xref: /openbmc/linux/fs/udf/super.c (revision ee89bd6b)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/buffer_head.h>
52 #include <linux/vfs.h>
53 #include <linux/vmalloc.h>
54 #include <linux/errno.h>
55 #include <linux/mount.h>
56 #include <linux/seq_file.h>
57 #include <linux/bitmap.h>
58 #include <linux/crc-itu-t.h>
59 #include <linux/log2.h>
60 #include <asm/byteorder.h>
61 
62 #include "udf_sb.h"
63 #include "udf_i.h"
64 
65 #include <linux/init.h>
66 #include <asm/uaccess.h>
67 
68 #define VDS_POS_PRIMARY_VOL_DESC	0
69 #define VDS_POS_UNALLOC_SPACE_DESC	1
70 #define VDS_POS_LOGICAL_VOL_DESC	2
71 #define VDS_POS_PARTITION_DESC		3
72 #define VDS_POS_IMP_USE_VOL_DESC	4
73 #define VDS_POS_VOL_DESC_PTR		5
74 #define VDS_POS_TERMINATING_DESC	6
75 #define VDS_POS_LENGTH			7
76 
77 #define UDF_DEFAULT_BLOCKSIZE 2048
78 
79 enum { UDF_MAX_LINKS = 0xffff };
80 
81 /* These are the "meat" - everything else is stuffing */
82 static int udf_fill_super(struct super_block *, void *, int);
83 static void udf_put_super(struct super_block *);
84 static int udf_sync_fs(struct super_block *, int);
85 static int udf_remount_fs(struct super_block *, int *, char *);
86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
88 			    struct kernel_lb_addr *);
89 static void udf_load_fileset(struct super_block *, struct buffer_head *,
90 			     struct kernel_lb_addr *);
91 static void udf_open_lvid(struct super_block *);
92 static void udf_close_lvid(struct super_block *);
93 static unsigned int udf_count_free(struct super_block *);
94 static int udf_statfs(struct dentry *, struct kstatfs *);
95 static int udf_show_options(struct seq_file *, struct dentry *);
96 
97 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi)
98 {
99 	struct logicalVolIntegrityDesc *lvid =
100 		(struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
101 	__u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions);
102 	__u32 offset = number_of_partitions * 2 *
103 				sizeof(uint32_t)/sizeof(uint8_t);
104 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
105 }
106 
107 /* UDF filesystem type */
108 static struct dentry *udf_mount(struct file_system_type *fs_type,
109 		      int flags, const char *dev_name, void *data)
110 {
111 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
112 }
113 
114 static struct file_system_type udf_fstype = {
115 	.owner		= THIS_MODULE,
116 	.name		= "udf",
117 	.mount		= udf_mount,
118 	.kill_sb	= kill_block_super,
119 	.fs_flags	= FS_REQUIRES_DEV,
120 };
121 MODULE_ALIAS_FS("udf");
122 
123 static struct kmem_cache *udf_inode_cachep;
124 
125 static struct inode *udf_alloc_inode(struct super_block *sb)
126 {
127 	struct udf_inode_info *ei;
128 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
129 	if (!ei)
130 		return NULL;
131 
132 	ei->i_unique = 0;
133 	ei->i_lenExtents = 0;
134 	ei->i_next_alloc_block = 0;
135 	ei->i_next_alloc_goal = 0;
136 	ei->i_strat4096 = 0;
137 	init_rwsem(&ei->i_data_sem);
138 	ei->cached_extent.lstart = -1;
139 	spin_lock_init(&ei->i_extent_cache_lock);
140 
141 	return &ei->vfs_inode;
142 }
143 
144 static void udf_i_callback(struct rcu_head *head)
145 {
146 	struct inode *inode = container_of(head, struct inode, i_rcu);
147 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
148 }
149 
150 static void udf_destroy_inode(struct inode *inode)
151 {
152 	call_rcu(&inode->i_rcu, udf_i_callback);
153 }
154 
155 static void init_once(void *foo)
156 {
157 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
158 
159 	ei->i_ext.i_data = NULL;
160 	inode_init_once(&ei->vfs_inode);
161 }
162 
163 static int init_inodecache(void)
164 {
165 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
166 					     sizeof(struct udf_inode_info),
167 					     0, (SLAB_RECLAIM_ACCOUNT |
168 						 SLAB_MEM_SPREAD),
169 					     init_once);
170 	if (!udf_inode_cachep)
171 		return -ENOMEM;
172 	return 0;
173 }
174 
175 static void destroy_inodecache(void)
176 {
177 	/*
178 	 * Make sure all delayed rcu free inodes are flushed before we
179 	 * destroy cache.
180 	 */
181 	rcu_barrier();
182 	kmem_cache_destroy(udf_inode_cachep);
183 }
184 
185 /* Superblock operations */
186 static const struct super_operations udf_sb_ops = {
187 	.alloc_inode	= udf_alloc_inode,
188 	.destroy_inode	= udf_destroy_inode,
189 	.write_inode	= udf_write_inode,
190 	.evict_inode	= udf_evict_inode,
191 	.put_super	= udf_put_super,
192 	.sync_fs	= udf_sync_fs,
193 	.statfs		= udf_statfs,
194 	.remount_fs	= udf_remount_fs,
195 	.show_options	= udf_show_options,
196 };
197 
198 struct udf_options {
199 	unsigned char novrs;
200 	unsigned int blocksize;
201 	unsigned int session;
202 	unsigned int lastblock;
203 	unsigned int anchor;
204 	unsigned int volume;
205 	unsigned short partition;
206 	unsigned int fileset;
207 	unsigned int rootdir;
208 	unsigned int flags;
209 	umode_t umask;
210 	kgid_t gid;
211 	kuid_t uid;
212 	umode_t fmode;
213 	umode_t dmode;
214 	struct nls_table *nls_map;
215 };
216 
217 static int __init init_udf_fs(void)
218 {
219 	int err;
220 
221 	err = init_inodecache();
222 	if (err)
223 		goto out1;
224 	err = register_filesystem(&udf_fstype);
225 	if (err)
226 		goto out;
227 
228 	return 0;
229 
230 out:
231 	destroy_inodecache();
232 
233 out1:
234 	return err;
235 }
236 
237 static void __exit exit_udf_fs(void)
238 {
239 	unregister_filesystem(&udf_fstype);
240 	destroy_inodecache();
241 }
242 
243 module_init(init_udf_fs)
244 module_exit(exit_udf_fs)
245 
246 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
247 {
248 	struct udf_sb_info *sbi = UDF_SB(sb);
249 
250 	sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
251 				  GFP_KERNEL);
252 	if (!sbi->s_partmaps) {
253 		udf_err(sb, "Unable to allocate space for %d partition maps\n",
254 			count);
255 		sbi->s_partitions = 0;
256 		return -ENOMEM;
257 	}
258 
259 	sbi->s_partitions = count;
260 	return 0;
261 }
262 
263 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
264 {
265 	int i;
266 	int nr_groups = bitmap->s_nr_groups;
267 	int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
268 						nr_groups);
269 
270 	for (i = 0; i < nr_groups; i++)
271 		if (bitmap->s_block_bitmap[i])
272 			brelse(bitmap->s_block_bitmap[i]);
273 
274 	if (size <= PAGE_SIZE)
275 		kfree(bitmap);
276 	else
277 		vfree(bitmap);
278 }
279 
280 static void udf_free_partition(struct udf_part_map *map)
281 {
282 	int i;
283 	struct udf_meta_data *mdata;
284 
285 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
286 		iput(map->s_uspace.s_table);
287 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
288 		iput(map->s_fspace.s_table);
289 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
290 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
291 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
292 		udf_sb_free_bitmap(map->s_fspace.s_bitmap);
293 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
294 		for (i = 0; i < 4; i++)
295 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
296 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
297 		mdata = &map->s_type_specific.s_metadata;
298 		iput(mdata->s_metadata_fe);
299 		mdata->s_metadata_fe = NULL;
300 
301 		iput(mdata->s_mirror_fe);
302 		mdata->s_mirror_fe = NULL;
303 
304 		iput(mdata->s_bitmap_fe);
305 		mdata->s_bitmap_fe = NULL;
306 	}
307 }
308 
309 static void udf_sb_free_partitions(struct super_block *sb)
310 {
311 	struct udf_sb_info *sbi = UDF_SB(sb);
312 	int i;
313 	if (sbi->s_partmaps == NULL)
314 		return;
315 	for (i = 0; i < sbi->s_partitions; i++)
316 		udf_free_partition(&sbi->s_partmaps[i]);
317 	kfree(sbi->s_partmaps);
318 	sbi->s_partmaps = NULL;
319 }
320 
321 static int udf_show_options(struct seq_file *seq, struct dentry *root)
322 {
323 	struct super_block *sb = root->d_sb;
324 	struct udf_sb_info *sbi = UDF_SB(sb);
325 
326 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
327 		seq_puts(seq, ",nostrict");
328 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
329 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
330 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
331 		seq_puts(seq, ",unhide");
332 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
333 		seq_puts(seq, ",undelete");
334 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
335 		seq_puts(seq, ",noadinicb");
336 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
337 		seq_puts(seq, ",shortad");
338 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
339 		seq_puts(seq, ",uid=forget");
340 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
341 		seq_puts(seq, ",uid=ignore");
342 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
343 		seq_puts(seq, ",gid=forget");
344 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
345 		seq_puts(seq, ",gid=ignore");
346 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
347 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
348 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
349 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
350 	if (sbi->s_umask != 0)
351 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
352 	if (sbi->s_fmode != UDF_INVALID_MODE)
353 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
354 	if (sbi->s_dmode != UDF_INVALID_MODE)
355 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
356 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
357 		seq_printf(seq, ",session=%u", sbi->s_session);
358 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
359 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
360 	if (sbi->s_anchor != 0)
361 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
362 	/*
363 	 * volume, partition, fileset and rootdir seem to be ignored
364 	 * currently
365 	 */
366 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
367 		seq_puts(seq, ",utf8");
368 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
369 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
370 
371 	return 0;
372 }
373 
374 /*
375  * udf_parse_options
376  *
377  * PURPOSE
378  *	Parse mount options.
379  *
380  * DESCRIPTION
381  *	The following mount options are supported:
382  *
383  *	gid=		Set the default group.
384  *	umask=		Set the default umask.
385  *	mode=		Set the default file permissions.
386  *	dmode=		Set the default directory permissions.
387  *	uid=		Set the default user.
388  *	bs=		Set the block size.
389  *	unhide		Show otherwise hidden files.
390  *	undelete	Show deleted files in lists.
391  *	adinicb		Embed data in the inode (default)
392  *	noadinicb	Don't embed data in the inode
393  *	shortad		Use short ad's
394  *	longad		Use long ad's (default)
395  *	nostrict	Unset strict conformance
396  *	iocharset=	Set the NLS character set
397  *
398  *	The remaining are for debugging and disaster recovery:
399  *
400  *	novrs		Skip volume sequence recognition
401  *
402  *	The following expect a offset from 0.
403  *
404  *	session=	Set the CDROM session (default= last session)
405  *	anchor=		Override standard anchor location. (default= 256)
406  *	volume=		Override the VolumeDesc location. (unused)
407  *	partition=	Override the PartitionDesc location. (unused)
408  *	lastblock=	Set the last block of the filesystem/
409  *
410  *	The following expect a offset from the partition root.
411  *
412  *	fileset=	Override the fileset block location. (unused)
413  *	rootdir=	Override the root directory location. (unused)
414  *		WARNING: overriding the rootdir to a non-directory may
415  *		yield highly unpredictable results.
416  *
417  * PRE-CONDITIONS
418  *	options		Pointer to mount options string.
419  *	uopts		Pointer to mount options variable.
420  *
421  * POST-CONDITIONS
422  *	<return>	1	Mount options parsed okay.
423  *	<return>	0	Error parsing mount options.
424  *
425  * HISTORY
426  *	July 1, 1997 - Andrew E. Mileski
427  *	Written, tested, and released.
428  */
429 
430 enum {
431 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
432 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
433 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
434 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
435 	Opt_rootdir, Opt_utf8, Opt_iocharset,
436 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
437 	Opt_fmode, Opt_dmode
438 };
439 
440 static const match_table_t tokens = {
441 	{Opt_novrs,	"novrs"},
442 	{Opt_nostrict,	"nostrict"},
443 	{Opt_bs,	"bs=%u"},
444 	{Opt_unhide,	"unhide"},
445 	{Opt_undelete,	"undelete"},
446 	{Opt_noadinicb,	"noadinicb"},
447 	{Opt_adinicb,	"adinicb"},
448 	{Opt_shortad,	"shortad"},
449 	{Opt_longad,	"longad"},
450 	{Opt_uforget,	"uid=forget"},
451 	{Opt_uignore,	"uid=ignore"},
452 	{Opt_gforget,	"gid=forget"},
453 	{Opt_gignore,	"gid=ignore"},
454 	{Opt_gid,	"gid=%u"},
455 	{Opt_uid,	"uid=%u"},
456 	{Opt_umask,	"umask=%o"},
457 	{Opt_session,	"session=%u"},
458 	{Opt_lastblock,	"lastblock=%u"},
459 	{Opt_anchor,	"anchor=%u"},
460 	{Opt_volume,	"volume=%u"},
461 	{Opt_partition,	"partition=%u"},
462 	{Opt_fileset,	"fileset=%u"},
463 	{Opt_rootdir,	"rootdir=%u"},
464 	{Opt_utf8,	"utf8"},
465 	{Opt_iocharset,	"iocharset=%s"},
466 	{Opt_fmode,     "mode=%o"},
467 	{Opt_dmode,     "dmode=%o"},
468 	{Opt_err,	NULL}
469 };
470 
471 static int udf_parse_options(char *options, struct udf_options *uopt,
472 			     bool remount)
473 {
474 	char *p;
475 	int option;
476 
477 	uopt->novrs = 0;
478 	uopt->partition = 0xFFFF;
479 	uopt->session = 0xFFFFFFFF;
480 	uopt->lastblock = 0;
481 	uopt->anchor = 0;
482 	uopt->volume = 0xFFFFFFFF;
483 	uopt->rootdir = 0xFFFFFFFF;
484 	uopt->fileset = 0xFFFFFFFF;
485 	uopt->nls_map = NULL;
486 
487 	if (!options)
488 		return 1;
489 
490 	while ((p = strsep(&options, ",")) != NULL) {
491 		substring_t args[MAX_OPT_ARGS];
492 		int token;
493 		if (!*p)
494 			continue;
495 
496 		token = match_token(p, tokens, args);
497 		switch (token) {
498 		case Opt_novrs:
499 			uopt->novrs = 1;
500 			break;
501 		case Opt_bs:
502 			if (match_int(&args[0], &option))
503 				return 0;
504 			uopt->blocksize = option;
505 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
506 			break;
507 		case Opt_unhide:
508 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
509 			break;
510 		case Opt_undelete:
511 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
512 			break;
513 		case Opt_noadinicb:
514 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
515 			break;
516 		case Opt_adinicb:
517 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
518 			break;
519 		case Opt_shortad:
520 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
521 			break;
522 		case Opt_longad:
523 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
524 			break;
525 		case Opt_gid:
526 			if (match_int(args, &option))
527 				return 0;
528 			uopt->gid = make_kgid(current_user_ns(), option);
529 			if (!gid_valid(uopt->gid))
530 				return 0;
531 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
532 			break;
533 		case Opt_uid:
534 			if (match_int(args, &option))
535 				return 0;
536 			uopt->uid = make_kuid(current_user_ns(), option);
537 			if (!uid_valid(uopt->uid))
538 				return 0;
539 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
540 			break;
541 		case Opt_umask:
542 			if (match_octal(args, &option))
543 				return 0;
544 			uopt->umask = option;
545 			break;
546 		case Opt_nostrict:
547 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
548 			break;
549 		case Opt_session:
550 			if (match_int(args, &option))
551 				return 0;
552 			uopt->session = option;
553 			if (!remount)
554 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
555 			break;
556 		case Opt_lastblock:
557 			if (match_int(args, &option))
558 				return 0;
559 			uopt->lastblock = option;
560 			if (!remount)
561 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
562 			break;
563 		case Opt_anchor:
564 			if (match_int(args, &option))
565 				return 0;
566 			uopt->anchor = option;
567 			break;
568 		case Opt_volume:
569 			if (match_int(args, &option))
570 				return 0;
571 			uopt->volume = option;
572 			break;
573 		case Opt_partition:
574 			if (match_int(args, &option))
575 				return 0;
576 			uopt->partition = option;
577 			break;
578 		case Opt_fileset:
579 			if (match_int(args, &option))
580 				return 0;
581 			uopt->fileset = option;
582 			break;
583 		case Opt_rootdir:
584 			if (match_int(args, &option))
585 				return 0;
586 			uopt->rootdir = option;
587 			break;
588 		case Opt_utf8:
589 			uopt->flags |= (1 << UDF_FLAG_UTF8);
590 			break;
591 #ifdef CONFIG_UDF_NLS
592 		case Opt_iocharset:
593 			uopt->nls_map = load_nls(args[0].from);
594 			uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
595 			break;
596 #endif
597 		case Opt_uignore:
598 			uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
599 			break;
600 		case Opt_uforget:
601 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
602 			break;
603 		case Opt_gignore:
604 			uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
605 			break;
606 		case Opt_gforget:
607 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
608 			break;
609 		case Opt_fmode:
610 			if (match_octal(args, &option))
611 				return 0;
612 			uopt->fmode = option & 0777;
613 			break;
614 		case Opt_dmode:
615 			if (match_octal(args, &option))
616 				return 0;
617 			uopt->dmode = option & 0777;
618 			break;
619 		default:
620 			pr_err("bad mount option \"%s\" or missing value\n", p);
621 			return 0;
622 		}
623 	}
624 	return 1;
625 }
626 
627 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
628 {
629 	struct udf_options uopt;
630 	struct udf_sb_info *sbi = UDF_SB(sb);
631 	int error = 0;
632 
633 	uopt.flags = sbi->s_flags;
634 	uopt.uid   = sbi->s_uid;
635 	uopt.gid   = sbi->s_gid;
636 	uopt.umask = sbi->s_umask;
637 	uopt.fmode = sbi->s_fmode;
638 	uopt.dmode = sbi->s_dmode;
639 
640 	if (!udf_parse_options(options, &uopt, true))
641 		return -EINVAL;
642 
643 	write_lock(&sbi->s_cred_lock);
644 	sbi->s_flags = uopt.flags;
645 	sbi->s_uid   = uopt.uid;
646 	sbi->s_gid   = uopt.gid;
647 	sbi->s_umask = uopt.umask;
648 	sbi->s_fmode = uopt.fmode;
649 	sbi->s_dmode = uopt.dmode;
650 	write_unlock(&sbi->s_cred_lock);
651 
652 	if (sbi->s_lvid_bh) {
653 		int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev);
654 		if (write_rev > UDF_MAX_WRITE_VERSION)
655 			*flags |= MS_RDONLY;
656 	}
657 
658 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
659 		goto out_unlock;
660 
661 	if (*flags & MS_RDONLY)
662 		udf_close_lvid(sb);
663 	else
664 		udf_open_lvid(sb);
665 
666 out_unlock:
667 	return error;
668 }
669 
670 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
671 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
672 static loff_t udf_check_vsd(struct super_block *sb)
673 {
674 	struct volStructDesc *vsd = NULL;
675 	loff_t sector = 32768;
676 	int sectorsize;
677 	struct buffer_head *bh = NULL;
678 	int nsr02 = 0;
679 	int nsr03 = 0;
680 	struct udf_sb_info *sbi;
681 
682 	sbi = UDF_SB(sb);
683 	if (sb->s_blocksize < sizeof(struct volStructDesc))
684 		sectorsize = sizeof(struct volStructDesc);
685 	else
686 		sectorsize = sb->s_blocksize;
687 
688 	sector += (sbi->s_session << sb->s_blocksize_bits);
689 
690 	udf_debug("Starting at sector %u (%ld byte sectors)\n",
691 		  (unsigned int)(sector >> sb->s_blocksize_bits),
692 		  sb->s_blocksize);
693 	/* Process the sequence (if applicable) */
694 	for (; !nsr02 && !nsr03; sector += sectorsize) {
695 		/* Read a block */
696 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
697 		if (!bh)
698 			break;
699 
700 		/* Look for ISO  descriptors */
701 		vsd = (struct volStructDesc *)(bh->b_data +
702 					      (sector & (sb->s_blocksize - 1)));
703 
704 		if (vsd->stdIdent[0] == 0) {
705 			brelse(bh);
706 			break;
707 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
708 				    VSD_STD_ID_LEN)) {
709 			switch (vsd->structType) {
710 			case 0:
711 				udf_debug("ISO9660 Boot Record found\n");
712 				break;
713 			case 1:
714 				udf_debug("ISO9660 Primary Volume Descriptor found\n");
715 				break;
716 			case 2:
717 				udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
718 				break;
719 			case 3:
720 				udf_debug("ISO9660 Volume Partition Descriptor found\n");
721 				break;
722 			case 255:
723 				udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
724 				break;
725 			default:
726 				udf_debug("ISO9660 VRS (%u) found\n",
727 					  vsd->structType);
728 				break;
729 			}
730 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
731 				    VSD_STD_ID_LEN))
732 			; /* nothing */
733 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
734 				    VSD_STD_ID_LEN)) {
735 			brelse(bh);
736 			break;
737 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
738 				    VSD_STD_ID_LEN))
739 			nsr02 = sector;
740 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
741 				    VSD_STD_ID_LEN))
742 			nsr03 = sector;
743 		brelse(bh);
744 	}
745 
746 	if (nsr03)
747 		return nsr03;
748 	else if (nsr02)
749 		return nsr02;
750 	else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768)
751 		return -1;
752 	else
753 		return 0;
754 }
755 
756 static int udf_find_fileset(struct super_block *sb,
757 			    struct kernel_lb_addr *fileset,
758 			    struct kernel_lb_addr *root)
759 {
760 	struct buffer_head *bh = NULL;
761 	long lastblock;
762 	uint16_t ident;
763 	struct udf_sb_info *sbi;
764 
765 	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
766 	    fileset->partitionReferenceNum != 0xFFFF) {
767 		bh = udf_read_ptagged(sb, fileset, 0, &ident);
768 
769 		if (!bh) {
770 			return 1;
771 		} else if (ident != TAG_IDENT_FSD) {
772 			brelse(bh);
773 			return 1;
774 		}
775 
776 	}
777 
778 	sbi = UDF_SB(sb);
779 	if (!bh) {
780 		/* Search backwards through the partitions */
781 		struct kernel_lb_addr newfileset;
782 
783 /* --> cvg: FIXME - is it reasonable? */
784 		return 1;
785 
786 		for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
787 		     (newfileset.partitionReferenceNum != 0xFFFF &&
788 		      fileset->logicalBlockNum == 0xFFFFFFFF &&
789 		      fileset->partitionReferenceNum == 0xFFFF);
790 		     newfileset.partitionReferenceNum--) {
791 			lastblock = sbi->s_partmaps
792 					[newfileset.partitionReferenceNum]
793 						.s_partition_len;
794 			newfileset.logicalBlockNum = 0;
795 
796 			do {
797 				bh = udf_read_ptagged(sb, &newfileset, 0,
798 						      &ident);
799 				if (!bh) {
800 					newfileset.logicalBlockNum++;
801 					continue;
802 				}
803 
804 				switch (ident) {
805 				case TAG_IDENT_SBD:
806 				{
807 					struct spaceBitmapDesc *sp;
808 					sp = (struct spaceBitmapDesc *)
809 								bh->b_data;
810 					newfileset.logicalBlockNum += 1 +
811 						((le32_to_cpu(sp->numOfBytes) +
812 						  sizeof(struct spaceBitmapDesc)
813 						  - 1) >> sb->s_blocksize_bits);
814 					brelse(bh);
815 					break;
816 				}
817 				case TAG_IDENT_FSD:
818 					*fileset = newfileset;
819 					break;
820 				default:
821 					newfileset.logicalBlockNum++;
822 					brelse(bh);
823 					bh = NULL;
824 					break;
825 				}
826 			} while (newfileset.logicalBlockNum < lastblock &&
827 				 fileset->logicalBlockNum == 0xFFFFFFFF &&
828 				 fileset->partitionReferenceNum == 0xFFFF);
829 		}
830 	}
831 
832 	if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
833 	     fileset->partitionReferenceNum != 0xFFFF) && bh) {
834 		udf_debug("Fileset at block=%d, partition=%d\n",
835 			  fileset->logicalBlockNum,
836 			  fileset->partitionReferenceNum);
837 
838 		sbi->s_partition = fileset->partitionReferenceNum;
839 		udf_load_fileset(sb, bh, root);
840 		brelse(bh);
841 		return 0;
842 	}
843 	return 1;
844 }
845 
846 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
847 {
848 	struct primaryVolDesc *pvoldesc;
849 	struct ustr *instr, *outstr;
850 	struct buffer_head *bh;
851 	uint16_t ident;
852 	int ret = 1;
853 
854 	instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
855 	if (!instr)
856 		return 1;
857 
858 	outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
859 	if (!outstr)
860 		goto out1;
861 
862 	bh = udf_read_tagged(sb, block, block, &ident);
863 	if (!bh)
864 		goto out2;
865 
866 	BUG_ON(ident != TAG_IDENT_PVD);
867 
868 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
869 
870 	if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
871 			      pvoldesc->recordingDateAndTime)) {
872 #ifdef UDFFS_DEBUG
873 		struct timestamp *ts = &pvoldesc->recordingDateAndTime;
874 		udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
875 			  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
876 			  ts->minute, le16_to_cpu(ts->typeAndTimezone));
877 #endif
878 	}
879 
880 	if (!udf_build_ustr(instr, pvoldesc->volIdent, 32))
881 		if (udf_CS0toUTF8(outstr, instr)) {
882 			strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
883 				outstr->u_len > 31 ? 31 : outstr->u_len);
884 			udf_debug("volIdent[] = '%s'\n",
885 				  UDF_SB(sb)->s_volume_ident);
886 		}
887 
888 	if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128))
889 		if (udf_CS0toUTF8(outstr, instr))
890 			udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
891 
892 	brelse(bh);
893 	ret = 0;
894 out2:
895 	kfree(outstr);
896 out1:
897 	kfree(instr);
898 	return ret;
899 }
900 
901 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
902 					u32 meta_file_loc, u32 partition_num)
903 {
904 	struct kernel_lb_addr addr;
905 	struct inode *metadata_fe;
906 
907 	addr.logicalBlockNum = meta_file_loc;
908 	addr.partitionReferenceNum = partition_num;
909 
910 	metadata_fe = udf_iget(sb, &addr);
911 
912 	if (metadata_fe == NULL)
913 		udf_warn(sb, "metadata inode efe not found\n");
914 	else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
915 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
916 		iput(metadata_fe);
917 		metadata_fe = NULL;
918 	}
919 
920 	return metadata_fe;
921 }
922 
923 static int udf_load_metadata_files(struct super_block *sb, int partition)
924 {
925 	struct udf_sb_info *sbi = UDF_SB(sb);
926 	struct udf_part_map *map;
927 	struct udf_meta_data *mdata;
928 	struct kernel_lb_addr addr;
929 
930 	map = &sbi->s_partmaps[partition];
931 	mdata = &map->s_type_specific.s_metadata;
932 
933 	/* metadata address */
934 	udf_debug("Metadata file location: block = %d part = %d\n",
935 		  mdata->s_meta_file_loc, map->s_partition_num);
936 
937 	mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb,
938 		mdata->s_meta_file_loc, map->s_partition_num);
939 
940 	if (mdata->s_metadata_fe == NULL) {
941 		/* mirror file entry */
942 		udf_debug("Mirror metadata file location: block = %d part = %d\n",
943 			  mdata->s_mirror_file_loc, map->s_partition_num);
944 
945 		mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb,
946 			mdata->s_mirror_file_loc, map->s_partition_num);
947 
948 		if (mdata->s_mirror_fe == NULL) {
949 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
950 			goto error_exit;
951 		}
952 	}
953 
954 	/*
955 	 * bitmap file entry
956 	 * Note:
957 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
958 	*/
959 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
960 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
961 		addr.partitionReferenceNum = map->s_partition_num;
962 
963 		udf_debug("Bitmap file location: block = %d part = %d\n",
964 			  addr.logicalBlockNum, addr.partitionReferenceNum);
965 
966 		mdata->s_bitmap_fe = udf_iget(sb, &addr);
967 
968 		if (mdata->s_bitmap_fe == NULL) {
969 			if (sb->s_flags & MS_RDONLY)
970 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
971 			else {
972 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
973 				goto error_exit;
974 			}
975 		}
976 	}
977 
978 	udf_debug("udf_load_metadata_files Ok\n");
979 
980 	return 0;
981 
982 error_exit:
983 	return 1;
984 }
985 
986 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
987 			     struct kernel_lb_addr *root)
988 {
989 	struct fileSetDesc *fset;
990 
991 	fset = (struct fileSetDesc *)bh->b_data;
992 
993 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
994 
995 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
996 
997 	udf_debug("Rootdir at block=%d, partition=%d\n",
998 		  root->logicalBlockNum, root->partitionReferenceNum);
999 }
1000 
1001 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1002 {
1003 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1004 	return DIV_ROUND_UP(map->s_partition_len +
1005 			    (sizeof(struct spaceBitmapDesc) << 3),
1006 			    sb->s_blocksize * 8);
1007 }
1008 
1009 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1010 {
1011 	struct udf_bitmap *bitmap;
1012 	int nr_groups;
1013 	int size;
1014 
1015 	nr_groups = udf_compute_nr_groups(sb, index);
1016 	size = sizeof(struct udf_bitmap) +
1017 		(sizeof(struct buffer_head *) * nr_groups);
1018 
1019 	if (size <= PAGE_SIZE)
1020 		bitmap = kzalloc(size, GFP_KERNEL);
1021 	else
1022 		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1023 
1024 	if (bitmap == NULL)
1025 		return NULL;
1026 
1027 	bitmap->s_nr_groups = nr_groups;
1028 	return bitmap;
1029 }
1030 
1031 static int udf_fill_partdesc_info(struct super_block *sb,
1032 		struct partitionDesc *p, int p_index)
1033 {
1034 	struct udf_part_map *map;
1035 	struct udf_sb_info *sbi = UDF_SB(sb);
1036 	struct partitionHeaderDesc *phd;
1037 
1038 	map = &sbi->s_partmaps[p_index];
1039 
1040 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1041 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1042 
1043 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1044 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1045 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1046 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1047 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1048 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1049 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1050 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1051 
1052 	udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1053 		  p_index, map->s_partition_type,
1054 		  map->s_partition_root, map->s_partition_len);
1055 
1056 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1057 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1058 		return 0;
1059 
1060 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1061 	if (phd->unallocSpaceTable.extLength) {
1062 		struct kernel_lb_addr loc = {
1063 			.logicalBlockNum = le32_to_cpu(
1064 				phd->unallocSpaceTable.extPosition),
1065 			.partitionReferenceNum = p_index,
1066 		};
1067 
1068 		map->s_uspace.s_table = udf_iget(sb, &loc);
1069 		if (!map->s_uspace.s_table) {
1070 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1071 				  p_index);
1072 			return 1;
1073 		}
1074 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1075 		udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1076 			  p_index, map->s_uspace.s_table->i_ino);
1077 	}
1078 
1079 	if (phd->unallocSpaceBitmap.extLength) {
1080 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1081 		if (!bitmap)
1082 			return 1;
1083 		map->s_uspace.s_bitmap = bitmap;
1084 		bitmap->s_extPosition = le32_to_cpu(
1085 				phd->unallocSpaceBitmap.extPosition);
1086 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1087 		udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1088 			  p_index, bitmap->s_extPosition);
1089 	}
1090 
1091 	if (phd->partitionIntegrityTable.extLength)
1092 		udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1093 
1094 	if (phd->freedSpaceTable.extLength) {
1095 		struct kernel_lb_addr loc = {
1096 			.logicalBlockNum = le32_to_cpu(
1097 				phd->freedSpaceTable.extPosition),
1098 			.partitionReferenceNum = p_index,
1099 		};
1100 
1101 		map->s_fspace.s_table = udf_iget(sb, &loc);
1102 		if (!map->s_fspace.s_table) {
1103 			udf_debug("cannot load freedSpaceTable (part %d)\n",
1104 				  p_index);
1105 			return 1;
1106 		}
1107 
1108 		map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1109 		udf_debug("freedSpaceTable (part %d) @ %ld\n",
1110 			  p_index, map->s_fspace.s_table->i_ino);
1111 	}
1112 
1113 	if (phd->freedSpaceBitmap.extLength) {
1114 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1115 		if (!bitmap)
1116 			return 1;
1117 		map->s_fspace.s_bitmap = bitmap;
1118 		bitmap->s_extPosition = le32_to_cpu(
1119 				phd->freedSpaceBitmap.extPosition);
1120 		map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1121 		udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1122 			  p_index, bitmap->s_extPosition);
1123 	}
1124 	return 0;
1125 }
1126 
1127 static void udf_find_vat_block(struct super_block *sb, int p_index,
1128 			       int type1_index, sector_t start_block)
1129 {
1130 	struct udf_sb_info *sbi = UDF_SB(sb);
1131 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1132 	sector_t vat_block;
1133 	struct kernel_lb_addr ino;
1134 
1135 	/*
1136 	 * VAT file entry is in the last recorded block. Some broken disks have
1137 	 * it a few blocks before so try a bit harder...
1138 	 */
1139 	ino.partitionReferenceNum = type1_index;
1140 	for (vat_block = start_block;
1141 	     vat_block >= map->s_partition_root &&
1142 	     vat_block >= start_block - 3 &&
1143 	     !sbi->s_vat_inode; vat_block--) {
1144 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1145 		sbi->s_vat_inode = udf_iget(sb, &ino);
1146 	}
1147 }
1148 
1149 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1150 {
1151 	struct udf_sb_info *sbi = UDF_SB(sb);
1152 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1153 	struct buffer_head *bh = NULL;
1154 	struct udf_inode_info *vati;
1155 	uint32_t pos;
1156 	struct virtualAllocationTable20 *vat20;
1157 	sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1158 
1159 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1160 	if (!sbi->s_vat_inode &&
1161 	    sbi->s_last_block != blocks - 1) {
1162 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1163 			  (unsigned long)sbi->s_last_block,
1164 			  (unsigned long)blocks - 1);
1165 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1166 	}
1167 	if (!sbi->s_vat_inode)
1168 		return 1;
1169 
1170 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1171 		map->s_type_specific.s_virtual.s_start_offset = 0;
1172 		map->s_type_specific.s_virtual.s_num_entries =
1173 			(sbi->s_vat_inode->i_size - 36) >> 2;
1174 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1175 		vati = UDF_I(sbi->s_vat_inode);
1176 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1177 			pos = udf_block_map(sbi->s_vat_inode, 0);
1178 			bh = sb_bread(sb, pos);
1179 			if (!bh)
1180 				return 1;
1181 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1182 		} else {
1183 			vat20 = (struct virtualAllocationTable20 *)
1184 							vati->i_ext.i_data;
1185 		}
1186 
1187 		map->s_type_specific.s_virtual.s_start_offset =
1188 			le16_to_cpu(vat20->lengthHeader);
1189 		map->s_type_specific.s_virtual.s_num_entries =
1190 			(sbi->s_vat_inode->i_size -
1191 				map->s_type_specific.s_virtual.
1192 					s_start_offset) >> 2;
1193 		brelse(bh);
1194 	}
1195 	return 0;
1196 }
1197 
1198 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1199 {
1200 	struct buffer_head *bh;
1201 	struct partitionDesc *p;
1202 	struct udf_part_map *map;
1203 	struct udf_sb_info *sbi = UDF_SB(sb);
1204 	int i, type1_idx;
1205 	uint16_t partitionNumber;
1206 	uint16_t ident;
1207 	int ret = 0;
1208 
1209 	bh = udf_read_tagged(sb, block, block, &ident);
1210 	if (!bh)
1211 		return 1;
1212 	if (ident != TAG_IDENT_PD)
1213 		goto out_bh;
1214 
1215 	p = (struct partitionDesc *)bh->b_data;
1216 	partitionNumber = le16_to_cpu(p->partitionNumber);
1217 
1218 	/* First scan for TYPE1, SPARABLE and METADATA partitions */
1219 	for (i = 0; i < sbi->s_partitions; i++) {
1220 		map = &sbi->s_partmaps[i];
1221 		udf_debug("Searching map: (%d == %d)\n",
1222 			  map->s_partition_num, partitionNumber);
1223 		if (map->s_partition_num == partitionNumber &&
1224 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1225 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1226 			break;
1227 	}
1228 
1229 	if (i >= sbi->s_partitions) {
1230 		udf_debug("Partition (%d) not found in partition map\n",
1231 			  partitionNumber);
1232 		goto out_bh;
1233 	}
1234 
1235 	ret = udf_fill_partdesc_info(sb, p, i);
1236 
1237 	/*
1238 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1239 	 * PHYSICAL partitions are already set up
1240 	 */
1241 	type1_idx = i;
1242 	for (i = 0; i < sbi->s_partitions; i++) {
1243 		map = &sbi->s_partmaps[i];
1244 
1245 		if (map->s_partition_num == partitionNumber &&
1246 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1247 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1248 		     map->s_partition_type == UDF_METADATA_MAP25))
1249 			break;
1250 	}
1251 
1252 	if (i >= sbi->s_partitions)
1253 		goto out_bh;
1254 
1255 	ret = udf_fill_partdesc_info(sb, p, i);
1256 	if (ret)
1257 		goto out_bh;
1258 
1259 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1260 		ret = udf_load_metadata_files(sb, i);
1261 		if (ret) {
1262 			udf_err(sb, "error loading MetaData partition map %d\n",
1263 				i);
1264 			goto out_bh;
1265 		}
1266 	} else {
1267 		ret = udf_load_vat(sb, i, type1_idx);
1268 		if (ret)
1269 			goto out_bh;
1270 		/*
1271 		 * Mark filesystem read-only if we have a partition with
1272 		 * virtual map since we don't handle writing to it (we
1273 		 * overwrite blocks instead of relocating them).
1274 		 */
1275 		sb->s_flags |= MS_RDONLY;
1276 		pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n");
1277 	}
1278 out_bh:
1279 	/* In case loading failed, we handle cleanup in udf_fill_super */
1280 	brelse(bh);
1281 	return ret;
1282 }
1283 
1284 static int udf_load_sparable_map(struct super_block *sb,
1285 				 struct udf_part_map *map,
1286 				 struct sparablePartitionMap *spm)
1287 {
1288 	uint32_t loc;
1289 	uint16_t ident;
1290 	struct sparingTable *st;
1291 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1292 	int i;
1293 	struct buffer_head *bh;
1294 
1295 	map->s_partition_type = UDF_SPARABLE_MAP15;
1296 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1297 	if (!is_power_of_2(sdata->s_packet_len)) {
1298 		udf_err(sb, "error loading logical volume descriptor: "
1299 			"Invalid packet length %u\n",
1300 			(unsigned)sdata->s_packet_len);
1301 		return -EIO;
1302 	}
1303 	if (spm->numSparingTables > 4) {
1304 		udf_err(sb, "error loading logical volume descriptor: "
1305 			"Too many sparing tables (%d)\n",
1306 			(int)spm->numSparingTables);
1307 		return -EIO;
1308 	}
1309 
1310 	for (i = 0; i < spm->numSparingTables; i++) {
1311 		loc = le32_to_cpu(spm->locSparingTable[i]);
1312 		bh = udf_read_tagged(sb, loc, loc, &ident);
1313 		if (!bh)
1314 			continue;
1315 
1316 		st = (struct sparingTable *)bh->b_data;
1317 		if (ident != 0 ||
1318 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1319 			    strlen(UDF_ID_SPARING)) ||
1320 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1321 							sb->s_blocksize) {
1322 			brelse(bh);
1323 			continue;
1324 		}
1325 
1326 		sdata->s_spar_map[i] = bh;
1327 	}
1328 	map->s_partition_func = udf_get_pblock_spar15;
1329 	return 0;
1330 }
1331 
1332 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1333 			       struct kernel_lb_addr *fileset)
1334 {
1335 	struct logicalVolDesc *lvd;
1336 	int i, offset;
1337 	uint8_t type;
1338 	struct udf_sb_info *sbi = UDF_SB(sb);
1339 	struct genericPartitionMap *gpm;
1340 	uint16_t ident;
1341 	struct buffer_head *bh;
1342 	unsigned int table_len;
1343 	int ret = 0;
1344 
1345 	bh = udf_read_tagged(sb, block, block, &ident);
1346 	if (!bh)
1347 		return 1;
1348 	BUG_ON(ident != TAG_IDENT_LVD);
1349 	lvd = (struct logicalVolDesc *)bh->b_data;
1350 	table_len = le32_to_cpu(lvd->mapTableLength);
1351 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1352 		udf_err(sb, "error loading logical volume descriptor: "
1353 			"Partition table too long (%u > %lu)\n", table_len,
1354 			sb->s_blocksize - sizeof(*lvd));
1355 		ret = 1;
1356 		goto out_bh;
1357 	}
1358 
1359 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1360 	if (ret)
1361 		goto out_bh;
1362 
1363 	for (i = 0, offset = 0;
1364 	     i < sbi->s_partitions && offset < table_len;
1365 	     i++, offset += gpm->partitionMapLength) {
1366 		struct udf_part_map *map = &sbi->s_partmaps[i];
1367 		gpm = (struct genericPartitionMap *)
1368 				&(lvd->partitionMaps[offset]);
1369 		type = gpm->partitionMapType;
1370 		if (type == 1) {
1371 			struct genericPartitionMap1 *gpm1 =
1372 				(struct genericPartitionMap1 *)gpm;
1373 			map->s_partition_type = UDF_TYPE1_MAP15;
1374 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1375 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1376 			map->s_partition_func = NULL;
1377 		} else if (type == 2) {
1378 			struct udfPartitionMap2 *upm2 =
1379 						(struct udfPartitionMap2 *)gpm;
1380 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1381 						strlen(UDF_ID_VIRTUAL))) {
1382 				u16 suf =
1383 					le16_to_cpu(((__le16 *)upm2->partIdent.
1384 							identSuffix)[0]);
1385 				if (suf < 0x0200) {
1386 					map->s_partition_type =
1387 							UDF_VIRTUAL_MAP15;
1388 					map->s_partition_func =
1389 							udf_get_pblock_virt15;
1390 				} else {
1391 					map->s_partition_type =
1392 							UDF_VIRTUAL_MAP20;
1393 					map->s_partition_func =
1394 							udf_get_pblock_virt20;
1395 				}
1396 			} else if (!strncmp(upm2->partIdent.ident,
1397 						UDF_ID_SPARABLE,
1398 						strlen(UDF_ID_SPARABLE))) {
1399 				if (udf_load_sparable_map(sb, map,
1400 				    (struct sparablePartitionMap *)gpm) < 0) {
1401 					ret = 1;
1402 					goto out_bh;
1403 				}
1404 			} else if (!strncmp(upm2->partIdent.ident,
1405 						UDF_ID_METADATA,
1406 						strlen(UDF_ID_METADATA))) {
1407 				struct udf_meta_data *mdata =
1408 					&map->s_type_specific.s_metadata;
1409 				struct metadataPartitionMap *mdm =
1410 						(struct metadataPartitionMap *)
1411 						&(lvd->partitionMaps[offset]);
1412 				udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1413 					  i, type, UDF_ID_METADATA);
1414 
1415 				map->s_partition_type = UDF_METADATA_MAP25;
1416 				map->s_partition_func = udf_get_pblock_meta25;
1417 
1418 				mdata->s_meta_file_loc   =
1419 					le32_to_cpu(mdm->metadataFileLoc);
1420 				mdata->s_mirror_file_loc =
1421 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1422 				mdata->s_bitmap_file_loc =
1423 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1424 				mdata->s_alloc_unit_size =
1425 					le32_to_cpu(mdm->allocUnitSize);
1426 				mdata->s_align_unit_size =
1427 					le16_to_cpu(mdm->alignUnitSize);
1428 				if (mdm->flags & 0x01)
1429 					mdata->s_flags |= MF_DUPLICATE_MD;
1430 
1431 				udf_debug("Metadata Ident suffix=0x%x\n",
1432 					  le16_to_cpu(*(__le16 *)
1433 						      mdm->partIdent.identSuffix));
1434 				udf_debug("Metadata part num=%d\n",
1435 					  le16_to_cpu(mdm->partitionNum));
1436 				udf_debug("Metadata part alloc unit size=%d\n",
1437 					  le32_to_cpu(mdm->allocUnitSize));
1438 				udf_debug("Metadata file loc=%d\n",
1439 					  le32_to_cpu(mdm->metadataFileLoc));
1440 				udf_debug("Mirror file loc=%d\n",
1441 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1442 				udf_debug("Bitmap file loc=%d\n",
1443 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1444 				udf_debug("Flags: %d %d\n",
1445 					  mdata->s_flags, mdm->flags);
1446 			} else {
1447 				udf_debug("Unknown ident: %s\n",
1448 					  upm2->partIdent.ident);
1449 				continue;
1450 			}
1451 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1452 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1453 		}
1454 		udf_debug("Partition (%d:%d) type %d on volume %d\n",
1455 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1456 	}
1457 
1458 	if (fileset) {
1459 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1460 
1461 		*fileset = lelb_to_cpu(la->extLocation);
1462 		udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1463 			  fileset->logicalBlockNum,
1464 			  fileset->partitionReferenceNum);
1465 	}
1466 	if (lvd->integritySeqExt.extLength)
1467 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1468 
1469 out_bh:
1470 	brelse(bh);
1471 	return ret;
1472 }
1473 
1474 /*
1475  * udf_load_logicalvolint
1476  *
1477  */
1478 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1479 {
1480 	struct buffer_head *bh = NULL;
1481 	uint16_t ident;
1482 	struct udf_sb_info *sbi = UDF_SB(sb);
1483 	struct logicalVolIntegrityDesc *lvid;
1484 
1485 	while (loc.extLength > 0 &&
1486 	       (bh = udf_read_tagged(sb, loc.extLocation,
1487 				     loc.extLocation, &ident)) &&
1488 	       ident == TAG_IDENT_LVID) {
1489 		sbi->s_lvid_bh = bh;
1490 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1491 
1492 		if (lvid->nextIntegrityExt.extLength)
1493 			udf_load_logicalvolint(sb,
1494 				leea_to_cpu(lvid->nextIntegrityExt));
1495 
1496 		if (sbi->s_lvid_bh != bh)
1497 			brelse(bh);
1498 		loc.extLength -= sb->s_blocksize;
1499 		loc.extLocation++;
1500 	}
1501 	if (sbi->s_lvid_bh != bh)
1502 		brelse(bh);
1503 }
1504 
1505 /*
1506  * udf_process_sequence
1507  *
1508  * PURPOSE
1509  *	Process a main/reserve volume descriptor sequence.
1510  *
1511  * PRE-CONDITIONS
1512  *	sb			Pointer to _locked_ superblock.
1513  *	block			First block of first extent of the sequence.
1514  *	lastblock		Lastblock of first extent of the sequence.
1515  *
1516  * HISTORY
1517  *	July 1, 1997 - Andrew E. Mileski
1518  *	Written, tested, and released.
1519  */
1520 static noinline int udf_process_sequence(struct super_block *sb, long block,
1521 				long lastblock, struct kernel_lb_addr *fileset)
1522 {
1523 	struct buffer_head *bh = NULL;
1524 	struct udf_vds_record vds[VDS_POS_LENGTH];
1525 	struct udf_vds_record *curr;
1526 	struct generic_desc *gd;
1527 	struct volDescPtr *vdp;
1528 	int done = 0;
1529 	uint32_t vdsn;
1530 	uint16_t ident;
1531 	long next_s = 0, next_e = 0;
1532 
1533 	memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1534 
1535 	/*
1536 	 * Read the main descriptor sequence and find which descriptors
1537 	 * are in it.
1538 	 */
1539 	for (; (!done && block <= lastblock); block++) {
1540 
1541 		bh = udf_read_tagged(sb, block, block, &ident);
1542 		if (!bh) {
1543 			udf_err(sb,
1544 				"Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1545 				(unsigned long long)block);
1546 			return 1;
1547 		}
1548 
1549 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1550 		gd = (struct generic_desc *)bh->b_data;
1551 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1552 		switch (ident) {
1553 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1554 			curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1555 			if (vdsn >= curr->volDescSeqNum) {
1556 				curr->volDescSeqNum = vdsn;
1557 				curr->block = block;
1558 			}
1559 			break;
1560 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1561 			curr = &vds[VDS_POS_VOL_DESC_PTR];
1562 			if (vdsn >= curr->volDescSeqNum) {
1563 				curr->volDescSeqNum = vdsn;
1564 				curr->block = block;
1565 
1566 				vdp = (struct volDescPtr *)bh->b_data;
1567 				next_s = le32_to_cpu(
1568 					vdp->nextVolDescSeqExt.extLocation);
1569 				next_e = le32_to_cpu(
1570 					vdp->nextVolDescSeqExt.extLength);
1571 				next_e = next_e >> sb->s_blocksize_bits;
1572 				next_e += next_s;
1573 			}
1574 			break;
1575 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1576 			curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1577 			if (vdsn >= curr->volDescSeqNum) {
1578 				curr->volDescSeqNum = vdsn;
1579 				curr->block = block;
1580 			}
1581 			break;
1582 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1583 			curr = &vds[VDS_POS_PARTITION_DESC];
1584 			if (!curr->block)
1585 				curr->block = block;
1586 			break;
1587 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1588 			curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1589 			if (vdsn >= curr->volDescSeqNum) {
1590 				curr->volDescSeqNum = vdsn;
1591 				curr->block = block;
1592 			}
1593 			break;
1594 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1595 			curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1596 			if (vdsn >= curr->volDescSeqNum) {
1597 				curr->volDescSeqNum = vdsn;
1598 				curr->block = block;
1599 			}
1600 			break;
1601 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1602 			vds[VDS_POS_TERMINATING_DESC].block = block;
1603 			if (next_e) {
1604 				block = next_s;
1605 				lastblock = next_e;
1606 				next_s = next_e = 0;
1607 			} else
1608 				done = 1;
1609 			break;
1610 		}
1611 		brelse(bh);
1612 	}
1613 	/*
1614 	 * Now read interesting descriptors again and process them
1615 	 * in a suitable order
1616 	 */
1617 	if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1618 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1619 		return 1;
1620 	}
1621 	if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block))
1622 		return 1;
1623 
1624 	if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb,
1625 	    vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset))
1626 		return 1;
1627 
1628 	if (vds[VDS_POS_PARTITION_DESC].block) {
1629 		/*
1630 		 * We rescan the whole descriptor sequence to find
1631 		 * partition descriptor blocks and process them.
1632 		 */
1633 		for (block = vds[VDS_POS_PARTITION_DESC].block;
1634 		     block < vds[VDS_POS_TERMINATING_DESC].block;
1635 		     block++)
1636 			if (udf_load_partdesc(sb, block))
1637 				return 1;
1638 	}
1639 
1640 	return 0;
1641 }
1642 
1643 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1644 			     struct kernel_lb_addr *fileset)
1645 {
1646 	struct anchorVolDescPtr *anchor;
1647 	long main_s, main_e, reserve_s, reserve_e;
1648 
1649 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1650 
1651 	/* Locate the main sequence */
1652 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1653 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1654 	main_e = main_e >> sb->s_blocksize_bits;
1655 	main_e += main_s;
1656 
1657 	/* Locate the reserve sequence */
1658 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1659 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1660 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1661 	reserve_e += reserve_s;
1662 
1663 	/* Process the main & reserve sequences */
1664 	/* responsible for finding the PartitionDesc(s) */
1665 	if (!udf_process_sequence(sb, main_s, main_e, fileset))
1666 		return 1;
1667 	udf_sb_free_partitions(sb);
1668 	if (!udf_process_sequence(sb, reserve_s, reserve_e, fileset))
1669 		return 1;
1670 	udf_sb_free_partitions(sb);
1671 	return 0;
1672 }
1673 
1674 /*
1675  * Check whether there is an anchor block in the given block and
1676  * load Volume Descriptor Sequence if so.
1677  */
1678 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1679 				  struct kernel_lb_addr *fileset)
1680 {
1681 	struct buffer_head *bh;
1682 	uint16_t ident;
1683 	int ret;
1684 
1685 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1686 	    udf_fixed_to_variable(block) >=
1687 	    sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1688 		return 0;
1689 
1690 	bh = udf_read_tagged(sb, block, block, &ident);
1691 	if (!bh)
1692 		return 0;
1693 	if (ident != TAG_IDENT_AVDP) {
1694 		brelse(bh);
1695 		return 0;
1696 	}
1697 	ret = udf_load_sequence(sb, bh, fileset);
1698 	brelse(bh);
1699 	return ret;
1700 }
1701 
1702 /* Search for an anchor volume descriptor pointer */
1703 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock,
1704 				 struct kernel_lb_addr *fileset)
1705 {
1706 	sector_t last[6];
1707 	int i;
1708 	struct udf_sb_info *sbi = UDF_SB(sb);
1709 	int last_count = 0;
1710 
1711 	/* First try user provided anchor */
1712 	if (sbi->s_anchor) {
1713 		if (udf_check_anchor_block(sb, sbi->s_anchor, fileset))
1714 			return lastblock;
1715 	}
1716 	/*
1717 	 * according to spec, anchor is in either:
1718 	 *     block 256
1719 	 *     lastblock-256
1720 	 *     lastblock
1721 	 *  however, if the disc isn't closed, it could be 512.
1722 	 */
1723 	if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset))
1724 		return lastblock;
1725 	/*
1726 	 * The trouble is which block is the last one. Drives often misreport
1727 	 * this so we try various possibilities.
1728 	 */
1729 	last[last_count++] = lastblock;
1730 	if (lastblock >= 1)
1731 		last[last_count++] = lastblock - 1;
1732 	last[last_count++] = lastblock + 1;
1733 	if (lastblock >= 2)
1734 		last[last_count++] = lastblock - 2;
1735 	if (lastblock >= 150)
1736 		last[last_count++] = lastblock - 150;
1737 	if (lastblock >= 152)
1738 		last[last_count++] = lastblock - 152;
1739 
1740 	for (i = 0; i < last_count; i++) {
1741 		if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1742 				sb->s_blocksize_bits)
1743 			continue;
1744 		if (udf_check_anchor_block(sb, last[i], fileset))
1745 			return last[i];
1746 		if (last[i] < 256)
1747 			continue;
1748 		if (udf_check_anchor_block(sb, last[i] - 256, fileset))
1749 			return last[i];
1750 	}
1751 
1752 	/* Finally try block 512 in case media is open */
1753 	if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset))
1754 		return last[0];
1755 	return 0;
1756 }
1757 
1758 /*
1759  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1760  * area specified by it. The function expects sbi->s_lastblock to be the last
1761  * block on the media.
1762  *
1763  * Return 1 if ok, 0 if not found.
1764  *
1765  */
1766 static int udf_find_anchor(struct super_block *sb,
1767 			   struct kernel_lb_addr *fileset)
1768 {
1769 	sector_t lastblock;
1770 	struct udf_sb_info *sbi = UDF_SB(sb);
1771 
1772 	lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1773 	if (lastblock)
1774 		goto out;
1775 
1776 	/* No anchor found? Try VARCONV conversion of block numbers */
1777 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1778 	/* Firstly, we try to not convert number of the last block */
1779 	lastblock = udf_scan_anchors(sb,
1780 				udf_variable_to_fixed(sbi->s_last_block),
1781 				fileset);
1782 	if (lastblock)
1783 		goto out;
1784 
1785 	/* Secondly, we try with converted number of the last block */
1786 	lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset);
1787 	if (!lastblock) {
1788 		/* VARCONV didn't help. Clear it. */
1789 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1790 		return 0;
1791 	}
1792 out:
1793 	sbi->s_last_block = lastblock;
1794 	return 1;
1795 }
1796 
1797 /*
1798  * Check Volume Structure Descriptor, find Anchor block and load Volume
1799  * Descriptor Sequence
1800  */
1801 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1802 			int silent, struct kernel_lb_addr *fileset)
1803 {
1804 	struct udf_sb_info *sbi = UDF_SB(sb);
1805 	loff_t nsr_off;
1806 
1807 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1808 		if (!silent)
1809 			udf_warn(sb, "Bad block size\n");
1810 		return 0;
1811 	}
1812 	sbi->s_last_block = uopt->lastblock;
1813 	if (!uopt->novrs) {
1814 		/* Check that it is NSR02 compliant */
1815 		nsr_off = udf_check_vsd(sb);
1816 		if (!nsr_off) {
1817 			if (!silent)
1818 				udf_warn(sb, "No VRS found\n");
1819 			return 0;
1820 		}
1821 		if (nsr_off == -1)
1822 			udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n");
1823 		if (!sbi->s_last_block)
1824 			sbi->s_last_block = udf_get_last_block(sb);
1825 	} else {
1826 		udf_debug("Validity check skipped because of novrs option\n");
1827 	}
1828 
1829 	/* Look for anchor block and load Volume Descriptor Sequence */
1830 	sbi->s_anchor = uopt->anchor;
1831 	if (!udf_find_anchor(sb, fileset)) {
1832 		if (!silent)
1833 			udf_warn(sb, "No anchor found\n");
1834 		return 0;
1835 	}
1836 	return 1;
1837 }
1838 
1839 static void udf_open_lvid(struct super_block *sb)
1840 {
1841 	struct udf_sb_info *sbi = UDF_SB(sb);
1842 	struct buffer_head *bh = sbi->s_lvid_bh;
1843 	struct logicalVolIntegrityDesc *lvid;
1844 	struct logicalVolIntegrityDescImpUse *lvidiu;
1845 
1846 	if (!bh)
1847 		return;
1848 
1849 	mutex_lock(&sbi->s_alloc_mutex);
1850 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1851 	lvidiu = udf_sb_lvidiu(sbi);
1852 
1853 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1854 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1855 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1856 				CURRENT_TIME);
1857 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1858 
1859 	lvid->descTag.descCRC = cpu_to_le16(
1860 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1861 			le16_to_cpu(lvid->descTag.descCRCLength)));
1862 
1863 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1864 	mark_buffer_dirty(bh);
1865 	sbi->s_lvid_dirty = 0;
1866 	mutex_unlock(&sbi->s_alloc_mutex);
1867 	/* Make opening of filesystem visible on the media immediately */
1868 	sync_dirty_buffer(bh);
1869 }
1870 
1871 static void udf_close_lvid(struct super_block *sb)
1872 {
1873 	struct udf_sb_info *sbi = UDF_SB(sb);
1874 	struct buffer_head *bh = sbi->s_lvid_bh;
1875 	struct logicalVolIntegrityDesc *lvid;
1876 	struct logicalVolIntegrityDescImpUse *lvidiu;
1877 
1878 	if (!bh)
1879 		return;
1880 
1881 	mutex_lock(&sbi->s_alloc_mutex);
1882 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1883 	lvidiu = udf_sb_lvidiu(sbi);
1884 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1885 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1886 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
1887 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
1888 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
1889 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
1890 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
1891 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
1892 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
1893 	lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
1894 
1895 	lvid->descTag.descCRC = cpu_to_le16(
1896 			crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1897 				le16_to_cpu(lvid->descTag.descCRCLength)));
1898 
1899 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1900 	/*
1901 	 * We set buffer uptodate unconditionally here to avoid spurious
1902 	 * warnings from mark_buffer_dirty() when previous EIO has marked
1903 	 * the buffer as !uptodate
1904 	 */
1905 	set_buffer_uptodate(bh);
1906 	mark_buffer_dirty(bh);
1907 	sbi->s_lvid_dirty = 0;
1908 	mutex_unlock(&sbi->s_alloc_mutex);
1909 	/* Make closing of filesystem visible on the media immediately */
1910 	sync_dirty_buffer(bh);
1911 }
1912 
1913 u64 lvid_get_unique_id(struct super_block *sb)
1914 {
1915 	struct buffer_head *bh;
1916 	struct udf_sb_info *sbi = UDF_SB(sb);
1917 	struct logicalVolIntegrityDesc *lvid;
1918 	struct logicalVolHeaderDesc *lvhd;
1919 	u64 uniqueID;
1920 	u64 ret;
1921 
1922 	bh = sbi->s_lvid_bh;
1923 	if (!bh)
1924 		return 0;
1925 
1926 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1927 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
1928 
1929 	mutex_lock(&sbi->s_alloc_mutex);
1930 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
1931 	if (!(++uniqueID & 0xFFFFFFFF))
1932 		uniqueID += 16;
1933 	lvhd->uniqueID = cpu_to_le64(uniqueID);
1934 	mutex_unlock(&sbi->s_alloc_mutex);
1935 	mark_buffer_dirty(bh);
1936 
1937 	return ret;
1938 }
1939 
1940 static int udf_fill_super(struct super_block *sb, void *options, int silent)
1941 {
1942 	int ret;
1943 	struct inode *inode = NULL;
1944 	struct udf_options uopt;
1945 	struct kernel_lb_addr rootdir, fileset;
1946 	struct udf_sb_info *sbi;
1947 
1948 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
1949 	uopt.uid = INVALID_UID;
1950 	uopt.gid = INVALID_GID;
1951 	uopt.umask = 0;
1952 	uopt.fmode = UDF_INVALID_MODE;
1953 	uopt.dmode = UDF_INVALID_MODE;
1954 
1955 	sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
1956 	if (!sbi)
1957 		return -ENOMEM;
1958 
1959 	sb->s_fs_info = sbi;
1960 
1961 	mutex_init(&sbi->s_alloc_mutex);
1962 
1963 	if (!udf_parse_options((char *)options, &uopt, false))
1964 		goto error_out;
1965 
1966 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
1967 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
1968 		udf_err(sb, "utf8 cannot be combined with iocharset\n");
1969 		goto error_out;
1970 	}
1971 #ifdef CONFIG_UDF_NLS
1972 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
1973 		uopt.nls_map = load_nls_default();
1974 		if (!uopt.nls_map)
1975 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
1976 		else
1977 			udf_debug("Using default NLS map\n");
1978 	}
1979 #endif
1980 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
1981 		uopt.flags |= (1 << UDF_FLAG_UTF8);
1982 
1983 	fileset.logicalBlockNum = 0xFFFFFFFF;
1984 	fileset.partitionReferenceNum = 0xFFFF;
1985 
1986 	sbi->s_flags = uopt.flags;
1987 	sbi->s_uid = uopt.uid;
1988 	sbi->s_gid = uopt.gid;
1989 	sbi->s_umask = uopt.umask;
1990 	sbi->s_fmode = uopt.fmode;
1991 	sbi->s_dmode = uopt.dmode;
1992 	sbi->s_nls_map = uopt.nls_map;
1993 	rwlock_init(&sbi->s_cred_lock);
1994 
1995 	if (uopt.session == 0xFFFFFFFF)
1996 		sbi->s_session = udf_get_last_session(sb);
1997 	else
1998 		sbi->s_session = uopt.session;
1999 
2000 	udf_debug("Multi-session=%d\n", sbi->s_session);
2001 
2002 	/* Fill in the rest of the superblock */
2003 	sb->s_op = &udf_sb_ops;
2004 	sb->s_export_op = &udf_export_ops;
2005 
2006 	sb->s_magic = UDF_SUPER_MAGIC;
2007 	sb->s_time_gran = 1000;
2008 
2009 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2010 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2011 	} else {
2012 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2013 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2014 		if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2015 			if (!silent)
2016 				pr_notice("Rescanning with blocksize %d\n",
2017 					  UDF_DEFAULT_BLOCKSIZE);
2018 			brelse(sbi->s_lvid_bh);
2019 			sbi->s_lvid_bh = NULL;
2020 			uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2021 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2022 		}
2023 	}
2024 	if (!ret) {
2025 		udf_warn(sb, "No partition found (1)\n");
2026 		goto error_out;
2027 	}
2028 
2029 	udf_debug("Lastblock=%d\n", sbi->s_last_block);
2030 
2031 	if (sbi->s_lvid_bh) {
2032 		struct logicalVolIntegrityDescImpUse *lvidiu =
2033 							udf_sb_lvidiu(sbi);
2034 		uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2035 		uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2036 		/* uint16_t maxUDFWriteRev =
2037 				le16_to_cpu(lvidiu->maxUDFWriteRev); */
2038 
2039 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2040 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2041 				le16_to_cpu(lvidiu->minUDFReadRev),
2042 				UDF_MAX_READ_VERSION);
2043 			goto error_out;
2044 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION)
2045 			sb->s_flags |= MS_RDONLY;
2046 
2047 		sbi->s_udfrev = minUDFWriteRev;
2048 
2049 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2050 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2051 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2052 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2053 	}
2054 
2055 	if (!sbi->s_partitions) {
2056 		udf_warn(sb, "No partition found (2)\n");
2057 		goto error_out;
2058 	}
2059 
2060 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2061 			UDF_PART_FLAG_READ_ONLY) {
2062 		pr_notice("Partition marked readonly; forcing readonly mount\n");
2063 		sb->s_flags |= MS_RDONLY;
2064 	}
2065 
2066 	if (udf_find_fileset(sb, &fileset, &rootdir)) {
2067 		udf_warn(sb, "No fileset found\n");
2068 		goto error_out;
2069 	}
2070 
2071 	if (!silent) {
2072 		struct timestamp ts;
2073 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2074 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2075 			 sbi->s_volume_ident,
2076 			 le16_to_cpu(ts.year), ts.month, ts.day,
2077 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2078 	}
2079 	if (!(sb->s_flags & MS_RDONLY))
2080 		udf_open_lvid(sb);
2081 
2082 	/* Assign the root inode */
2083 	/* assign inodes by physical block number */
2084 	/* perhaps it's not extensible enough, but for now ... */
2085 	inode = udf_iget(sb, &rootdir);
2086 	if (!inode) {
2087 		udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2088 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2089 		goto error_out;
2090 	}
2091 
2092 	/* Allocate a dentry for the root inode */
2093 	sb->s_root = d_make_root(inode);
2094 	if (!sb->s_root) {
2095 		udf_err(sb, "Couldn't allocate root dentry\n");
2096 		goto error_out;
2097 	}
2098 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2099 	sb->s_max_links = UDF_MAX_LINKS;
2100 	return 0;
2101 
2102 error_out:
2103 	if (sbi->s_vat_inode)
2104 		iput(sbi->s_vat_inode);
2105 #ifdef CONFIG_UDF_NLS
2106 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2107 		unload_nls(sbi->s_nls_map);
2108 #endif
2109 	if (!(sb->s_flags & MS_RDONLY))
2110 		udf_close_lvid(sb);
2111 	brelse(sbi->s_lvid_bh);
2112 	udf_sb_free_partitions(sb);
2113 	kfree(sbi);
2114 	sb->s_fs_info = NULL;
2115 
2116 	return -EINVAL;
2117 }
2118 
2119 void _udf_err(struct super_block *sb, const char *function,
2120 	      const char *fmt, ...)
2121 {
2122 	struct va_format vaf;
2123 	va_list args;
2124 
2125 	va_start(args, fmt);
2126 
2127 	vaf.fmt = fmt;
2128 	vaf.va = &args;
2129 
2130 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2131 
2132 	va_end(args);
2133 }
2134 
2135 void _udf_warn(struct super_block *sb, const char *function,
2136 	       const char *fmt, ...)
2137 {
2138 	struct va_format vaf;
2139 	va_list args;
2140 
2141 	va_start(args, fmt);
2142 
2143 	vaf.fmt = fmt;
2144 	vaf.va = &args;
2145 
2146 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2147 
2148 	va_end(args);
2149 }
2150 
2151 static void udf_put_super(struct super_block *sb)
2152 {
2153 	struct udf_sb_info *sbi;
2154 
2155 	sbi = UDF_SB(sb);
2156 
2157 	if (sbi->s_vat_inode)
2158 		iput(sbi->s_vat_inode);
2159 #ifdef CONFIG_UDF_NLS
2160 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2161 		unload_nls(sbi->s_nls_map);
2162 #endif
2163 	if (!(sb->s_flags & MS_RDONLY))
2164 		udf_close_lvid(sb);
2165 	brelse(sbi->s_lvid_bh);
2166 	udf_sb_free_partitions(sb);
2167 	kfree(sb->s_fs_info);
2168 	sb->s_fs_info = NULL;
2169 }
2170 
2171 static int udf_sync_fs(struct super_block *sb, int wait)
2172 {
2173 	struct udf_sb_info *sbi = UDF_SB(sb);
2174 
2175 	mutex_lock(&sbi->s_alloc_mutex);
2176 	if (sbi->s_lvid_dirty) {
2177 		/*
2178 		 * Blockdevice will be synced later so we don't have to submit
2179 		 * the buffer for IO
2180 		 */
2181 		mark_buffer_dirty(sbi->s_lvid_bh);
2182 		sbi->s_lvid_dirty = 0;
2183 	}
2184 	mutex_unlock(&sbi->s_alloc_mutex);
2185 
2186 	return 0;
2187 }
2188 
2189 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2190 {
2191 	struct super_block *sb = dentry->d_sb;
2192 	struct udf_sb_info *sbi = UDF_SB(sb);
2193 	struct logicalVolIntegrityDescImpUse *lvidiu;
2194 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2195 
2196 	if (sbi->s_lvid_bh != NULL)
2197 		lvidiu = udf_sb_lvidiu(sbi);
2198 	else
2199 		lvidiu = NULL;
2200 
2201 	buf->f_type = UDF_SUPER_MAGIC;
2202 	buf->f_bsize = sb->s_blocksize;
2203 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2204 	buf->f_bfree = udf_count_free(sb);
2205 	buf->f_bavail = buf->f_bfree;
2206 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2207 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2208 			+ buf->f_bfree;
2209 	buf->f_ffree = buf->f_bfree;
2210 	buf->f_namelen = UDF_NAME_LEN - 2;
2211 	buf->f_fsid.val[0] = (u32)id;
2212 	buf->f_fsid.val[1] = (u32)(id >> 32);
2213 
2214 	return 0;
2215 }
2216 
2217 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2218 					  struct udf_bitmap *bitmap)
2219 {
2220 	struct buffer_head *bh = NULL;
2221 	unsigned int accum = 0;
2222 	int index;
2223 	int block = 0, newblock;
2224 	struct kernel_lb_addr loc;
2225 	uint32_t bytes;
2226 	uint8_t *ptr;
2227 	uint16_t ident;
2228 	struct spaceBitmapDesc *bm;
2229 
2230 	loc.logicalBlockNum = bitmap->s_extPosition;
2231 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2232 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2233 
2234 	if (!bh) {
2235 		udf_err(sb, "udf_count_free failed\n");
2236 		goto out;
2237 	} else if (ident != TAG_IDENT_SBD) {
2238 		brelse(bh);
2239 		udf_err(sb, "udf_count_free failed\n");
2240 		goto out;
2241 	}
2242 
2243 	bm = (struct spaceBitmapDesc *)bh->b_data;
2244 	bytes = le32_to_cpu(bm->numOfBytes);
2245 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2246 	ptr = (uint8_t *)bh->b_data;
2247 
2248 	while (bytes > 0) {
2249 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2250 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2251 					cur_bytes * 8);
2252 		bytes -= cur_bytes;
2253 		if (bytes) {
2254 			brelse(bh);
2255 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2256 			bh = udf_tread(sb, newblock);
2257 			if (!bh) {
2258 				udf_debug("read failed\n");
2259 				goto out;
2260 			}
2261 			index = 0;
2262 			ptr = (uint8_t *)bh->b_data;
2263 		}
2264 	}
2265 	brelse(bh);
2266 out:
2267 	return accum;
2268 }
2269 
2270 static unsigned int udf_count_free_table(struct super_block *sb,
2271 					 struct inode *table)
2272 {
2273 	unsigned int accum = 0;
2274 	uint32_t elen;
2275 	struct kernel_lb_addr eloc;
2276 	int8_t etype;
2277 	struct extent_position epos;
2278 
2279 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2280 	epos.block = UDF_I(table)->i_location;
2281 	epos.offset = sizeof(struct unallocSpaceEntry);
2282 	epos.bh = NULL;
2283 
2284 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2285 		accum += (elen >> table->i_sb->s_blocksize_bits);
2286 
2287 	brelse(epos.bh);
2288 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2289 
2290 	return accum;
2291 }
2292 
2293 static unsigned int udf_count_free(struct super_block *sb)
2294 {
2295 	unsigned int accum = 0;
2296 	struct udf_sb_info *sbi;
2297 	struct udf_part_map *map;
2298 
2299 	sbi = UDF_SB(sb);
2300 	if (sbi->s_lvid_bh) {
2301 		struct logicalVolIntegrityDesc *lvid =
2302 			(struct logicalVolIntegrityDesc *)
2303 			sbi->s_lvid_bh->b_data;
2304 		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2305 			accum = le32_to_cpu(
2306 					lvid->freeSpaceTable[sbi->s_partition]);
2307 			if (accum == 0xFFFFFFFF)
2308 				accum = 0;
2309 		}
2310 	}
2311 
2312 	if (accum)
2313 		return accum;
2314 
2315 	map = &sbi->s_partmaps[sbi->s_partition];
2316 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2317 		accum += udf_count_free_bitmap(sb,
2318 					       map->s_uspace.s_bitmap);
2319 	}
2320 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2321 		accum += udf_count_free_bitmap(sb,
2322 					       map->s_fspace.s_bitmap);
2323 	}
2324 	if (accum)
2325 		return accum;
2326 
2327 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2328 		accum += udf_count_free_table(sb,
2329 					      map->s_uspace.s_table);
2330 	}
2331 	if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2332 		accum += udf_count_free_table(sb,
2333 					      map->s_fspace.s_table);
2334 	}
2335 
2336 	return accum;
2337 }
2338