xref: /openbmc/linux/fs/udf/super.c (revision ed1666f6)
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40 
41 #include "udfdecl.h"
42 
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60 
61 #include "udf_sb.h"
62 #include "udf_i.h"
63 
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66 
67 enum {
68 	VDS_POS_PRIMARY_VOL_DESC,
69 	VDS_POS_UNALLOC_SPACE_DESC,
70 	VDS_POS_LOGICAL_VOL_DESC,
71 	VDS_POS_IMP_USE_VOL_DESC,
72 	VDS_POS_LENGTH
73 };
74 
75 #define VSD_FIRST_SECTOR_OFFSET		32768
76 #define VSD_MAX_SECTOR_OFFSET		0x800000
77 
78 /*
79  * Maximum number of Terminating Descriptor / Logical Volume Integrity
80  * Descriptor redirections. The chosen numbers are arbitrary - just that we
81  * hopefully don't limit any real use of rewritten inode on write-once media
82  * but avoid looping for too long on corrupted media.
83  */
84 #define UDF_MAX_TD_NESTING 64
85 #define UDF_MAX_LVID_NESTING 1000
86 
87 enum { UDF_MAX_LINKS = 0xffff };
88 
89 /* These are the "meat" - everything else is stuffing */
90 static int udf_fill_super(struct super_block *, void *, int);
91 static void udf_put_super(struct super_block *);
92 static int udf_sync_fs(struct super_block *, int);
93 static int udf_remount_fs(struct super_block *, int *, char *);
94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
95 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
96 			    struct kernel_lb_addr *);
97 static void udf_load_fileset(struct super_block *, struct buffer_head *,
98 			     struct kernel_lb_addr *);
99 static void udf_open_lvid(struct super_block *);
100 static void udf_close_lvid(struct super_block *);
101 static unsigned int udf_count_free(struct super_block *);
102 static int udf_statfs(struct dentry *, struct kstatfs *);
103 static int udf_show_options(struct seq_file *, struct dentry *);
104 
105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
106 {
107 	struct logicalVolIntegrityDesc *lvid;
108 	unsigned int partnum;
109 	unsigned int offset;
110 
111 	if (!UDF_SB(sb)->s_lvid_bh)
112 		return NULL;
113 	lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
114 	partnum = le32_to_cpu(lvid->numOfPartitions);
115 	if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
116 	     offsetof(struct logicalVolIntegrityDesc, impUse)) /
117 	     (2 * sizeof(uint32_t)) < partnum) {
118 		udf_err(sb, "Logical volume integrity descriptor corrupted "
119 			"(numOfPartitions = %u)!\n", partnum);
120 		return NULL;
121 	}
122 	/* The offset is to skip freeSpaceTable and sizeTable arrays */
123 	offset = partnum * 2 * sizeof(uint32_t);
124 	return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
125 }
126 
127 /* UDF filesystem type */
128 static struct dentry *udf_mount(struct file_system_type *fs_type,
129 		      int flags, const char *dev_name, void *data)
130 {
131 	return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
132 }
133 
134 static struct file_system_type udf_fstype = {
135 	.owner		= THIS_MODULE,
136 	.name		= "udf",
137 	.mount		= udf_mount,
138 	.kill_sb	= kill_block_super,
139 	.fs_flags	= FS_REQUIRES_DEV,
140 };
141 MODULE_ALIAS_FS("udf");
142 
143 static struct kmem_cache *udf_inode_cachep;
144 
145 static struct inode *udf_alloc_inode(struct super_block *sb)
146 {
147 	struct udf_inode_info *ei;
148 	ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
149 	if (!ei)
150 		return NULL;
151 
152 	ei->i_unique = 0;
153 	ei->i_lenExtents = 0;
154 	ei->i_next_alloc_block = 0;
155 	ei->i_next_alloc_goal = 0;
156 	ei->i_strat4096 = 0;
157 	init_rwsem(&ei->i_data_sem);
158 	ei->cached_extent.lstart = -1;
159 	spin_lock_init(&ei->i_extent_cache_lock);
160 
161 	return &ei->vfs_inode;
162 }
163 
164 static void udf_i_callback(struct rcu_head *head)
165 {
166 	struct inode *inode = container_of(head, struct inode, i_rcu);
167 	kmem_cache_free(udf_inode_cachep, UDF_I(inode));
168 }
169 
170 static void udf_destroy_inode(struct inode *inode)
171 {
172 	call_rcu(&inode->i_rcu, udf_i_callback);
173 }
174 
175 static void init_once(void *foo)
176 {
177 	struct udf_inode_info *ei = (struct udf_inode_info *)foo;
178 
179 	ei->i_ext.i_data = NULL;
180 	inode_init_once(&ei->vfs_inode);
181 }
182 
183 static int __init init_inodecache(void)
184 {
185 	udf_inode_cachep = kmem_cache_create("udf_inode_cache",
186 					     sizeof(struct udf_inode_info),
187 					     0, (SLAB_RECLAIM_ACCOUNT |
188 						 SLAB_MEM_SPREAD |
189 						 SLAB_ACCOUNT),
190 					     init_once);
191 	if (!udf_inode_cachep)
192 		return -ENOMEM;
193 	return 0;
194 }
195 
196 static void destroy_inodecache(void)
197 {
198 	/*
199 	 * Make sure all delayed rcu free inodes are flushed before we
200 	 * destroy cache.
201 	 */
202 	rcu_barrier();
203 	kmem_cache_destroy(udf_inode_cachep);
204 }
205 
206 /* Superblock operations */
207 static const struct super_operations udf_sb_ops = {
208 	.alloc_inode	= udf_alloc_inode,
209 	.destroy_inode	= udf_destroy_inode,
210 	.write_inode	= udf_write_inode,
211 	.evict_inode	= udf_evict_inode,
212 	.put_super	= udf_put_super,
213 	.sync_fs	= udf_sync_fs,
214 	.statfs		= udf_statfs,
215 	.remount_fs	= udf_remount_fs,
216 	.show_options	= udf_show_options,
217 };
218 
219 struct udf_options {
220 	unsigned char novrs;
221 	unsigned int blocksize;
222 	unsigned int session;
223 	unsigned int lastblock;
224 	unsigned int anchor;
225 	unsigned int flags;
226 	umode_t umask;
227 	kgid_t gid;
228 	kuid_t uid;
229 	umode_t fmode;
230 	umode_t dmode;
231 	struct nls_table *nls_map;
232 };
233 
234 static int __init init_udf_fs(void)
235 {
236 	int err;
237 
238 	err = init_inodecache();
239 	if (err)
240 		goto out1;
241 	err = register_filesystem(&udf_fstype);
242 	if (err)
243 		goto out;
244 
245 	return 0;
246 
247 out:
248 	destroy_inodecache();
249 
250 out1:
251 	return err;
252 }
253 
254 static void __exit exit_udf_fs(void)
255 {
256 	unregister_filesystem(&udf_fstype);
257 	destroy_inodecache();
258 }
259 
260 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
261 {
262 	struct udf_sb_info *sbi = UDF_SB(sb);
263 
264 	sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
265 	if (!sbi->s_partmaps) {
266 		sbi->s_partitions = 0;
267 		return -ENOMEM;
268 	}
269 
270 	sbi->s_partitions = count;
271 	return 0;
272 }
273 
274 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
275 {
276 	int i;
277 	int nr_groups = bitmap->s_nr_groups;
278 
279 	for (i = 0; i < nr_groups; i++)
280 		if (bitmap->s_block_bitmap[i])
281 			brelse(bitmap->s_block_bitmap[i]);
282 
283 	kvfree(bitmap);
284 }
285 
286 static void udf_free_partition(struct udf_part_map *map)
287 {
288 	int i;
289 	struct udf_meta_data *mdata;
290 
291 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
292 		iput(map->s_uspace.s_table);
293 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
294 		udf_sb_free_bitmap(map->s_uspace.s_bitmap);
295 	if (map->s_partition_type == UDF_SPARABLE_MAP15)
296 		for (i = 0; i < 4; i++)
297 			brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
298 	else if (map->s_partition_type == UDF_METADATA_MAP25) {
299 		mdata = &map->s_type_specific.s_metadata;
300 		iput(mdata->s_metadata_fe);
301 		mdata->s_metadata_fe = NULL;
302 
303 		iput(mdata->s_mirror_fe);
304 		mdata->s_mirror_fe = NULL;
305 
306 		iput(mdata->s_bitmap_fe);
307 		mdata->s_bitmap_fe = NULL;
308 	}
309 }
310 
311 static void udf_sb_free_partitions(struct super_block *sb)
312 {
313 	struct udf_sb_info *sbi = UDF_SB(sb);
314 	int i;
315 
316 	if (!sbi->s_partmaps)
317 		return;
318 	for (i = 0; i < sbi->s_partitions; i++)
319 		udf_free_partition(&sbi->s_partmaps[i]);
320 	kfree(sbi->s_partmaps);
321 	sbi->s_partmaps = NULL;
322 }
323 
324 static int udf_show_options(struct seq_file *seq, struct dentry *root)
325 {
326 	struct super_block *sb = root->d_sb;
327 	struct udf_sb_info *sbi = UDF_SB(sb);
328 
329 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
330 		seq_puts(seq, ",nostrict");
331 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
332 		seq_printf(seq, ",bs=%lu", sb->s_blocksize);
333 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
334 		seq_puts(seq, ",unhide");
335 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
336 		seq_puts(seq, ",undelete");
337 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
338 		seq_puts(seq, ",noadinicb");
339 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
340 		seq_puts(seq, ",shortad");
341 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
342 		seq_puts(seq, ",uid=forget");
343 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
344 		seq_puts(seq, ",gid=forget");
345 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
346 		seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
347 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
348 		seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
349 	if (sbi->s_umask != 0)
350 		seq_printf(seq, ",umask=%ho", sbi->s_umask);
351 	if (sbi->s_fmode != UDF_INVALID_MODE)
352 		seq_printf(seq, ",mode=%ho", sbi->s_fmode);
353 	if (sbi->s_dmode != UDF_INVALID_MODE)
354 		seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
355 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
356 		seq_printf(seq, ",session=%d", sbi->s_session);
357 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
358 		seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
359 	if (sbi->s_anchor != 0)
360 		seq_printf(seq, ",anchor=%u", sbi->s_anchor);
361 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
362 		seq_puts(seq, ",utf8");
363 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
364 		seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
365 
366 	return 0;
367 }
368 
369 /*
370  * udf_parse_options
371  *
372  * PURPOSE
373  *	Parse mount options.
374  *
375  * DESCRIPTION
376  *	The following mount options are supported:
377  *
378  *	gid=		Set the default group.
379  *	umask=		Set the default umask.
380  *	mode=		Set the default file permissions.
381  *	dmode=		Set the default directory permissions.
382  *	uid=		Set the default user.
383  *	bs=		Set the block size.
384  *	unhide		Show otherwise hidden files.
385  *	undelete	Show deleted files in lists.
386  *	adinicb		Embed data in the inode (default)
387  *	noadinicb	Don't embed data in the inode
388  *	shortad		Use short ad's
389  *	longad		Use long ad's (default)
390  *	nostrict	Unset strict conformance
391  *	iocharset=	Set the NLS character set
392  *
393  *	The remaining are for debugging and disaster recovery:
394  *
395  *	novrs		Skip volume sequence recognition
396  *
397  *	The following expect a offset from 0.
398  *
399  *	session=	Set the CDROM session (default= last session)
400  *	anchor=		Override standard anchor location. (default= 256)
401  *	volume=		Override the VolumeDesc location. (unused)
402  *	partition=	Override the PartitionDesc location. (unused)
403  *	lastblock=	Set the last block of the filesystem/
404  *
405  *	The following expect a offset from the partition root.
406  *
407  *	fileset=	Override the fileset block location. (unused)
408  *	rootdir=	Override the root directory location. (unused)
409  *		WARNING: overriding the rootdir to a non-directory may
410  *		yield highly unpredictable results.
411  *
412  * PRE-CONDITIONS
413  *	options		Pointer to mount options string.
414  *	uopts		Pointer to mount options variable.
415  *
416  * POST-CONDITIONS
417  *	<return>	1	Mount options parsed okay.
418  *	<return>	0	Error parsing mount options.
419  *
420  * HISTORY
421  *	July 1, 1997 - Andrew E. Mileski
422  *	Written, tested, and released.
423  */
424 
425 enum {
426 	Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
427 	Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
428 	Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
429 	Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
430 	Opt_rootdir, Opt_utf8, Opt_iocharset,
431 	Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
432 	Opt_fmode, Opt_dmode
433 };
434 
435 static const match_table_t tokens = {
436 	{Opt_novrs,	"novrs"},
437 	{Opt_nostrict,	"nostrict"},
438 	{Opt_bs,	"bs=%u"},
439 	{Opt_unhide,	"unhide"},
440 	{Opt_undelete,	"undelete"},
441 	{Opt_noadinicb,	"noadinicb"},
442 	{Opt_adinicb,	"adinicb"},
443 	{Opt_shortad,	"shortad"},
444 	{Opt_longad,	"longad"},
445 	{Opt_uforget,	"uid=forget"},
446 	{Opt_uignore,	"uid=ignore"},
447 	{Opt_gforget,	"gid=forget"},
448 	{Opt_gignore,	"gid=ignore"},
449 	{Opt_gid,	"gid=%u"},
450 	{Opt_uid,	"uid=%u"},
451 	{Opt_umask,	"umask=%o"},
452 	{Opt_session,	"session=%u"},
453 	{Opt_lastblock,	"lastblock=%u"},
454 	{Opt_anchor,	"anchor=%u"},
455 	{Opt_volume,	"volume=%u"},
456 	{Opt_partition,	"partition=%u"},
457 	{Opt_fileset,	"fileset=%u"},
458 	{Opt_rootdir,	"rootdir=%u"},
459 	{Opt_utf8,	"utf8"},
460 	{Opt_iocharset,	"iocharset=%s"},
461 	{Opt_fmode,     "mode=%o"},
462 	{Opt_dmode,     "dmode=%o"},
463 	{Opt_err,	NULL}
464 };
465 
466 static int udf_parse_options(char *options, struct udf_options *uopt,
467 			     bool remount)
468 {
469 	char *p;
470 	int option;
471 
472 	uopt->novrs = 0;
473 	uopt->session = 0xFFFFFFFF;
474 	uopt->lastblock = 0;
475 	uopt->anchor = 0;
476 
477 	if (!options)
478 		return 1;
479 
480 	while ((p = strsep(&options, ",")) != NULL) {
481 		substring_t args[MAX_OPT_ARGS];
482 		int token;
483 		unsigned n;
484 		if (!*p)
485 			continue;
486 
487 		token = match_token(p, tokens, args);
488 		switch (token) {
489 		case Opt_novrs:
490 			uopt->novrs = 1;
491 			break;
492 		case Opt_bs:
493 			if (match_int(&args[0], &option))
494 				return 0;
495 			n = option;
496 			if (n != 512 && n != 1024 && n != 2048 && n != 4096)
497 				return 0;
498 			uopt->blocksize = n;
499 			uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
500 			break;
501 		case Opt_unhide:
502 			uopt->flags |= (1 << UDF_FLAG_UNHIDE);
503 			break;
504 		case Opt_undelete:
505 			uopt->flags |= (1 << UDF_FLAG_UNDELETE);
506 			break;
507 		case Opt_noadinicb:
508 			uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
509 			break;
510 		case Opt_adinicb:
511 			uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
512 			break;
513 		case Opt_shortad:
514 			uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
515 			break;
516 		case Opt_longad:
517 			uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
518 			break;
519 		case Opt_gid:
520 			if (match_int(args, &option))
521 				return 0;
522 			uopt->gid = make_kgid(current_user_ns(), option);
523 			if (!gid_valid(uopt->gid))
524 				return 0;
525 			uopt->flags |= (1 << UDF_FLAG_GID_SET);
526 			break;
527 		case Opt_uid:
528 			if (match_int(args, &option))
529 				return 0;
530 			uopt->uid = make_kuid(current_user_ns(), option);
531 			if (!uid_valid(uopt->uid))
532 				return 0;
533 			uopt->flags |= (1 << UDF_FLAG_UID_SET);
534 			break;
535 		case Opt_umask:
536 			if (match_octal(args, &option))
537 				return 0;
538 			uopt->umask = option;
539 			break;
540 		case Opt_nostrict:
541 			uopt->flags &= ~(1 << UDF_FLAG_STRICT);
542 			break;
543 		case Opt_session:
544 			if (match_int(args, &option))
545 				return 0;
546 			uopt->session = option;
547 			if (!remount)
548 				uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
549 			break;
550 		case Opt_lastblock:
551 			if (match_int(args, &option))
552 				return 0;
553 			uopt->lastblock = option;
554 			if (!remount)
555 				uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
556 			break;
557 		case Opt_anchor:
558 			if (match_int(args, &option))
559 				return 0;
560 			uopt->anchor = option;
561 			break;
562 		case Opt_volume:
563 		case Opt_partition:
564 		case Opt_fileset:
565 		case Opt_rootdir:
566 			/* Ignored (never implemented properly) */
567 			break;
568 		case Opt_utf8:
569 			uopt->flags |= (1 << UDF_FLAG_UTF8);
570 			break;
571 		case Opt_iocharset:
572 			if (!remount) {
573 				if (uopt->nls_map)
574 					unload_nls(uopt->nls_map);
575 				uopt->nls_map = load_nls(args[0].from);
576 				uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
577 			}
578 			break;
579 		case Opt_uforget:
580 			uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
581 			break;
582 		case Opt_uignore:
583 		case Opt_gignore:
584 			/* These options are superseeded by uid=<number> */
585 			break;
586 		case Opt_gforget:
587 			uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
588 			break;
589 		case Opt_fmode:
590 			if (match_octal(args, &option))
591 				return 0;
592 			uopt->fmode = option & 0777;
593 			break;
594 		case Opt_dmode:
595 			if (match_octal(args, &option))
596 				return 0;
597 			uopt->dmode = option & 0777;
598 			break;
599 		default:
600 			pr_err("bad mount option \"%s\" or missing value\n", p);
601 			return 0;
602 		}
603 	}
604 	return 1;
605 }
606 
607 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
608 {
609 	struct udf_options uopt;
610 	struct udf_sb_info *sbi = UDF_SB(sb);
611 	int error = 0;
612 
613 	if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
614 		return -EACCES;
615 
616 	sync_filesystem(sb);
617 
618 	uopt.flags = sbi->s_flags;
619 	uopt.uid   = sbi->s_uid;
620 	uopt.gid   = sbi->s_gid;
621 	uopt.umask = sbi->s_umask;
622 	uopt.fmode = sbi->s_fmode;
623 	uopt.dmode = sbi->s_dmode;
624 	uopt.nls_map = NULL;
625 
626 	if (!udf_parse_options(options, &uopt, true))
627 		return -EINVAL;
628 
629 	write_lock(&sbi->s_cred_lock);
630 	sbi->s_flags = uopt.flags;
631 	sbi->s_uid   = uopt.uid;
632 	sbi->s_gid   = uopt.gid;
633 	sbi->s_umask = uopt.umask;
634 	sbi->s_fmode = uopt.fmode;
635 	sbi->s_dmode = uopt.dmode;
636 	write_unlock(&sbi->s_cred_lock);
637 
638 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
639 		goto out_unlock;
640 
641 	if (*flags & SB_RDONLY)
642 		udf_close_lvid(sb);
643 	else
644 		udf_open_lvid(sb);
645 
646 out_unlock:
647 	return error;
648 }
649 
650 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
651 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
652 static loff_t udf_check_vsd(struct super_block *sb)
653 {
654 	struct volStructDesc *vsd = NULL;
655 	loff_t sector = VSD_FIRST_SECTOR_OFFSET;
656 	int sectorsize;
657 	struct buffer_head *bh = NULL;
658 	int nsr02 = 0;
659 	int nsr03 = 0;
660 	struct udf_sb_info *sbi;
661 
662 	sbi = UDF_SB(sb);
663 	if (sb->s_blocksize < sizeof(struct volStructDesc))
664 		sectorsize = sizeof(struct volStructDesc);
665 	else
666 		sectorsize = sb->s_blocksize;
667 
668 	sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
669 
670 	udf_debug("Starting at sector %u (%lu byte sectors)\n",
671 		  (unsigned int)(sector >> sb->s_blocksize_bits),
672 		  sb->s_blocksize);
673 	/* Process the sequence (if applicable). The hard limit on the sector
674 	 * offset is arbitrary, hopefully large enough so that all valid UDF
675 	 * filesystems will be recognised. There is no mention of an upper
676 	 * bound to the size of the volume recognition area in the standard.
677 	 *  The limit will prevent the code to read all the sectors of a
678 	 * specially crafted image (like a bluray disc full of CD001 sectors),
679 	 * potentially causing minutes or even hours of uninterruptible I/O
680 	 * activity. This actually happened with uninitialised SSD partitions
681 	 * (all 0xFF) before the check for the limit and all valid IDs were
682 	 * added */
683 	for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
684 	     sector += sectorsize) {
685 		/* Read a block */
686 		bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
687 		if (!bh)
688 			break;
689 
690 		/* Look for ISO  descriptors */
691 		vsd = (struct volStructDesc *)(bh->b_data +
692 					      (sector & (sb->s_blocksize - 1)));
693 
694 		if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
695 				    VSD_STD_ID_LEN)) {
696 			switch (vsd->structType) {
697 			case 0:
698 				udf_debug("ISO9660 Boot Record found\n");
699 				break;
700 			case 1:
701 				udf_debug("ISO9660 Primary Volume Descriptor found\n");
702 				break;
703 			case 2:
704 				udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
705 				break;
706 			case 3:
707 				udf_debug("ISO9660 Volume Partition Descriptor found\n");
708 				break;
709 			case 255:
710 				udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
711 				break;
712 			default:
713 				udf_debug("ISO9660 VRS (%u) found\n",
714 					  vsd->structType);
715 				break;
716 			}
717 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
718 				    VSD_STD_ID_LEN))
719 			; /* nothing */
720 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
721 				    VSD_STD_ID_LEN)) {
722 			brelse(bh);
723 			break;
724 		} else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
725 				    VSD_STD_ID_LEN))
726 			nsr02 = sector;
727 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
728 				    VSD_STD_ID_LEN))
729 			nsr03 = sector;
730 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
731 				    VSD_STD_ID_LEN))
732 			; /* nothing */
733 		else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
734 				    VSD_STD_ID_LEN))
735 			; /* nothing */
736 		else {
737 			/* invalid id : end of volume recognition area */
738 			brelse(bh);
739 			break;
740 		}
741 		brelse(bh);
742 	}
743 
744 	if (nsr03)
745 		return nsr03;
746 	else if (nsr02)
747 		return nsr02;
748 	else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
749 			VSD_FIRST_SECTOR_OFFSET)
750 		return -1;
751 	else
752 		return 0;
753 }
754 
755 static int udf_find_fileset(struct super_block *sb,
756 			    struct kernel_lb_addr *fileset,
757 			    struct kernel_lb_addr *root)
758 {
759 	struct buffer_head *bh = NULL;
760 	uint16_t ident;
761 
762 	if (fileset->logicalBlockNum != 0xFFFFFFFF ||
763 	    fileset->partitionReferenceNum != 0xFFFF) {
764 		bh = udf_read_ptagged(sb, fileset, 0, &ident);
765 
766 		if (!bh) {
767 			return 1;
768 		} else if (ident != TAG_IDENT_FSD) {
769 			brelse(bh);
770 			return 1;
771 		}
772 
773 		udf_debug("Fileset at block=%u, partition=%u\n",
774 			  fileset->logicalBlockNum,
775 			  fileset->partitionReferenceNum);
776 
777 		UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
778 		udf_load_fileset(sb, bh, root);
779 		brelse(bh);
780 		return 0;
781 	}
782 	return 1;
783 }
784 
785 /*
786  * Load primary Volume Descriptor Sequence
787  *
788  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
789  * should be tried.
790  */
791 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
792 {
793 	struct primaryVolDesc *pvoldesc;
794 	uint8_t *outstr;
795 	struct buffer_head *bh;
796 	uint16_t ident;
797 	int ret = -ENOMEM;
798 #ifdef UDFFS_DEBUG
799 	struct timestamp *ts;
800 #endif
801 
802 	outstr = kmalloc(128, GFP_NOFS);
803 	if (!outstr)
804 		return -ENOMEM;
805 
806 	bh = udf_read_tagged(sb, block, block, &ident);
807 	if (!bh) {
808 		ret = -EAGAIN;
809 		goto out2;
810 	}
811 
812 	if (ident != TAG_IDENT_PVD) {
813 		ret = -EIO;
814 		goto out_bh;
815 	}
816 
817 	pvoldesc = (struct primaryVolDesc *)bh->b_data;
818 
819 	udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
820 			      pvoldesc->recordingDateAndTime);
821 #ifdef UDFFS_DEBUG
822 	ts = &pvoldesc->recordingDateAndTime;
823 	udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
824 		  le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
825 		  ts->minute, le16_to_cpu(ts->typeAndTimezone));
826 #endif
827 
828 
829 	ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
830 	if (ret < 0) {
831 		strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
832 		pr_warn("incorrect volume identification, setting to "
833 			"'InvalidName'\n");
834 	} else {
835 		strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
836 	}
837 	udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
838 
839 	ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
840 	if (ret < 0) {
841 		ret = 0;
842 		goto out_bh;
843 	}
844 	outstr[ret] = 0;
845 	udf_debug("volSetIdent[] = '%s'\n", outstr);
846 
847 	ret = 0;
848 out_bh:
849 	brelse(bh);
850 out2:
851 	kfree(outstr);
852 	return ret;
853 }
854 
855 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
856 					u32 meta_file_loc, u32 partition_ref)
857 {
858 	struct kernel_lb_addr addr;
859 	struct inode *metadata_fe;
860 
861 	addr.logicalBlockNum = meta_file_loc;
862 	addr.partitionReferenceNum = partition_ref;
863 
864 	metadata_fe = udf_iget_special(sb, &addr);
865 
866 	if (IS_ERR(metadata_fe)) {
867 		udf_warn(sb, "metadata inode efe not found\n");
868 		return metadata_fe;
869 	}
870 	if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
871 		udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
872 		iput(metadata_fe);
873 		return ERR_PTR(-EIO);
874 	}
875 
876 	return metadata_fe;
877 }
878 
879 static int udf_load_metadata_files(struct super_block *sb, int partition,
880 				   int type1_index)
881 {
882 	struct udf_sb_info *sbi = UDF_SB(sb);
883 	struct udf_part_map *map;
884 	struct udf_meta_data *mdata;
885 	struct kernel_lb_addr addr;
886 	struct inode *fe;
887 
888 	map = &sbi->s_partmaps[partition];
889 	mdata = &map->s_type_specific.s_metadata;
890 	mdata->s_phys_partition_ref = type1_index;
891 
892 	/* metadata address */
893 	udf_debug("Metadata file location: block = %u part = %u\n",
894 		  mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
895 
896 	fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
897 					 mdata->s_phys_partition_ref);
898 	if (IS_ERR(fe)) {
899 		/* mirror file entry */
900 		udf_debug("Mirror metadata file location: block = %u part = %u\n",
901 			  mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
902 
903 		fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
904 						 mdata->s_phys_partition_ref);
905 
906 		if (IS_ERR(fe)) {
907 			udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
908 			return PTR_ERR(fe);
909 		}
910 		mdata->s_mirror_fe = fe;
911 	} else
912 		mdata->s_metadata_fe = fe;
913 
914 
915 	/*
916 	 * bitmap file entry
917 	 * Note:
918 	 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
919 	*/
920 	if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
921 		addr.logicalBlockNum = mdata->s_bitmap_file_loc;
922 		addr.partitionReferenceNum = mdata->s_phys_partition_ref;
923 
924 		udf_debug("Bitmap file location: block = %u part = %u\n",
925 			  addr.logicalBlockNum, addr.partitionReferenceNum);
926 
927 		fe = udf_iget_special(sb, &addr);
928 		if (IS_ERR(fe)) {
929 			if (sb_rdonly(sb))
930 				udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
931 			else {
932 				udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
933 				return PTR_ERR(fe);
934 			}
935 		} else
936 			mdata->s_bitmap_fe = fe;
937 	}
938 
939 	udf_debug("udf_load_metadata_files Ok\n");
940 	return 0;
941 }
942 
943 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
944 			     struct kernel_lb_addr *root)
945 {
946 	struct fileSetDesc *fset;
947 
948 	fset = (struct fileSetDesc *)bh->b_data;
949 
950 	*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
951 
952 	UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
953 
954 	udf_debug("Rootdir at block=%u, partition=%u\n",
955 		  root->logicalBlockNum, root->partitionReferenceNum);
956 }
957 
958 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
959 {
960 	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
961 	return DIV_ROUND_UP(map->s_partition_len +
962 			    (sizeof(struct spaceBitmapDesc) << 3),
963 			    sb->s_blocksize * 8);
964 }
965 
966 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
967 {
968 	struct udf_bitmap *bitmap;
969 	int nr_groups;
970 	int size;
971 
972 	nr_groups = udf_compute_nr_groups(sb, index);
973 	size = sizeof(struct udf_bitmap) +
974 		(sizeof(struct buffer_head *) * nr_groups);
975 
976 	if (size <= PAGE_SIZE)
977 		bitmap = kzalloc(size, GFP_KERNEL);
978 	else
979 		bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
980 
981 	if (!bitmap)
982 		return NULL;
983 
984 	bitmap->s_nr_groups = nr_groups;
985 	return bitmap;
986 }
987 
988 static int check_partition_desc(struct super_block *sb,
989 				struct partitionDesc *p,
990 				struct udf_part_map *map)
991 {
992 	bool umap, utable, fmap, ftable;
993 	struct partitionHeaderDesc *phd;
994 
995 	switch (le32_to_cpu(p->accessType)) {
996 	case PD_ACCESS_TYPE_READ_ONLY:
997 	case PD_ACCESS_TYPE_WRITE_ONCE:
998 	case PD_ACCESS_TYPE_REWRITABLE:
999 	case PD_ACCESS_TYPE_NONE:
1000 		goto force_ro;
1001 	}
1002 
1003 	/* No Partition Header Descriptor? */
1004 	if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1005 	    strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1006 		goto force_ro;
1007 
1008 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1009 	utable = phd->unallocSpaceTable.extLength;
1010 	umap = phd->unallocSpaceBitmap.extLength;
1011 	ftable = phd->freedSpaceTable.extLength;
1012 	fmap = phd->freedSpaceBitmap.extLength;
1013 
1014 	/* No allocation info? */
1015 	if (!utable && !umap && !ftable && !fmap)
1016 		goto force_ro;
1017 
1018 	/* We don't support blocks that require erasing before overwrite */
1019 	if (ftable || fmap)
1020 		goto force_ro;
1021 	/* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
1022 	if (utable && umap)
1023 		goto force_ro;
1024 
1025 	if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1026 	    map->s_partition_type == UDF_VIRTUAL_MAP20)
1027 		goto force_ro;
1028 
1029 	return 0;
1030 force_ro:
1031 	if (!sb_rdonly(sb))
1032 		return -EACCES;
1033 	UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1034 	return 0;
1035 }
1036 
1037 static int udf_fill_partdesc_info(struct super_block *sb,
1038 		struct partitionDesc *p, int p_index)
1039 {
1040 	struct udf_part_map *map;
1041 	struct udf_sb_info *sbi = UDF_SB(sb);
1042 	struct partitionHeaderDesc *phd;
1043 	int err;
1044 
1045 	map = &sbi->s_partmaps[p_index];
1046 
1047 	map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1048 	map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1049 
1050 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1051 		map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1052 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1053 		map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1054 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1055 		map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1056 	if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1057 		map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1058 
1059 	udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
1060 		  p_index, map->s_partition_type,
1061 		  map->s_partition_root, map->s_partition_len);
1062 
1063 	err = check_partition_desc(sb, p, map);
1064 	if (err)
1065 		return err;
1066 
1067 	/*
1068 	 * Skip loading allocation info it we cannot ever write to the fs.
1069 	 * This is a correctness thing as we may have decided to force ro mount
1070 	 * to avoid allocation info we don't support.
1071 	 */
1072 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
1073 		return 0;
1074 
1075 	phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1076 	if (phd->unallocSpaceTable.extLength) {
1077 		struct kernel_lb_addr loc = {
1078 			.logicalBlockNum = le32_to_cpu(
1079 				phd->unallocSpaceTable.extPosition),
1080 			.partitionReferenceNum = p_index,
1081 		};
1082 		struct inode *inode;
1083 
1084 		inode = udf_iget_special(sb, &loc);
1085 		if (IS_ERR(inode)) {
1086 			udf_debug("cannot load unallocSpaceTable (part %d)\n",
1087 				  p_index);
1088 			return PTR_ERR(inode);
1089 		}
1090 		map->s_uspace.s_table = inode;
1091 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1092 		udf_debug("unallocSpaceTable (part %d) @ %lu\n",
1093 			  p_index, map->s_uspace.s_table->i_ino);
1094 	}
1095 
1096 	if (phd->unallocSpaceBitmap.extLength) {
1097 		struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1098 		if (!bitmap)
1099 			return -ENOMEM;
1100 		map->s_uspace.s_bitmap = bitmap;
1101 		bitmap->s_extPosition = le32_to_cpu(
1102 				phd->unallocSpaceBitmap.extPosition);
1103 		map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1104 		udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
1105 			  p_index, bitmap->s_extPosition);
1106 	}
1107 
1108 	return 0;
1109 }
1110 
1111 static void udf_find_vat_block(struct super_block *sb, int p_index,
1112 			       int type1_index, sector_t start_block)
1113 {
1114 	struct udf_sb_info *sbi = UDF_SB(sb);
1115 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1116 	sector_t vat_block;
1117 	struct kernel_lb_addr ino;
1118 	struct inode *inode;
1119 
1120 	/*
1121 	 * VAT file entry is in the last recorded block. Some broken disks have
1122 	 * it a few blocks before so try a bit harder...
1123 	 */
1124 	ino.partitionReferenceNum = type1_index;
1125 	for (vat_block = start_block;
1126 	     vat_block >= map->s_partition_root &&
1127 	     vat_block >= start_block - 3; vat_block--) {
1128 		ino.logicalBlockNum = vat_block - map->s_partition_root;
1129 		inode = udf_iget_special(sb, &ino);
1130 		if (!IS_ERR(inode)) {
1131 			sbi->s_vat_inode = inode;
1132 			break;
1133 		}
1134 	}
1135 }
1136 
1137 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1138 {
1139 	struct udf_sb_info *sbi = UDF_SB(sb);
1140 	struct udf_part_map *map = &sbi->s_partmaps[p_index];
1141 	struct buffer_head *bh = NULL;
1142 	struct udf_inode_info *vati;
1143 	uint32_t pos;
1144 	struct virtualAllocationTable20 *vat20;
1145 	sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
1146 			  sb->s_blocksize_bits;
1147 
1148 	udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1149 	if (!sbi->s_vat_inode &&
1150 	    sbi->s_last_block != blocks - 1) {
1151 		pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1152 			  (unsigned long)sbi->s_last_block,
1153 			  (unsigned long)blocks - 1);
1154 		udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1155 	}
1156 	if (!sbi->s_vat_inode)
1157 		return -EIO;
1158 
1159 	if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1160 		map->s_type_specific.s_virtual.s_start_offset = 0;
1161 		map->s_type_specific.s_virtual.s_num_entries =
1162 			(sbi->s_vat_inode->i_size - 36) >> 2;
1163 	} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1164 		vati = UDF_I(sbi->s_vat_inode);
1165 		if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1166 			pos = udf_block_map(sbi->s_vat_inode, 0);
1167 			bh = sb_bread(sb, pos);
1168 			if (!bh)
1169 				return -EIO;
1170 			vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1171 		} else {
1172 			vat20 = (struct virtualAllocationTable20 *)
1173 							vati->i_ext.i_data;
1174 		}
1175 
1176 		map->s_type_specific.s_virtual.s_start_offset =
1177 			le16_to_cpu(vat20->lengthHeader);
1178 		map->s_type_specific.s_virtual.s_num_entries =
1179 			(sbi->s_vat_inode->i_size -
1180 				map->s_type_specific.s_virtual.
1181 					s_start_offset) >> 2;
1182 		brelse(bh);
1183 	}
1184 	return 0;
1185 }
1186 
1187 /*
1188  * Load partition descriptor block
1189  *
1190  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1191  * sequence.
1192  */
1193 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1194 {
1195 	struct buffer_head *bh;
1196 	struct partitionDesc *p;
1197 	struct udf_part_map *map;
1198 	struct udf_sb_info *sbi = UDF_SB(sb);
1199 	int i, type1_idx;
1200 	uint16_t partitionNumber;
1201 	uint16_t ident;
1202 	int ret;
1203 
1204 	bh = udf_read_tagged(sb, block, block, &ident);
1205 	if (!bh)
1206 		return -EAGAIN;
1207 	if (ident != TAG_IDENT_PD) {
1208 		ret = 0;
1209 		goto out_bh;
1210 	}
1211 
1212 	p = (struct partitionDesc *)bh->b_data;
1213 	partitionNumber = le16_to_cpu(p->partitionNumber);
1214 
1215 	/* First scan for TYPE1 and SPARABLE partitions */
1216 	for (i = 0; i < sbi->s_partitions; i++) {
1217 		map = &sbi->s_partmaps[i];
1218 		udf_debug("Searching map: (%u == %u)\n",
1219 			  map->s_partition_num, partitionNumber);
1220 		if (map->s_partition_num == partitionNumber &&
1221 		    (map->s_partition_type == UDF_TYPE1_MAP15 ||
1222 		     map->s_partition_type == UDF_SPARABLE_MAP15))
1223 			break;
1224 	}
1225 
1226 	if (i >= sbi->s_partitions) {
1227 		udf_debug("Partition (%u) not found in partition map\n",
1228 			  partitionNumber);
1229 		ret = 0;
1230 		goto out_bh;
1231 	}
1232 
1233 	ret = udf_fill_partdesc_info(sb, p, i);
1234 	if (ret < 0)
1235 		goto out_bh;
1236 
1237 	/*
1238 	 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1239 	 * PHYSICAL partitions are already set up
1240 	 */
1241 	type1_idx = i;
1242 #ifdef UDFFS_DEBUG
1243 	map = NULL; /* supress 'maybe used uninitialized' warning */
1244 #endif
1245 	for (i = 0; i < sbi->s_partitions; i++) {
1246 		map = &sbi->s_partmaps[i];
1247 
1248 		if (map->s_partition_num == partitionNumber &&
1249 		    (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1250 		     map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1251 		     map->s_partition_type == UDF_METADATA_MAP25))
1252 			break;
1253 	}
1254 
1255 	if (i >= sbi->s_partitions) {
1256 		ret = 0;
1257 		goto out_bh;
1258 	}
1259 
1260 	ret = udf_fill_partdesc_info(sb, p, i);
1261 	if (ret < 0)
1262 		goto out_bh;
1263 
1264 	if (map->s_partition_type == UDF_METADATA_MAP25) {
1265 		ret = udf_load_metadata_files(sb, i, type1_idx);
1266 		if (ret < 0) {
1267 			udf_err(sb, "error loading MetaData partition map %d\n",
1268 				i);
1269 			goto out_bh;
1270 		}
1271 	} else {
1272 		/*
1273 		 * If we have a partition with virtual map, we don't handle
1274 		 * writing to it (we overwrite blocks instead of relocating
1275 		 * them).
1276 		 */
1277 		if (!sb_rdonly(sb)) {
1278 			ret = -EACCES;
1279 			goto out_bh;
1280 		}
1281 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1282 		ret = udf_load_vat(sb, i, type1_idx);
1283 		if (ret < 0)
1284 			goto out_bh;
1285 	}
1286 	ret = 0;
1287 out_bh:
1288 	/* In case loading failed, we handle cleanup in udf_fill_super */
1289 	brelse(bh);
1290 	return ret;
1291 }
1292 
1293 static int udf_load_sparable_map(struct super_block *sb,
1294 				 struct udf_part_map *map,
1295 				 struct sparablePartitionMap *spm)
1296 {
1297 	uint32_t loc;
1298 	uint16_t ident;
1299 	struct sparingTable *st;
1300 	struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1301 	int i;
1302 	struct buffer_head *bh;
1303 
1304 	map->s_partition_type = UDF_SPARABLE_MAP15;
1305 	sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1306 	if (!is_power_of_2(sdata->s_packet_len)) {
1307 		udf_err(sb, "error loading logical volume descriptor: "
1308 			"Invalid packet length %u\n",
1309 			(unsigned)sdata->s_packet_len);
1310 		return -EIO;
1311 	}
1312 	if (spm->numSparingTables > 4) {
1313 		udf_err(sb, "error loading logical volume descriptor: "
1314 			"Too many sparing tables (%d)\n",
1315 			(int)spm->numSparingTables);
1316 		return -EIO;
1317 	}
1318 
1319 	for (i = 0; i < spm->numSparingTables; i++) {
1320 		loc = le32_to_cpu(spm->locSparingTable[i]);
1321 		bh = udf_read_tagged(sb, loc, loc, &ident);
1322 		if (!bh)
1323 			continue;
1324 
1325 		st = (struct sparingTable *)bh->b_data;
1326 		if (ident != 0 ||
1327 		    strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1328 			    strlen(UDF_ID_SPARING)) ||
1329 		    sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1330 							sb->s_blocksize) {
1331 			brelse(bh);
1332 			continue;
1333 		}
1334 
1335 		sdata->s_spar_map[i] = bh;
1336 	}
1337 	map->s_partition_func = udf_get_pblock_spar15;
1338 	return 0;
1339 }
1340 
1341 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1342 			       struct kernel_lb_addr *fileset)
1343 {
1344 	struct logicalVolDesc *lvd;
1345 	int i, offset;
1346 	uint8_t type;
1347 	struct udf_sb_info *sbi = UDF_SB(sb);
1348 	struct genericPartitionMap *gpm;
1349 	uint16_t ident;
1350 	struct buffer_head *bh;
1351 	unsigned int table_len;
1352 	int ret;
1353 
1354 	bh = udf_read_tagged(sb, block, block, &ident);
1355 	if (!bh)
1356 		return -EAGAIN;
1357 	BUG_ON(ident != TAG_IDENT_LVD);
1358 	lvd = (struct logicalVolDesc *)bh->b_data;
1359 	table_len = le32_to_cpu(lvd->mapTableLength);
1360 	if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1361 		udf_err(sb, "error loading logical volume descriptor: "
1362 			"Partition table too long (%u > %lu)\n", table_len,
1363 			sb->s_blocksize - sizeof(*lvd));
1364 		ret = -EIO;
1365 		goto out_bh;
1366 	}
1367 
1368 	ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1369 	if (ret)
1370 		goto out_bh;
1371 
1372 	for (i = 0, offset = 0;
1373 	     i < sbi->s_partitions && offset < table_len;
1374 	     i++, offset += gpm->partitionMapLength) {
1375 		struct udf_part_map *map = &sbi->s_partmaps[i];
1376 		gpm = (struct genericPartitionMap *)
1377 				&(lvd->partitionMaps[offset]);
1378 		type = gpm->partitionMapType;
1379 		if (type == 1) {
1380 			struct genericPartitionMap1 *gpm1 =
1381 				(struct genericPartitionMap1 *)gpm;
1382 			map->s_partition_type = UDF_TYPE1_MAP15;
1383 			map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1384 			map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1385 			map->s_partition_func = NULL;
1386 		} else if (type == 2) {
1387 			struct udfPartitionMap2 *upm2 =
1388 						(struct udfPartitionMap2 *)gpm;
1389 			if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1390 						strlen(UDF_ID_VIRTUAL))) {
1391 				u16 suf =
1392 					le16_to_cpu(((__le16 *)upm2->partIdent.
1393 							identSuffix)[0]);
1394 				if (suf < 0x0200) {
1395 					map->s_partition_type =
1396 							UDF_VIRTUAL_MAP15;
1397 					map->s_partition_func =
1398 							udf_get_pblock_virt15;
1399 				} else {
1400 					map->s_partition_type =
1401 							UDF_VIRTUAL_MAP20;
1402 					map->s_partition_func =
1403 							udf_get_pblock_virt20;
1404 				}
1405 			} else if (!strncmp(upm2->partIdent.ident,
1406 						UDF_ID_SPARABLE,
1407 						strlen(UDF_ID_SPARABLE))) {
1408 				ret = udf_load_sparable_map(sb, map,
1409 					(struct sparablePartitionMap *)gpm);
1410 				if (ret < 0)
1411 					goto out_bh;
1412 			} else if (!strncmp(upm2->partIdent.ident,
1413 						UDF_ID_METADATA,
1414 						strlen(UDF_ID_METADATA))) {
1415 				struct udf_meta_data *mdata =
1416 					&map->s_type_specific.s_metadata;
1417 				struct metadataPartitionMap *mdm =
1418 						(struct metadataPartitionMap *)
1419 						&(lvd->partitionMaps[offset]);
1420 				udf_debug("Parsing Logical vol part %d type %u  id=%s\n",
1421 					  i, type, UDF_ID_METADATA);
1422 
1423 				map->s_partition_type = UDF_METADATA_MAP25;
1424 				map->s_partition_func = udf_get_pblock_meta25;
1425 
1426 				mdata->s_meta_file_loc   =
1427 					le32_to_cpu(mdm->metadataFileLoc);
1428 				mdata->s_mirror_file_loc =
1429 					le32_to_cpu(mdm->metadataMirrorFileLoc);
1430 				mdata->s_bitmap_file_loc =
1431 					le32_to_cpu(mdm->metadataBitmapFileLoc);
1432 				mdata->s_alloc_unit_size =
1433 					le32_to_cpu(mdm->allocUnitSize);
1434 				mdata->s_align_unit_size =
1435 					le16_to_cpu(mdm->alignUnitSize);
1436 				if (mdm->flags & 0x01)
1437 					mdata->s_flags |= MF_DUPLICATE_MD;
1438 
1439 				udf_debug("Metadata Ident suffix=0x%x\n",
1440 					  le16_to_cpu(*(__le16 *)
1441 						      mdm->partIdent.identSuffix));
1442 				udf_debug("Metadata part num=%u\n",
1443 					  le16_to_cpu(mdm->partitionNum));
1444 				udf_debug("Metadata part alloc unit size=%u\n",
1445 					  le32_to_cpu(mdm->allocUnitSize));
1446 				udf_debug("Metadata file loc=%u\n",
1447 					  le32_to_cpu(mdm->metadataFileLoc));
1448 				udf_debug("Mirror file loc=%u\n",
1449 					  le32_to_cpu(mdm->metadataMirrorFileLoc));
1450 				udf_debug("Bitmap file loc=%u\n",
1451 					  le32_to_cpu(mdm->metadataBitmapFileLoc));
1452 				udf_debug("Flags: %d %u\n",
1453 					  mdata->s_flags, mdm->flags);
1454 			} else {
1455 				udf_debug("Unknown ident: %s\n",
1456 					  upm2->partIdent.ident);
1457 				continue;
1458 			}
1459 			map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1460 			map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1461 		}
1462 		udf_debug("Partition (%d:%u) type %u on volume %u\n",
1463 			  i, map->s_partition_num, type, map->s_volumeseqnum);
1464 	}
1465 
1466 	if (fileset) {
1467 		struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1468 
1469 		*fileset = lelb_to_cpu(la->extLocation);
1470 		udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
1471 			  fileset->logicalBlockNum,
1472 			  fileset->partitionReferenceNum);
1473 	}
1474 	if (lvd->integritySeqExt.extLength)
1475 		udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1476 	ret = 0;
1477 
1478 	if (!sbi->s_lvid_bh) {
1479 		/* We can't generate unique IDs without a valid LVID */
1480 		if (sb_rdonly(sb)) {
1481 			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
1482 		} else {
1483 			udf_warn(sb, "Damaged or missing LVID, forcing "
1484 				     "readonly mount\n");
1485 			ret = -EACCES;
1486 		}
1487 	}
1488 out_bh:
1489 	brelse(bh);
1490 	return ret;
1491 }
1492 
1493 /*
1494  * Find the prevailing Logical Volume Integrity Descriptor.
1495  */
1496 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1497 {
1498 	struct buffer_head *bh, *final_bh;
1499 	uint16_t ident;
1500 	struct udf_sb_info *sbi = UDF_SB(sb);
1501 	struct logicalVolIntegrityDesc *lvid;
1502 	int indirections = 0;
1503 
1504 	while (++indirections <= UDF_MAX_LVID_NESTING) {
1505 		final_bh = NULL;
1506 		while (loc.extLength > 0 &&
1507 			(bh = udf_read_tagged(sb, loc.extLocation,
1508 					loc.extLocation, &ident))) {
1509 			if (ident != TAG_IDENT_LVID) {
1510 				brelse(bh);
1511 				break;
1512 			}
1513 
1514 			brelse(final_bh);
1515 			final_bh = bh;
1516 
1517 			loc.extLength -= sb->s_blocksize;
1518 			loc.extLocation++;
1519 		}
1520 
1521 		if (!final_bh)
1522 			return;
1523 
1524 		brelse(sbi->s_lvid_bh);
1525 		sbi->s_lvid_bh = final_bh;
1526 
1527 		lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1528 		if (lvid->nextIntegrityExt.extLength == 0)
1529 			return;
1530 
1531 		loc = leea_to_cpu(lvid->nextIntegrityExt);
1532 	}
1533 
1534 	udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1535 		UDF_MAX_LVID_NESTING);
1536 	brelse(sbi->s_lvid_bh);
1537 	sbi->s_lvid_bh = NULL;
1538 }
1539 
1540 /*
1541  * Step for reallocation of table of partition descriptor sequence numbers.
1542  * Must be power of 2.
1543  */
1544 #define PART_DESC_ALLOC_STEP 32
1545 
1546 struct part_desc_seq_scan_data {
1547 	struct udf_vds_record rec;
1548 	u32 partnum;
1549 };
1550 
1551 struct desc_seq_scan_data {
1552 	struct udf_vds_record vds[VDS_POS_LENGTH];
1553 	unsigned int size_part_descs;
1554 	unsigned int num_part_descs;
1555 	struct part_desc_seq_scan_data *part_descs_loc;
1556 };
1557 
1558 static struct udf_vds_record *handle_partition_descriptor(
1559 				struct buffer_head *bh,
1560 				struct desc_seq_scan_data *data)
1561 {
1562 	struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
1563 	int partnum;
1564 	int i;
1565 
1566 	partnum = le16_to_cpu(desc->partitionNumber);
1567 	for (i = 0; i < data->num_part_descs; i++)
1568 		if (partnum == data->part_descs_loc[i].partnum)
1569 			return &(data->part_descs_loc[i].rec);
1570 	if (data->num_part_descs >= data->size_part_descs) {
1571 		struct part_desc_seq_scan_data *new_loc;
1572 		unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
1573 
1574 		new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
1575 		if (!new_loc)
1576 			return ERR_PTR(-ENOMEM);
1577 		memcpy(new_loc, data->part_descs_loc,
1578 		       data->size_part_descs * sizeof(*new_loc));
1579 		kfree(data->part_descs_loc);
1580 		data->part_descs_loc = new_loc;
1581 		data->size_part_descs = new_size;
1582 	}
1583 	return &(data->part_descs_loc[data->num_part_descs++].rec);
1584 }
1585 
1586 
1587 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
1588 		struct buffer_head *bh, struct desc_seq_scan_data *data)
1589 {
1590 	switch (ident) {
1591 	case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1592 		return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
1593 	case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1594 		return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
1595 	case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1596 		return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
1597 	case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1598 		return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
1599 	case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1600 		return handle_partition_descriptor(bh, data);
1601 	}
1602 	return NULL;
1603 }
1604 
1605 /*
1606  * Process a main/reserve volume descriptor sequence.
1607  *   @block		First block of first extent of the sequence.
1608  *   @lastblock		Lastblock of first extent of the sequence.
1609  *   @fileset		There we store extent containing root fileset
1610  *
1611  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1612  * sequence
1613  */
1614 static noinline int udf_process_sequence(
1615 		struct super_block *sb,
1616 		sector_t block, sector_t lastblock,
1617 		struct kernel_lb_addr *fileset)
1618 {
1619 	struct buffer_head *bh = NULL;
1620 	struct udf_vds_record *curr;
1621 	struct generic_desc *gd;
1622 	struct volDescPtr *vdp;
1623 	bool done = false;
1624 	uint32_t vdsn;
1625 	uint16_t ident;
1626 	int ret;
1627 	unsigned int indirections = 0;
1628 	struct desc_seq_scan_data data;
1629 	unsigned int i;
1630 
1631 	memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1632 	data.size_part_descs = PART_DESC_ALLOC_STEP;
1633 	data.num_part_descs = 0;
1634 	data.part_descs_loc = kcalloc(data.size_part_descs,
1635 				      sizeof(*data.part_descs_loc),
1636 				      GFP_KERNEL);
1637 	if (!data.part_descs_loc)
1638 		return -ENOMEM;
1639 
1640 	/*
1641 	 * Read the main descriptor sequence and find which descriptors
1642 	 * are in it.
1643 	 */
1644 	for (; (!done && block <= lastblock); block++) {
1645 		bh = udf_read_tagged(sb, block, block, &ident);
1646 		if (!bh)
1647 			break;
1648 
1649 		/* Process each descriptor (ISO 13346 3/8.3-8.4) */
1650 		gd = (struct generic_desc *)bh->b_data;
1651 		vdsn = le32_to_cpu(gd->volDescSeqNum);
1652 		switch (ident) {
1653 		case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1654 			if (++indirections > UDF_MAX_TD_NESTING) {
1655 				udf_err(sb, "too many Volume Descriptor "
1656 					"Pointers (max %u supported)\n",
1657 					UDF_MAX_TD_NESTING);
1658 				brelse(bh);
1659 				return -EIO;
1660 			}
1661 
1662 			vdp = (struct volDescPtr *)bh->b_data;
1663 			block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
1664 			lastblock = le32_to_cpu(
1665 				vdp->nextVolDescSeqExt.extLength) >>
1666 				sb->s_blocksize_bits;
1667 			lastblock += block - 1;
1668 			/* For loop is going to increment 'block' again */
1669 			block--;
1670 			break;
1671 		case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1672 		case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1673 		case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1674 		case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1675 		case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1676 			curr = get_volume_descriptor_record(ident, bh, &data);
1677 			if (IS_ERR(curr)) {
1678 				brelse(bh);
1679 				return PTR_ERR(curr);
1680 			}
1681 			/* Descriptor we don't care about? */
1682 			if (!curr)
1683 				break;
1684 			if (vdsn >= curr->volDescSeqNum) {
1685 				curr->volDescSeqNum = vdsn;
1686 				curr->block = block;
1687 			}
1688 			break;
1689 		case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1690 			done = true;
1691 			break;
1692 		}
1693 		brelse(bh);
1694 	}
1695 	/*
1696 	 * Now read interesting descriptors again and process them
1697 	 * in a suitable order
1698 	 */
1699 	if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1700 		udf_err(sb, "Primary Volume Descriptor not found!\n");
1701 		return -EAGAIN;
1702 	}
1703 	ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
1704 	if (ret < 0)
1705 		return ret;
1706 
1707 	if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1708 		ret = udf_load_logicalvol(sb,
1709 				data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
1710 				fileset);
1711 		if (ret < 0)
1712 			return ret;
1713 	}
1714 
1715 	/* Now handle prevailing Partition Descriptors */
1716 	for (i = 0; i < data.num_part_descs; i++) {
1717 		ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
1718 		if (ret < 0)
1719 			return ret;
1720 	}
1721 
1722 	return 0;
1723 }
1724 
1725 /*
1726  * Load Volume Descriptor Sequence described by anchor in bh
1727  *
1728  * Returns <0 on error, 0 on success
1729  */
1730 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1731 			     struct kernel_lb_addr *fileset)
1732 {
1733 	struct anchorVolDescPtr *anchor;
1734 	sector_t main_s, main_e, reserve_s, reserve_e;
1735 	int ret;
1736 
1737 	anchor = (struct anchorVolDescPtr *)bh->b_data;
1738 
1739 	/* Locate the main sequence */
1740 	main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1741 	main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1742 	main_e = main_e >> sb->s_blocksize_bits;
1743 	main_e += main_s - 1;
1744 
1745 	/* Locate the reserve sequence */
1746 	reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1747 	reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1748 	reserve_e = reserve_e >> sb->s_blocksize_bits;
1749 	reserve_e += reserve_s - 1;
1750 
1751 	/* Process the main & reserve sequences */
1752 	/* responsible for finding the PartitionDesc(s) */
1753 	ret = udf_process_sequence(sb, main_s, main_e, fileset);
1754 	if (ret != -EAGAIN)
1755 		return ret;
1756 	udf_sb_free_partitions(sb);
1757 	ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1758 	if (ret < 0) {
1759 		udf_sb_free_partitions(sb);
1760 		/* No sequence was OK, return -EIO */
1761 		if (ret == -EAGAIN)
1762 			ret = -EIO;
1763 	}
1764 	return ret;
1765 }
1766 
1767 /*
1768  * Check whether there is an anchor block in the given block and
1769  * load Volume Descriptor Sequence if so.
1770  *
1771  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1772  * block
1773  */
1774 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1775 				  struct kernel_lb_addr *fileset)
1776 {
1777 	struct buffer_head *bh;
1778 	uint16_t ident;
1779 	int ret;
1780 
1781 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1782 	    udf_fixed_to_variable(block) >=
1783 	    i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
1784 		return -EAGAIN;
1785 
1786 	bh = udf_read_tagged(sb, block, block, &ident);
1787 	if (!bh)
1788 		return -EAGAIN;
1789 	if (ident != TAG_IDENT_AVDP) {
1790 		brelse(bh);
1791 		return -EAGAIN;
1792 	}
1793 	ret = udf_load_sequence(sb, bh, fileset);
1794 	brelse(bh);
1795 	return ret;
1796 }
1797 
1798 /*
1799  * Search for an anchor volume descriptor pointer.
1800  *
1801  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1802  * of anchors.
1803  */
1804 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1805 			    struct kernel_lb_addr *fileset)
1806 {
1807 	sector_t last[6];
1808 	int i;
1809 	struct udf_sb_info *sbi = UDF_SB(sb);
1810 	int last_count = 0;
1811 	int ret;
1812 
1813 	/* First try user provided anchor */
1814 	if (sbi->s_anchor) {
1815 		ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1816 		if (ret != -EAGAIN)
1817 			return ret;
1818 	}
1819 	/*
1820 	 * according to spec, anchor is in either:
1821 	 *     block 256
1822 	 *     lastblock-256
1823 	 *     lastblock
1824 	 *  however, if the disc isn't closed, it could be 512.
1825 	 */
1826 	ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1827 	if (ret != -EAGAIN)
1828 		return ret;
1829 	/*
1830 	 * The trouble is which block is the last one. Drives often misreport
1831 	 * this so we try various possibilities.
1832 	 */
1833 	last[last_count++] = *lastblock;
1834 	if (*lastblock >= 1)
1835 		last[last_count++] = *lastblock - 1;
1836 	last[last_count++] = *lastblock + 1;
1837 	if (*lastblock >= 2)
1838 		last[last_count++] = *lastblock - 2;
1839 	if (*lastblock >= 150)
1840 		last[last_count++] = *lastblock - 150;
1841 	if (*lastblock >= 152)
1842 		last[last_count++] = *lastblock - 152;
1843 
1844 	for (i = 0; i < last_count; i++) {
1845 		if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
1846 				sb->s_blocksize_bits)
1847 			continue;
1848 		ret = udf_check_anchor_block(sb, last[i], fileset);
1849 		if (ret != -EAGAIN) {
1850 			if (!ret)
1851 				*lastblock = last[i];
1852 			return ret;
1853 		}
1854 		if (last[i] < 256)
1855 			continue;
1856 		ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1857 		if (ret != -EAGAIN) {
1858 			if (!ret)
1859 				*lastblock = last[i];
1860 			return ret;
1861 		}
1862 	}
1863 
1864 	/* Finally try block 512 in case media is open */
1865 	return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1866 }
1867 
1868 /*
1869  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1870  * area specified by it. The function expects sbi->s_lastblock to be the last
1871  * block on the media.
1872  *
1873  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1874  * was not found.
1875  */
1876 static int udf_find_anchor(struct super_block *sb,
1877 			   struct kernel_lb_addr *fileset)
1878 {
1879 	struct udf_sb_info *sbi = UDF_SB(sb);
1880 	sector_t lastblock = sbi->s_last_block;
1881 	int ret;
1882 
1883 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1884 	if (ret != -EAGAIN)
1885 		goto out;
1886 
1887 	/* No anchor found? Try VARCONV conversion of block numbers */
1888 	UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1889 	lastblock = udf_variable_to_fixed(sbi->s_last_block);
1890 	/* Firstly, we try to not convert number of the last block */
1891 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1892 	if (ret != -EAGAIN)
1893 		goto out;
1894 
1895 	lastblock = sbi->s_last_block;
1896 	/* Secondly, we try with converted number of the last block */
1897 	ret = udf_scan_anchors(sb, &lastblock, fileset);
1898 	if (ret < 0) {
1899 		/* VARCONV didn't help. Clear it. */
1900 		UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1901 	}
1902 out:
1903 	if (ret == 0)
1904 		sbi->s_last_block = lastblock;
1905 	return ret;
1906 }
1907 
1908 /*
1909  * Check Volume Structure Descriptor, find Anchor block and load Volume
1910  * Descriptor Sequence.
1911  *
1912  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1913  * block was not found.
1914  */
1915 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1916 			int silent, struct kernel_lb_addr *fileset)
1917 {
1918 	struct udf_sb_info *sbi = UDF_SB(sb);
1919 	loff_t nsr_off;
1920 	int ret;
1921 
1922 	if (!sb_set_blocksize(sb, uopt->blocksize)) {
1923 		if (!silent)
1924 			udf_warn(sb, "Bad block size\n");
1925 		return -EINVAL;
1926 	}
1927 	sbi->s_last_block = uopt->lastblock;
1928 	if (!uopt->novrs) {
1929 		/* Check that it is NSR02 compliant */
1930 		nsr_off = udf_check_vsd(sb);
1931 		if (!nsr_off) {
1932 			if (!silent)
1933 				udf_warn(sb, "No VRS found\n");
1934 			return -EINVAL;
1935 		}
1936 		if (nsr_off == -1)
1937 			udf_debug("Failed to read sector at offset %d. "
1938 				  "Assuming open disc. Skipping validity "
1939 				  "check\n", VSD_FIRST_SECTOR_OFFSET);
1940 		if (!sbi->s_last_block)
1941 			sbi->s_last_block = udf_get_last_block(sb);
1942 	} else {
1943 		udf_debug("Validity check skipped because of novrs option\n");
1944 	}
1945 
1946 	/* Look for anchor block and load Volume Descriptor Sequence */
1947 	sbi->s_anchor = uopt->anchor;
1948 	ret = udf_find_anchor(sb, fileset);
1949 	if (ret < 0) {
1950 		if (!silent && ret == -EAGAIN)
1951 			udf_warn(sb, "No anchor found\n");
1952 		return ret;
1953 	}
1954 	return 0;
1955 }
1956 
1957 static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
1958 {
1959 	struct timespec64 ts;
1960 
1961 	ktime_get_real_ts64(&ts);
1962 	udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
1963 	lvid->descTag.descCRC = cpu_to_le16(
1964 		crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1965 			le16_to_cpu(lvid->descTag.descCRCLength)));
1966 	lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1967 }
1968 
1969 static void udf_open_lvid(struct super_block *sb)
1970 {
1971 	struct udf_sb_info *sbi = UDF_SB(sb);
1972 	struct buffer_head *bh = sbi->s_lvid_bh;
1973 	struct logicalVolIntegrityDesc *lvid;
1974 	struct logicalVolIntegrityDescImpUse *lvidiu;
1975 
1976 	if (!bh)
1977 		return;
1978 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1979 	lvidiu = udf_sb_lvidiu(sb);
1980 	if (!lvidiu)
1981 		return;
1982 
1983 	mutex_lock(&sbi->s_alloc_mutex);
1984 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1985 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1986 	if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
1987 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1988 	else
1989 		UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
1990 
1991 	udf_finalize_lvid(lvid);
1992 	mark_buffer_dirty(bh);
1993 	sbi->s_lvid_dirty = 0;
1994 	mutex_unlock(&sbi->s_alloc_mutex);
1995 	/* Make opening of filesystem visible on the media immediately */
1996 	sync_dirty_buffer(bh);
1997 }
1998 
1999 static void udf_close_lvid(struct super_block *sb)
2000 {
2001 	struct udf_sb_info *sbi = UDF_SB(sb);
2002 	struct buffer_head *bh = sbi->s_lvid_bh;
2003 	struct logicalVolIntegrityDesc *lvid;
2004 	struct logicalVolIntegrityDescImpUse *lvidiu;
2005 
2006 	if (!bh)
2007 		return;
2008 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2009 	lvidiu = udf_sb_lvidiu(sb);
2010 	if (!lvidiu)
2011 		return;
2012 
2013 	mutex_lock(&sbi->s_alloc_mutex);
2014 	lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2015 	lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2016 	if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2017 		lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2018 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2019 		lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2020 	if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2021 		lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2022 	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
2023 		lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2024 
2025 	/*
2026 	 * We set buffer uptodate unconditionally here to avoid spurious
2027 	 * warnings from mark_buffer_dirty() when previous EIO has marked
2028 	 * the buffer as !uptodate
2029 	 */
2030 	set_buffer_uptodate(bh);
2031 	udf_finalize_lvid(lvid);
2032 	mark_buffer_dirty(bh);
2033 	sbi->s_lvid_dirty = 0;
2034 	mutex_unlock(&sbi->s_alloc_mutex);
2035 	/* Make closing of filesystem visible on the media immediately */
2036 	sync_dirty_buffer(bh);
2037 }
2038 
2039 u64 lvid_get_unique_id(struct super_block *sb)
2040 {
2041 	struct buffer_head *bh;
2042 	struct udf_sb_info *sbi = UDF_SB(sb);
2043 	struct logicalVolIntegrityDesc *lvid;
2044 	struct logicalVolHeaderDesc *lvhd;
2045 	u64 uniqueID;
2046 	u64 ret;
2047 
2048 	bh = sbi->s_lvid_bh;
2049 	if (!bh)
2050 		return 0;
2051 
2052 	lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2053 	lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2054 
2055 	mutex_lock(&sbi->s_alloc_mutex);
2056 	ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2057 	if (!(++uniqueID & 0xFFFFFFFF))
2058 		uniqueID += 16;
2059 	lvhd->uniqueID = cpu_to_le64(uniqueID);
2060 	udf_updated_lvid(sb);
2061 	mutex_unlock(&sbi->s_alloc_mutex);
2062 
2063 	return ret;
2064 }
2065 
2066 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2067 {
2068 	int ret = -EINVAL;
2069 	struct inode *inode = NULL;
2070 	struct udf_options uopt;
2071 	struct kernel_lb_addr rootdir, fileset;
2072 	struct udf_sb_info *sbi;
2073 	bool lvid_open = false;
2074 
2075 	uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2076 	/* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2077 	uopt.uid = make_kuid(current_user_ns(), overflowuid);
2078 	uopt.gid = make_kgid(current_user_ns(), overflowgid);
2079 	uopt.umask = 0;
2080 	uopt.fmode = UDF_INVALID_MODE;
2081 	uopt.dmode = UDF_INVALID_MODE;
2082 	uopt.nls_map = NULL;
2083 
2084 	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
2085 	if (!sbi)
2086 		return -ENOMEM;
2087 
2088 	sb->s_fs_info = sbi;
2089 
2090 	mutex_init(&sbi->s_alloc_mutex);
2091 
2092 	if (!udf_parse_options((char *)options, &uopt, false))
2093 		goto parse_options_failure;
2094 
2095 	if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2096 	    uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2097 		udf_err(sb, "utf8 cannot be combined with iocharset\n");
2098 		goto parse_options_failure;
2099 	}
2100 	if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2101 		uopt.nls_map = load_nls_default();
2102 		if (!uopt.nls_map)
2103 			uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2104 		else
2105 			udf_debug("Using default NLS map\n");
2106 	}
2107 	if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2108 		uopt.flags |= (1 << UDF_FLAG_UTF8);
2109 
2110 	fileset.logicalBlockNum = 0xFFFFFFFF;
2111 	fileset.partitionReferenceNum = 0xFFFF;
2112 
2113 	sbi->s_flags = uopt.flags;
2114 	sbi->s_uid = uopt.uid;
2115 	sbi->s_gid = uopt.gid;
2116 	sbi->s_umask = uopt.umask;
2117 	sbi->s_fmode = uopt.fmode;
2118 	sbi->s_dmode = uopt.dmode;
2119 	sbi->s_nls_map = uopt.nls_map;
2120 	rwlock_init(&sbi->s_cred_lock);
2121 
2122 	if (uopt.session == 0xFFFFFFFF)
2123 		sbi->s_session = udf_get_last_session(sb);
2124 	else
2125 		sbi->s_session = uopt.session;
2126 
2127 	udf_debug("Multi-session=%d\n", sbi->s_session);
2128 
2129 	/* Fill in the rest of the superblock */
2130 	sb->s_op = &udf_sb_ops;
2131 	sb->s_export_op = &udf_export_ops;
2132 
2133 	sb->s_magic = UDF_SUPER_MAGIC;
2134 	sb->s_time_gran = 1000;
2135 
2136 	if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2137 		ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2138 	} else {
2139 		uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2140 		while (uopt.blocksize <= 4096) {
2141 			ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2142 			if (ret < 0) {
2143 				if (!silent && ret != -EACCES) {
2144 					pr_notice("Scanning with blocksize %u failed\n",
2145 						  uopt.blocksize);
2146 				}
2147 				brelse(sbi->s_lvid_bh);
2148 				sbi->s_lvid_bh = NULL;
2149 				/*
2150 				 * EACCES is special - we want to propagate to
2151 				 * upper layers that we cannot handle RW mount.
2152 				 */
2153 				if (ret == -EACCES)
2154 					break;
2155 			} else
2156 				break;
2157 
2158 			uopt.blocksize <<= 1;
2159 		}
2160 	}
2161 	if (ret < 0) {
2162 		if (ret == -EAGAIN) {
2163 			udf_warn(sb, "No partition found (1)\n");
2164 			ret = -EINVAL;
2165 		}
2166 		goto error_out;
2167 	}
2168 
2169 	udf_debug("Lastblock=%u\n", sbi->s_last_block);
2170 
2171 	if (sbi->s_lvid_bh) {
2172 		struct logicalVolIntegrityDescImpUse *lvidiu =
2173 							udf_sb_lvidiu(sb);
2174 		uint16_t minUDFReadRev;
2175 		uint16_t minUDFWriteRev;
2176 
2177 		if (!lvidiu) {
2178 			ret = -EINVAL;
2179 			goto error_out;
2180 		}
2181 		minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2182 		minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2183 		if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2184 			udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2185 				minUDFReadRev,
2186 				UDF_MAX_READ_VERSION);
2187 			ret = -EINVAL;
2188 			goto error_out;
2189 		} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
2190 			if (!sb_rdonly(sb)) {
2191 				ret = -EACCES;
2192 				goto error_out;
2193 			}
2194 			UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2195 		}
2196 
2197 		sbi->s_udfrev = minUDFWriteRev;
2198 
2199 		if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2200 			UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2201 		if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2202 			UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2203 	}
2204 
2205 	if (!sbi->s_partitions) {
2206 		udf_warn(sb, "No partition found (2)\n");
2207 		ret = -EINVAL;
2208 		goto error_out;
2209 	}
2210 
2211 	if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2212 			UDF_PART_FLAG_READ_ONLY) {
2213 		if (!sb_rdonly(sb)) {
2214 			ret = -EACCES;
2215 			goto error_out;
2216 		}
2217 		UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
2218 	}
2219 
2220 	if (udf_find_fileset(sb, &fileset, &rootdir)) {
2221 		udf_warn(sb, "No fileset found\n");
2222 		ret = -EINVAL;
2223 		goto error_out;
2224 	}
2225 
2226 	if (!silent) {
2227 		struct timestamp ts;
2228 		udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2229 		udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2230 			 sbi->s_volume_ident,
2231 			 le16_to_cpu(ts.year), ts.month, ts.day,
2232 			 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2233 	}
2234 	if (!sb_rdonly(sb)) {
2235 		udf_open_lvid(sb);
2236 		lvid_open = true;
2237 	}
2238 
2239 	/* Assign the root inode */
2240 	/* assign inodes by physical block number */
2241 	/* perhaps it's not extensible enough, but for now ... */
2242 	inode = udf_iget(sb, &rootdir);
2243 	if (IS_ERR(inode)) {
2244 		udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
2245 		       rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2246 		ret = PTR_ERR(inode);
2247 		goto error_out;
2248 	}
2249 
2250 	/* Allocate a dentry for the root inode */
2251 	sb->s_root = d_make_root(inode);
2252 	if (!sb->s_root) {
2253 		udf_err(sb, "Couldn't allocate root dentry\n");
2254 		ret = -ENOMEM;
2255 		goto error_out;
2256 	}
2257 	sb->s_maxbytes = MAX_LFS_FILESIZE;
2258 	sb->s_max_links = UDF_MAX_LINKS;
2259 	return 0;
2260 
2261 error_out:
2262 	iput(sbi->s_vat_inode);
2263 parse_options_failure:
2264 	if (uopt.nls_map)
2265 		unload_nls(uopt.nls_map);
2266 	if (lvid_open)
2267 		udf_close_lvid(sb);
2268 	brelse(sbi->s_lvid_bh);
2269 	udf_sb_free_partitions(sb);
2270 	kfree(sbi);
2271 	sb->s_fs_info = NULL;
2272 
2273 	return ret;
2274 }
2275 
2276 void _udf_err(struct super_block *sb, const char *function,
2277 	      const char *fmt, ...)
2278 {
2279 	struct va_format vaf;
2280 	va_list args;
2281 
2282 	va_start(args, fmt);
2283 
2284 	vaf.fmt = fmt;
2285 	vaf.va = &args;
2286 
2287 	pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2288 
2289 	va_end(args);
2290 }
2291 
2292 void _udf_warn(struct super_block *sb, const char *function,
2293 	       const char *fmt, ...)
2294 {
2295 	struct va_format vaf;
2296 	va_list args;
2297 
2298 	va_start(args, fmt);
2299 
2300 	vaf.fmt = fmt;
2301 	vaf.va = &args;
2302 
2303 	pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2304 
2305 	va_end(args);
2306 }
2307 
2308 static void udf_put_super(struct super_block *sb)
2309 {
2310 	struct udf_sb_info *sbi;
2311 
2312 	sbi = UDF_SB(sb);
2313 
2314 	iput(sbi->s_vat_inode);
2315 	if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2316 		unload_nls(sbi->s_nls_map);
2317 	if (!sb_rdonly(sb))
2318 		udf_close_lvid(sb);
2319 	brelse(sbi->s_lvid_bh);
2320 	udf_sb_free_partitions(sb);
2321 	mutex_destroy(&sbi->s_alloc_mutex);
2322 	kfree(sb->s_fs_info);
2323 	sb->s_fs_info = NULL;
2324 }
2325 
2326 static int udf_sync_fs(struct super_block *sb, int wait)
2327 {
2328 	struct udf_sb_info *sbi = UDF_SB(sb);
2329 
2330 	mutex_lock(&sbi->s_alloc_mutex);
2331 	if (sbi->s_lvid_dirty) {
2332 		struct buffer_head *bh = sbi->s_lvid_bh;
2333 		struct logicalVolIntegrityDesc *lvid;
2334 
2335 		lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2336 		udf_finalize_lvid(lvid);
2337 
2338 		/*
2339 		 * Blockdevice will be synced later so we don't have to submit
2340 		 * the buffer for IO
2341 		 */
2342 		mark_buffer_dirty(bh);
2343 		sbi->s_lvid_dirty = 0;
2344 	}
2345 	mutex_unlock(&sbi->s_alloc_mutex);
2346 
2347 	return 0;
2348 }
2349 
2350 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2351 {
2352 	struct super_block *sb = dentry->d_sb;
2353 	struct udf_sb_info *sbi = UDF_SB(sb);
2354 	struct logicalVolIntegrityDescImpUse *lvidiu;
2355 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2356 
2357 	lvidiu = udf_sb_lvidiu(sb);
2358 	buf->f_type = UDF_SUPER_MAGIC;
2359 	buf->f_bsize = sb->s_blocksize;
2360 	buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2361 	buf->f_bfree = udf_count_free(sb);
2362 	buf->f_bavail = buf->f_bfree;
2363 	buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2364 					  le32_to_cpu(lvidiu->numDirs)) : 0)
2365 			+ buf->f_bfree;
2366 	buf->f_ffree = buf->f_bfree;
2367 	buf->f_namelen = UDF_NAME_LEN;
2368 	buf->f_fsid.val[0] = (u32)id;
2369 	buf->f_fsid.val[1] = (u32)(id >> 32);
2370 
2371 	return 0;
2372 }
2373 
2374 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2375 					  struct udf_bitmap *bitmap)
2376 {
2377 	struct buffer_head *bh = NULL;
2378 	unsigned int accum = 0;
2379 	int index;
2380 	udf_pblk_t block = 0, newblock;
2381 	struct kernel_lb_addr loc;
2382 	uint32_t bytes;
2383 	uint8_t *ptr;
2384 	uint16_t ident;
2385 	struct spaceBitmapDesc *bm;
2386 
2387 	loc.logicalBlockNum = bitmap->s_extPosition;
2388 	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2389 	bh = udf_read_ptagged(sb, &loc, 0, &ident);
2390 
2391 	if (!bh) {
2392 		udf_err(sb, "udf_count_free failed\n");
2393 		goto out;
2394 	} else if (ident != TAG_IDENT_SBD) {
2395 		brelse(bh);
2396 		udf_err(sb, "udf_count_free failed\n");
2397 		goto out;
2398 	}
2399 
2400 	bm = (struct spaceBitmapDesc *)bh->b_data;
2401 	bytes = le32_to_cpu(bm->numOfBytes);
2402 	index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2403 	ptr = (uint8_t *)bh->b_data;
2404 
2405 	while (bytes > 0) {
2406 		u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2407 		accum += bitmap_weight((const unsigned long *)(ptr + index),
2408 					cur_bytes * 8);
2409 		bytes -= cur_bytes;
2410 		if (bytes) {
2411 			brelse(bh);
2412 			newblock = udf_get_lb_pblock(sb, &loc, ++block);
2413 			bh = udf_tread(sb, newblock);
2414 			if (!bh) {
2415 				udf_debug("read failed\n");
2416 				goto out;
2417 			}
2418 			index = 0;
2419 			ptr = (uint8_t *)bh->b_data;
2420 		}
2421 	}
2422 	brelse(bh);
2423 out:
2424 	return accum;
2425 }
2426 
2427 static unsigned int udf_count_free_table(struct super_block *sb,
2428 					 struct inode *table)
2429 {
2430 	unsigned int accum = 0;
2431 	uint32_t elen;
2432 	struct kernel_lb_addr eloc;
2433 	int8_t etype;
2434 	struct extent_position epos;
2435 
2436 	mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2437 	epos.block = UDF_I(table)->i_location;
2438 	epos.offset = sizeof(struct unallocSpaceEntry);
2439 	epos.bh = NULL;
2440 
2441 	while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2442 		accum += (elen >> table->i_sb->s_blocksize_bits);
2443 
2444 	brelse(epos.bh);
2445 	mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2446 
2447 	return accum;
2448 }
2449 
2450 static unsigned int udf_count_free(struct super_block *sb)
2451 {
2452 	unsigned int accum = 0;
2453 	struct udf_sb_info *sbi;
2454 	struct udf_part_map *map;
2455 
2456 	sbi = UDF_SB(sb);
2457 	if (sbi->s_lvid_bh) {
2458 		struct logicalVolIntegrityDesc *lvid =
2459 			(struct logicalVolIntegrityDesc *)
2460 			sbi->s_lvid_bh->b_data;
2461 		if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2462 			accum = le32_to_cpu(
2463 					lvid->freeSpaceTable[sbi->s_partition]);
2464 			if (accum == 0xFFFFFFFF)
2465 				accum = 0;
2466 		}
2467 	}
2468 
2469 	if (accum)
2470 		return accum;
2471 
2472 	map = &sbi->s_partmaps[sbi->s_partition];
2473 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2474 		accum += udf_count_free_bitmap(sb,
2475 					       map->s_uspace.s_bitmap);
2476 	}
2477 	if (accum)
2478 		return accum;
2479 
2480 	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2481 		accum += udf_count_free_table(sb,
2482 					      map->s_uspace.s_table);
2483 	}
2484 	return accum;
2485 }
2486 
2487 MODULE_AUTHOR("Ben Fennema");
2488 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
2489 MODULE_LICENSE("GPL");
2490 module_init(init_udf_fs)
2491 module_exit(exit_udf_fs)
2492