct buffer_head *,
101 			     struct kernel_lb_addr *);
102 static void udf_open_lvid(struct super_block *);
103 static void udf_close_lvid(struct super_block *);
104 static unsigned int udf_count_free(struct super_block *);
105 static int udf_statfs(struct dentry *, struct kstatfs *);
106 static int udf_show_options(struct seq_file *, struct dentry *);
107 
108 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
109 {
110 	struct logicalVolIntegrityDesc *lvid;
111 	unsigned int partnum;
112 	unsigned int offset;
113 
114 	if (!UDF_SB(sb)->s_lvid_bh)
115 		return NULL;
116 	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
117 	partnum = le32_to_cpu(lvid->numOfPartitions);
118 	if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
119 	     offsetof(struct logicalVolIntegrityDesc, impUse)) /
120 	     (2 * sizeof(uint32_t)) < partnum) {
121 		udf_err(sb, "Logical volume integrity descriptor corrupted "
122 			"(numOfPartitions = %u)!\n", partnum);
123 		return NULL;
124 	}
125 	/* The offset is to skip freeSpaceTable and sizeTable arrays */
126 	offset = partnum * 2 * sizeof(uint32_t);
127 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
128 }
129 
130 /* UDF filesystem type */
131 static struct dentry *udf_mount(struct file_system_type *fs_type,
132 		      int flags, const char *dev_name, void *data)
133 {
134 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
135 }
136 
137 static struct file_system_type udf_fstype = {
138 	.owner		= THIS_MODULE,
139 	.name		= "udf",
140 	.mount		= udf_mount,
141 	.kill_sb	= kill_block_super,
142 	.fs_flags	= FS_REQUIRES_DEV,
143 };
144 MODULE_ALIAS_FS("udf");
145 
146 static struct kmem_cache *udf_inode_cachep;
147 
148 static struct inode *udf_alloc_inode(struct super_block *sb)
149 {
150 	struct udf_inode_info *ei;
151 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
152 	if (!ei)
153 		return NULL;
154 
155 	ei->i_unique = 0;
156 	ei->i_lenExtents = 0;
157 	ei->i_next_alloc_block = 0;
158 	ei->i_next_alloc_goal = 0;
159 	ei->i_strat4096 = 0;
160 	init_rwsem(&ei->i_data_sem);
161 	ei->cached_extent.lstart = -1;
162 	spin_lock_init(&ei->i_extent_cache_lock);
163 
164 	return &ei->vfs_inode;
165 }
166 
167 static void udf_i_callback(struct rcu_head *head)
168 {
169 	struct inode *inode = container_of(head, struct inode, i_rcu);
170 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
171 }
172 
173 static void udf_destroy_inode(struct inode *inode)
174 {
175 	call_rcu(&inode->i_rcu, udf_i_callback);
176 }
177 
178 static void init_once(void *foo)
179 {
180 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
181 
182 	ei->i_ext.i_data = NULL;
183 	inode_init_once(&ei->vfs_inode);
184 }
185 
186 static int __init init_inodecache(void)
187 {
188 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
189 					     sizeof(struct udf_inode_info),
190 					     0, (SLAB_RECLAIM_ACCOUNT |
191 						 SLAB_MEM_SPREAD |
192 						 SLAB_ACCOUNT),
193 					     init_once);
194 	if (!udf_inode_cachep)
195 		return -ENOMEM;
196 	return 0;
197 }
198 
199 static void destroy_inodecache(void)
200 {
201 	/*
202 	 * Make sure all delayed rcu free inodes are flushed before we
203 	 * destroy cache.
204 	 */
205 	rcu_barrier();
206 	kmem_cache_destroy(udf_inode_cachep);
207 }
208 
209 /* Superblock operations */
210 static const struct super_operations udf_sb_ops = {
211 	.alloc_inode	= udf_alloc_inode,
212 	.destroy_inode	= udf_destroy_inode,
213 	.write_inode	= udf_write_inode,
214 	.evict_inode	= udf_evict_inode,
215 	.put_super	= udf_put_super,
216 	.sync_fs	= udf_sync_fs,
217 	.statfs		= udf_statfs,
218 	.remount_fs	= udf_remount_fs,
219 	.show_options	= udf_show_options,
220 };
221 
222 struct udf_options {
223 	unsigned char novrs;
224 	unsigned int blocksize;
225 	unsigned int session;
226 	unsigned int lastblock;
227 	unsigned int anchor;
228 	unsigned int volume;
229 	unsigned short partition;
230 	unsigned int fileset;
231 	unsigned int rootdir;
232 	unsigned int flags;
233 	umode_t umask;
234 	kgid_t gid;
235 	kuid_t uid;
236 	umode_t fmode;
237 	umode_t dmode;
238 	struct nls_table *nls_map;
239 };
240 
241 static int __init init_udf_fs(void)
242 {
243 	int err;
244 
245 	err = init_inodecache();
246 	if (err)
247 		goto out1;
248 	err = register_filesystem(&udf_fstype);
249 	if (err)
250 		goto out;
251 
252 	return 0;
253 
254 out:
255 	destroy_inodecache();
256 
257 out1:
258 	return err;
259 }
260 
261 static void __exit exit_udf_fs(void)
262 {
263 	unregister_filesystem(&udf_fstype);
264 	destroy_inodecache();
265 }
266 
267 module_init(init_udf_fs)
268 module_exit(exit_udf_fs)
269 
270 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
271 {
272 	struct udf_sb_info *sbi = UDF_SB(sb);
273 
274 	sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
275 				  GFP_KERNEL);
276 	if (!sbi->s_partmaps) {
277 		udf_err(sb, "Unable to allocate space for %d partition maps\n",
278 			count);
279 		sbi->s_partitions = 0;
280 		return -ENOMEM;
281 	}
282 
283 	sbi->s_partitions = count;
284 	return 0;
285 }
286 
287 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
288 {
289 	int i;
290 	int nr_groups = bitmap->s_nr_groups;
291 
292 	for (i = 0; i < nr_groups; i++)
293 		if (bitmap->s_block_bitmap[i])
294 			brelse(bitmap->s_block_bitmap[i]);
295 
296 	kvfree(bitmap);
297 }
298 
299 static void udf_free_partition(struct udf_part_map *map)
300 {
301 	int i;
302 	struct udf_meta_data *mdata;
303 
304 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
305 		iput(map->s_uspace.s_table);
306 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
307 		iput(map->s_fspace.s_table);
308 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
309 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
310 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
311 		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
312 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
313 		for (i = 0; i < 4; i++)
314 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
315 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
316 		mdata = &map->s_type_specific.s_metadata;
317 		iput(mdata->s_metadata_fe);
318 		mdata->s_metadata_fe = NULL;
319 
320 		iput(mdata->s_mirror_fe);
321 		mdata->s_mirror_fe = NULL;
322 
323 		iput(mdata->s_bitmap_fe);
324 		mdata->s_bitmap_fe = NULL;
325 	}
326 }
327 
328 static void udf_sb_free_partitions(struct super_block *sb)
329 {
330 	struct udf_sb_info *sbi = UDF_SB(sb);
331 	int i;
332 	if (sbi->s_partmaps == NULL)
333 		return;
334 	for (i = 0; i < sbi->s_partitions; i++)
335 		udf_free_partition(&sbi->s_partmaps[i]);
336 	kfree(sbi->s_partmaps);
337 	sbi->s_partmaps = NULL;
338 }
339 
340 static int udf_show_options(struct seq_file *seq, struct dentry *root)
341 {
342 	struct super_block *sb = root->d_sb;
343 	struct udf_sb_info *sbi = UDF_SB(sb);
344 
345 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
346 		seq_puts(seq, ",nostrict");
347 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
348 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
349 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
350 		seq_puts(seq, ",unhide");
351 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
352 		seq_puts(seq, ",undelete");
353 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
354 		seq_puts(seq, ",noadinicb");
355 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
356 		seq_puts(seq, ",shortad");
357 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
358 		seq_puts(seq, ",uid=forget");
359 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
360 		seq_puts(seq, ",uid=ignore");
361 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
362 		seq_puts(seq, ",gid=forget");
363 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
364 		seq_puts(seq, ",gid=ignore");
365 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
366 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
367 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
368 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
369 	if (sbi->s_umask != 0)
370 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
371 	if (sbi->s_fmode != UDF_INVALID_MODE)
372 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
373 	if (sbi->s_dmode != UDF_INVALID_MODE)
374 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
375 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
376 		seq_printf(seq, ",session=%u", sbi->s_session);
377 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
378 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
379 	if (sbi->s_anchor != 0)
380 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
381 	/*
382 	 * volume, partition, fileset and rootdir seem to be ignored
383 	 * currently
384 	 */
385 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
386 		seq_puts(seq, ",utf8");
387 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
388 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
389 
390 	return 0;
391 }
392 
393 /*
394  * udf_parse_options
395  *
396  * PURPOSE
397  *	Parse mount options.
398  *
399  * DESCRIPTION
400  *	The following mount options are supported:
401  *
402  *	gid=		Set the default group.
403  *	umask=		Set the default umask.
404  *	mode=		Set the default file permissions.
405  *	dmode=		Set the default directory permissions.
406  *	uid=		Set the default user.
407  *	bs=		Set the block size.
408  *	unhide		Show otherwise hidden files.
409  *	undelete	Show deleted files in lists.
410  *	adinicb		Embed data in the inode (default)
411  *	noadinicb	Don't embed data in the inode
412  *	shortad		Use short ad's
413  *	longad		Use long ad's (default)
414  *	nostrict	Unset strict conformance
415  *	iocharset=	Set the NLS character set
416  *
417  *	The remaining are for debugging and disaster recovery:
418  *
419  *	novrs		Skip volume sequence recognition
420  *
421  *	The following expect a offset from 0.
422  *
423  *	session=	Set the CDROM session (default= last session)
424  *	anchor=		Override standard anchor location. (default= 256)
425  *	volume=		Override the VolumeDesc location. (unused)
426  *	partition=	Override the PartitionDesc location. (unused)
427  *	lastblock=	Set the last block of the filesystem/
428  *
429  *	The following expect a offset from the partition root.
430  *
431  *	fileset=	Override the fileset block location. (unused)
432  *	rootdir=	Override the root directory location. (unused)
433  *		WARNING: overriding the rootdir to a non-directory may
434  *		yield highly unpredictable results.
435  *
436  * PRE-CONDITIONS
437  *	options		Pointer to mount options string.
438  *	uopts		Pointer to mount options variable.
439  *
440  * POST-CONDITIONS
441  *	<return>	1	Mount options parsed okay.
442  *	<return>	0	Error parsing mount options.
443  *
444  * HISTORY
445  *	July 1, 1997 - Andrew E. Mileski
446  *	Written, tested, and released.
447  */
448 
449 enum {
450 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
451 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
452 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
453 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
454 	Opt_rootdir, Opt_utf8, Opt_iocharset,
455 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
456 	Opt_fmode, Opt_dmode
457 };
458 
459 static const match_table_t tokens = {
460 	{Opt_novrs,	"novrs"},
461 	{Opt_nostrict,	"nostrict"},
462 	{Opt_bs,	"bs=%u"},
463 	{Opt_unhide,	"unhide"},
464 	{Opt_undelete,	"undelete"},
465 	{Opt_noadinicb,	"noadinicb"},
466 	{Opt_adinicb,	"adinicb"},
467 	{Opt_shortad,	"shortad"},
468 	{Opt_longad,	"longad"},
469 	{Opt_uforget,	"uid=forget"},
470 	{Opt_uignore,	"uid=ignore"},
471 	{Opt_gforget,	"gid=forget"},
472 	{Opt_gignore,	"gid=ignore"},
473 	{Opt_gid,	"gid=%u"},
474 	{Opt_uid,	"uid=%u"},
475 	{Opt_umask,	"umask=%o"},
476 	{Opt_session,	"session=%u"},
477 	{Opt_lastblock,	"lastblock=%u"},
478 	{Opt_anchor,	"anchor=%u"},
479 	{Opt_volume,	"volume=%u"},
480 	{Opt_partition,	"partition=%u"},
481 	{Opt_fileset,	"fileset=%u"},
482 	{Opt_rootdir,	"rootdir=%u"},
483 	{Opt_utf8,	"utf8"},
484 	{Opt_iocharset,	"iocharset=%s"},
485 	{Opt_fmode,     "mode=%o"},
486 	{Opt_dmode,     "dmode=%o"},
487 	{Opt_err,	NULL}
488 };
489 
490 static int udf_parse_options(char *options, struct udf_options *uopt,
491 			     bool remount)
492 {
493 	char *p;
494 	int option;
495 
496 	uopt->novrs = 0;
497 	uopt->partition = 0xFFFF;
498 	uopt->session = 0xFFFFFFFF;
499 	uopt->lastblock = 0;
500 	uopt->anchor = 0;
501 	uopt->volume = 0xFFFFFFFF;
502 	uopt->rootdir = 0xFFFFFFFF;
503 	uopt->fileset = 0xFFFFFFFF;
504 	uopt->nls_map = NULL;
505 
506 	if (!options)
507 		return 1;
508 
509 	while ((p = strsep(&options, ",")) != NULL) {
510 		substring_t args[MAX_OPT_ARGS];
511 		int token;
512 		unsigned n;
513 		if (!*p)
514 			continue;
515 
516 		token = match_token(p, tokens, args);
517 		switch (token) {
518 		case Opt_novrs:
519 			uopt->novrs = 1;
520 			break;
521 		case Opt_bs:
522 			if (match_int(&args[0], &option))
523 				return 0;
524 			n = option;
525 			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
526 				return 0;
527 			uopt->blocksize = n;
528 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
529 			break;
530 		case Opt_unhide:
531 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
532 			break;
533 		case Opt_undelete:
534 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
535 			break;
536 		case Opt_noadinicb:
537 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
538 			break;
539 		case Opt_adinicb:
540 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
541 			break;
542 		case Opt_shortad:
543 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
544 			break;
545 		case Opt_longad:
546 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
547 			break;
548 		case Opt_gid:
549 			if (match_int(args, &option))
550 				return 0;
551 			uopt->gid = make_kgid(current_user_ns(), option);
552 			if (!gid_valid(uopt->gid))
553 				return 0;
554 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
555 			break;
556 		case Opt_uid:
557 			if (match_int(args, &option))
558 				return 0;
559 			uopt->uid = make_kuid(current_user_ns(), option);
560 			if (!uid_valid(uopt->uid))
561 				return 0;
562 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
563 			break;
564 		case Opt_umask:
565 			if (match_octal(args, &option))
566 				return 0;
567 			uopt->umask = option;
568 			break;
569 		case Opt_nostrict:
570 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
571 			break;
572 		case Opt_session:
573 			if (match_int(args, &option))
574 				return 0;
575 			uopt->session = option;
576 			if (!remount)
577 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
578 			break;
579 		case Opt_lastblock:
580 			if (match_int(args, &option))
581 				return 0;
582 			uopt->lastblock = option;
583 			if (!remount)
584 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
585 			break;
586 		case Opt_anchor:
587 			if (match_int(args, &option))
588 				return 0;
589 			uopt->anchor = option;
590 			break;
591 		case Opt_volume:
592 			if (match_int(args, &option))
593 				return 0;
594 			uopt->volume = option;
595 			break;
596 		case Opt_partition:
597 			if (match_int(args, &option))
598 				return 0;
599 			uopt->partition = option;
600 			break;
601 		case Opt_fileset:
602 			if (match_int(args, &option))
603 				return 0;
604 			uopt->fileset = option;
605 			break;
606 		case Opt_rootdir:
607 			if (match_int(args, &option))
608 				return 0;
609 			uopt->rootdir = option;
610 			break;
611 		case Opt_utf8:
612 			uopt->flags |= (1 << UDF_FLAG_UTF8);
613 			break;
614 #ifdef CONFIG_UDF_NLS
615 		case Opt_iocharset:
616 			uopt->nls_map = load_nls(args[0].from);
617 			uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
618 			break;
619 #endif
620 		case Opt_uignore:
621 			uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
622 			break;
623 		case Opt_uforget:
624 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
625 			break;
626 		case Opt_gignore:
627 			uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
628 			break;
629 		case Opt_gforget:
630 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
631 			break;
632 		case Opt_fmode:
633 			if (match_octal(args, &option))
634 				return 0;
635 			uopt->fmode = option & 0777;
636 			break;
637 		case Opt_dmode:
638 			if (match_octal(args, &option))
639 				return 0;
640 			uopt->dmode = option & 0777;
641 			break;
642 		default:
643 			pr_err("bad mount option \"%s\" or missing value\n", p);
644 			return 0;
645 		}
646 	}
647 	return 1;
648 }
649 
650 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
651 {
652 	struct udf_options uopt;
653 	struct udf_sb_info *sbi = UDF_SB(sb);
654 	int error = 0;
655 	struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
656 
657 	sync_filesystem(sb);
658 	if (lvidiu) {
659 		int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
660 		if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
661 			return -EACCES;
662 	}
663 
664 	uopt.flags = sbi->s_flags;
665 	uopt.uid   = sbi->s_uid;
666 	uopt.gid   = sbi->s_gid;
667 	uopt.umask = sbi->s_umask;
668 	uopt.fmode = sbi->s_fmode;
669 	uopt.dmode = sbi->s_dmode;
670 
671 	if (!udf_parse_options(options, &uopt, true))
672 		return -EINVAL;
673 
674 	write_lock(&sbi->s_cred_lock);
675 	sbi->s_flags = uopt.flags;
676 	sbi->s_uid   = uopt.uid;
677 	sbi->s_gid   = uopt.gid;
678 	sbi->s_umask = uopt.umask;
679 	sbi->s_fmode = uopt.fmode;
680 	sbi->s_dmode = uopt.dmode;
681 	write_unlock(&sbi->s_cred_lock);
682 
683 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
684 		goto out_unlock;
685 
686 	if (*flags & MS_RDONLY)
687 		udf_close_lvid(sb);
688 	else
689 		udf_open_lvid(sb);
690 
691 out_unlock:
692 	return error;
693 }
694 
695 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
696 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
697 static loff_t udf_check_vsd(struct super_block *sb)
698 {
699 	struct volStructDesc *vsd = NULL;
700 	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
701 	int sectorsize;
702 	struct buffer_head *bh = NULL;
703 	int nsr02 = 0;
704 	int nsr03 = 0;
705 	struct udf_sb_info *sbi;
706 
707 	sbi = UDF_SB(sb);
708 	if (sb->s_blocksize < sizeof(struct volStructDesc))
709 		sectorsize = sizeof(struct volStructDesc);
710 	else
711 		sectorsize = sb->s_blocksize;
712 
713 	sector += (sbi->s_session << sb->s_blocksize_bits);
714 
715 	udf_debug("Starting at sector %u (%ld byte sectors)\n",
716 		  (unsigned int)(sector >> sb->s_blocksize_bits),
717 		  sb->s_blocksize);
718 	/* Process the sequence (if applicable). The hard limit on the sector
719 	 * offset is arbitrary, hopefully large enough so that all valid UDF
720 	 * filesystems will be recognised. There is no mention of an upper
721 	 * bound to the size of the volume recognition area in the standard.
722 	 *  The limit will prevent the code to read all the sectors of a
723 	 * specially crafted image (like a bluray disc full of CD001 sectors),
724 	 * potentially causing minutes or even hours of uninterruptible I/O
725 	 * activity. This actually happened with uninitialised SSD partitions
726 	 * (all 0xFF) before the check for the limit and all valid IDs were
727 	 * added */
728 	for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
729 	     sector += sectorsize) {
730 		/* Read a block */
731 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
732 		if (!bh)
733 			break;
734 
735 		/* Look for ISO  descriptors */
736 		vsd = (struct volStructDesc *)(bh->b_data +
737 					      (sector & (sb->s_blocksize - 1)));
738 
739 		if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
740 				    VSD_STD_ID_LEN)) {
741 			switch (vsd->structType) {
742 			case 0:
743 				udf_debug("ISO9660 Boot Record found\n");
744 				break;
745 			case 1:
746 				udf_debug("ISO9660 Primary Volume Descriptor found\n");
747 				break;
748 			case 2:
749 				udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
750 				break;
751 			case 3:
752 				udf_debug("ISO9660 Volume Partition Descriptor found\n");
753 				break;
754 			case 255:
755 				udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
756 				break;
757 			default:
758 				udf_debug("ISO9660 VRS (%u) found\n",
759 					  vsd->structType);
760 				break;
761 			}
762 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
763 				    VSD_STD_ID_LEN))
764 			; /* nothing */
765 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
766 				    VSD_STD_ID_LEN)) {
767 			brelse(bh);
768 			break;
769 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
770 				    VSD_STD_ID_LEN))
771 			nsr02 = sector;
772 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
773 				    VSD_STD_ID_LEN))
774 			nsr03 = sector;
775 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
776 				    VSD_STD_ID_LEN))
777 			; /* nothing */
778 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
779 				    VSD_STD_ID_LEN))
780 			; /* nothing */
781 		else {
782 			/* invalid id : end of volume recognition area */
783 			brelse(bh);
784 			break;
785 		}
786 		brelse(bh);
787 	}
788 
789 	if (nsr03)
790 		return nsr03;
791 	else if (nsr02)
792 		return nsr02;
793 	else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
794 			VSD_FIRST_SECTOR_OFFSET)
795 		return -1;
796 	else
797 		return 0;
798 }
799 
800 static int udf_find_fileset(struct super_block *sb,
801 			    struct kernel_lb_addr *fileset,
802 			    struct kernel_lb_addr *root)
803 {
804 	struct buffer_head *bh = NULL;
805 	long lastblock;
806 	uint16_t ident;
807 	struct udf_sb_info *sbi;
808 
809 	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
810 	    fileset->partitionReferenceNum != 0xFFFF) {
811 		bh = udf_read_ptagged(sb, fileset, 0, &ident);
812 
813 		if (!bh) {
814 			return 1;
815 		} else if (ident != TAG_IDENT_FSD) {
816 			brelse(bh);
817 			return 1;
818 		}
819 
820 	}
821 
822 	sbi = UDF_SB(sb);
823 	if (!bh) {
824 		/* Search backwards through the partitions */
825 		struct kernel_lb_addr newfileset;
826 
827 /* --> cvg: FIXME - is it reasonable? */
828 		return 1;
829 
830 		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
831 		     (newfileset.partitionReferenceNum != 0xFFFF &&
832 		      fileset->logicalBlockNum == 0xFFFFFFFF &&
833 		      fileset->partitionReferenceNum == 0xFFFF);
834 		     newfileset.partitionReferenceNum--) {
835 			lastblock = sbi->s_partmaps
836 					[newfileset.partitionReferenceNum]
837 						.s_partition_len;
838 			newfileset.logicalBlockNum = 0;
839 
840 			do {
841 				bh = udf_read_ptagged(sb, &newfileset, 0,
842 						      &ident);
843 				if (!bh) {
844 					newfileset.logicalBlockNum++;
845 					continue;
846 				}
847 
848 				switch (ident) {
849 				case TAG_IDENT_SBD:
850 				{
851 					struct spaceBitmapDesc *sp;
852 					sp = (struct spaceBitmapDesc *)
853 								bh->b_data;
854 					newfileset.logicalBlockNum += 1 +
855 						((le32_to_cpu(sp->numOfBytes) +
856 						  sizeof(struct spaceBitmapDesc)
857 						  - 1) >> sb->s_blocksize_bits);
858 					brelse(bh);
859 					break;
860 				}
861 				case TAG_IDENT_FSD:
862 					*fileset = newfileset;
863 					break;
864 				default:
865 					newfileset.logicalBlockNum++;
866 					brelse(bh);
867 					bh = NULL;
868 					break;
869 				}
870 			} while (newfileset.logicalBlockNum < lastblock &&
871 				 fileset->logicalBlockNum == 0xFFFFFFFF &&
872 				 fileset->partitionReferenceNum == 0xFFFF);
873 		}
874 	}
875 
876 	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
877 	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
878 		udf_debug("Fileset at block=%d, partition=%d\n",
879 			  fileset->logicalBlockNum,
880 			  fileset->partitionReferenceNum);
881 
882 		sbi->s_partition = fileset->partitionReferenceNum;
883 		udf_load_fileset(sb, bh, root);
884 		brelse(bh);
885 		return 0;
886 	}
887 	return 1;
888 }
889 
890 /*
891  * Load primary Volume Descriptor Sequence
892  *
893  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
894  * should be tried.
895  */
896 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
897 {
898 	struct primaryVolDesc *pvoldesc;
899 	uint8_t *outstr;
900 	struct buffer_head *bh;
901 	uint16_t ident;
902 	int ret = -ENOMEM;
903 
904 	outstr = kmalloc(128, GFP_NOFS);
905 	if (!outstr)
906 		return -ENOMEM;
907 
908 	bh = udf_read_tagged(sb, block, block, &ident);
909 	if (!bh) {
910 		ret = -EAGAIN;
911 		goto out2;
912 	}
913 
914 	if (ident != TAG_IDENT_PVD) {
915 		ret = -EIO;
916 		goto out_bh;
917 	}
918 
919 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
920 
921 	if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
922 			      pvoldesc->recordingDateAndTime)) {
923 #ifdef UDFFS_DEBUG
924 		struct timestamp *ts = &pvoldesc->recordingDateAndTime;
925 		udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
926 			  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
927 			  ts->minute, le16_to_cpu(ts->typeAndTimezone));
928 #endif
929 	}
930 
931 	ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
932 	if (ret < 0)
933 		goto out_bh;
934 
935 	strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
936 	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
937 
938 	ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
939 	if (ret < 0)
940 		goto out_bh;
941 
942 	outstr[ret] = 0;
943 	udf_debug("volSetIdent[] = '%s'\n", outstr);
944 
945 	ret = 0;
946 out_bh:
947 	brelse(bh);
948 out2:
949 	kfree(outstr);
950 	return ret;
951 }
952 
953 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
954 					u32 meta_file_loc, u32 partition_num)
955 {
956 	struct kernel_lb_addr addr;
957 	struct inode *metadata_fe;
958 
959 	addr.logicalBlockNum = meta_file_loc;
960 	addr.partitionReferenceNum = partition_num;
961 
962 	metadata_fe = udf_iget_special(sb, &addr);
963 
964 	if (IS_ERR(metadata_fe)) {
965 		udf_warn(sb, "metadata inode efe not found\n");
966 		return metadata_fe;
967 	}
968 	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
969 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
970 		iput(metadata_fe);
971 		return ERR_PTR(-EIO);
972 	}
973 
974 	return metadata_fe;
975 }
976 
977 static int udf_load_metadata_files(struct super_block *sb, int partition)
978 {
979 	struct udf_sb_info *sbi = UDF_SB(sb);
980 	struct udf_part_map *map;
981 	struct udf_meta_data *mdata;
982 	struct kernel_lb_addr addr;
983 	struct inode *fe;
984 
985 	map = &sbi->s_partmaps[partition];
986 	mdata = &map->s_type_specific.s_metadata;
987 
988 	/* metadata address */
989 	udf_debug("Metadata file location: block = %d part = %d\n",
990 		  mdata->s_meta_file_loc, map->s_partition_num);
991 
992 	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
993 					 map->s_partition_num);
994 	if (IS_ERR(fe)) {
995 		/* mirror file entry */
996 		udf_debug("Mirror metadata file location: block = %d part = %d\n",
997 			  mdata->s_mirror_file_loc, map->s_partition_num);
998 
999 		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
1000 						 map->s_partition_num);
1001 
1002 		if (IS_ERR(fe)) {
1003 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1004 			return PTR_ERR(fe);
1005 		}
1006 		mdata->s_mirror_fe = fe;
1007 	} else
1008 		mdata->s_metadata_fe = fe;
1009 
1010 
1011 	/*
1012 	 * bitmap file entry
1013 	 * Note:
1014 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1015 	*/
1016 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1017 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1018 		addr.partitionReferenceNum = map->s_partition_num;
1019 
1020 		udf_debug("Bitmap file location: block = %d part = %d\n",
1021 			  addr.logicalBlockNum, addr.partitionReferenceNum);
1022 
1023 		fe = udf_iget_special(sb, &addr);
1024 		if (IS_ERR(fe)) {
1025 			if (sb->s_flags & MS_RDONLY)
1026 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1027 			else {
1028 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1029 				return PTR_ERR(fe);
1030 			}
1031 		} else
1032 			mdata->s_bitmap_fe = fe;
1033 	}
1034 
1035 	udf_debug("udf_load_metadata_files Ok\n");
1036 	return 0;
1037 }
1038 
1039 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1040 			     struct kernel_lb_addr *root)
1041 {
1042 	struct fileSetDesc *fset;
1043 
1044 	fset = (struct fileSetDesc *)bh->b_data;
1045 
1046 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1047 
1048 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1049 
1050 	udf_debug("Rootdir at block=%d, partition=%d\n",
1051 		  root->logicalBlockNum, root->partitionReferenceNum);
1052 }
1053 
1054 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1055 {
1056 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1057 	return DIV_ROUND_UP(map->s_partition_len +
1058 			    (sizeof(struct spaceBitmapDesc) << 3),
1059 			    sb->s_blocksize * 8);
1060 }
1061 
1062 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1063 {
1064 	struct udf_bitmap *bitmap;
1065 	int nr_groups;
1066 	int size;
1067 
1068 	nr_groups = udf_compute_nr_groups(sb, index);
1069 	size = sizeof(struct udf_bitmap) +
1070 		(sizeof(struct buffer_head *) * nr_groups);
1071 
1072 	if (size <= PAGE_SIZE)
1073 		bitmap = kzalloc(size, GFP_KERNEL);
1074 	else
1075 		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1076 
1077 	if (bitmap == NULL)
1078 		return NULL;
1079 
1080 	bitmap->s_nr_groups = nr_groups;
1081 	return bitmap;
1082 }
1083 
1084 static int udf_fill_partdesc_info(struct super_block *sb,
1085 		struct partitionDesc *p, int p_index)
1086 {
1087 	struct udf_part_map *map;
1088 	struct udf_sb_info *sbi = UDF_SB(sb);
1089 	struct partitionHeaderDesc *phd;
1090 
1091 	map = &sbi->s_partmaps[p_index];
1092 
1093 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1094 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1095 
1096 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1097 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1098 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1099 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1100 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1101 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1102 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1103 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1104 
1105 	udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1106 		  p_index, map->s_partition_type,
1107 		  map->s_partition_root, map->s_partition_len);
1108 
1109 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1110 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1111 		return 0;
1112 
1113 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1114 	if (phd->unallocSpaceTable.extLength) {
1115 		struct kernel_lb_addr loc = {
1116 			.logicalBlockNum = le32_to_cpu(
1117 				phd->unallocSpaceTable.extPosition),
1118 			.partitionReferenceNum = p_index,
1119 		};
1120 		struct inode *inode;
1121 
1122 		inode = udf_iget_special(sb, &loc);
1123 		if (IS_ERR(inode)) {
1124 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1125 				  p_index);
1126 			return PTR_ERR(inode);
1127 		}
1128 		map->s_uspace.s_table = inode;
1129 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1130 		udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1131 			  p_index, map->s_uspace.s_table->i_ino);
1132 	}
1133 
1134 	if (phd->unallocSpaceBitmap.extLength) {
1135 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1136 		if (!bitmap)
1137 			return -ENOMEM;
1138 		map->s_uspace.s_bitmap = bitmap;
1139 		bitmap->s_extPosition = le32_to_cpu(
1140 				phd->unallocSpaceBitmap.extPosition);
1141 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1142 		udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1143 			  p_index, bitmap->s_extPosition);
1144 	}
1145 
1146 	if (phd->partitionIntegrityTable.extLength)
1147 		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1148 
1149 	if (phd->freedSpaceTable.extLength) {
1150 		struct kernel_lb_addr loc = {
1151 			.logicalBlockNum = le32_to_cpu(
1152 				phd->freedSpaceTable.extPosition),
1153 			.partitionReferenceNum = p_index,
1154 		};
1155 		struct inode *inode;
1156 
1157 		inode = udf_iget_special(sb, &loc);
1158 		if (IS_ERR(inode)) {
1159 			udf_debug("cannot load freedSpaceTable (part %d)\n",
1160 				  p_index);
1161 			return PTR_ERR(inode);
1162 		}
1163 		map->s_fspace.s_table = inode;
1164 		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1165 		udf_debug("freedSpaceTable (part %d) @ %ld\n",
1166 			  p_index, map->s_fspace.s_table->i_ino);
1167 	}
1168 
1169 	if (phd->freedSpaceBitmap.extLength) {
1170 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1171 		if (!bitmap)
1172 			return -ENOMEM;
1173 		map->s_fspace.s_bitmap = bitmap;
1174 		bitmap->s_extPosition = le32_to_cpu(
1175 				phd->freedSpaceBitmap.extPosition);
1176 		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1177 		udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1178 			  p_index, bitmap->s_extPosition);
1179 	}
1180 	return 0;
1181 }
1182 
1183 static void udf_find_vat_block(struct super_block *sb, int p_index,
1184 			       int type1_index, sector_t start_block)
1185 {
1186 	struct udf_sb_info *sbi = UDF_SB(sb);
1187 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1188 	sector_t vat_block;
1189 	struct kernel_lb_addr ino;
1190 	struct inode *inode;
1191 
1192 	/*
1193 	 * VAT file entry is in the last recorded block. Some broken disks have
1194 	 * it a few blocks before so try a bit harder...
1195 	 */
1196 	ino.partitionReferenceNum = type1_index;
1197 	for (vat_block = start_block;
1198 	     vat_block >= map->s_partition_root &&
1199 	     vat_block >= start_block - 3; vat_block--) {
1200 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1201 		inode = udf_iget_special(sb, &ino);
1202 		if (!IS_ERR(inode)) {
1203 			sbi->s_vat_inode = inode;
1204 			break;
1205 		}
1206 	}
1207 }
1208 
1209 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1210 {
1211 	struct udf_sb_info *sbi = UDF_SB(sb);
1212 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1213 	struct buffer_head *bh = NULL;
1214 	struct udf_inode_info *vati;
1215 	uint32_t pos;
1216 	struct virtualAllocationTable20 *vat20;
1217 	sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1218 
1219 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1220 	if (!sbi->s_vat_inode &&
1221 	    sbi->s_last_block != blocks - 1) {
1222 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1223 			  (unsigned long)sbi->s_last_block,
1224 			  (unsigned long)blocks - 1);
1225 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1226 	}
1227 	if (!sbi->s_vat_inode)
1228 		return -EIO;
1229 
1230 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1231 		map->s_type_specific.s_virtual.s_start_offset = 0;
1232 		map->s_type_specific.s_virtual.s_num_entries =
1233 			(sbi->s_vat_inode->i_size - 36) >> 2;
1234 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1235 		vati = UDF_I(sbi->s_vat_inode);
1236 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1237 			pos = udf_block_map(sbi->s_vat_inode, 0);
1238 			bh = sb_bread(sb, pos);
1239 			if (!bh)
1240 				return -EIO;
1241 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1242 		} else {
1243 			vat20 = (struct virtualAllocationTable20 *)
1244 							vati->i_ext.i_data;
1245 		}
1246 
1247 		map->s_type_specific.s_virtual.s_start_offset =
1248 			le16_to_cpu(vat20->lengthHeader);
1249 		map->s_type_specific.s_virtual.s_num_entries =
1250 			(sbi->s_vat_inode->i_size -
1251 				map->s_type_specific.s_virtual.
1252 					s_start_offset) >> 2;
1253 		brelse(bh);
1254 	}
1255 	return 0;
1256 }
1257 
1258 /*
1259  * Load partition descriptor block
1260  *
1261  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1262  * sequence.
1263  */
1264 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1265 {
1266 	struct buffer_head *bh;
1267 	struct partitionDesc *p;
1268 	struct udf_part_map *map;
1269 	struct udf_sb_info *sbi = UDF_SB(sb);
1270 	int i, type1_idx;
1271 	uint16_t partitionNumber;
1272 	uint16_t ident;
1273 	int ret;
1274 
1275 	bh = udf_read_tagged(sb, block, block, &ident);
1276 	if (!bh)
1277 		return -EAGAIN;
1278 	if (ident != TAG_IDENT_PD) {
1279 		ret = 0;
1280 		goto out_bh;
1281 	}
1282 
1283 	p = (struct partitionDesc *)bh->b_data;
1284 	partitionNumber = le16_to_cpu(p->partitionNumber);
1285 
1286 	/* First scan for TYPE1, SPARABLE and METADATA partitions */
1287 	for (i = 0; i < sbi->s_partitions; i++) {
1288 		map = &sbi->s_partmaps[i];
1289 		udf_debug("Searching map: (%d == %d)\n",
1290 			  map->s_partition_num, partitionNumber);
1291 		if (map->s_partition_num == partitionNumber &&
1292 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1293 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1294 			break;
1295 	}
1296 
1297 	if (i >= sbi->s_partitions) {
1298 		udf_debug("Partition (%d) not found in partition map\n",
1299 			  partitionNumber);
1300 		ret = 0;
1301 		goto out_bh;
1302 	}
1303 
1304 	ret = udf_fill_partdesc_info(sb, p, i);
1305 	if (ret < 0)
1306 		goto out_bh;
1307 
1308 	/*
1309 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1310 	 * PHYSICAL partitions are already set up
1311 	 */
1312 	type1_idx = i;
1313 #ifdef UDFFS_DEBUG
1314 	map = NULL; /* supress 'maybe used uninitialized' warning */
1315 #endif
1316 	for (i = 0; i < sbi->s_partitions; i++) {
1317 		map = &sbi->s_partmaps[i];
1318 
1319 		if (map->s_partition_num == partitionNumber &&
1320 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1321 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1322 		     map->s_partition_type == UDF_METADATA_MAP25))
1323 			break;
1324 	}
1325 
1326 	if (i >= sbi->s_partitions) {
1327 		ret = 0;
1328 		goto out_bh;
1329 	}
1330 
1331 	ret = udf_fill_partdesc_info(sb, p, i);
1332 	if (ret < 0)
1333 		goto out_bh;
1334 
1335 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1336 		ret = udf_load_metadata_files(sb, i);
1337 		if (ret < 0) {
1338 			udf_err(sb, "error loading MetaData partition map %d\n",
1339 				i);
1340 			goto out_bh;
1341 		}
1342 	} else {
1343 		/*
1344 		 * If we have a partition with virtual map, we don't handle
1345 		 * writing to it (we overwrite blocks instead of relocating
1346 		 * them).
1347 		 */
1348 		if (!(sb->s_flags & MS_RDONLY)) {
1349 			ret = -EACCES;
1350 			goto out_bh;
1351 		}
1352 		ret = udf_load_vat(sb, i, type1_idx);
1353 		if (ret < 0)
1354 			goto out_bh;
1355 	}
1356 	ret = 0;
1357 out_bh:
1358 	/* In case loading failed, we handle cleanup in udf_fill_super */
1359 	brelse(bh);
1360 	return ret;
1361 }
1362 
1363 static int udf_load_sparable_map(struct super_block *sb,
1364 				 struct udf_part_map *map,
1365 				 struct sparablePartitionMap *spm)
1366 {
1367 	uint32_t loc;
1368 	uint16_t ident;
1369 	struct sparingTable *st;
1370 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1371 	int i;
1372 	struct buffer_head *bh;
1373 
1374 	map->s_partition_type = UDF_SPARABLE_MAP15;
1375 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1376 	if (!is_power_of_2(sdata->s_packet_len)) {
1377 		udf_err(sb, "error loading logical volume descriptor: "
1378 			"Invalid packet length %u\n",
1379 			(unsigned)sdata->s_packet_len);
1380 		return -EIO;
1381 	}
1382 	if (spm->numSparingTables > 4) {
1383 		udf_err(sb, "error loading logical volume descriptor: "
1384 			"Too many sparing tables (%d)\n",
1385 			(int)spm->numSparingTables);
1386 		return -EIO;
1387 	}
1388 
1389 	for (i = 0; i < spm->numSparingTables; i++) {
1390 		loc = le32_to_cpu(spm->locSparingTable[i]);
1391 		bh = udf_read_tagged(sb, loc, loc, &ident);
1392 		if (!bh)
1393 			continue;
1394 
1395 		st = (struct sparingTable *)bh->b_data;
1396 		if (ident != 0 ||
1397 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1398 			    strlen(UDF_ID_SPARING)) ||
1399 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1400 							sb->s_blocksize) {
1401 			brelse(bh);
1402 			continue;
1403 		}
1404 
1405 		sdata->s_spar_map[i] = bh;
1406 	}
1407 	map->s_partition_func = udf_get_pblock_spar15;
1408 	return 0;
1409 }
1410 
1411 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1412 			       struct kernel_lb_addr *fileset)
1413 {
1414 	struct logicalVolDesc *lvd;
1415 	int i, offset;
1416 	uint8_t type;
1417 	struct udf_sb_info *sbi = UDF_SB(sb);
1418 	struct genericPartitionMap *gpm;
1419 	uint16_t ident;
1420 	struct buffer_head *bh;
1421 	unsigned int table_len;
1422 	int ret;
1423 
1424 	bh = udf_read_tagged(sb, block, block, &ident);
1425 	if (!bh)
1426 		return -EAGAIN;
1427 	BUG_ON(ident != TAG_IDENT_LVD);
1428 	lvd = (struct logicalVolDesc *)bh->b_data;
1429 	table_len = le32_to_cpu(lvd->mapTableLength);
1430 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1431 		udf_err(sb, "error loading logical volume descriptor: "
1432 			"Partition table too long (%u > %lu)\n", table_len,
1433 			sb->s_blocksize - sizeof(*lvd));
1434 		ret = -EIO;
1435 		goto out_bh;
1436 	}
1437 
1438 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1439 	if (ret)
1440 		goto out_bh;
1441 
1442 	for (i = 0, offset = 0;
1443 	     i < sbi->s_partitions && offset < table_len;
1444 	     i++, offset += gpm->partitionMapLength) {
1445 		struct udf_part_map *map = &sbi->s_partmaps[i];
1446 		gpm = (struct genericPartitionMap *)
1447 				&(lvd->partitionMaps[offset]);
1448 		type = gpm->partitionMapType;
1449 		if (type == 1) {
1450 			struct genericPartitionMap1 *gpm1 =
1451 				(struct genericPartitionMap1 *)gpm;
1452 			map->s_partition_type = UDF_TYPE1_MAP15;
1453 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1454 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1455 			map->s_partition_func = NULL;
1456 		} else if (type == 2) {
1457 			struct udfPartitionMap2 *upm2 =
1458 						(struct udfPartitionMap2 *)gpm;
1459 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1460 						strlen(UDF_ID_VIRTUAL))) {
1461 				u16 suf =
1462 					le16_to_cpu(((__le16 *)upm2->partIdent.
1463 							identSuffix)[0]);
1464 				if (suf < 0x0200) {
1465 					map->s_partition_type =
1466 							UDF_VIRTUAL_MAP15;
1467 					map->s_partition_func =
1468 							udf_get_pblock_virt15;
1469 				} else {
1470 					map->s_partition_type =
1471 							UDF_VIRTUAL_MAP20;
1472 					map->s_partition_func =
1473 							udf_get_pblock_virt20;
1474 				}
1475 			} else if (!strncmp(upm2->partIdent.ident,
1476 						UDF_ID_SPARABLE,
1477 						strlen(UDF_ID_SPARABLE))) {
1478 				ret = udf_load_sparable_map(sb, map,
1479 					(struct sparablePartitionMap *)gpm);
1480 				if (ret < 0)
1481 					goto out_bh;
1482 			} else if (!strncmp(upm2->partIdent.ident,
1483 						UDF_ID_METADATA,
1484 						strlen(UDF_ID_METADATA))) {
1485 				struct udf_meta_data *mdata =
1486 					&map->s_type_specific.s_metadata;
1487 				struct metadataPartitionMap *mdm =
1488 						(struct metadataPartitionMap *)
1489 						&(lvd->partitionMaps[offset]);
1490 				udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1491 					  i, type, UDF_ID_METADATA);
1492 
1493 				map->s_partition_type = UDF_METADATA_MAP25;
1494 				map->s_partition_func = udf_get_pblock_meta25;
1495 
1496 				mdata->s_meta_file_loc   =
1497 					le32_to_cpu(mdm->metadataFileLoc);
1498 				mdata->s_mirror_file_loc =
1499 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1500 				mdata->s_bitmap_file_loc =
1501 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1502 				mdata->s_alloc_unit_size =
1503 					le32_to_cpu(mdm->allocUnitSize);
1504 				mdata->s_align_unit_size =
1505 					le16_to_cpu(mdm->alignUnitSize);
1506 				if (mdm->flags & 0x01)
1507 					mdata->s_flags |= MF_DUPLICATE_MD;
1508 
1509 				udf_debug("Metadata Ident suffix=0x%x\n",
1510 					  le16_to_cpu(*(__le16 *)
1511 						      mdm->partIdent.identSuffix));
1512 				udf_debug("Metadata part num=%d\n",
1513 					  le16_to_cpu(mdm->partitionNum));
1514 				udf_debug("Metadata part alloc unit size=%d\n",
1515 					  le32_to_cpu(mdm->allocUnitSize));
1516 				udf_debug("Metadata file loc=%d\n",
1517 					  le32_to_cpu(mdm->metadataFileLoc));
1518 				udf_debug("Mirror file loc=%d\n",
1519 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1520 				udf_debug("Bitmap file loc=%d\n",
1521 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1522 				udf_debug("Flags: %d %d\n",
1523 					  mdata->s_flags, mdm->flags);
1524 			} else {
1525 				udf_debug("Unknown ident: %s\n",
1526 					  upm2->partIdent.ident);
1527 				continue;
1528 			}
1529 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1530 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1531 		}
1532 		udf_debug("Partition (%d:%d) type %d on volume %d\n",
1533 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1534 	}
1535 
1536 	if (fileset) {
1537 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1538 
1539 		*fileset = lelb_to_cpu(la->extLocation);
1540 		udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1541 			  fileset->logicalBlockNum,
1542 			  fileset->partitionReferenceNum);
1543 	}
1544 	if (lvd->integritySeqExt.extLength)
1545 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1546 	ret = 0;
1547 out_bh:
1548 	brelse(bh);
1549 	return ret;
1550 }
1551 
1552 /*
1553  * Find the prevailing Logical Volume Integrity Descriptor.
1554  */
1555 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1556 {
1557 	struct buffer_head *bh, *final_bh;
1558 	uint16_t ident;
1559 	struct udf_sb_info *sbi = UDF_SB(sb);
1560 	struct logicalVolIntegrityDesc *lvid;
1561 	int indirections = 0;
1562 
1563 	while (++indirections <= UDF_MAX_LVID_NESTING) {
1564 		final_bh = NULL;
1565 		while (loc.extLength > 0 &&
1566 			(bh = udf_read_tagged(sb, loc.extLocation,
1567 					loc.extLocation, &ident))) {
1568 			if (ident != TAG_IDENT_LVID) {
1569 				brelse(bh);
1570 				break;
1571 			}
1572 
1573 			brelse(final_bh);
1574 			final_bh = bh;
1575 
1576 			loc.extLength -= sb->s_blocksize;
1577 			loc.extLocation++;
1578 		}
1579 
1580 		if (!final_bh)
1581 			return;
1582 
1583 		brelse(sbi->s_lvid_bh);
1584 		sbi->s_lvid_bh = final_bh;
1585 
1586 		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1587 		if (lvid->nextIntegrityExt.extLength == 0)
1588 			return;
1589 
1590 		loc = leea_to_cpu(lvid->nextIntegrityExt);
1591 	}
1592 
1593 	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1594 		UDF_MAX_LVID_NESTING);
1595 	brelse(sbi->s_lvid_bh);
1596 	sbi->s_lvid_bh = NULL;
1597 }
1598 
1599 
1600 /*
1601  * Process a main/reserve volume descriptor sequence.
1602  *   @block		First block of first extent of the sequence.
1603  *   @lastblock		Lastblock of first extent of the sequence.
1604  *   @fileset		There we store extent containing root fileset
1605  *
1606  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1607  * sequence
1608  */
1609 static noinline int udf_process_sequence(
1610 		struct super_block *sb,
1611 		sector_t block, sector_t lastblock,
1612 		struct kernel_lb_addr *fileset)
1613 {
1614 	struct buffer_head *bh = NULL;
1615 	struct udf_vds_record vds[VDS_POS_LENGTH];
1616 	struct udf_vds_record *curr;
1617 	struct generic_desc *gd;
1618 	struct volDescPtr *vdp;
1619 	bool done = false;
1620 	uint32_t vdsn;
1621 	uint16_t ident;
1622 	long next_s = 0, next_e = 0;
1623 	int ret;
1624 	unsigned int indirections = 0;
1625 
1626 	memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1627 
1628 	/*
1629 	 * Read the main descriptor sequence and find which descriptors
1630 	 * are in it.
1631 	 */
1632 	for (; (!done && block <= lastblock); block++) {
1633 
1634 		bh = udf_read_tagged(sb, block, block, &ident);
1635 		if (!bh) {
1636 			udf_err(sb,
1637 				"Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1638 				(unsigned long long)block);
1639 			return -EAGAIN;
1640 		}
1641 
1642 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1643 		gd = (struct generic_desc *)bh->b_data;
1644 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1645 		switch (ident) {
1646 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1647 			curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1648 			if (vdsn >= curr->volDescSeqNum) {
1649 				curr->volDescSeqNum = vdsn;
1650 				curr->block = block;
1651 			}
1652 			break;
1653 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1654 			curr = &vds[VDS_POS_VOL_DESC_PTR];
1655 			if (vdsn >= curr->volDescSeqNum) {
1656 				curr->volDescSeqNum = vdsn;
1657 				curr->block = block;
1658 
1659 				vdp = (struct volDescPtr *)bh->b_data;
1660 				next_s = le32_to_cpu(
1661 					vdp->nextVolDescSeqExt.extLocation);
1662 				next_e = le32_to_cpu(
1663 					vdp->nextVolDescSeqExt.extLength);
1664 				next_e = next_e >> sb->s_blocksize_bits;
1665 				next_e += next_s;
1666 			}
1667 			break;
1668 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1669 			curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1670 			if (vdsn >= curr->volDescSeqNum) {
1671 				curr->volDescSeqNum = vdsn;
1672 				curr->block = block;
1673 			}
1674 			break;
1675 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1676 			curr = &vds[VDS_POS_PARTITION_DESC];
1677 			if (!curr->block)
1678 				curr->block = block;
1679 			break;
1680 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1681 			curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1682 			if (vdsn >= curr->volDescSeqNum) {
1683 				curr->volDescSeqNum = vdsn;
1684 				curr->block = block;
1685 			}
1686 			break;
1687 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1688 			curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1689 			if (vdsn >= curr->volDescSeqNum) {
1690 				curr->volDescSeqNum = vdsn;
1691 				curr->block = block;
1692 			}
1693 			break;
1694 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1695 			if (++indirections > UDF_MAX_TD_NESTING) {
1696 				udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1697 				brelse(bh);
1698 				return -EIO;
1699 			}
1700 
1701 			vds[VDS_POS_TERMINATING_DESC].block = block;
1702 			if (next_e) {
1703 				block = next_s;
1704 				lastblock = next_e;
1705 				next_s = next_e = 0;
1706 			} else
1707 				done = true;
1708 			break;
1709 		}
1710 		brelse(bh);
1711 	}
1712 	/*
1713 	 * Now read interesting descriptors again and process them
1714 	 * in a suitable order
1715 	 */
1716 	if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1717 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1718 		return -EAGAIN;
1719 	}
1720 	ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1721 	if (ret < 0)
1722 		return ret;
1723 
1724 	if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1725 		ret = udf_load_logicalvol(sb,
1726 					  vds[VDS_POS_LOGICAL_VOL_DESC].block,
1727 					  fileset);
1728 		if (ret < 0)
1729 			return ret;
1730 	}
1731 
1732 	if (vds[VDS_POS_PARTITION_DESC].block) {
1733 		/*
1734 		 * We rescan the whole descriptor sequence to find
1735 		 * partition descriptor blocks and process them.
1736 		 */
1737 		for (block = vds[VDS_POS_PARTITION_DESC].block;
1738 		     block < vds[VDS_POS_TERMINATING_DESC].block;
1739 		     block++) {
1740 			ret = udf_load_partdesc(sb, block);
1741 			if (ret < 0)
1742 				return ret;
1743 		}
1744 	}
1745 
1746 	return 0;
1747 }
1748 
1749 /*
1750  * Load Volume Descriptor Sequence described by anchor in bh
1751  *
1752  * Returns <0 on error, 0 on success
1753  */
1754 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1755 			     struct kernel_lb_addr *fileset)
1756 {
1757 	struct anchorVolDescPtr *anchor;
1758 	sector_t main_s, main_e, reserve_s, reserve_e;
1759 	int ret;
1760 
1761 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1762 
1763 	/* Locate the main sequence */
1764 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1765 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1766 	main_e = main_e >> sb->s_blocksize_bits;
1767 	main_e += main_s;
1768 
1769 	/* Locate the reserve sequence */
1770 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1771 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1772 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1773 	reserve_e += reserve_s;
1774 
1775 	/* Process the main & reserve sequences */
1776 	/* responsible for finding the PartitionDesc(s) */
1777 	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1778 	if (ret != -EAGAIN)
1779 		return ret;
1780 	udf_sb_free_partitions(sb);
1781 	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1782 	if (ret < 0) {
1783 		udf_sb_free_partitions(sb);
1784 		/* No sequence was OK, return -EIO */
1785 		if (ret == -EAGAIN)
1786 			ret = -EIO;
1787 	}
1788 	return ret;
1789 }
1790 
1791 /*
1792  * Check whether there is an anchor block in the given block and
1793  * load Volume Descriptor Sequence if so.
1794  *
1795  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1796  * block
1797  */
1798 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1799 				  struct kernel_lb_addr *fileset)
1800 {
1801 	struct buffer_head *bh;
1802 	uint16_t ident;
1803 	int ret;
1804 
1805 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1806 	    udf_fixed_to_variable(block) >=
1807 	    sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1808 		return -EAGAIN;
1809 
1810 	bh = udf_read_tagged(sb, block, block, &ident);
1811 	if (!bh)
1812 		return -EAGAIN;
1813 	if (ident != TAG_IDENT_AVDP) {
1814 		brelse(bh);
1815 		return -EAGAIN;
1816 	}
1817 	ret = udf_load_sequence(sb, bh, fileset);
1818 	brelse(bh);
1819 	return ret;
1820 }
1821 
1822 /*
1823  * Search for an anchor volume descriptor pointer.
1824  *
1825  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1826  * of anchors.
1827  */
1828 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1829 			    struct kernel_lb_addr *fileset)
1830 {
1831 	sector_t last[6];
1832 	int i;
1833 	struct udf_sb_info *sbi = UDF_SB(sb);
1834 	int last_count = 0;
1835 	int ret;
1836 
1837 	/* First try user provided anchor */
1838 	if (sbi->s_anchor) {
1839 		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1840 		if (ret != -EAGAIN)
1841 			return ret;
1842 	}
1843 	/*
1844 	 * according to spec, anchor is in either:
1845 	 *     block 256
1846 	 *     lastblock-256
1847 	 *     lastblock
1848 	 *  however, if the disc isn't closed, it could be 512.
1849 	 */
1850 	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1851 	if (ret != -EAGAIN)
1852 		return ret;
1853 	/*
1854 	 * The trouble is which block is the last one. Drives often misreport
1855 	 * this so we try various possibilities.
1856 	 */
1857 	last[last_count++] = *lastblock;
1858 	if (*lastblock >= 1)
1859 		last[last_count++] = *lastblock - 1;
1860 	last[last_count++] = *lastblock + 1;
1861 	if (*lastblock >= 2)
1862 		last[last_count++] = *lastblock - 2;
1863 	if (*lastblock >= 150)
1864 		last[last_count++] = *lastblock - 150;
1865 	if (*lastblock >= 152)
1866 		last[last_count++] = *lastblock - 152;
1867 
1868 	for (i = 0; i < last_count; i++) {
1869 		if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1870 				sb->s_blocksize_bits)
1871 			continue;
1872 		ret = udf_check_anchor_block(sb, last[i], fileset);
1873 		if (ret != -EAGAIN) {
1874 			if (!ret)
1875 				*lastblock = last[i];
1876 			return ret;
1877 		}
1878 		if (last[i] < 256)
1879 			continue;
1880 		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1881 		if (ret != -EAGAIN) {
1882 			if (!ret)
1883 				*lastblock = last[i];
1884 			return ret;
1885 		}
1886 	}
1887 
1888 	/* Finally try block 512 in case media is open */
1889 	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1890 }
1891 
1892 /*
1893  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1894  * area specified by it. The function expects sbi->s_lastblock to be the last
1895  * block on the media.
1896  *
1897  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1898  * was not found.
1899  */
1900 static int udf_find_anchor(struct super_block *sb,
1901 			   struct kernel_lb_addr *fileset)
1902 {
1903 	struct udf_sb_info *sbi = UDF_SB(sb);
1904 	sector_t lastblock = sbi->s_last_block;
1905 	int ret;
1906 
1907 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1908 	if (ret != -EAGAIN)
1909 		goto out;
1910 
1911 	/* No anchor found? Try VARCONV conversion of block numbers */
1912 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1913 	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1914 	/* Firstly, we try to not convert number of the last block */
1915 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1916 	if (ret != -EAGAIN)
1917 		goto out;
1918 
1919 	lastblock = sbi->s_last_block;
1920 	/* Secondly, we try with converted number of the last block */
1921 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1922 	if (ret < 0) {
1923 		/* VARCONV didn't help. Clear it. */
1924 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1925 	}
1926 out:
1927 	if (ret == 0)
1928 		sbi->s_last_block = lastblock;
1929 	return ret;
1930 }
1931 
1932 /*
1933  * Check Volume Structure Descriptor, find Anchor block and load Volume
1934  * Descriptor Sequence.
1935  *
1936  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1937  * block was not found.
1938  */
1939 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1940 			int silent, struct kernel_lb_addr *fileset)
1941 {
1942 	struct udf_sb_info *sbi = UDF_SB(sb);
1943 	loff_t nsr_off;
1944 	int ret;
1945 
1946 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1947 		if (!silent)
1948 			udf_warn(sb, "Bad block size\n");
1949 		return -EINVAL;
1950 	}
1951 	sbi->s_last_block = uopt->lastblock;
1952 	if (!uopt->novrs) {
1953 		/* Check that it is NSR02 compliant */
1954 		nsr_off = udf_check_vsd(sb);
1955 		if (!nsr_off) {
1956 			if (!silent)
1957 				udf_warn(sb, "No VRS found\n");
1958 			return 0;
1959 		}
1960 		if (nsr_off == -1)
1961 			udf_debug("Failed to read sector at offset %d. "
1962 				  "Assuming open disc. Skipping validity "
1963 				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1964 		if (!sbi->s_last_block)
1965 			sbi->s_last_block = udf_get_last_block(sb);
1966 	} else {
1967 		udf_debug("Validity check skipped because of novrs option\n");
1968 	}
1969 
1970 	/* Look for anchor block and load Volume Descriptor Sequence */
1971 	sbi->s_anchor = uopt->anchor;
1972 	ret = udf_find_anchor(sb, fileset);
1973 	if (ret < 0) {
1974 		if (!silent && ret == -EAGAIN)
1975 			udf_warn(sb, "No anchor found\n");
1976 		return ret;
1977 	}
1978 	return 0;
1979 }
1980 
1981 static void udf_open_lvid(struct super_block *sb)
1982 {
1983 	struct udf_sb_info *sbi = UDF_SB(sb);
1984 	struct buffer_head *bh = sbi->s_lvid_bh;
1985 	struct logicalVolIntegrityDesc *lvid;
1986 	struct logicalVolIntegrityDescImpUse *lvidiu;
1987 
1988 	if (!bh)
1989 		return;
1990 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1991 	lvidiu = udf_sb_lvidiu(sb);
1992 	if (!lvidiu)
1993 		return;
1994 
1995 	mutex_lock(&sbi->s_alloc_mutex);
1996 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1997 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1998 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1999 				CURRENT_TIME);
2000 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2001 
2002 	lvid->descTag.descCRC = cpu_to_le16(
2003 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2004 			le16_to_cpu(lvid->descTag.descCRCLength)));
2005 
2006 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2007 	mark_buffer_dirty(bh);
2008 	sbi->s_lvid_dirty = 0;
2009 	mutex_unlock(&sbi->s_alloc_mutex);
2010 	/* Make opening of filesystem visible on the media immediately */
2011 	sync_dirty_buffer(bh);
2012 }
2013 
2014 static void udf_close_lvid(struct super_block *sb)
2015 {
2016 	struct udf_sb_info *sbi = UDF_SB(sb);
2017 	struct buffer_head *bh = sbi->s_lvid_bh;
2018 	struct logicalVolIntegrityDesc *lvid;
2019 	struct logicalVolIntegrityDescImpUse *lvidiu;
2020 
2021 	if (!bh)
2022 		return;
2023 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2024 	lvidiu = udf_sb_lvidiu(sb);
2025 	if (!lvidiu)
2026 		return;
2027 
2028 	mutex_lock(&sbi->s_alloc_mutex);
2029 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2030 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2031 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2032 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2033 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2034 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2035 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2036 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2037 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2038 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2039 
2040 	lvid->descTag.descCRC = cpu_to_le16(
2041 			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2042 				le16_to_cpu(lvid->descTag.descCRCLength)));
2043 
2044 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2045 	/*
2046 	 * We set buffer uptodate unconditionally here to avoid spurious
2047 	 * warnings from mark_buffer_dirty() when previous EIO has marked
2048 	 * the buffer as !uptodate
2049 	 */
2050 	set_buffer_uptodate(bh);
2051 	mark_buffer_dirty(bh);
2052 	sbi->s_lvid_dirty = 0;
2053 	mutex_unlock(&sbi->s_alloc_mutex);
2054 	/* Make closing of filesystem visible on the media immediately */
2055 	sync_dirty_buffer(bh);
2056 }
2057 
2058 u64 lvid_get_unique_id(struct super_block *sb)
2059 {
2060 	struct buffer_head *bh;
2061 	struct udf_sb_info *sbi = UDF_SB(sb);
2062 	struct logicalVolIntegrityDesc *lvid;
2063 	struct logicalVolHeaderDesc *lvhd;
2064 	u64 uniqueID;
2065 	u64 ret;
2066 
2067 	bh = sbi->s_lvid_bh;
2068 	if (!bh)
2069 		return 0;
2070 
2071 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2072 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2073 
2074 	mutex_lock(&sbi->s_alloc_mutex);
2075 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2076 	if (!(++uniqueID & 0xFFFFFFFF))
2077 		uniqueID += 16;
2078 	lvhd->uniqueID = cpu_to_le64(uniqueID);
2079 	mutex_unlock(&sbi->s_alloc_mutex);
2080 	mark_buffer_dirty(bh);
2081 
2082 	return ret;
2083 }
2084 
2085 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2086 {
2087 	int ret = -EINVAL;
2088 	struct inode *inode = NULL;
2089 	struct udf_options uopt;
2090 	struct kernel_lb_addr rootdir, fileset;
2091 	struct udf_sb_info *sbi;
2092 	bool lvid_open = false;
2093 
2094 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2095 	uopt.uid = INVALID_UID;
2096 	uopt.gid = INVALID_GID;
2097 	uopt.umask = 0;
2098 	uopt.fmode = UDF_INVALID_MODE;
2099 	uopt.dmode = UDF_INVALID_MODE;
2100 
2101 	sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2102 	if (!sbi)
2103 		return -ENOMEM;
2104 
2105 	sb->s_fs_info = sbi;
2106 
2107 	mutex_init(&sbi->s_alloc_mutex);
2108 
2109 	if (!udf_parse_options((char *)options, &uopt, false))
2110 		goto parse_options_failure;
2111 
2112 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2113 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2114 		udf_err(sb, "utf8 cannot be combined with iocharset\n");
2115 		goto parse_options_failure;
2116 	}
2117 #ifdef CONFIG_UDF_NLS
2118 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2119 		uopt.nls_map = load_nls_default();
2120 		if (!uopt.nls_map)
2121 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2122 		else
2123 			udf_debug("Using default NLS map\n");
2124 	}
2125 #endif
2126 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2127 		uopt.flags |= (1 << UDF_FLAG_UTF8);
2128 
2129 	fileset.logicalBlockNum = 0xFFFFFFFF;
2130 	fileset.partitionReferenceNum = 0xFFFF;
2131 
2132 	sbi->s_flags = uopt.flags;
2133 	sbi->s_uid = uopt.uid;
2134 	sbi->s_gid = uopt.gid;
2135 	sbi->s_umask = uopt.umask;
2136 	sbi->s_fmode = uopt.fmode;
2137 	sbi->s_dmode = uopt.dmode;
2138 	sbi->s_nls_map = uopt.nls_map;
2139 	rwlock_init(&sbi->s_cred_lock);
2140 
2141 	if (uopt.session == 0xFFFFFFFF)
2142 		sbi->s_session = udf_get_last_session(sb);
2143 	else
2144 		sbi->s_session = uopt.session;
2145 
2146 	udf_debug("Multi-session=%d\n", sbi->s_session);
2147 
2148 	/* Fill in the rest of the superblock */
2149 	sb->s_op = &udf_sb_ops;
2150 	sb->s_export_op = &udf_export_ops;
2151 
2152 	sb->s_magic = UDF_SUPER_MAGIC;
2153 	sb->s_time_gran = 1000;
2154 
2155 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2156 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2157 	} else {
2158 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2159 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2160 		if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2161 			if (!silent)
2162 				pr_notice("Rescanning with blocksize %d\n",
2163 					  UDF_DEFAULT_BLOCKSIZE);
2164 			brelse(sbi->s_lvid_bh);
2165 			sbi->s_lvid_bh = NULL;
2166 			uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2167 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2168 		}
2169 	}
2170 	if (ret < 0) {
2171 		if (ret == -EAGAIN) {
2172 			udf_warn(sb, "No partition found (1)\n");
2173 			ret = -EINVAL;
2174 		}
2175 		goto error_out;
2176 	}
2177 
2178 	udf_debug("Lastblock=%d\n", sbi->s_last_block);
2179 
2180 	if (sbi->s_lvid_bh) {
2181 		struct logicalVolIntegrityDescImpUse *lvidiu =
2182 							udf_sb_lvidiu(sb);
2183 		uint16_t minUDFReadRev;
2184 		uint16_t minUDFWriteRev;
2185 
2186 		if (!lvidiu) {
2187 			ret = -EINVAL;
2188 			goto error_out;
2189 		}
2190 		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2191 		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2192 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2193 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2194 				minUDFReadRev,
2195 				UDF_MAX_READ_VERSION);
2196 			ret = -EINVAL;
2197 			goto error_out;
2198 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2199 			   !(sb->s_flags & MS_RDONLY)) {
2200 			ret = -EACCES;
2201 			goto error_out;
2202 		}
2203 
2204 		sbi->s_udfrev = minUDFWriteRev;
2205 
2206 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2207 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2208 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2209 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2210 	}
2211 
2212 	if (!sbi->s_partitions) {
2213 		udf_warn(sb, "No partition found (2)\n");
2214 		ret = -EINVAL;
2215 		goto error_out;
2216 	}
2217 
2218 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2219 			UDF_PART_FLAG_READ_ONLY &&
2220 	    !(sb->s_flags & MS_RDONLY)) {
2221 		ret = -EACCES;
2222 		goto error_out;
2223 	}
2224 
2225 	if (udf_find_fileset(sb, &fileset, &rootdir)) {
2226 		udf_warn(sb, "No fileset found\n");
2227 		ret = -EINVAL;
2228 		goto error_out;
2229 	}
2230 
2231 	if (!silent) {
2232 		struct timestamp ts;
2233 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2234 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2235 			 sbi->s_volume_ident,
2236 			 le16_to_cpu(ts.year), ts.month, ts.day,
2237 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2238 	}
2239 	if (!(sb->s_flags & MS_RDONLY)) {
2240 		udf_open_lvid(sb);
2241 		lvid_open = true;
2242 	}
2243 
2244 	/* Assign the root inode */
2245 	/* assign inodes by physical block number */
2246 	/* perhaps it's not extensible enough, but for now ... */
2247 	inode = udf_iget(sb, &rootdir);
2248 	if (IS_ERR(inode)) {
2249 		udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2250 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2251 		ret = PTR_ERR(inode);
2252 		goto error_out;
2253 	}
2254 
2255 	/* Allocate a dentry for the root inode */
2256 	sb->s_root = d_make_root(inode);
2257 	if (!sb->s_root) {
2258 		udf_err(sb, "Couldn't allocate root dentry\n");
2259 		ret = -ENOMEM;
2260 		goto error_out;
2261 	}
2262 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2263 	sb->s_max_links = UDF_MAX_LINKS;
2264 	return 0;
2265 
2266 error_out:
2267 	iput(sbi->s_vat_inode);
2268 parse_options_failure:
2269 #ifdef CONFIG_UDF_NLS
2270 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2271 		unload_nls(sbi->s_nls_map);
2272 #endif
2273 	if (lvid_open)
2274 		udf_close_lvid(sb);
2275 	brelse(sbi->s_lvid_bh);
2276 	udf_sb_free_partitions(sb);
2277 	kfree(sbi);
2278 	sb->s_fs_info = NULL;
2279 
2280 	return ret;
2281 }
2282 
2283 void _udf_err(struct super_block *sb, const char *function,
2284 	      const char *fmt, ...)
2285 {
2286 	struct va_format vaf;
2287 	va_list args;
2288 
2289 	va_start(args, fmt);
2290 
2291 	vaf.fmt = fmt;
2292 	vaf.va = &args;
2293 
2294 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2295 
2296 	va_end(args);
2297 }
2298 
2299 void _udf_warn(struct super_block *sb, const char *function,
2300 	       const char *fmt, ...)
2301 {
2302 	struct va_format vaf;
2303 	va_list args;
2304 
2305 	va_start(args, fmt);
2306 
2307 	vaf.fmt = fmt;
2308 	vaf.va = &args;
2309 
2310 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2311 
2312 	va_end(args);
2313 }
2314 
2315 static void udf_put_super(struct super_block *sb)
2316 {
2317 	struct udf_sb_info *sbi;
2318 
2319 	sbi = UDF_SB(sb);
2320 
2321 	iput(sbi->s_vat_inode);
2322 #ifdef CONFIG_UDF_NLS
2323 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2324 		unload_nls(sbi->s_nls_map);
2325 #endif
2326 	if (!(sb->s_flags & MS_RDONLY))
2327 		udf_close_lvid(sb);
2328 	brelse(sbi->s_lvid_bh);
2329 	udf_sb_free_partitions(sb);
2330 	mutex_destroy(&sbi->s_alloc_mutex);
2331 	kfree(sb->s_fs_info);
2332 	sb->s_fs_info = NULL;
2333 }
2334 
2335 static int udf_sync_fs(struct super_block *sb, int wait)
2336 {
2337 	struct udf_sb_info *sbi = UDF_SB(sb);
2338 
2339 	mutex_lock(&sbi->s_alloc_mutex);
2340 	if (sbi->s_lvid_dirty) {
2341 		/*
2342 		 * Blockdevice will be synced later so we don't have to submit
2343 		 * the buffer for IO
2344 		 */
2345 		mark_buffer_dirty(sbi->s_lvid_bh);
2346 		sbi->s_lvid_dirty = 0;
2347 	}
2348 	mutex_unlock(&sbi->s_alloc_mutex);
2349 
2350 	return 0;
2351 }
2352 
2353 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2354 {
2355 	struct super_block *sb = dentry->d_sb;
2356 	struct udf_sb_info *sbi = UDF_SB(sb);
2357 	struct logicalVolIntegrityDescImpUse *lvidiu;
2358 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2359 
2360 	lvidiu = udf_sb_lvidiu(sb);
2361 	buf->f_type = UDF_SUPER_MAGIC;
2362 	buf->f_bsize = sb->s_blocksize;
2363 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2364 	buf->f_bfree = udf_count_free(sb);
2365 	buf->f_bavail = buf->f_bfree;
2366 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2367 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2368 			+ buf->f_bfree;
2369 	buf->f_ffree = buf->f_bfree;
2370 	buf->f_namelen = UDF_NAME_LEN;
2371 	buf->f_fsid.val[0] = (u32)id;
2372 	buf->f_fsid.val[1] = (u32)(id >> 32);
2373 
2374 	return 0;
2375 }
2376 
2377 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2378 					  struct udf_bitmap *bitmap)
2379 {
2380 	struct buffer_head *bh = NULL;
2381 	unsigned int accum = 0;
2382 	int index;
2383 	int block = 0, newblock;
2384 	struct kernel_lb_addr loc;
2385 	uint32_t bytes;
2386 	uint8_t *ptr;
2387 	uint16_t ident;
2388 	struct spaceBitmapDesc *bm;
2389 
2390 	loc.logicalBlockNum = bitmap->s_extPosition;
2391 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2392 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2393 
2394 	if (!bh) {
2395 		udf_err(sb, "udf_count_free failed\n");
2396 		goto out;
2397 	} else if (ident != TAG_IDENT_SBD) {
2398 		brelse(bh);
2399 		udf_err(sb, "udf_count_free failed\n");
2400 		goto out;
2401 	}
2402 
2403 	bm = (struct spaceBitmapDesc *)bh->b_data;
2404 	bytes = le32_to_cpu(bm->numOfBytes);
2405 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2406 	ptr = (uint8_t *)bh->b_data;
2407 
2408 	while (bytes > 0) {
2409 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2410 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2411 					cur_bytes * 8);
2412 		bytes -= cur_bytes;
2413 		if (bytes) {
2414 			brelse(bh);
2415 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2416 			bh = udf_tread(sb, newblock);
2417 			if (!bh) {
2418 				udf_debug("read failed\n");
2419 				goto out;
2420 			}
2421 			index = 0;
2422 			ptr = (uint8_t *)bh->b_data;
2423 		}
2424 	}
2425 	brelse(bh);
2426 out:
2427 	return accum;
2428 }
2429 
2430 static unsigned int udf_count_free_table(struct super_block *sb,
2431 					 struct inode *table)
2432 {
2433 	unsigned int accum = 0;
2434 	uint32_t elen;
2435 	struct kernel_lb_addr eloc;
2436 	int8_t etype;
2437 	struct extent_position epos;
2438 
2439 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2440 	epos.block = UDF_I(table)->i_location;
2441 	epos.offset = sizeof(struct unallocSpaceEntry);
2442 	epos.bh = NULL;
2443 
2444 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2445 		accum += (elen >> table->i_sb->s_blocksize_bits);
2446 
2447 	brelse(epos.bh);
2448 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2449 
2450 	return accum;
2451 }
2452 
2453 static unsigned int udf_count_free(struct super_block *sb)
2454 {
2455 	unsigned int accum = 0;
2456 	struct udf_sb_info *sbi;
2457 	struct udf_part_map *map;
2458 
2459 	sbi = UDF_SB(sb);
2460 	if (sbi->s_lvid_bh) {
2461 		struct logicalVolIntegrityDesc *lvid =
2462 			(struct logicalVolIntegrityDesc *)
2463 			sbi->s_lvid_bh->b_data;
2464 		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2465 			accum = le32_to_cpu(
2466 					lvid->freeSpaceTable[sbi->s_partition]);
2467 			if (accum == 0xFFFFFFFF)
2468 				accum = 0;
2469 		}
2470 	}
2471 
2472 	if (accum)
2473 		return accum;
2474 
2475 	map = &sbi->s_partmaps[sbi->s_partition];
2476 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2477 		accum += udf_count_free_bitmap(sb,
2478 					       map->s_uspace.s_bitmap);
2479 	}
2480 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2481 		accum += udf_count_free_bitmap(sb,
2482 					       map->s_fspace.s_bitmap);
2483 	}
2484 	if (accum)
2485 		return accum;
2486 
2487 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2488 		accum += udf_count_free_table(sb,
2489 					      map->s_uspace.s_table);
2490 	}
2491 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2492 		accum += udf_count_free_table(sb,
2493 					      map->s_fspace.s_table);
2494 	}
2495 
2496 	return accum;
2497 }
2498