1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/buffer_head.h> 52 #include <linux/vfs.h> 53 #include <linux/vmalloc.h> 54 #include <linux/errno.h> 55 #include <linux/mount.h> 56 #include <linux/seq_file.h> 57 #include <linux/bitmap.h> 58 #include <linux/crc-itu-t.h> 59 #include <linux/log2.h> 60 #include <asm/byteorder.h> 61 62 #include "udf_sb.h" 63 #include "udf_i.h" 64 65 #include <linux/init.h> 66 #include <asm/uaccess.h> 67 68 #define VDS_POS_PRIMARY_VOL_DESC 0 69 #define VDS_POS_UNALLOC_SPACE_DESC 1 70 #define VDS_POS_LOGICAL_VOL_DESC 2 71 #define VDS_POS_PARTITION_DESC 3 72 #define VDS_POS_IMP_USE_VOL_DESC 4 73 #define VDS_POS_VOL_DESC_PTR 5 74 #define VDS_POS_TERMINATING_DESC 6 75 #define VDS_POS_LENGTH 7 76 77 #define UDF_DEFAULT_BLOCKSIZE 2048 78 79 enum { UDF_MAX_LINKS = 0xffff }; 80 81 /* These are the "meat" - everything else is stuffing */ 82 static int udf_fill_super(struct super_block *, void *, int); 83 static void udf_put_super(struct super_block *); 84 static int udf_sync_fs(struct super_block *, int); 85 static int udf_remount_fs(struct super_block *, int *, char *); 86 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 87 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 88 struct kernel_lb_addr *); 89 static void udf_load_fileset(struct super_block *, struct buffer_head *, 90 struct kernel_lb_addr *); 91 static void udf_open_lvid(struct super_block *); 92 static void udf_close_lvid(struct super_block *); 93 static unsigned int udf_count_free(struct super_block *); 94 static int udf_statfs(struct dentry *, struct kstatfs *); 95 static int udf_show_options(struct seq_file *, struct dentry *); 96 97 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct udf_sb_info *sbi) 98 { 99 struct logicalVolIntegrityDesc *lvid = 100 (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data; 101 __u32 number_of_partitions = le32_to_cpu(lvid->numOfPartitions); 102 __u32 offset = number_of_partitions * 2 * 103 sizeof(uint32_t)/sizeof(uint8_t); 104 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 105 } 106 107 /* UDF filesystem type */ 108 static struct dentry *udf_mount(struct file_system_type *fs_type, 109 int flags, const char *dev_name, void *data) 110 { 111 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 112 } 113 114 static struct file_system_type udf_fstype = { 115 .owner = THIS_MODULE, 116 .name = "udf", 117 .mount = udf_mount, 118 .kill_sb = kill_block_super, 119 .fs_flags = FS_REQUIRES_DEV, 120 }; 121 MODULE_ALIAS_FS("udf"); 122 123 static struct kmem_cache *udf_inode_cachep; 124 125 static struct inode *udf_alloc_inode(struct super_block *sb) 126 { 127 struct udf_inode_info *ei; 128 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 129 if (!ei) 130 return NULL; 131 132 ei->i_unique = 0; 133 ei->i_lenExtents = 0; 134 ei->i_next_alloc_block = 0; 135 ei->i_next_alloc_goal = 0; 136 ei->i_strat4096 = 0; 137 init_rwsem(&ei->i_data_sem); 138 ei->cached_extent.lstart = -1; 139 spin_lock_init(&ei->i_extent_cache_lock); 140 141 return &ei->vfs_inode; 142 } 143 144 static void udf_i_callback(struct rcu_head *head) 145 { 146 struct inode *inode = container_of(head, struct inode, i_rcu); 147 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 148 } 149 150 static void udf_destroy_inode(struct inode *inode) 151 { 152 call_rcu(&inode->i_rcu, udf_i_callback); 153 } 154 155 static void init_once(void *foo) 156 { 157 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 158 159 ei->i_ext.i_data = NULL; 160 inode_init_once(&ei->vfs_inode); 161 } 162 163 static int init_inodecache(void) 164 { 165 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 166 sizeof(struct udf_inode_info), 167 0, (SLAB_RECLAIM_ACCOUNT | 168 SLAB_MEM_SPREAD), 169 init_once); 170 if (!udf_inode_cachep) 171 return -ENOMEM; 172 return 0; 173 } 174 175 static void destroy_inodecache(void) 176 { 177 /* 178 * Make sure all delayed rcu free inodes are flushed before we 179 * destroy cache. 180 */ 181 rcu_barrier(); 182 kmem_cache_destroy(udf_inode_cachep); 183 } 184 185 /* Superblock operations */ 186 static const struct super_operations udf_sb_ops = { 187 .alloc_inode = udf_alloc_inode, 188 .destroy_inode = udf_destroy_inode, 189 .write_inode = udf_write_inode, 190 .evict_inode = udf_evict_inode, 191 .put_super = udf_put_super, 192 .sync_fs = udf_sync_fs, 193 .statfs = udf_statfs, 194 .remount_fs = udf_remount_fs, 195 .show_options = udf_show_options, 196 }; 197 198 struct udf_options { 199 unsigned char novrs; 200 unsigned int blocksize; 201 unsigned int session; 202 unsigned int lastblock; 203 unsigned int anchor; 204 unsigned int volume; 205 unsigned short partition; 206 unsigned int fileset; 207 unsigned int rootdir; 208 unsigned int flags; 209 umode_t umask; 210 kgid_t gid; 211 kuid_t uid; 212 umode_t fmode; 213 umode_t dmode; 214 struct nls_table *nls_map; 215 }; 216 217 static int __init init_udf_fs(void) 218 { 219 int err; 220 221 err = init_inodecache(); 222 if (err) 223 goto out1; 224 err = register_filesystem(&udf_fstype); 225 if (err) 226 goto out; 227 228 return 0; 229 230 out: 231 destroy_inodecache(); 232 233 out1: 234 return err; 235 } 236 237 static void __exit exit_udf_fs(void) 238 { 239 unregister_filesystem(&udf_fstype); 240 destroy_inodecache(); 241 } 242 243 module_init(init_udf_fs) 244 module_exit(exit_udf_fs) 245 246 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 247 { 248 struct udf_sb_info *sbi = UDF_SB(sb); 249 250 sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map), 251 GFP_KERNEL); 252 if (!sbi->s_partmaps) { 253 udf_err(sb, "Unable to allocate space for %d partition maps\n", 254 count); 255 sbi->s_partitions = 0; 256 return -ENOMEM; 257 } 258 259 sbi->s_partitions = count; 260 return 0; 261 } 262 263 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 264 { 265 int i; 266 int nr_groups = bitmap->s_nr_groups; 267 int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) * 268 nr_groups); 269 270 for (i = 0; i < nr_groups; i++) 271 if (bitmap->s_block_bitmap[i]) 272 brelse(bitmap->s_block_bitmap[i]); 273 274 if (size <= PAGE_SIZE) 275 kfree(bitmap); 276 else 277 vfree(bitmap); 278 } 279 280 static void udf_free_partition(struct udf_part_map *map) 281 { 282 int i; 283 struct udf_meta_data *mdata; 284 285 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 286 iput(map->s_uspace.s_table); 287 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 288 iput(map->s_fspace.s_table); 289 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 290 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 291 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 292 udf_sb_free_bitmap(map->s_fspace.s_bitmap); 293 if (map->s_partition_type == UDF_SPARABLE_MAP15) 294 for (i = 0; i < 4; i++) 295 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 296 else if (map->s_partition_type == UDF_METADATA_MAP25) { 297 mdata = &map->s_type_specific.s_metadata; 298 iput(mdata->s_metadata_fe); 299 mdata->s_metadata_fe = NULL; 300 301 iput(mdata->s_mirror_fe); 302 mdata->s_mirror_fe = NULL; 303 304 iput(mdata->s_bitmap_fe); 305 mdata->s_bitmap_fe = NULL; 306 } 307 } 308 309 static void udf_sb_free_partitions(struct super_block *sb) 310 { 311 struct udf_sb_info *sbi = UDF_SB(sb); 312 int i; 313 if (sbi->s_partmaps == NULL) 314 return; 315 for (i = 0; i < sbi->s_partitions; i++) 316 udf_free_partition(&sbi->s_partmaps[i]); 317 kfree(sbi->s_partmaps); 318 sbi->s_partmaps = NULL; 319 } 320 321 static int udf_show_options(struct seq_file *seq, struct dentry *root) 322 { 323 struct super_block *sb = root->d_sb; 324 struct udf_sb_info *sbi = UDF_SB(sb); 325 326 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 327 seq_puts(seq, ",nostrict"); 328 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 329 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 330 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 331 seq_puts(seq, ",unhide"); 332 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 333 seq_puts(seq, ",undelete"); 334 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 335 seq_puts(seq, ",noadinicb"); 336 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 337 seq_puts(seq, ",shortad"); 338 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 339 seq_puts(seq, ",uid=forget"); 340 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE)) 341 seq_puts(seq, ",uid=ignore"); 342 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 343 seq_puts(seq, ",gid=forget"); 344 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE)) 345 seq_puts(seq, ",gid=ignore"); 346 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 347 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 348 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 349 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 350 if (sbi->s_umask != 0) 351 seq_printf(seq, ",umask=%ho", sbi->s_umask); 352 if (sbi->s_fmode != UDF_INVALID_MODE) 353 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 354 if (sbi->s_dmode != UDF_INVALID_MODE) 355 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 356 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 357 seq_printf(seq, ",session=%u", sbi->s_session); 358 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 359 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 360 if (sbi->s_anchor != 0) 361 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 362 /* 363 * volume, partition, fileset and rootdir seem to be ignored 364 * currently 365 */ 366 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 367 seq_puts(seq, ",utf8"); 368 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 369 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 370 371 return 0; 372 } 373 374 /* 375 * udf_parse_options 376 * 377 * PURPOSE 378 * Parse mount options. 379 * 380 * DESCRIPTION 381 * The following mount options are supported: 382 * 383 * gid= Set the default group. 384 * umask= Set the default umask. 385 * mode= Set the default file permissions. 386 * dmode= Set the default directory permissions. 387 * uid= Set the default user. 388 * bs= Set the block size. 389 * unhide Show otherwise hidden files. 390 * undelete Show deleted files in lists. 391 * adinicb Embed data in the inode (default) 392 * noadinicb Don't embed data in the inode 393 * shortad Use short ad's 394 * longad Use long ad's (default) 395 * nostrict Unset strict conformance 396 * iocharset= Set the NLS character set 397 * 398 * The remaining are for debugging and disaster recovery: 399 * 400 * novrs Skip volume sequence recognition 401 * 402 * The following expect a offset from 0. 403 * 404 * session= Set the CDROM session (default= last session) 405 * anchor= Override standard anchor location. (default= 256) 406 * volume= Override the VolumeDesc location. (unused) 407 * partition= Override the PartitionDesc location. (unused) 408 * lastblock= Set the last block of the filesystem/ 409 * 410 * The following expect a offset from the partition root. 411 * 412 * fileset= Override the fileset block location. (unused) 413 * rootdir= Override the root directory location. (unused) 414 * WARNING: overriding the rootdir to a non-directory may 415 * yield highly unpredictable results. 416 * 417 * PRE-CONDITIONS 418 * options Pointer to mount options string. 419 * uopts Pointer to mount options variable. 420 * 421 * POST-CONDITIONS 422 * <return> 1 Mount options parsed okay. 423 * <return> 0 Error parsing mount options. 424 * 425 * HISTORY 426 * July 1, 1997 - Andrew E. Mileski 427 * Written, tested, and released. 428 */ 429 430 enum { 431 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 432 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 433 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 434 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 435 Opt_rootdir, Opt_utf8, Opt_iocharset, 436 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 437 Opt_fmode, Opt_dmode 438 }; 439 440 static const match_table_t tokens = { 441 {Opt_novrs, "novrs"}, 442 {Opt_nostrict, "nostrict"}, 443 {Opt_bs, "bs=%u"}, 444 {Opt_unhide, "unhide"}, 445 {Opt_undelete, "undelete"}, 446 {Opt_noadinicb, "noadinicb"}, 447 {Opt_adinicb, "adinicb"}, 448 {Opt_shortad, "shortad"}, 449 {Opt_longad, "longad"}, 450 {Opt_uforget, "uid=forget"}, 451 {Opt_uignore, "uid=ignore"}, 452 {Opt_gforget, "gid=forget"}, 453 {Opt_gignore, "gid=ignore"}, 454 {Opt_gid, "gid=%u"}, 455 {Opt_uid, "uid=%u"}, 456 {Opt_umask, "umask=%o"}, 457 {Opt_session, "session=%u"}, 458 {Opt_lastblock, "lastblock=%u"}, 459 {Opt_anchor, "anchor=%u"}, 460 {Opt_volume, "volume=%u"}, 461 {Opt_partition, "partition=%u"}, 462 {Opt_fileset, "fileset=%u"}, 463 {Opt_rootdir, "rootdir=%u"}, 464 {Opt_utf8, "utf8"}, 465 {Opt_iocharset, "iocharset=%s"}, 466 {Opt_fmode, "mode=%o"}, 467 {Opt_dmode, "dmode=%o"}, 468 {Opt_err, NULL} 469 }; 470 471 static int udf_parse_options(char *options, struct udf_options *uopt, 472 bool remount) 473 { 474 char *p; 475 int option; 476 477 uopt->novrs = 0; 478 uopt->partition = 0xFFFF; 479 uopt->session = 0xFFFFFFFF; 480 uopt->lastblock = 0; 481 uopt->anchor = 0; 482 uopt->volume = 0xFFFFFFFF; 483 uopt->rootdir = 0xFFFFFFFF; 484 uopt->fileset = 0xFFFFFFFF; 485 uopt->nls_map = NULL; 486 487 if (!options) 488 return 1; 489 490 while ((p = strsep(&options, ",")) != NULL) { 491 substring_t args[MAX_OPT_ARGS]; 492 int token; 493 if (!*p) 494 continue; 495 496 token = match_token(p, tokens, args); 497 switch (token) { 498 case Opt_novrs: 499 uopt->novrs = 1; 500 break; 501 case Opt_bs: 502 if (match_int(&args[0], &option)) 503 return 0; 504 uopt->blocksize = option; 505 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 506 break; 507 case Opt_unhide: 508 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 509 break; 510 case Opt_undelete: 511 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 512 break; 513 case Opt_noadinicb: 514 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 515 break; 516 case Opt_adinicb: 517 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 518 break; 519 case Opt_shortad: 520 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 521 break; 522 case Opt_longad: 523 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 524 break; 525 case Opt_gid: 526 if (match_int(args, &option)) 527 return 0; 528 uopt->gid = make_kgid(current_user_ns(), option); 529 if (!gid_valid(uopt->gid)) 530 return 0; 531 uopt->flags |= (1 << UDF_FLAG_GID_SET); 532 break; 533 case Opt_uid: 534 if (match_int(args, &option)) 535 return 0; 536 uopt->uid = make_kuid(current_user_ns(), option); 537 if (!uid_valid(uopt->uid)) 538 return 0; 539 uopt->flags |= (1 << UDF_FLAG_UID_SET); 540 break; 541 case Opt_umask: 542 if (match_octal(args, &option)) 543 return 0; 544 uopt->umask = option; 545 break; 546 case Opt_nostrict: 547 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 548 break; 549 case Opt_session: 550 if (match_int(args, &option)) 551 return 0; 552 uopt->session = option; 553 if (!remount) 554 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 555 break; 556 case Opt_lastblock: 557 if (match_int(args, &option)) 558 return 0; 559 uopt->lastblock = option; 560 if (!remount) 561 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 562 break; 563 case Opt_anchor: 564 if (match_int(args, &option)) 565 return 0; 566 uopt->anchor = option; 567 break; 568 case Opt_volume: 569 if (match_int(args, &option)) 570 return 0; 571 uopt->volume = option; 572 break; 573 case Opt_partition: 574 if (match_int(args, &option)) 575 return 0; 576 uopt->partition = option; 577 break; 578 case Opt_fileset: 579 if (match_int(args, &option)) 580 return 0; 581 uopt->fileset = option; 582 break; 583 case Opt_rootdir: 584 if (match_int(args, &option)) 585 return 0; 586 uopt->rootdir = option; 587 break; 588 case Opt_utf8: 589 uopt->flags |= (1 << UDF_FLAG_UTF8); 590 break; 591 #ifdef CONFIG_UDF_NLS 592 case Opt_iocharset: 593 uopt->nls_map = load_nls(args[0].from); 594 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 595 break; 596 #endif 597 case Opt_uignore: 598 uopt->flags |= (1 << UDF_FLAG_UID_IGNORE); 599 break; 600 case Opt_uforget: 601 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 602 break; 603 case Opt_gignore: 604 uopt->flags |= (1 << UDF_FLAG_GID_IGNORE); 605 break; 606 case Opt_gforget: 607 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 608 break; 609 case Opt_fmode: 610 if (match_octal(args, &option)) 611 return 0; 612 uopt->fmode = option & 0777; 613 break; 614 case Opt_dmode: 615 if (match_octal(args, &option)) 616 return 0; 617 uopt->dmode = option & 0777; 618 break; 619 default: 620 pr_err("bad mount option \"%s\" or missing value\n", p); 621 return 0; 622 } 623 } 624 return 1; 625 } 626 627 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 628 { 629 struct udf_options uopt; 630 struct udf_sb_info *sbi = UDF_SB(sb); 631 int error = 0; 632 633 uopt.flags = sbi->s_flags; 634 uopt.uid = sbi->s_uid; 635 uopt.gid = sbi->s_gid; 636 uopt.umask = sbi->s_umask; 637 uopt.fmode = sbi->s_fmode; 638 uopt.dmode = sbi->s_dmode; 639 640 if (!udf_parse_options(options, &uopt, true)) 641 return -EINVAL; 642 643 write_lock(&sbi->s_cred_lock); 644 sbi->s_flags = uopt.flags; 645 sbi->s_uid = uopt.uid; 646 sbi->s_gid = uopt.gid; 647 sbi->s_umask = uopt.umask; 648 sbi->s_fmode = uopt.fmode; 649 sbi->s_dmode = uopt.dmode; 650 write_unlock(&sbi->s_cred_lock); 651 652 if (sbi->s_lvid_bh) { 653 int write_rev = le16_to_cpu(udf_sb_lvidiu(sbi)->minUDFWriteRev); 654 if (write_rev > UDF_MAX_WRITE_VERSION) 655 *flags |= MS_RDONLY; 656 } 657 658 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 659 goto out_unlock; 660 661 if (*flags & MS_RDONLY) 662 udf_close_lvid(sb); 663 else 664 udf_open_lvid(sb); 665 666 out_unlock: 667 return error; 668 } 669 670 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 671 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 672 static loff_t udf_check_vsd(struct super_block *sb) 673 { 674 struct volStructDesc *vsd = NULL; 675 loff_t sector = 32768; 676 int sectorsize; 677 struct buffer_head *bh = NULL; 678 int nsr02 = 0; 679 int nsr03 = 0; 680 struct udf_sb_info *sbi; 681 682 sbi = UDF_SB(sb); 683 if (sb->s_blocksize < sizeof(struct volStructDesc)) 684 sectorsize = sizeof(struct volStructDesc); 685 else 686 sectorsize = sb->s_blocksize; 687 688 sector += (sbi->s_session << sb->s_blocksize_bits); 689 690 udf_debug("Starting at sector %u (%ld byte sectors)\n", 691 (unsigned int)(sector >> sb->s_blocksize_bits), 692 sb->s_blocksize); 693 /* Process the sequence (if applicable) */ 694 for (; !nsr02 && !nsr03; sector += sectorsize) { 695 /* Read a block */ 696 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 697 if (!bh) 698 break; 699 700 /* Look for ISO descriptors */ 701 vsd = (struct volStructDesc *)(bh->b_data + 702 (sector & (sb->s_blocksize - 1))); 703 704 if (vsd->stdIdent[0] == 0) { 705 brelse(bh); 706 break; 707 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 708 VSD_STD_ID_LEN)) { 709 switch (vsd->structType) { 710 case 0: 711 udf_debug("ISO9660 Boot Record found\n"); 712 break; 713 case 1: 714 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 715 break; 716 case 2: 717 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 718 break; 719 case 3: 720 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 721 break; 722 case 255: 723 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 724 break; 725 default: 726 udf_debug("ISO9660 VRS (%u) found\n", 727 vsd->structType); 728 break; 729 } 730 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 731 VSD_STD_ID_LEN)) 732 ; /* nothing */ 733 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 734 VSD_STD_ID_LEN)) { 735 brelse(bh); 736 break; 737 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 738 VSD_STD_ID_LEN)) 739 nsr02 = sector; 740 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 741 VSD_STD_ID_LEN)) 742 nsr03 = sector; 743 brelse(bh); 744 } 745 746 if (nsr03) 747 return nsr03; 748 else if (nsr02) 749 return nsr02; 750 else if (sector - (sbi->s_session << sb->s_blocksize_bits) == 32768) 751 return -1; 752 else 753 return 0; 754 } 755 756 static int udf_find_fileset(struct super_block *sb, 757 struct kernel_lb_addr *fileset, 758 struct kernel_lb_addr *root) 759 { 760 struct buffer_head *bh = NULL; 761 long lastblock; 762 uint16_t ident; 763 struct udf_sb_info *sbi; 764 765 if (fileset->logicalBlockNum != 0xFFFFFFFF || 766 fileset->partitionReferenceNum != 0xFFFF) { 767 bh = udf_read_ptagged(sb, fileset, 0, &ident); 768 769 if (!bh) { 770 return 1; 771 } else if (ident != TAG_IDENT_FSD) { 772 brelse(bh); 773 return 1; 774 } 775 776 } 777 778 sbi = UDF_SB(sb); 779 if (!bh) { 780 /* Search backwards through the partitions */ 781 struct kernel_lb_addr newfileset; 782 783 /* --> cvg: FIXME - is it reasonable? */ 784 return 1; 785 786 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1; 787 (newfileset.partitionReferenceNum != 0xFFFF && 788 fileset->logicalBlockNum == 0xFFFFFFFF && 789 fileset->partitionReferenceNum == 0xFFFF); 790 newfileset.partitionReferenceNum--) { 791 lastblock = sbi->s_partmaps 792 [newfileset.partitionReferenceNum] 793 .s_partition_len; 794 newfileset.logicalBlockNum = 0; 795 796 do { 797 bh = udf_read_ptagged(sb, &newfileset, 0, 798 &ident); 799 if (!bh) { 800 newfileset.logicalBlockNum++; 801 continue; 802 } 803 804 switch (ident) { 805 case TAG_IDENT_SBD: 806 { 807 struct spaceBitmapDesc *sp; 808 sp = (struct spaceBitmapDesc *) 809 bh->b_data; 810 newfileset.logicalBlockNum += 1 + 811 ((le32_to_cpu(sp->numOfBytes) + 812 sizeof(struct spaceBitmapDesc) 813 - 1) >> sb->s_blocksize_bits); 814 brelse(bh); 815 break; 816 } 817 case TAG_IDENT_FSD: 818 *fileset = newfileset; 819 break; 820 default: 821 newfileset.logicalBlockNum++; 822 brelse(bh); 823 bh = NULL; 824 break; 825 } 826 } while (newfileset.logicalBlockNum < lastblock && 827 fileset->logicalBlockNum == 0xFFFFFFFF && 828 fileset->partitionReferenceNum == 0xFFFF); 829 } 830 } 831 832 if ((fileset->logicalBlockNum != 0xFFFFFFFF || 833 fileset->partitionReferenceNum != 0xFFFF) && bh) { 834 udf_debug("Fileset at block=%d, partition=%d\n", 835 fileset->logicalBlockNum, 836 fileset->partitionReferenceNum); 837 838 sbi->s_partition = fileset->partitionReferenceNum; 839 udf_load_fileset(sb, bh, root); 840 brelse(bh); 841 return 0; 842 } 843 return 1; 844 } 845 846 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 847 { 848 struct primaryVolDesc *pvoldesc; 849 struct ustr *instr, *outstr; 850 struct buffer_head *bh; 851 uint16_t ident; 852 int ret = 1; 853 854 instr = kmalloc(sizeof(struct ustr), GFP_NOFS); 855 if (!instr) 856 return 1; 857 858 outstr = kmalloc(sizeof(struct ustr), GFP_NOFS); 859 if (!outstr) 860 goto out1; 861 862 bh = udf_read_tagged(sb, block, block, &ident); 863 if (!bh) 864 goto out2; 865 866 BUG_ON(ident != TAG_IDENT_PVD); 867 868 pvoldesc = (struct primaryVolDesc *)bh->b_data; 869 870 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 871 pvoldesc->recordingDateAndTime)) { 872 #ifdef UDFFS_DEBUG 873 struct timestamp *ts = &pvoldesc->recordingDateAndTime; 874 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 875 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 876 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 877 #endif 878 } 879 880 if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) 881 if (udf_CS0toUTF8(outstr, instr)) { 882 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name, 883 outstr->u_len > 31 ? 31 : outstr->u_len); 884 udf_debug("volIdent[] = '%s'\n", 885 UDF_SB(sb)->s_volume_ident); 886 } 887 888 if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) 889 if (udf_CS0toUTF8(outstr, instr)) 890 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name); 891 892 brelse(bh); 893 ret = 0; 894 out2: 895 kfree(outstr); 896 out1: 897 kfree(instr); 898 return ret; 899 } 900 901 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 902 u32 meta_file_loc, u32 partition_num) 903 { 904 struct kernel_lb_addr addr; 905 struct inode *metadata_fe; 906 907 addr.logicalBlockNum = meta_file_loc; 908 addr.partitionReferenceNum = partition_num; 909 910 metadata_fe = udf_iget(sb, &addr); 911 912 if (metadata_fe == NULL) 913 udf_warn(sb, "metadata inode efe not found\n"); 914 else if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 915 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 916 iput(metadata_fe); 917 metadata_fe = NULL; 918 } 919 920 return metadata_fe; 921 } 922 923 static int udf_load_metadata_files(struct super_block *sb, int partition) 924 { 925 struct udf_sb_info *sbi = UDF_SB(sb); 926 struct udf_part_map *map; 927 struct udf_meta_data *mdata; 928 struct kernel_lb_addr addr; 929 930 map = &sbi->s_partmaps[partition]; 931 mdata = &map->s_type_specific.s_metadata; 932 933 /* metadata address */ 934 udf_debug("Metadata file location: block = %d part = %d\n", 935 mdata->s_meta_file_loc, map->s_partition_num); 936 937 mdata->s_metadata_fe = udf_find_metadata_inode_efe(sb, 938 mdata->s_meta_file_loc, map->s_partition_num); 939 940 if (mdata->s_metadata_fe == NULL) { 941 /* mirror file entry */ 942 udf_debug("Mirror metadata file location: block = %d part = %d\n", 943 mdata->s_mirror_file_loc, map->s_partition_num); 944 945 mdata->s_mirror_fe = udf_find_metadata_inode_efe(sb, 946 mdata->s_mirror_file_loc, map->s_partition_num); 947 948 if (mdata->s_mirror_fe == NULL) { 949 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 950 goto error_exit; 951 } 952 } 953 954 /* 955 * bitmap file entry 956 * Note: 957 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 958 */ 959 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 960 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 961 addr.partitionReferenceNum = map->s_partition_num; 962 963 udf_debug("Bitmap file location: block = %d part = %d\n", 964 addr.logicalBlockNum, addr.partitionReferenceNum); 965 966 mdata->s_bitmap_fe = udf_iget(sb, &addr); 967 968 if (mdata->s_bitmap_fe == NULL) { 969 if (sb->s_flags & MS_RDONLY) 970 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 971 else { 972 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 973 goto error_exit; 974 } 975 } 976 } 977 978 udf_debug("udf_load_metadata_files Ok\n"); 979 980 return 0; 981 982 error_exit: 983 return 1; 984 } 985 986 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 987 struct kernel_lb_addr *root) 988 { 989 struct fileSetDesc *fset; 990 991 fset = (struct fileSetDesc *)bh->b_data; 992 993 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 994 995 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 996 997 udf_debug("Rootdir at block=%d, partition=%d\n", 998 root->logicalBlockNum, root->partitionReferenceNum); 999 } 1000 1001 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 1002 { 1003 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 1004 return DIV_ROUND_UP(map->s_partition_len + 1005 (sizeof(struct spaceBitmapDesc) << 3), 1006 sb->s_blocksize * 8); 1007 } 1008 1009 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 1010 { 1011 struct udf_bitmap *bitmap; 1012 int nr_groups; 1013 int size; 1014 1015 nr_groups = udf_compute_nr_groups(sb, index); 1016 size = sizeof(struct udf_bitmap) + 1017 (sizeof(struct buffer_head *) * nr_groups); 1018 1019 if (size <= PAGE_SIZE) 1020 bitmap = kzalloc(size, GFP_KERNEL); 1021 else 1022 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */ 1023 1024 if (bitmap == NULL) 1025 return NULL; 1026 1027 bitmap->s_nr_groups = nr_groups; 1028 return bitmap; 1029 } 1030 1031 static int udf_fill_partdesc_info(struct super_block *sb, 1032 struct partitionDesc *p, int p_index) 1033 { 1034 struct udf_part_map *map; 1035 struct udf_sb_info *sbi = UDF_SB(sb); 1036 struct partitionHeaderDesc *phd; 1037 1038 map = &sbi->s_partmaps[p_index]; 1039 1040 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1041 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1042 1043 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1044 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1045 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1046 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1047 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1048 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1049 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1050 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1051 1052 udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n", 1053 p_index, map->s_partition_type, 1054 map->s_partition_root, map->s_partition_len); 1055 1056 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1057 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1058 return 0; 1059 1060 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1061 if (phd->unallocSpaceTable.extLength) { 1062 struct kernel_lb_addr loc = { 1063 .logicalBlockNum = le32_to_cpu( 1064 phd->unallocSpaceTable.extPosition), 1065 .partitionReferenceNum = p_index, 1066 }; 1067 1068 map->s_uspace.s_table = udf_iget(sb, &loc); 1069 if (!map->s_uspace.s_table) { 1070 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1071 p_index); 1072 return 1; 1073 } 1074 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1075 udf_debug("unallocSpaceTable (part %d) @ %ld\n", 1076 p_index, map->s_uspace.s_table->i_ino); 1077 } 1078 1079 if (phd->unallocSpaceBitmap.extLength) { 1080 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1081 if (!bitmap) 1082 return 1; 1083 map->s_uspace.s_bitmap = bitmap; 1084 bitmap->s_extPosition = le32_to_cpu( 1085 phd->unallocSpaceBitmap.extPosition); 1086 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1087 udf_debug("unallocSpaceBitmap (part %d) @ %d\n", 1088 p_index, bitmap->s_extPosition); 1089 } 1090 1091 if (phd->partitionIntegrityTable.extLength) 1092 udf_debug("partitionIntegrityTable (part %d)\n", p_index); 1093 1094 if (phd->freedSpaceTable.extLength) { 1095 struct kernel_lb_addr loc = { 1096 .logicalBlockNum = le32_to_cpu( 1097 phd->freedSpaceTable.extPosition), 1098 .partitionReferenceNum = p_index, 1099 }; 1100 1101 map->s_fspace.s_table = udf_iget(sb, &loc); 1102 if (!map->s_fspace.s_table) { 1103 udf_debug("cannot load freedSpaceTable (part %d)\n", 1104 p_index); 1105 return 1; 1106 } 1107 1108 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; 1109 udf_debug("freedSpaceTable (part %d) @ %ld\n", 1110 p_index, map->s_fspace.s_table->i_ino); 1111 } 1112 1113 if (phd->freedSpaceBitmap.extLength) { 1114 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1115 if (!bitmap) 1116 return 1; 1117 map->s_fspace.s_bitmap = bitmap; 1118 bitmap->s_extPosition = le32_to_cpu( 1119 phd->freedSpaceBitmap.extPosition); 1120 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; 1121 udf_debug("freedSpaceBitmap (part %d) @ %d\n", 1122 p_index, bitmap->s_extPosition); 1123 } 1124 return 0; 1125 } 1126 1127 static void udf_find_vat_block(struct super_block *sb, int p_index, 1128 int type1_index, sector_t start_block) 1129 { 1130 struct udf_sb_info *sbi = UDF_SB(sb); 1131 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1132 sector_t vat_block; 1133 struct kernel_lb_addr ino; 1134 1135 /* 1136 * VAT file entry is in the last recorded block. Some broken disks have 1137 * it a few blocks before so try a bit harder... 1138 */ 1139 ino.partitionReferenceNum = type1_index; 1140 for (vat_block = start_block; 1141 vat_block >= map->s_partition_root && 1142 vat_block >= start_block - 3 && 1143 !sbi->s_vat_inode; vat_block--) { 1144 ino.logicalBlockNum = vat_block - map->s_partition_root; 1145 sbi->s_vat_inode = udf_iget(sb, &ino); 1146 } 1147 } 1148 1149 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1150 { 1151 struct udf_sb_info *sbi = UDF_SB(sb); 1152 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1153 struct buffer_head *bh = NULL; 1154 struct udf_inode_info *vati; 1155 uint32_t pos; 1156 struct virtualAllocationTable20 *vat20; 1157 sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits; 1158 1159 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1160 if (!sbi->s_vat_inode && 1161 sbi->s_last_block != blocks - 1) { 1162 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1163 (unsigned long)sbi->s_last_block, 1164 (unsigned long)blocks - 1); 1165 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1166 } 1167 if (!sbi->s_vat_inode) 1168 return 1; 1169 1170 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1171 map->s_type_specific.s_virtual.s_start_offset = 0; 1172 map->s_type_specific.s_virtual.s_num_entries = 1173 (sbi->s_vat_inode->i_size - 36) >> 2; 1174 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1175 vati = UDF_I(sbi->s_vat_inode); 1176 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1177 pos = udf_block_map(sbi->s_vat_inode, 0); 1178 bh = sb_bread(sb, pos); 1179 if (!bh) 1180 return 1; 1181 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1182 } else { 1183 vat20 = (struct virtualAllocationTable20 *) 1184 vati->i_ext.i_data; 1185 } 1186 1187 map->s_type_specific.s_virtual.s_start_offset = 1188 le16_to_cpu(vat20->lengthHeader); 1189 map->s_type_specific.s_virtual.s_num_entries = 1190 (sbi->s_vat_inode->i_size - 1191 map->s_type_specific.s_virtual. 1192 s_start_offset) >> 2; 1193 brelse(bh); 1194 } 1195 return 0; 1196 } 1197 1198 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1199 { 1200 struct buffer_head *bh; 1201 struct partitionDesc *p; 1202 struct udf_part_map *map; 1203 struct udf_sb_info *sbi = UDF_SB(sb); 1204 int i, type1_idx; 1205 uint16_t partitionNumber; 1206 uint16_t ident; 1207 int ret = 0; 1208 1209 bh = udf_read_tagged(sb, block, block, &ident); 1210 if (!bh) 1211 return 1; 1212 if (ident != TAG_IDENT_PD) 1213 goto out_bh; 1214 1215 p = (struct partitionDesc *)bh->b_data; 1216 partitionNumber = le16_to_cpu(p->partitionNumber); 1217 1218 /* First scan for TYPE1, SPARABLE and METADATA partitions */ 1219 for (i = 0; i < sbi->s_partitions; i++) { 1220 map = &sbi->s_partmaps[i]; 1221 udf_debug("Searching map: (%d == %d)\n", 1222 map->s_partition_num, partitionNumber); 1223 if (map->s_partition_num == partitionNumber && 1224 (map->s_partition_type == UDF_TYPE1_MAP15 || 1225 map->s_partition_type == UDF_SPARABLE_MAP15)) 1226 break; 1227 } 1228 1229 if (i >= sbi->s_partitions) { 1230 udf_debug("Partition (%d) not found in partition map\n", 1231 partitionNumber); 1232 goto out_bh; 1233 } 1234 1235 ret = udf_fill_partdesc_info(sb, p, i); 1236 1237 /* 1238 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1239 * PHYSICAL partitions are already set up 1240 */ 1241 type1_idx = i; 1242 for (i = 0; i < sbi->s_partitions; i++) { 1243 map = &sbi->s_partmaps[i]; 1244 1245 if (map->s_partition_num == partitionNumber && 1246 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1247 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1248 map->s_partition_type == UDF_METADATA_MAP25)) 1249 break; 1250 } 1251 1252 if (i >= sbi->s_partitions) 1253 goto out_bh; 1254 1255 ret = udf_fill_partdesc_info(sb, p, i); 1256 if (ret) 1257 goto out_bh; 1258 1259 if (map->s_partition_type == UDF_METADATA_MAP25) { 1260 ret = udf_load_metadata_files(sb, i); 1261 if (ret) { 1262 udf_err(sb, "error loading MetaData partition map %d\n", 1263 i); 1264 goto out_bh; 1265 } 1266 } else { 1267 ret = udf_load_vat(sb, i, type1_idx); 1268 if (ret) 1269 goto out_bh; 1270 /* 1271 * Mark filesystem read-only if we have a partition with 1272 * virtual map since we don't handle writing to it (we 1273 * overwrite blocks instead of relocating them). 1274 */ 1275 sb->s_flags |= MS_RDONLY; 1276 pr_notice("Filesystem marked read-only because writing to pseudooverwrite partition is not implemented\n"); 1277 } 1278 out_bh: 1279 /* In case loading failed, we handle cleanup in udf_fill_super */ 1280 brelse(bh); 1281 return ret; 1282 } 1283 1284 static int udf_load_sparable_map(struct super_block *sb, 1285 struct udf_part_map *map, 1286 struct sparablePartitionMap *spm) 1287 { 1288 uint32_t loc; 1289 uint16_t ident; 1290 struct sparingTable *st; 1291 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1292 int i; 1293 struct buffer_head *bh; 1294 1295 map->s_partition_type = UDF_SPARABLE_MAP15; 1296 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1297 if (!is_power_of_2(sdata->s_packet_len)) { 1298 udf_err(sb, "error loading logical volume descriptor: " 1299 "Invalid packet length %u\n", 1300 (unsigned)sdata->s_packet_len); 1301 return -EIO; 1302 } 1303 if (spm->numSparingTables > 4) { 1304 udf_err(sb, "error loading logical volume descriptor: " 1305 "Too many sparing tables (%d)\n", 1306 (int)spm->numSparingTables); 1307 return -EIO; 1308 } 1309 1310 for (i = 0; i < spm->numSparingTables; i++) { 1311 loc = le32_to_cpu(spm->locSparingTable[i]); 1312 bh = udf_read_tagged(sb, loc, loc, &ident); 1313 if (!bh) 1314 continue; 1315 1316 st = (struct sparingTable *)bh->b_data; 1317 if (ident != 0 || 1318 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1319 strlen(UDF_ID_SPARING)) || 1320 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1321 sb->s_blocksize) { 1322 brelse(bh); 1323 continue; 1324 } 1325 1326 sdata->s_spar_map[i] = bh; 1327 } 1328 map->s_partition_func = udf_get_pblock_spar15; 1329 return 0; 1330 } 1331 1332 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1333 struct kernel_lb_addr *fileset) 1334 { 1335 struct logicalVolDesc *lvd; 1336 int i, offset; 1337 uint8_t type; 1338 struct udf_sb_info *sbi = UDF_SB(sb); 1339 struct genericPartitionMap *gpm; 1340 uint16_t ident; 1341 struct buffer_head *bh; 1342 unsigned int table_len; 1343 int ret = 0; 1344 1345 bh = udf_read_tagged(sb, block, block, &ident); 1346 if (!bh) 1347 return 1; 1348 BUG_ON(ident != TAG_IDENT_LVD); 1349 lvd = (struct logicalVolDesc *)bh->b_data; 1350 table_len = le32_to_cpu(lvd->mapTableLength); 1351 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1352 udf_err(sb, "error loading logical volume descriptor: " 1353 "Partition table too long (%u > %lu)\n", table_len, 1354 sb->s_blocksize - sizeof(*lvd)); 1355 ret = 1; 1356 goto out_bh; 1357 } 1358 1359 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1360 if (ret) 1361 goto out_bh; 1362 1363 for (i = 0, offset = 0; 1364 i < sbi->s_partitions && offset < table_len; 1365 i++, offset += gpm->partitionMapLength) { 1366 struct udf_part_map *map = &sbi->s_partmaps[i]; 1367 gpm = (struct genericPartitionMap *) 1368 &(lvd->partitionMaps[offset]); 1369 type = gpm->partitionMapType; 1370 if (type == 1) { 1371 struct genericPartitionMap1 *gpm1 = 1372 (struct genericPartitionMap1 *)gpm; 1373 map->s_partition_type = UDF_TYPE1_MAP15; 1374 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1375 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1376 map->s_partition_func = NULL; 1377 } else if (type == 2) { 1378 struct udfPartitionMap2 *upm2 = 1379 (struct udfPartitionMap2 *)gpm; 1380 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1381 strlen(UDF_ID_VIRTUAL))) { 1382 u16 suf = 1383 le16_to_cpu(((__le16 *)upm2->partIdent. 1384 identSuffix)[0]); 1385 if (suf < 0x0200) { 1386 map->s_partition_type = 1387 UDF_VIRTUAL_MAP15; 1388 map->s_partition_func = 1389 udf_get_pblock_virt15; 1390 } else { 1391 map->s_partition_type = 1392 UDF_VIRTUAL_MAP20; 1393 map->s_partition_func = 1394 udf_get_pblock_virt20; 1395 } 1396 } else if (!strncmp(upm2->partIdent.ident, 1397 UDF_ID_SPARABLE, 1398 strlen(UDF_ID_SPARABLE))) { 1399 if (udf_load_sparable_map(sb, map, 1400 (struct sparablePartitionMap *)gpm) < 0) { 1401 ret = 1; 1402 goto out_bh; 1403 } 1404 } else if (!strncmp(upm2->partIdent.ident, 1405 UDF_ID_METADATA, 1406 strlen(UDF_ID_METADATA))) { 1407 struct udf_meta_data *mdata = 1408 &map->s_type_specific.s_metadata; 1409 struct metadataPartitionMap *mdm = 1410 (struct metadataPartitionMap *) 1411 &(lvd->partitionMaps[offset]); 1412 udf_debug("Parsing Logical vol part %d type %d id=%s\n", 1413 i, type, UDF_ID_METADATA); 1414 1415 map->s_partition_type = UDF_METADATA_MAP25; 1416 map->s_partition_func = udf_get_pblock_meta25; 1417 1418 mdata->s_meta_file_loc = 1419 le32_to_cpu(mdm->metadataFileLoc); 1420 mdata->s_mirror_file_loc = 1421 le32_to_cpu(mdm->metadataMirrorFileLoc); 1422 mdata->s_bitmap_file_loc = 1423 le32_to_cpu(mdm->metadataBitmapFileLoc); 1424 mdata->s_alloc_unit_size = 1425 le32_to_cpu(mdm->allocUnitSize); 1426 mdata->s_align_unit_size = 1427 le16_to_cpu(mdm->alignUnitSize); 1428 if (mdm->flags & 0x01) 1429 mdata->s_flags |= MF_DUPLICATE_MD; 1430 1431 udf_debug("Metadata Ident suffix=0x%x\n", 1432 le16_to_cpu(*(__le16 *) 1433 mdm->partIdent.identSuffix)); 1434 udf_debug("Metadata part num=%d\n", 1435 le16_to_cpu(mdm->partitionNum)); 1436 udf_debug("Metadata part alloc unit size=%d\n", 1437 le32_to_cpu(mdm->allocUnitSize)); 1438 udf_debug("Metadata file loc=%d\n", 1439 le32_to_cpu(mdm->metadataFileLoc)); 1440 udf_debug("Mirror file loc=%d\n", 1441 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1442 udf_debug("Bitmap file loc=%d\n", 1443 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1444 udf_debug("Flags: %d %d\n", 1445 mdata->s_flags, mdm->flags); 1446 } else { 1447 udf_debug("Unknown ident: %s\n", 1448 upm2->partIdent.ident); 1449 continue; 1450 } 1451 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1452 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1453 } 1454 udf_debug("Partition (%d:%d) type %d on volume %d\n", 1455 i, map->s_partition_num, type, map->s_volumeseqnum); 1456 } 1457 1458 if (fileset) { 1459 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1460 1461 *fileset = lelb_to_cpu(la->extLocation); 1462 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n", 1463 fileset->logicalBlockNum, 1464 fileset->partitionReferenceNum); 1465 } 1466 if (lvd->integritySeqExt.extLength) 1467 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1468 1469 out_bh: 1470 brelse(bh); 1471 return ret; 1472 } 1473 1474 /* 1475 * udf_load_logicalvolint 1476 * 1477 */ 1478 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1479 { 1480 struct buffer_head *bh = NULL; 1481 uint16_t ident; 1482 struct udf_sb_info *sbi = UDF_SB(sb); 1483 struct logicalVolIntegrityDesc *lvid; 1484 1485 while (loc.extLength > 0 && 1486 (bh = udf_read_tagged(sb, loc.extLocation, 1487 loc.extLocation, &ident)) && 1488 ident == TAG_IDENT_LVID) { 1489 sbi->s_lvid_bh = bh; 1490 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1491 1492 if (lvid->nextIntegrityExt.extLength) 1493 udf_load_logicalvolint(sb, 1494 leea_to_cpu(lvid->nextIntegrityExt)); 1495 1496 if (sbi->s_lvid_bh != bh) 1497 brelse(bh); 1498 loc.extLength -= sb->s_blocksize; 1499 loc.extLocation++; 1500 } 1501 if (sbi->s_lvid_bh != bh) 1502 brelse(bh); 1503 } 1504 1505 /* 1506 * udf_process_sequence 1507 * 1508 * PURPOSE 1509 * Process a main/reserve volume descriptor sequence. 1510 * 1511 * PRE-CONDITIONS 1512 * sb Pointer to _locked_ superblock. 1513 * block First block of first extent of the sequence. 1514 * lastblock Lastblock of first extent of the sequence. 1515 * 1516 * HISTORY 1517 * July 1, 1997 - Andrew E. Mileski 1518 * Written, tested, and released. 1519 */ 1520 static noinline int udf_process_sequence(struct super_block *sb, long block, 1521 long lastblock, struct kernel_lb_addr *fileset) 1522 { 1523 struct buffer_head *bh = NULL; 1524 struct udf_vds_record vds[VDS_POS_LENGTH]; 1525 struct udf_vds_record *curr; 1526 struct generic_desc *gd; 1527 struct volDescPtr *vdp; 1528 int done = 0; 1529 uint32_t vdsn; 1530 uint16_t ident; 1531 long next_s = 0, next_e = 0; 1532 1533 memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1534 1535 /* 1536 * Read the main descriptor sequence and find which descriptors 1537 * are in it. 1538 */ 1539 for (; (!done && block <= lastblock); block++) { 1540 1541 bh = udf_read_tagged(sb, block, block, &ident); 1542 if (!bh) { 1543 udf_err(sb, 1544 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n", 1545 (unsigned long long)block); 1546 return 1; 1547 } 1548 1549 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1550 gd = (struct generic_desc *)bh->b_data; 1551 vdsn = le32_to_cpu(gd->volDescSeqNum); 1552 switch (ident) { 1553 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1554 curr = &vds[VDS_POS_PRIMARY_VOL_DESC]; 1555 if (vdsn >= curr->volDescSeqNum) { 1556 curr->volDescSeqNum = vdsn; 1557 curr->block = block; 1558 } 1559 break; 1560 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1561 curr = &vds[VDS_POS_VOL_DESC_PTR]; 1562 if (vdsn >= curr->volDescSeqNum) { 1563 curr->volDescSeqNum = vdsn; 1564 curr->block = block; 1565 1566 vdp = (struct volDescPtr *)bh->b_data; 1567 next_s = le32_to_cpu( 1568 vdp->nextVolDescSeqExt.extLocation); 1569 next_e = le32_to_cpu( 1570 vdp->nextVolDescSeqExt.extLength); 1571 next_e = next_e >> sb->s_blocksize_bits; 1572 next_e += next_s; 1573 } 1574 break; 1575 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1576 curr = &vds[VDS_POS_IMP_USE_VOL_DESC]; 1577 if (vdsn >= curr->volDescSeqNum) { 1578 curr->volDescSeqNum = vdsn; 1579 curr->block = block; 1580 } 1581 break; 1582 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1583 curr = &vds[VDS_POS_PARTITION_DESC]; 1584 if (!curr->block) 1585 curr->block = block; 1586 break; 1587 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1588 curr = &vds[VDS_POS_LOGICAL_VOL_DESC]; 1589 if (vdsn >= curr->volDescSeqNum) { 1590 curr->volDescSeqNum = vdsn; 1591 curr->block = block; 1592 } 1593 break; 1594 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1595 curr = &vds[VDS_POS_UNALLOC_SPACE_DESC]; 1596 if (vdsn >= curr->volDescSeqNum) { 1597 curr->volDescSeqNum = vdsn; 1598 curr->block = block; 1599 } 1600 break; 1601 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1602 vds[VDS_POS_TERMINATING_DESC].block = block; 1603 if (next_e) { 1604 block = next_s; 1605 lastblock = next_e; 1606 next_s = next_e = 0; 1607 } else 1608 done = 1; 1609 break; 1610 } 1611 brelse(bh); 1612 } 1613 /* 1614 * Now read interesting descriptors again and process them 1615 * in a suitable order 1616 */ 1617 if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1618 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1619 return 1; 1620 } 1621 if (udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block)) 1622 return 1; 1623 1624 if (vds[VDS_POS_LOGICAL_VOL_DESC].block && udf_load_logicalvol(sb, 1625 vds[VDS_POS_LOGICAL_VOL_DESC].block, fileset)) 1626 return 1; 1627 1628 if (vds[VDS_POS_PARTITION_DESC].block) { 1629 /* 1630 * We rescan the whole descriptor sequence to find 1631 * partition descriptor blocks and process them. 1632 */ 1633 for (block = vds[VDS_POS_PARTITION_DESC].block; 1634 block < vds[VDS_POS_TERMINATING_DESC].block; 1635 block++) 1636 if (udf_load_partdesc(sb, block)) 1637 return 1; 1638 } 1639 1640 return 0; 1641 } 1642 1643 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1644 struct kernel_lb_addr *fileset) 1645 { 1646 struct anchorVolDescPtr *anchor; 1647 long main_s, main_e, reserve_s, reserve_e; 1648 1649 anchor = (struct anchorVolDescPtr *)bh->b_data; 1650 1651 /* Locate the main sequence */ 1652 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1653 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1654 main_e = main_e >> sb->s_blocksize_bits; 1655 main_e += main_s; 1656 1657 /* Locate the reserve sequence */ 1658 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1659 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1660 reserve_e = reserve_e >> sb->s_blocksize_bits; 1661 reserve_e += reserve_s; 1662 1663 /* Process the main & reserve sequences */ 1664 /* responsible for finding the PartitionDesc(s) */ 1665 if (!udf_process_sequence(sb, main_s, main_e, fileset)) 1666 return 1; 1667 udf_sb_free_partitions(sb); 1668 if (!udf_process_sequence(sb, reserve_s, reserve_e, fileset)) 1669 return 1; 1670 udf_sb_free_partitions(sb); 1671 return 0; 1672 } 1673 1674 /* 1675 * Check whether there is an anchor block in the given block and 1676 * load Volume Descriptor Sequence if so. 1677 */ 1678 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1679 struct kernel_lb_addr *fileset) 1680 { 1681 struct buffer_head *bh; 1682 uint16_t ident; 1683 int ret; 1684 1685 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1686 udf_fixed_to_variable(block) >= 1687 sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits) 1688 return 0; 1689 1690 bh = udf_read_tagged(sb, block, block, &ident); 1691 if (!bh) 1692 return 0; 1693 if (ident != TAG_IDENT_AVDP) { 1694 brelse(bh); 1695 return 0; 1696 } 1697 ret = udf_load_sequence(sb, bh, fileset); 1698 brelse(bh); 1699 return ret; 1700 } 1701 1702 /* Search for an anchor volume descriptor pointer */ 1703 static sector_t udf_scan_anchors(struct super_block *sb, sector_t lastblock, 1704 struct kernel_lb_addr *fileset) 1705 { 1706 sector_t last[6]; 1707 int i; 1708 struct udf_sb_info *sbi = UDF_SB(sb); 1709 int last_count = 0; 1710 1711 /* First try user provided anchor */ 1712 if (sbi->s_anchor) { 1713 if (udf_check_anchor_block(sb, sbi->s_anchor, fileset)) 1714 return lastblock; 1715 } 1716 /* 1717 * according to spec, anchor is in either: 1718 * block 256 1719 * lastblock-256 1720 * lastblock 1721 * however, if the disc isn't closed, it could be 512. 1722 */ 1723 if (udf_check_anchor_block(sb, sbi->s_session + 256, fileset)) 1724 return lastblock; 1725 /* 1726 * The trouble is which block is the last one. Drives often misreport 1727 * this so we try various possibilities. 1728 */ 1729 last[last_count++] = lastblock; 1730 if (lastblock >= 1) 1731 last[last_count++] = lastblock - 1; 1732 last[last_count++] = lastblock + 1; 1733 if (lastblock >= 2) 1734 last[last_count++] = lastblock - 2; 1735 if (lastblock >= 150) 1736 last[last_count++] = lastblock - 150; 1737 if (lastblock >= 152) 1738 last[last_count++] = lastblock - 152; 1739 1740 for (i = 0; i < last_count; i++) { 1741 if (last[i] >= sb->s_bdev->bd_inode->i_size >> 1742 sb->s_blocksize_bits) 1743 continue; 1744 if (udf_check_anchor_block(sb, last[i], fileset)) 1745 return last[i]; 1746 if (last[i] < 256) 1747 continue; 1748 if (udf_check_anchor_block(sb, last[i] - 256, fileset)) 1749 return last[i]; 1750 } 1751 1752 /* Finally try block 512 in case media is open */ 1753 if (udf_check_anchor_block(sb, sbi->s_session + 512, fileset)) 1754 return last[0]; 1755 return 0; 1756 } 1757 1758 /* 1759 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1760 * area specified by it. The function expects sbi->s_lastblock to be the last 1761 * block on the media. 1762 * 1763 * Return 1 if ok, 0 if not found. 1764 * 1765 */ 1766 static int udf_find_anchor(struct super_block *sb, 1767 struct kernel_lb_addr *fileset) 1768 { 1769 sector_t lastblock; 1770 struct udf_sb_info *sbi = UDF_SB(sb); 1771 1772 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset); 1773 if (lastblock) 1774 goto out; 1775 1776 /* No anchor found? Try VARCONV conversion of block numbers */ 1777 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1778 /* Firstly, we try to not convert number of the last block */ 1779 lastblock = udf_scan_anchors(sb, 1780 udf_variable_to_fixed(sbi->s_last_block), 1781 fileset); 1782 if (lastblock) 1783 goto out; 1784 1785 /* Secondly, we try with converted number of the last block */ 1786 lastblock = udf_scan_anchors(sb, sbi->s_last_block, fileset); 1787 if (!lastblock) { 1788 /* VARCONV didn't help. Clear it. */ 1789 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1790 return 0; 1791 } 1792 out: 1793 sbi->s_last_block = lastblock; 1794 return 1; 1795 } 1796 1797 /* 1798 * Check Volume Structure Descriptor, find Anchor block and load Volume 1799 * Descriptor Sequence 1800 */ 1801 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1802 int silent, struct kernel_lb_addr *fileset) 1803 { 1804 struct udf_sb_info *sbi = UDF_SB(sb); 1805 loff_t nsr_off; 1806 1807 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1808 if (!silent) 1809 udf_warn(sb, "Bad block size\n"); 1810 return 0; 1811 } 1812 sbi->s_last_block = uopt->lastblock; 1813 if (!uopt->novrs) { 1814 /* Check that it is NSR02 compliant */ 1815 nsr_off = udf_check_vsd(sb); 1816 if (!nsr_off) { 1817 if (!silent) 1818 udf_warn(sb, "No VRS found\n"); 1819 return 0; 1820 } 1821 if (nsr_off == -1) 1822 udf_debug("Failed to read byte 32768. Assuming open disc. Skipping validity check\n"); 1823 if (!sbi->s_last_block) 1824 sbi->s_last_block = udf_get_last_block(sb); 1825 } else { 1826 udf_debug("Validity check skipped because of novrs option\n"); 1827 } 1828 1829 /* Look for anchor block and load Volume Descriptor Sequence */ 1830 sbi->s_anchor = uopt->anchor; 1831 if (!udf_find_anchor(sb, fileset)) { 1832 if (!silent) 1833 udf_warn(sb, "No anchor found\n"); 1834 return 0; 1835 } 1836 return 1; 1837 } 1838 1839 static void udf_open_lvid(struct super_block *sb) 1840 { 1841 struct udf_sb_info *sbi = UDF_SB(sb); 1842 struct buffer_head *bh = sbi->s_lvid_bh; 1843 struct logicalVolIntegrityDesc *lvid; 1844 struct logicalVolIntegrityDescImpUse *lvidiu; 1845 1846 if (!bh) 1847 return; 1848 1849 mutex_lock(&sbi->s_alloc_mutex); 1850 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1851 lvidiu = udf_sb_lvidiu(sbi); 1852 1853 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1854 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1855 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, 1856 CURRENT_TIME); 1857 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 1858 1859 lvid->descTag.descCRC = cpu_to_le16( 1860 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1861 le16_to_cpu(lvid->descTag.descCRCLength))); 1862 1863 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1864 mark_buffer_dirty(bh); 1865 sbi->s_lvid_dirty = 0; 1866 mutex_unlock(&sbi->s_alloc_mutex); 1867 /* Make opening of filesystem visible on the media immediately */ 1868 sync_dirty_buffer(bh); 1869 } 1870 1871 static void udf_close_lvid(struct super_block *sb) 1872 { 1873 struct udf_sb_info *sbi = UDF_SB(sb); 1874 struct buffer_head *bh = sbi->s_lvid_bh; 1875 struct logicalVolIntegrityDesc *lvid; 1876 struct logicalVolIntegrityDescImpUse *lvidiu; 1877 1878 if (!bh) 1879 return; 1880 1881 mutex_lock(&sbi->s_alloc_mutex); 1882 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1883 lvidiu = udf_sb_lvidiu(sbi); 1884 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1885 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1886 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME); 1887 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 1888 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 1889 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 1890 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 1891 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 1892 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 1893 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 1894 1895 lvid->descTag.descCRC = cpu_to_le16( 1896 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 1897 le16_to_cpu(lvid->descTag.descCRCLength))); 1898 1899 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 1900 /* 1901 * We set buffer uptodate unconditionally here to avoid spurious 1902 * warnings from mark_buffer_dirty() when previous EIO has marked 1903 * the buffer as !uptodate 1904 */ 1905 set_buffer_uptodate(bh); 1906 mark_buffer_dirty(bh); 1907 sbi->s_lvid_dirty = 0; 1908 mutex_unlock(&sbi->s_alloc_mutex); 1909 /* Make closing of filesystem visible on the media immediately */ 1910 sync_dirty_buffer(bh); 1911 } 1912 1913 u64 lvid_get_unique_id(struct super_block *sb) 1914 { 1915 struct buffer_head *bh; 1916 struct udf_sb_info *sbi = UDF_SB(sb); 1917 struct logicalVolIntegrityDesc *lvid; 1918 struct logicalVolHeaderDesc *lvhd; 1919 u64 uniqueID; 1920 u64 ret; 1921 1922 bh = sbi->s_lvid_bh; 1923 if (!bh) 1924 return 0; 1925 1926 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1927 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 1928 1929 mutex_lock(&sbi->s_alloc_mutex); 1930 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 1931 if (!(++uniqueID & 0xFFFFFFFF)) 1932 uniqueID += 16; 1933 lvhd->uniqueID = cpu_to_le64(uniqueID); 1934 mutex_unlock(&sbi->s_alloc_mutex); 1935 mark_buffer_dirty(bh); 1936 1937 return ret; 1938 } 1939 1940 static int udf_fill_super(struct super_block *sb, void *options, int silent) 1941 { 1942 int ret; 1943 struct inode *inode = NULL; 1944 struct udf_options uopt; 1945 struct kernel_lb_addr rootdir, fileset; 1946 struct udf_sb_info *sbi; 1947 1948 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 1949 uopt.uid = INVALID_UID; 1950 uopt.gid = INVALID_GID; 1951 uopt.umask = 0; 1952 uopt.fmode = UDF_INVALID_MODE; 1953 uopt.dmode = UDF_INVALID_MODE; 1954 1955 sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL); 1956 if (!sbi) 1957 return -ENOMEM; 1958 1959 sb->s_fs_info = sbi; 1960 1961 mutex_init(&sbi->s_alloc_mutex); 1962 1963 if (!udf_parse_options((char *)options, &uopt, false)) 1964 goto error_out; 1965 1966 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 1967 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 1968 udf_err(sb, "utf8 cannot be combined with iocharset\n"); 1969 goto error_out; 1970 } 1971 #ifdef CONFIG_UDF_NLS 1972 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 1973 uopt.nls_map = load_nls_default(); 1974 if (!uopt.nls_map) 1975 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 1976 else 1977 udf_debug("Using default NLS map\n"); 1978 } 1979 #endif 1980 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 1981 uopt.flags |= (1 << UDF_FLAG_UTF8); 1982 1983 fileset.logicalBlockNum = 0xFFFFFFFF; 1984 fileset.partitionReferenceNum = 0xFFFF; 1985 1986 sbi->s_flags = uopt.flags; 1987 sbi->s_uid = uopt.uid; 1988 sbi->s_gid = uopt.gid; 1989 sbi->s_umask = uopt.umask; 1990 sbi->s_fmode = uopt.fmode; 1991 sbi->s_dmode = uopt.dmode; 1992 sbi->s_nls_map = uopt.nls_map; 1993 rwlock_init(&sbi->s_cred_lock); 1994 1995 if (uopt.session == 0xFFFFFFFF) 1996 sbi->s_session = udf_get_last_session(sb); 1997 else 1998 sbi->s_session = uopt.session; 1999 2000 udf_debug("Multi-session=%d\n", sbi->s_session); 2001 2002 /* Fill in the rest of the superblock */ 2003 sb->s_op = &udf_sb_ops; 2004 sb->s_export_op = &udf_export_ops; 2005 2006 sb->s_magic = UDF_SUPER_MAGIC; 2007 sb->s_time_gran = 1000; 2008 2009 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2010 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2011 } else { 2012 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2013 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2014 if (!ret && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) { 2015 if (!silent) 2016 pr_notice("Rescanning with blocksize %d\n", 2017 UDF_DEFAULT_BLOCKSIZE); 2018 brelse(sbi->s_lvid_bh); 2019 sbi->s_lvid_bh = NULL; 2020 uopt.blocksize = UDF_DEFAULT_BLOCKSIZE; 2021 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2022 } 2023 } 2024 if (!ret) { 2025 udf_warn(sb, "No partition found (1)\n"); 2026 goto error_out; 2027 } 2028 2029 udf_debug("Lastblock=%d\n", sbi->s_last_block); 2030 2031 if (sbi->s_lvid_bh) { 2032 struct logicalVolIntegrityDescImpUse *lvidiu = 2033 udf_sb_lvidiu(sbi); 2034 uint16_t minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2035 uint16_t minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2036 /* uint16_t maxUDFWriteRev = 2037 le16_to_cpu(lvidiu->maxUDFWriteRev); */ 2038 2039 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2040 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2041 le16_to_cpu(lvidiu->minUDFReadRev), 2042 UDF_MAX_READ_VERSION); 2043 goto error_out; 2044 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) 2045 sb->s_flags |= MS_RDONLY; 2046 2047 sbi->s_udfrev = minUDFWriteRev; 2048 2049 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2050 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2051 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2052 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2053 } 2054 2055 if (!sbi->s_partitions) { 2056 udf_warn(sb, "No partition found (2)\n"); 2057 goto error_out; 2058 } 2059 2060 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2061 UDF_PART_FLAG_READ_ONLY) { 2062 pr_notice("Partition marked readonly; forcing readonly mount\n"); 2063 sb->s_flags |= MS_RDONLY; 2064 } 2065 2066 if (udf_find_fileset(sb, &fileset, &rootdir)) { 2067 udf_warn(sb, "No fileset found\n"); 2068 goto error_out; 2069 } 2070 2071 if (!silent) { 2072 struct timestamp ts; 2073 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2074 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2075 sbi->s_volume_ident, 2076 le16_to_cpu(ts.year), ts.month, ts.day, 2077 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2078 } 2079 if (!(sb->s_flags & MS_RDONLY)) 2080 udf_open_lvid(sb); 2081 2082 /* Assign the root inode */ 2083 /* assign inodes by physical block number */ 2084 /* perhaps it's not extensible enough, but for now ... */ 2085 inode = udf_iget(sb, &rootdir); 2086 if (!inode) { 2087 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n", 2088 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2089 goto error_out; 2090 } 2091 2092 /* Allocate a dentry for the root inode */ 2093 sb->s_root = d_make_root(inode); 2094 if (!sb->s_root) { 2095 udf_err(sb, "Couldn't allocate root dentry\n"); 2096 goto error_out; 2097 } 2098 sb->s_maxbytes = MAX_LFS_FILESIZE; 2099 sb->s_max_links = UDF_MAX_LINKS; 2100 return 0; 2101 2102 error_out: 2103 if (sbi->s_vat_inode) 2104 iput(sbi->s_vat_inode); 2105 #ifdef CONFIG_UDF_NLS 2106 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2107 unload_nls(sbi->s_nls_map); 2108 #endif 2109 if (!(sb->s_flags & MS_RDONLY)) 2110 udf_close_lvid(sb); 2111 brelse(sbi->s_lvid_bh); 2112 udf_sb_free_partitions(sb); 2113 kfree(sbi); 2114 sb->s_fs_info = NULL; 2115 2116 return -EINVAL; 2117 } 2118 2119 void _udf_err(struct super_block *sb, const char *function, 2120 const char *fmt, ...) 2121 { 2122 struct va_format vaf; 2123 va_list args; 2124 2125 va_start(args, fmt); 2126 2127 vaf.fmt = fmt; 2128 vaf.va = &args; 2129 2130 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2131 2132 va_end(args); 2133 } 2134 2135 void _udf_warn(struct super_block *sb, const char *function, 2136 const char *fmt, ...) 2137 { 2138 struct va_format vaf; 2139 va_list args; 2140 2141 va_start(args, fmt); 2142 2143 vaf.fmt = fmt; 2144 vaf.va = &args; 2145 2146 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2147 2148 va_end(args); 2149 } 2150 2151 static void udf_put_super(struct super_block *sb) 2152 { 2153 struct udf_sb_info *sbi; 2154 2155 sbi = UDF_SB(sb); 2156 2157 if (sbi->s_vat_inode) 2158 iput(sbi->s_vat_inode); 2159 #ifdef CONFIG_UDF_NLS 2160 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2161 unload_nls(sbi->s_nls_map); 2162 #endif 2163 if (!(sb->s_flags & MS_RDONLY)) 2164 udf_close_lvid(sb); 2165 brelse(sbi->s_lvid_bh); 2166 udf_sb_free_partitions(sb); 2167 kfree(sb->s_fs_info); 2168 sb->s_fs_info = NULL; 2169 } 2170 2171 static int udf_sync_fs(struct super_block *sb, int wait) 2172 { 2173 struct udf_sb_info *sbi = UDF_SB(sb); 2174 2175 mutex_lock(&sbi->s_alloc_mutex); 2176 if (sbi->s_lvid_dirty) { 2177 /* 2178 * Blockdevice will be synced later so we don't have to submit 2179 * the buffer for IO 2180 */ 2181 mark_buffer_dirty(sbi->s_lvid_bh); 2182 sbi->s_lvid_dirty = 0; 2183 } 2184 mutex_unlock(&sbi->s_alloc_mutex); 2185 2186 return 0; 2187 } 2188 2189 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2190 { 2191 struct super_block *sb = dentry->d_sb; 2192 struct udf_sb_info *sbi = UDF_SB(sb); 2193 struct logicalVolIntegrityDescImpUse *lvidiu; 2194 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2195 2196 if (sbi->s_lvid_bh != NULL) 2197 lvidiu = udf_sb_lvidiu(sbi); 2198 else 2199 lvidiu = NULL; 2200 2201 buf->f_type = UDF_SUPER_MAGIC; 2202 buf->f_bsize = sb->s_blocksize; 2203 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2204 buf->f_bfree = udf_count_free(sb); 2205 buf->f_bavail = buf->f_bfree; 2206 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2207 le32_to_cpu(lvidiu->numDirs)) : 0) 2208 + buf->f_bfree; 2209 buf->f_ffree = buf->f_bfree; 2210 buf->f_namelen = UDF_NAME_LEN - 2; 2211 buf->f_fsid.val[0] = (u32)id; 2212 buf->f_fsid.val[1] = (u32)(id >> 32); 2213 2214 return 0; 2215 } 2216 2217 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2218 struct udf_bitmap *bitmap) 2219 { 2220 struct buffer_head *bh = NULL; 2221 unsigned int accum = 0; 2222 int index; 2223 int block = 0, newblock; 2224 struct kernel_lb_addr loc; 2225 uint32_t bytes; 2226 uint8_t *ptr; 2227 uint16_t ident; 2228 struct spaceBitmapDesc *bm; 2229 2230 loc.logicalBlockNum = bitmap->s_extPosition; 2231 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2232 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2233 2234 if (!bh) { 2235 udf_err(sb, "udf_count_free failed\n"); 2236 goto out; 2237 } else if (ident != TAG_IDENT_SBD) { 2238 brelse(bh); 2239 udf_err(sb, "udf_count_free failed\n"); 2240 goto out; 2241 } 2242 2243 bm = (struct spaceBitmapDesc *)bh->b_data; 2244 bytes = le32_to_cpu(bm->numOfBytes); 2245 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2246 ptr = (uint8_t *)bh->b_data; 2247 2248 while (bytes > 0) { 2249 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2250 accum += bitmap_weight((const unsigned long *)(ptr + index), 2251 cur_bytes * 8); 2252 bytes -= cur_bytes; 2253 if (bytes) { 2254 brelse(bh); 2255 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2256 bh = udf_tread(sb, newblock); 2257 if (!bh) { 2258 udf_debug("read failed\n"); 2259 goto out; 2260 } 2261 index = 0; 2262 ptr = (uint8_t *)bh->b_data; 2263 } 2264 } 2265 brelse(bh); 2266 out: 2267 return accum; 2268 } 2269 2270 static unsigned int udf_count_free_table(struct super_block *sb, 2271 struct inode *table) 2272 { 2273 unsigned int accum = 0; 2274 uint32_t elen; 2275 struct kernel_lb_addr eloc; 2276 int8_t etype; 2277 struct extent_position epos; 2278 2279 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2280 epos.block = UDF_I(table)->i_location; 2281 epos.offset = sizeof(struct unallocSpaceEntry); 2282 epos.bh = NULL; 2283 2284 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2285 accum += (elen >> table->i_sb->s_blocksize_bits); 2286 2287 brelse(epos.bh); 2288 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2289 2290 return accum; 2291 } 2292 2293 static unsigned int udf_count_free(struct super_block *sb) 2294 { 2295 unsigned int accum = 0; 2296 struct udf_sb_info *sbi; 2297 struct udf_part_map *map; 2298 2299 sbi = UDF_SB(sb); 2300 if (sbi->s_lvid_bh) { 2301 struct logicalVolIntegrityDesc *lvid = 2302 (struct logicalVolIntegrityDesc *) 2303 sbi->s_lvid_bh->b_data; 2304 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2305 accum = le32_to_cpu( 2306 lvid->freeSpaceTable[sbi->s_partition]); 2307 if (accum == 0xFFFFFFFF) 2308 accum = 0; 2309 } 2310 } 2311 2312 if (accum) 2313 return accum; 2314 2315 map = &sbi->s_partmaps[sbi->s_partition]; 2316 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2317 accum += udf_count_free_bitmap(sb, 2318 map->s_uspace.s_bitmap); 2319 } 2320 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 2321 accum += udf_count_free_bitmap(sb, 2322 map->s_fspace.s_bitmap); 2323 } 2324 if (accum) 2325 return accum; 2326 2327 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2328 accum += udf_count_free_table(sb, 2329 map->s_uspace.s_table); 2330 } 2331 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 2332 accum += udf_count_free_table(sb, 2333 map->s_fspace.s_table); 2334 } 2335 2336 return accum; 2337 } 2338