1 /* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * http://www.ecma.ch/ 15 * http://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41 #include "udfdecl.h" 42 43 #include <linux/blkdev.h> 44 #include <linux/slab.h> 45 #include <linux/kernel.h> 46 #include <linux/module.h> 47 #include <linux/parser.h> 48 #include <linux/stat.h> 49 #include <linux/cdrom.h> 50 #include <linux/nls.h> 51 #include <linux/vfs.h> 52 #include <linux/vmalloc.h> 53 #include <linux/errno.h> 54 #include <linux/mount.h> 55 #include <linux/seq_file.h> 56 #include <linux/bitmap.h> 57 #include <linux/crc-itu-t.h> 58 #include <linux/log2.h> 59 #include <asm/byteorder.h> 60 61 #include "udf_sb.h" 62 #include "udf_i.h" 63 64 #include <linux/init.h> 65 #include <linux/uaccess.h> 66 67 enum { 68 VDS_POS_PRIMARY_VOL_DESC, 69 VDS_POS_UNALLOC_SPACE_DESC, 70 VDS_POS_LOGICAL_VOL_DESC, 71 VDS_POS_IMP_USE_VOL_DESC, 72 VDS_POS_LENGTH 73 }; 74 75 #define VSD_FIRST_SECTOR_OFFSET 32768 76 #define VSD_MAX_SECTOR_OFFSET 0x800000 77 78 /* 79 * Maximum number of Terminating Descriptor / Logical Volume Integrity 80 * Descriptor redirections. The chosen numbers are arbitrary - just that we 81 * hopefully don't limit any real use of rewritten inode on write-once media 82 * but avoid looping for too long on corrupted media. 83 */ 84 #define UDF_MAX_TD_NESTING 64 85 #define UDF_MAX_LVID_NESTING 1000 86 87 enum { UDF_MAX_LINKS = 0xffff }; 88 89 /* These are the "meat" - everything else is stuffing */ 90 static int udf_fill_super(struct super_block *, void *, int); 91 static void udf_put_super(struct super_block *); 92 static int udf_sync_fs(struct super_block *, int); 93 static int udf_remount_fs(struct super_block *, int *, char *); 94 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 95 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *, 96 struct kernel_lb_addr *); 97 static void udf_load_fileset(struct super_block *, struct buffer_head *, 98 struct kernel_lb_addr *); 99 static void udf_open_lvid(struct super_block *); 100 static void udf_close_lvid(struct super_block *); 101 static unsigned int udf_count_free(struct super_block *); 102 static int udf_statfs(struct dentry *, struct kstatfs *); 103 static int udf_show_options(struct seq_file *, struct dentry *); 104 105 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb) 106 { 107 struct logicalVolIntegrityDesc *lvid; 108 unsigned int partnum; 109 unsigned int offset; 110 111 if (!UDF_SB(sb)->s_lvid_bh) 112 return NULL; 113 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data; 114 partnum = le32_to_cpu(lvid->numOfPartitions); 115 if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) - 116 offsetof(struct logicalVolIntegrityDesc, impUse)) / 117 (2 * sizeof(uint32_t)) < partnum) { 118 udf_err(sb, "Logical volume integrity descriptor corrupted " 119 "(numOfPartitions = %u)!\n", partnum); 120 return NULL; 121 } 122 /* The offset is to skip freeSpaceTable and sizeTable arrays */ 123 offset = partnum * 2 * sizeof(uint32_t); 124 return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]); 125 } 126 127 /* UDF filesystem type */ 128 static struct dentry *udf_mount(struct file_system_type *fs_type, 129 int flags, const char *dev_name, void *data) 130 { 131 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 132 } 133 134 static struct file_system_type udf_fstype = { 135 .owner = THIS_MODULE, 136 .name = "udf", 137 .mount = udf_mount, 138 .kill_sb = kill_block_super, 139 .fs_flags = FS_REQUIRES_DEV, 140 }; 141 MODULE_ALIAS_FS("udf"); 142 143 static struct kmem_cache *udf_inode_cachep; 144 145 static struct inode *udf_alloc_inode(struct super_block *sb) 146 { 147 struct udf_inode_info *ei; 148 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 149 if (!ei) 150 return NULL; 151 152 ei->i_unique = 0; 153 ei->i_lenExtents = 0; 154 ei->i_next_alloc_block = 0; 155 ei->i_next_alloc_goal = 0; 156 ei->i_strat4096 = 0; 157 init_rwsem(&ei->i_data_sem); 158 ei->cached_extent.lstart = -1; 159 spin_lock_init(&ei->i_extent_cache_lock); 160 161 return &ei->vfs_inode; 162 } 163 164 static void udf_i_callback(struct rcu_head *head) 165 { 166 struct inode *inode = container_of(head, struct inode, i_rcu); 167 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 168 } 169 170 static void udf_destroy_inode(struct inode *inode) 171 { 172 call_rcu(&inode->i_rcu, udf_i_callback); 173 } 174 175 static void init_once(void *foo) 176 { 177 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 178 179 ei->i_ext.i_data = NULL; 180 inode_init_once(&ei->vfs_inode); 181 } 182 183 static int __init init_inodecache(void) 184 { 185 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 186 sizeof(struct udf_inode_info), 187 0, (SLAB_RECLAIM_ACCOUNT | 188 SLAB_MEM_SPREAD | 189 SLAB_ACCOUNT), 190 init_once); 191 if (!udf_inode_cachep) 192 return -ENOMEM; 193 return 0; 194 } 195 196 static void destroy_inodecache(void) 197 { 198 /* 199 * Make sure all delayed rcu free inodes are flushed before we 200 * destroy cache. 201 */ 202 rcu_barrier(); 203 kmem_cache_destroy(udf_inode_cachep); 204 } 205 206 /* Superblock operations */ 207 static const struct super_operations udf_sb_ops = { 208 .alloc_inode = udf_alloc_inode, 209 .destroy_inode = udf_destroy_inode, 210 .write_inode = udf_write_inode, 211 .evict_inode = udf_evict_inode, 212 .put_super = udf_put_super, 213 .sync_fs = udf_sync_fs, 214 .statfs = udf_statfs, 215 .remount_fs = udf_remount_fs, 216 .show_options = udf_show_options, 217 }; 218 219 struct udf_options { 220 unsigned char novrs; 221 unsigned int blocksize; 222 unsigned int session; 223 unsigned int lastblock; 224 unsigned int anchor; 225 unsigned int flags; 226 umode_t umask; 227 kgid_t gid; 228 kuid_t uid; 229 umode_t fmode; 230 umode_t dmode; 231 struct nls_table *nls_map; 232 }; 233 234 static int __init init_udf_fs(void) 235 { 236 int err; 237 238 err = init_inodecache(); 239 if (err) 240 goto out1; 241 err = register_filesystem(&udf_fstype); 242 if (err) 243 goto out; 244 245 return 0; 246 247 out: 248 destroy_inodecache(); 249 250 out1: 251 return err; 252 } 253 254 static void __exit exit_udf_fs(void) 255 { 256 unregister_filesystem(&udf_fstype); 257 destroy_inodecache(); 258 } 259 260 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 261 { 262 struct udf_sb_info *sbi = UDF_SB(sb); 263 264 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL); 265 if (!sbi->s_partmaps) { 266 sbi->s_partitions = 0; 267 return -ENOMEM; 268 } 269 270 sbi->s_partitions = count; 271 return 0; 272 } 273 274 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 275 { 276 int i; 277 int nr_groups = bitmap->s_nr_groups; 278 279 for (i = 0; i < nr_groups; i++) 280 if (bitmap->s_block_bitmap[i]) 281 brelse(bitmap->s_block_bitmap[i]); 282 283 kvfree(bitmap); 284 } 285 286 static void udf_free_partition(struct udf_part_map *map) 287 { 288 int i; 289 struct udf_meta_data *mdata; 290 291 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 292 iput(map->s_uspace.s_table); 293 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) 294 iput(map->s_fspace.s_table); 295 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 296 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 297 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) 298 udf_sb_free_bitmap(map->s_fspace.s_bitmap); 299 if (map->s_partition_type == UDF_SPARABLE_MAP15) 300 for (i = 0; i < 4; i++) 301 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 302 else if (map->s_partition_type == UDF_METADATA_MAP25) { 303 mdata = &map->s_type_specific.s_metadata; 304 iput(mdata->s_metadata_fe); 305 mdata->s_metadata_fe = NULL; 306 307 iput(mdata->s_mirror_fe); 308 mdata->s_mirror_fe = NULL; 309 310 iput(mdata->s_bitmap_fe); 311 mdata->s_bitmap_fe = NULL; 312 } 313 } 314 315 static void udf_sb_free_partitions(struct super_block *sb) 316 { 317 struct udf_sb_info *sbi = UDF_SB(sb); 318 int i; 319 320 if (!sbi->s_partmaps) 321 return; 322 for (i = 0; i < sbi->s_partitions; i++) 323 udf_free_partition(&sbi->s_partmaps[i]); 324 kfree(sbi->s_partmaps); 325 sbi->s_partmaps = NULL; 326 } 327 328 static int udf_show_options(struct seq_file *seq, struct dentry *root) 329 { 330 struct super_block *sb = root->d_sb; 331 struct udf_sb_info *sbi = UDF_SB(sb); 332 333 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 334 seq_puts(seq, ",nostrict"); 335 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 336 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 337 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 338 seq_puts(seq, ",unhide"); 339 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 340 seq_puts(seq, ",undelete"); 341 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 342 seq_puts(seq, ",noadinicb"); 343 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 344 seq_puts(seq, ",shortad"); 345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 346 seq_puts(seq, ",uid=forget"); 347 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 348 seq_puts(seq, ",gid=forget"); 349 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 350 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 351 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 352 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 353 if (sbi->s_umask != 0) 354 seq_printf(seq, ",umask=%ho", sbi->s_umask); 355 if (sbi->s_fmode != UDF_INVALID_MODE) 356 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 357 if (sbi->s_dmode != UDF_INVALID_MODE) 358 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 359 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 360 seq_printf(seq, ",session=%d", sbi->s_session); 361 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 362 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 363 if (sbi->s_anchor != 0) 364 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 365 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8)) 366 seq_puts(seq, ",utf8"); 367 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map) 368 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 369 370 return 0; 371 } 372 373 /* 374 * udf_parse_options 375 * 376 * PURPOSE 377 * Parse mount options. 378 * 379 * DESCRIPTION 380 * The following mount options are supported: 381 * 382 * gid= Set the default group. 383 * umask= Set the default umask. 384 * mode= Set the default file permissions. 385 * dmode= Set the default directory permissions. 386 * uid= Set the default user. 387 * bs= Set the block size. 388 * unhide Show otherwise hidden files. 389 * undelete Show deleted files in lists. 390 * adinicb Embed data in the inode (default) 391 * noadinicb Don't embed data in the inode 392 * shortad Use short ad's 393 * longad Use long ad's (default) 394 * nostrict Unset strict conformance 395 * iocharset= Set the NLS character set 396 * 397 * The remaining are for debugging and disaster recovery: 398 * 399 * novrs Skip volume sequence recognition 400 * 401 * The following expect a offset from 0. 402 * 403 * session= Set the CDROM session (default= last session) 404 * anchor= Override standard anchor location. (default= 256) 405 * volume= Override the VolumeDesc location. (unused) 406 * partition= Override the PartitionDesc location. (unused) 407 * lastblock= Set the last block of the filesystem/ 408 * 409 * The following expect a offset from the partition root. 410 * 411 * fileset= Override the fileset block location. (unused) 412 * rootdir= Override the root directory location. (unused) 413 * WARNING: overriding the rootdir to a non-directory may 414 * yield highly unpredictable results. 415 * 416 * PRE-CONDITIONS 417 * options Pointer to mount options string. 418 * uopts Pointer to mount options variable. 419 * 420 * POST-CONDITIONS 421 * <return> 1 Mount options parsed okay. 422 * <return> 0 Error parsing mount options. 423 * 424 * HISTORY 425 * July 1, 1997 - Andrew E. Mileski 426 * Written, tested, and released. 427 */ 428 429 enum { 430 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 431 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 432 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 433 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 434 Opt_rootdir, Opt_utf8, Opt_iocharset, 435 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 436 Opt_fmode, Opt_dmode 437 }; 438 439 static const match_table_t tokens = { 440 {Opt_novrs, "novrs"}, 441 {Opt_nostrict, "nostrict"}, 442 {Opt_bs, "bs=%u"}, 443 {Opt_unhide, "unhide"}, 444 {Opt_undelete, "undelete"}, 445 {Opt_noadinicb, "noadinicb"}, 446 {Opt_adinicb, "adinicb"}, 447 {Opt_shortad, "shortad"}, 448 {Opt_longad, "longad"}, 449 {Opt_uforget, "uid=forget"}, 450 {Opt_uignore, "uid=ignore"}, 451 {Opt_gforget, "gid=forget"}, 452 {Opt_gignore, "gid=ignore"}, 453 {Opt_gid, "gid=%u"}, 454 {Opt_uid, "uid=%u"}, 455 {Opt_umask, "umask=%o"}, 456 {Opt_session, "session=%u"}, 457 {Opt_lastblock, "lastblock=%u"}, 458 {Opt_anchor, "anchor=%u"}, 459 {Opt_volume, "volume=%u"}, 460 {Opt_partition, "partition=%u"}, 461 {Opt_fileset, "fileset=%u"}, 462 {Opt_rootdir, "rootdir=%u"}, 463 {Opt_utf8, "utf8"}, 464 {Opt_iocharset, "iocharset=%s"}, 465 {Opt_fmode, "mode=%o"}, 466 {Opt_dmode, "dmode=%o"}, 467 {Opt_err, NULL} 468 }; 469 470 static int udf_parse_options(char *options, struct udf_options *uopt, 471 bool remount) 472 { 473 char *p; 474 int option; 475 476 uopt->novrs = 0; 477 uopt->session = 0xFFFFFFFF; 478 uopt->lastblock = 0; 479 uopt->anchor = 0; 480 481 if (!options) 482 return 1; 483 484 while ((p = strsep(&options, ",")) != NULL) { 485 substring_t args[MAX_OPT_ARGS]; 486 int token; 487 unsigned n; 488 if (!*p) 489 continue; 490 491 token = match_token(p, tokens, args); 492 switch (token) { 493 case Opt_novrs: 494 uopt->novrs = 1; 495 break; 496 case Opt_bs: 497 if (match_int(&args[0], &option)) 498 return 0; 499 n = option; 500 if (n != 512 && n != 1024 && n != 2048 && n != 4096) 501 return 0; 502 uopt->blocksize = n; 503 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 504 break; 505 case Opt_unhide: 506 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 507 break; 508 case Opt_undelete: 509 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 510 break; 511 case Opt_noadinicb: 512 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 513 break; 514 case Opt_adinicb: 515 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 516 break; 517 case Opt_shortad: 518 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 519 break; 520 case Opt_longad: 521 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 522 break; 523 case Opt_gid: 524 if (match_int(args, &option)) 525 return 0; 526 uopt->gid = make_kgid(current_user_ns(), option); 527 if (!gid_valid(uopt->gid)) 528 return 0; 529 uopt->flags |= (1 << UDF_FLAG_GID_SET); 530 break; 531 case Opt_uid: 532 if (match_int(args, &option)) 533 return 0; 534 uopt->uid = make_kuid(current_user_ns(), option); 535 if (!uid_valid(uopt->uid)) 536 return 0; 537 uopt->flags |= (1 << UDF_FLAG_UID_SET); 538 break; 539 case Opt_umask: 540 if (match_octal(args, &option)) 541 return 0; 542 uopt->umask = option; 543 break; 544 case Opt_nostrict: 545 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 546 break; 547 case Opt_session: 548 if (match_int(args, &option)) 549 return 0; 550 uopt->session = option; 551 if (!remount) 552 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 553 break; 554 case Opt_lastblock: 555 if (match_int(args, &option)) 556 return 0; 557 uopt->lastblock = option; 558 if (!remount) 559 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 560 break; 561 case Opt_anchor: 562 if (match_int(args, &option)) 563 return 0; 564 uopt->anchor = option; 565 break; 566 case Opt_volume: 567 case Opt_partition: 568 case Opt_fileset: 569 case Opt_rootdir: 570 /* Ignored (never implemented properly) */ 571 break; 572 case Opt_utf8: 573 uopt->flags |= (1 << UDF_FLAG_UTF8); 574 break; 575 #ifdef CONFIG_UDF_NLS 576 case Opt_iocharset: 577 if (!remount) { 578 if (uopt->nls_map) 579 unload_nls(uopt->nls_map); 580 uopt->nls_map = load_nls(args[0].from); 581 uopt->flags |= (1 << UDF_FLAG_NLS_MAP); 582 } 583 break; 584 #endif 585 case Opt_uforget: 586 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 587 break; 588 case Opt_uignore: 589 case Opt_gignore: 590 /* These options are superseeded by uid=<number> */ 591 break; 592 case Opt_gforget: 593 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 594 break; 595 case Opt_fmode: 596 if (match_octal(args, &option)) 597 return 0; 598 uopt->fmode = option & 0777; 599 break; 600 case Opt_dmode: 601 if (match_octal(args, &option)) 602 return 0; 603 uopt->dmode = option & 0777; 604 break; 605 default: 606 pr_err("bad mount option \"%s\" or missing value\n", p); 607 return 0; 608 } 609 } 610 return 1; 611 } 612 613 static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 614 { 615 struct udf_options uopt; 616 struct udf_sb_info *sbi = UDF_SB(sb); 617 int error = 0; 618 struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb); 619 620 sync_filesystem(sb); 621 if (lvidiu) { 622 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev); 623 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & SB_RDONLY)) 624 return -EACCES; 625 } 626 627 uopt.flags = sbi->s_flags; 628 uopt.uid = sbi->s_uid; 629 uopt.gid = sbi->s_gid; 630 uopt.umask = sbi->s_umask; 631 uopt.fmode = sbi->s_fmode; 632 uopt.dmode = sbi->s_dmode; 633 uopt.nls_map = NULL; 634 635 if (!udf_parse_options(options, &uopt, true)) 636 return -EINVAL; 637 638 write_lock(&sbi->s_cred_lock); 639 sbi->s_flags = uopt.flags; 640 sbi->s_uid = uopt.uid; 641 sbi->s_gid = uopt.gid; 642 sbi->s_umask = uopt.umask; 643 sbi->s_fmode = uopt.fmode; 644 sbi->s_dmode = uopt.dmode; 645 write_unlock(&sbi->s_cred_lock); 646 647 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 648 goto out_unlock; 649 650 if (*flags & SB_RDONLY) 651 udf_close_lvid(sb); 652 else 653 udf_open_lvid(sb); 654 655 out_unlock: 656 return error; 657 } 658 659 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */ 660 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */ 661 static loff_t udf_check_vsd(struct super_block *sb) 662 { 663 struct volStructDesc *vsd = NULL; 664 loff_t sector = VSD_FIRST_SECTOR_OFFSET; 665 int sectorsize; 666 struct buffer_head *bh = NULL; 667 int nsr02 = 0; 668 int nsr03 = 0; 669 struct udf_sb_info *sbi; 670 671 sbi = UDF_SB(sb); 672 if (sb->s_blocksize < sizeof(struct volStructDesc)) 673 sectorsize = sizeof(struct volStructDesc); 674 else 675 sectorsize = sb->s_blocksize; 676 677 sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits); 678 679 udf_debug("Starting at sector %u (%lu byte sectors)\n", 680 (unsigned int)(sector >> sb->s_blocksize_bits), 681 sb->s_blocksize); 682 /* Process the sequence (if applicable). The hard limit on the sector 683 * offset is arbitrary, hopefully large enough so that all valid UDF 684 * filesystems will be recognised. There is no mention of an upper 685 * bound to the size of the volume recognition area in the standard. 686 * The limit will prevent the code to read all the sectors of a 687 * specially crafted image (like a bluray disc full of CD001 sectors), 688 * potentially causing minutes or even hours of uninterruptible I/O 689 * activity. This actually happened with uninitialised SSD partitions 690 * (all 0xFF) before the check for the limit and all valid IDs were 691 * added */ 692 for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET; 693 sector += sectorsize) { 694 /* Read a block */ 695 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 696 if (!bh) 697 break; 698 699 /* Look for ISO descriptors */ 700 vsd = (struct volStructDesc *)(bh->b_data + 701 (sector & (sb->s_blocksize - 1))); 702 703 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001, 704 VSD_STD_ID_LEN)) { 705 switch (vsd->structType) { 706 case 0: 707 udf_debug("ISO9660 Boot Record found\n"); 708 break; 709 case 1: 710 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 711 break; 712 case 2: 713 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 714 break; 715 case 3: 716 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 717 break; 718 case 255: 719 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 720 break; 721 default: 722 udf_debug("ISO9660 VRS (%u) found\n", 723 vsd->structType); 724 break; 725 } 726 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01, 727 VSD_STD_ID_LEN)) 728 ; /* nothing */ 729 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01, 730 VSD_STD_ID_LEN)) { 731 brelse(bh); 732 break; 733 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02, 734 VSD_STD_ID_LEN)) 735 nsr02 = sector; 736 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03, 737 VSD_STD_ID_LEN)) 738 nsr03 = sector; 739 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2, 740 VSD_STD_ID_LEN)) 741 ; /* nothing */ 742 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02, 743 VSD_STD_ID_LEN)) 744 ; /* nothing */ 745 else { 746 /* invalid id : end of volume recognition area */ 747 brelse(bh); 748 break; 749 } 750 brelse(bh); 751 } 752 753 if (nsr03) 754 return nsr03; 755 else if (nsr02) 756 return nsr02; 757 else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) == 758 VSD_FIRST_SECTOR_OFFSET) 759 return -1; 760 else 761 return 0; 762 } 763 764 static int udf_find_fileset(struct super_block *sb, 765 struct kernel_lb_addr *fileset, 766 struct kernel_lb_addr *root) 767 { 768 struct buffer_head *bh = NULL; 769 long lastblock; 770 uint16_t ident; 771 struct udf_sb_info *sbi; 772 773 if (fileset->logicalBlockNum != 0xFFFFFFFF || 774 fileset->partitionReferenceNum != 0xFFFF) { 775 bh = udf_read_ptagged(sb, fileset, 0, &ident); 776 777 if (!bh) { 778 return 1; 779 } else if (ident != TAG_IDENT_FSD) { 780 brelse(bh); 781 return 1; 782 } 783 784 } 785 786 sbi = UDF_SB(sb); 787 if (!bh) { 788 /* Search backwards through the partitions */ 789 struct kernel_lb_addr newfileset; 790 791 /* --> cvg: FIXME - is it reasonable? */ 792 return 1; 793 794 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1; 795 (newfileset.partitionReferenceNum != 0xFFFF && 796 fileset->logicalBlockNum == 0xFFFFFFFF && 797 fileset->partitionReferenceNum == 0xFFFF); 798 newfileset.partitionReferenceNum--) { 799 lastblock = sbi->s_partmaps 800 [newfileset.partitionReferenceNum] 801 .s_partition_len; 802 newfileset.logicalBlockNum = 0; 803 804 do { 805 bh = udf_read_ptagged(sb, &newfileset, 0, 806 &ident); 807 if (!bh) { 808 newfileset.logicalBlockNum++; 809 continue; 810 } 811 812 switch (ident) { 813 case TAG_IDENT_SBD: 814 { 815 struct spaceBitmapDesc *sp; 816 sp = (struct spaceBitmapDesc *) 817 bh->b_data; 818 newfileset.logicalBlockNum += 1 + 819 ((le32_to_cpu(sp->numOfBytes) + 820 sizeof(struct spaceBitmapDesc) 821 - 1) >> sb->s_blocksize_bits); 822 brelse(bh); 823 break; 824 } 825 case TAG_IDENT_FSD: 826 *fileset = newfileset; 827 break; 828 default: 829 newfileset.logicalBlockNum++; 830 brelse(bh); 831 bh = NULL; 832 break; 833 } 834 } while (newfileset.logicalBlockNum < lastblock && 835 fileset->logicalBlockNum == 0xFFFFFFFF && 836 fileset->partitionReferenceNum == 0xFFFF); 837 } 838 } 839 840 if ((fileset->logicalBlockNum != 0xFFFFFFFF || 841 fileset->partitionReferenceNum != 0xFFFF) && bh) { 842 udf_debug("Fileset at block=%u, partition=%u\n", 843 fileset->logicalBlockNum, 844 fileset->partitionReferenceNum); 845 846 sbi->s_partition = fileset->partitionReferenceNum; 847 udf_load_fileset(sb, bh, root); 848 brelse(bh); 849 return 0; 850 } 851 return 1; 852 } 853 854 /* 855 * Load primary Volume Descriptor Sequence 856 * 857 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence 858 * should be tried. 859 */ 860 static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 861 { 862 struct primaryVolDesc *pvoldesc; 863 uint8_t *outstr; 864 struct buffer_head *bh; 865 uint16_t ident; 866 int ret = -ENOMEM; 867 868 outstr = kmalloc(128, GFP_NOFS); 869 if (!outstr) 870 return -ENOMEM; 871 872 bh = udf_read_tagged(sb, block, block, &ident); 873 if (!bh) { 874 ret = -EAGAIN; 875 goto out2; 876 } 877 878 if (ident != TAG_IDENT_PVD) { 879 ret = -EIO; 880 goto out_bh; 881 } 882 883 pvoldesc = (struct primaryVolDesc *)bh->b_data; 884 885 if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 886 pvoldesc->recordingDateAndTime)) { 887 #ifdef UDFFS_DEBUG 888 struct timestamp *ts = &pvoldesc->recordingDateAndTime; 889 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 890 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 891 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 892 #endif 893 } 894 895 ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32); 896 if (ret < 0) 897 goto out_bh; 898 899 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret); 900 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident); 901 902 ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128); 903 if (ret < 0) 904 goto out_bh; 905 906 outstr[ret] = 0; 907 udf_debug("volSetIdent[] = '%s'\n", outstr); 908 909 ret = 0; 910 out_bh: 911 brelse(bh); 912 out2: 913 kfree(outstr); 914 return ret; 915 } 916 917 struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 918 u32 meta_file_loc, u32 partition_ref) 919 { 920 struct kernel_lb_addr addr; 921 struct inode *metadata_fe; 922 923 addr.logicalBlockNum = meta_file_loc; 924 addr.partitionReferenceNum = partition_ref; 925 926 metadata_fe = udf_iget_special(sb, &addr); 927 928 if (IS_ERR(metadata_fe)) { 929 udf_warn(sb, "metadata inode efe not found\n"); 930 return metadata_fe; 931 } 932 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 933 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 934 iput(metadata_fe); 935 return ERR_PTR(-EIO); 936 } 937 938 return metadata_fe; 939 } 940 941 static int udf_load_metadata_files(struct super_block *sb, int partition, 942 int type1_index) 943 { 944 struct udf_sb_info *sbi = UDF_SB(sb); 945 struct udf_part_map *map; 946 struct udf_meta_data *mdata; 947 struct kernel_lb_addr addr; 948 struct inode *fe; 949 950 map = &sbi->s_partmaps[partition]; 951 mdata = &map->s_type_specific.s_metadata; 952 mdata->s_phys_partition_ref = type1_index; 953 954 /* metadata address */ 955 udf_debug("Metadata file location: block = %u part = %u\n", 956 mdata->s_meta_file_loc, mdata->s_phys_partition_ref); 957 958 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc, 959 mdata->s_phys_partition_ref); 960 if (IS_ERR(fe)) { 961 /* mirror file entry */ 962 udf_debug("Mirror metadata file location: block = %u part = %u\n", 963 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref); 964 965 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc, 966 mdata->s_phys_partition_ref); 967 968 if (IS_ERR(fe)) { 969 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 970 return PTR_ERR(fe); 971 } 972 mdata->s_mirror_fe = fe; 973 } else 974 mdata->s_metadata_fe = fe; 975 976 977 /* 978 * bitmap file entry 979 * Note: 980 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 981 */ 982 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 983 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 984 addr.partitionReferenceNum = mdata->s_phys_partition_ref; 985 986 udf_debug("Bitmap file location: block = %u part = %u\n", 987 addr.logicalBlockNum, addr.partitionReferenceNum); 988 989 fe = udf_iget_special(sb, &addr); 990 if (IS_ERR(fe)) { 991 if (sb_rdonly(sb)) 992 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 993 else { 994 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 995 return PTR_ERR(fe); 996 } 997 } else 998 mdata->s_bitmap_fe = fe; 999 } 1000 1001 udf_debug("udf_load_metadata_files Ok\n"); 1002 return 0; 1003 } 1004 1005 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh, 1006 struct kernel_lb_addr *root) 1007 { 1008 struct fileSetDesc *fset; 1009 1010 fset = (struct fileSetDesc *)bh->b_data; 1011 1012 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 1013 1014 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 1015 1016 udf_debug("Rootdir at block=%u, partition=%u\n", 1017 root->logicalBlockNum, root->partitionReferenceNum); 1018 } 1019 1020 int udf_compute_nr_groups(struct super_block *sb, u32 partition) 1021 { 1022 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 1023 return DIV_ROUND_UP(map->s_partition_len + 1024 (sizeof(struct spaceBitmapDesc) << 3), 1025 sb->s_blocksize * 8); 1026 } 1027 1028 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 1029 { 1030 struct udf_bitmap *bitmap; 1031 int nr_groups; 1032 int size; 1033 1034 nr_groups = udf_compute_nr_groups(sb, index); 1035 size = sizeof(struct udf_bitmap) + 1036 (sizeof(struct buffer_head *) * nr_groups); 1037 1038 if (size <= PAGE_SIZE) 1039 bitmap = kzalloc(size, GFP_KERNEL); 1040 else 1041 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */ 1042 1043 if (!bitmap) 1044 return NULL; 1045 1046 bitmap->s_nr_groups = nr_groups; 1047 return bitmap; 1048 } 1049 1050 static int udf_fill_partdesc_info(struct super_block *sb, 1051 struct partitionDesc *p, int p_index) 1052 { 1053 struct udf_part_map *map; 1054 struct udf_sb_info *sbi = UDF_SB(sb); 1055 struct partitionHeaderDesc *phd; 1056 1057 map = &sbi->s_partmaps[p_index]; 1058 1059 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1060 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1061 1062 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1063 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1064 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1065 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1066 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1067 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1068 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1069 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1070 1071 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n", 1072 p_index, map->s_partition_type, 1073 map->s_partition_root, map->s_partition_len); 1074 1075 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1076 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1077 return 0; 1078 1079 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1080 if (phd->unallocSpaceTable.extLength) { 1081 struct kernel_lb_addr loc = { 1082 .logicalBlockNum = le32_to_cpu( 1083 phd->unallocSpaceTable.extPosition), 1084 .partitionReferenceNum = p_index, 1085 }; 1086 struct inode *inode; 1087 1088 inode = udf_iget_special(sb, &loc); 1089 if (IS_ERR(inode)) { 1090 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1091 p_index); 1092 return PTR_ERR(inode); 1093 } 1094 map->s_uspace.s_table = inode; 1095 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1096 udf_debug("unallocSpaceTable (part %d) @ %lu\n", 1097 p_index, map->s_uspace.s_table->i_ino); 1098 } 1099 1100 if (phd->unallocSpaceBitmap.extLength) { 1101 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1102 if (!bitmap) 1103 return -ENOMEM; 1104 map->s_uspace.s_bitmap = bitmap; 1105 bitmap->s_extPosition = le32_to_cpu( 1106 phd->unallocSpaceBitmap.extPosition); 1107 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1108 udf_debug("unallocSpaceBitmap (part %d) @ %u\n", 1109 p_index, bitmap->s_extPosition); 1110 } 1111 1112 if (phd->partitionIntegrityTable.extLength) 1113 udf_debug("partitionIntegrityTable (part %d)\n", p_index); 1114 1115 if (phd->freedSpaceTable.extLength) { 1116 struct kernel_lb_addr loc = { 1117 .logicalBlockNum = le32_to_cpu( 1118 phd->freedSpaceTable.extPosition), 1119 .partitionReferenceNum = p_index, 1120 }; 1121 struct inode *inode; 1122 1123 inode = udf_iget_special(sb, &loc); 1124 if (IS_ERR(inode)) { 1125 udf_debug("cannot load freedSpaceTable (part %d)\n", 1126 p_index); 1127 return PTR_ERR(inode); 1128 } 1129 map->s_fspace.s_table = inode; 1130 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE; 1131 udf_debug("freedSpaceTable (part %d) @ %lu\n", 1132 p_index, map->s_fspace.s_table->i_ino); 1133 } 1134 1135 if (phd->freedSpaceBitmap.extLength) { 1136 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1137 if (!bitmap) 1138 return -ENOMEM; 1139 map->s_fspace.s_bitmap = bitmap; 1140 bitmap->s_extPosition = le32_to_cpu( 1141 phd->freedSpaceBitmap.extPosition); 1142 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP; 1143 udf_debug("freedSpaceBitmap (part %d) @ %u\n", 1144 p_index, bitmap->s_extPosition); 1145 } 1146 return 0; 1147 } 1148 1149 static void udf_find_vat_block(struct super_block *sb, int p_index, 1150 int type1_index, sector_t start_block) 1151 { 1152 struct udf_sb_info *sbi = UDF_SB(sb); 1153 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1154 sector_t vat_block; 1155 struct kernel_lb_addr ino; 1156 struct inode *inode; 1157 1158 /* 1159 * VAT file entry is in the last recorded block. Some broken disks have 1160 * it a few blocks before so try a bit harder... 1161 */ 1162 ino.partitionReferenceNum = type1_index; 1163 for (vat_block = start_block; 1164 vat_block >= map->s_partition_root && 1165 vat_block >= start_block - 3; vat_block--) { 1166 ino.logicalBlockNum = vat_block - map->s_partition_root; 1167 inode = udf_iget_special(sb, &ino); 1168 if (!IS_ERR(inode)) { 1169 sbi->s_vat_inode = inode; 1170 break; 1171 } 1172 } 1173 } 1174 1175 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1176 { 1177 struct udf_sb_info *sbi = UDF_SB(sb); 1178 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1179 struct buffer_head *bh = NULL; 1180 struct udf_inode_info *vati; 1181 uint32_t pos; 1182 struct virtualAllocationTable20 *vat20; 1183 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >> 1184 sb->s_blocksize_bits; 1185 1186 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1187 if (!sbi->s_vat_inode && 1188 sbi->s_last_block != blocks - 1) { 1189 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1190 (unsigned long)sbi->s_last_block, 1191 (unsigned long)blocks - 1); 1192 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1193 } 1194 if (!sbi->s_vat_inode) 1195 return -EIO; 1196 1197 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1198 map->s_type_specific.s_virtual.s_start_offset = 0; 1199 map->s_type_specific.s_virtual.s_num_entries = 1200 (sbi->s_vat_inode->i_size - 36) >> 2; 1201 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1202 vati = UDF_I(sbi->s_vat_inode); 1203 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1204 pos = udf_block_map(sbi->s_vat_inode, 0); 1205 bh = sb_bread(sb, pos); 1206 if (!bh) 1207 return -EIO; 1208 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1209 } else { 1210 vat20 = (struct virtualAllocationTable20 *) 1211 vati->i_ext.i_data; 1212 } 1213 1214 map->s_type_specific.s_virtual.s_start_offset = 1215 le16_to_cpu(vat20->lengthHeader); 1216 map->s_type_specific.s_virtual.s_num_entries = 1217 (sbi->s_vat_inode->i_size - 1218 map->s_type_specific.s_virtual. 1219 s_start_offset) >> 2; 1220 brelse(bh); 1221 } 1222 return 0; 1223 } 1224 1225 /* 1226 * Load partition descriptor block 1227 * 1228 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor 1229 * sequence. 1230 */ 1231 static int udf_load_partdesc(struct super_block *sb, sector_t block) 1232 { 1233 struct buffer_head *bh; 1234 struct partitionDesc *p; 1235 struct udf_part_map *map; 1236 struct udf_sb_info *sbi = UDF_SB(sb); 1237 int i, type1_idx; 1238 uint16_t partitionNumber; 1239 uint16_t ident; 1240 int ret; 1241 1242 bh = udf_read_tagged(sb, block, block, &ident); 1243 if (!bh) 1244 return -EAGAIN; 1245 if (ident != TAG_IDENT_PD) { 1246 ret = 0; 1247 goto out_bh; 1248 } 1249 1250 p = (struct partitionDesc *)bh->b_data; 1251 partitionNumber = le16_to_cpu(p->partitionNumber); 1252 1253 /* First scan for TYPE1 and SPARABLE partitions */ 1254 for (i = 0; i < sbi->s_partitions; i++) { 1255 map = &sbi->s_partmaps[i]; 1256 udf_debug("Searching map: (%u == %u)\n", 1257 map->s_partition_num, partitionNumber); 1258 if (map->s_partition_num == partitionNumber && 1259 (map->s_partition_type == UDF_TYPE1_MAP15 || 1260 map->s_partition_type == UDF_SPARABLE_MAP15)) 1261 break; 1262 } 1263 1264 if (i >= sbi->s_partitions) { 1265 udf_debug("Partition (%u) not found in partition map\n", 1266 partitionNumber); 1267 ret = 0; 1268 goto out_bh; 1269 } 1270 1271 ret = udf_fill_partdesc_info(sb, p, i); 1272 if (ret < 0) 1273 goto out_bh; 1274 1275 /* 1276 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1277 * PHYSICAL partitions are already set up 1278 */ 1279 type1_idx = i; 1280 #ifdef UDFFS_DEBUG 1281 map = NULL; /* supress 'maybe used uninitialized' warning */ 1282 #endif 1283 for (i = 0; i < sbi->s_partitions; i++) { 1284 map = &sbi->s_partmaps[i]; 1285 1286 if (map->s_partition_num == partitionNumber && 1287 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1288 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1289 map->s_partition_type == UDF_METADATA_MAP25)) 1290 break; 1291 } 1292 1293 if (i >= sbi->s_partitions) { 1294 ret = 0; 1295 goto out_bh; 1296 } 1297 1298 ret = udf_fill_partdesc_info(sb, p, i); 1299 if (ret < 0) 1300 goto out_bh; 1301 1302 if (map->s_partition_type == UDF_METADATA_MAP25) { 1303 ret = udf_load_metadata_files(sb, i, type1_idx); 1304 if (ret < 0) { 1305 udf_err(sb, "error loading MetaData partition map %d\n", 1306 i); 1307 goto out_bh; 1308 } 1309 } else { 1310 /* 1311 * If we have a partition with virtual map, we don't handle 1312 * writing to it (we overwrite blocks instead of relocating 1313 * them). 1314 */ 1315 if (!sb_rdonly(sb)) { 1316 ret = -EACCES; 1317 goto out_bh; 1318 } 1319 ret = udf_load_vat(sb, i, type1_idx); 1320 if (ret < 0) 1321 goto out_bh; 1322 } 1323 ret = 0; 1324 out_bh: 1325 /* In case loading failed, we handle cleanup in udf_fill_super */ 1326 brelse(bh); 1327 return ret; 1328 } 1329 1330 static int udf_load_sparable_map(struct super_block *sb, 1331 struct udf_part_map *map, 1332 struct sparablePartitionMap *spm) 1333 { 1334 uint32_t loc; 1335 uint16_t ident; 1336 struct sparingTable *st; 1337 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1338 int i; 1339 struct buffer_head *bh; 1340 1341 map->s_partition_type = UDF_SPARABLE_MAP15; 1342 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1343 if (!is_power_of_2(sdata->s_packet_len)) { 1344 udf_err(sb, "error loading logical volume descriptor: " 1345 "Invalid packet length %u\n", 1346 (unsigned)sdata->s_packet_len); 1347 return -EIO; 1348 } 1349 if (spm->numSparingTables > 4) { 1350 udf_err(sb, "error loading logical volume descriptor: " 1351 "Too many sparing tables (%d)\n", 1352 (int)spm->numSparingTables); 1353 return -EIO; 1354 } 1355 1356 for (i = 0; i < spm->numSparingTables; i++) { 1357 loc = le32_to_cpu(spm->locSparingTable[i]); 1358 bh = udf_read_tagged(sb, loc, loc, &ident); 1359 if (!bh) 1360 continue; 1361 1362 st = (struct sparingTable *)bh->b_data; 1363 if (ident != 0 || 1364 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1365 strlen(UDF_ID_SPARING)) || 1366 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1367 sb->s_blocksize) { 1368 brelse(bh); 1369 continue; 1370 } 1371 1372 sdata->s_spar_map[i] = bh; 1373 } 1374 map->s_partition_func = udf_get_pblock_spar15; 1375 return 0; 1376 } 1377 1378 static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1379 struct kernel_lb_addr *fileset) 1380 { 1381 struct logicalVolDesc *lvd; 1382 int i, offset; 1383 uint8_t type; 1384 struct udf_sb_info *sbi = UDF_SB(sb); 1385 struct genericPartitionMap *gpm; 1386 uint16_t ident; 1387 struct buffer_head *bh; 1388 unsigned int table_len; 1389 int ret; 1390 1391 bh = udf_read_tagged(sb, block, block, &ident); 1392 if (!bh) 1393 return -EAGAIN; 1394 BUG_ON(ident != TAG_IDENT_LVD); 1395 lvd = (struct logicalVolDesc *)bh->b_data; 1396 table_len = le32_to_cpu(lvd->mapTableLength); 1397 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1398 udf_err(sb, "error loading logical volume descriptor: " 1399 "Partition table too long (%u > %lu)\n", table_len, 1400 sb->s_blocksize - sizeof(*lvd)); 1401 ret = -EIO; 1402 goto out_bh; 1403 } 1404 1405 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1406 if (ret) 1407 goto out_bh; 1408 1409 for (i = 0, offset = 0; 1410 i < sbi->s_partitions && offset < table_len; 1411 i++, offset += gpm->partitionMapLength) { 1412 struct udf_part_map *map = &sbi->s_partmaps[i]; 1413 gpm = (struct genericPartitionMap *) 1414 &(lvd->partitionMaps[offset]); 1415 type = gpm->partitionMapType; 1416 if (type == 1) { 1417 struct genericPartitionMap1 *gpm1 = 1418 (struct genericPartitionMap1 *)gpm; 1419 map->s_partition_type = UDF_TYPE1_MAP15; 1420 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1421 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1422 map->s_partition_func = NULL; 1423 } else if (type == 2) { 1424 struct udfPartitionMap2 *upm2 = 1425 (struct udfPartitionMap2 *)gpm; 1426 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1427 strlen(UDF_ID_VIRTUAL))) { 1428 u16 suf = 1429 le16_to_cpu(((__le16 *)upm2->partIdent. 1430 identSuffix)[0]); 1431 if (suf < 0x0200) { 1432 map->s_partition_type = 1433 UDF_VIRTUAL_MAP15; 1434 map->s_partition_func = 1435 udf_get_pblock_virt15; 1436 } else { 1437 map->s_partition_type = 1438 UDF_VIRTUAL_MAP20; 1439 map->s_partition_func = 1440 udf_get_pblock_virt20; 1441 } 1442 } else if (!strncmp(upm2->partIdent.ident, 1443 UDF_ID_SPARABLE, 1444 strlen(UDF_ID_SPARABLE))) { 1445 ret = udf_load_sparable_map(sb, map, 1446 (struct sparablePartitionMap *)gpm); 1447 if (ret < 0) 1448 goto out_bh; 1449 } else if (!strncmp(upm2->partIdent.ident, 1450 UDF_ID_METADATA, 1451 strlen(UDF_ID_METADATA))) { 1452 struct udf_meta_data *mdata = 1453 &map->s_type_specific.s_metadata; 1454 struct metadataPartitionMap *mdm = 1455 (struct metadataPartitionMap *) 1456 &(lvd->partitionMaps[offset]); 1457 udf_debug("Parsing Logical vol part %d type %u id=%s\n", 1458 i, type, UDF_ID_METADATA); 1459 1460 map->s_partition_type = UDF_METADATA_MAP25; 1461 map->s_partition_func = udf_get_pblock_meta25; 1462 1463 mdata->s_meta_file_loc = 1464 le32_to_cpu(mdm->metadataFileLoc); 1465 mdata->s_mirror_file_loc = 1466 le32_to_cpu(mdm->metadataMirrorFileLoc); 1467 mdata->s_bitmap_file_loc = 1468 le32_to_cpu(mdm->metadataBitmapFileLoc); 1469 mdata->s_alloc_unit_size = 1470 le32_to_cpu(mdm->allocUnitSize); 1471 mdata->s_align_unit_size = 1472 le16_to_cpu(mdm->alignUnitSize); 1473 if (mdm->flags & 0x01) 1474 mdata->s_flags |= MF_DUPLICATE_MD; 1475 1476 udf_debug("Metadata Ident suffix=0x%x\n", 1477 le16_to_cpu(*(__le16 *) 1478 mdm->partIdent.identSuffix)); 1479 udf_debug("Metadata part num=%u\n", 1480 le16_to_cpu(mdm->partitionNum)); 1481 udf_debug("Metadata part alloc unit size=%u\n", 1482 le32_to_cpu(mdm->allocUnitSize)); 1483 udf_debug("Metadata file loc=%u\n", 1484 le32_to_cpu(mdm->metadataFileLoc)); 1485 udf_debug("Mirror file loc=%u\n", 1486 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1487 udf_debug("Bitmap file loc=%u\n", 1488 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1489 udf_debug("Flags: %d %u\n", 1490 mdata->s_flags, mdm->flags); 1491 } else { 1492 udf_debug("Unknown ident: %s\n", 1493 upm2->partIdent.ident); 1494 continue; 1495 } 1496 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1497 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1498 } 1499 udf_debug("Partition (%d:%u) type %u on volume %u\n", 1500 i, map->s_partition_num, type, map->s_volumeseqnum); 1501 } 1502 1503 if (fileset) { 1504 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1505 1506 *fileset = lelb_to_cpu(la->extLocation); 1507 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n", 1508 fileset->logicalBlockNum, 1509 fileset->partitionReferenceNum); 1510 } 1511 if (lvd->integritySeqExt.extLength) 1512 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1513 ret = 0; 1514 out_bh: 1515 brelse(bh); 1516 return ret; 1517 } 1518 1519 /* 1520 * Find the prevailing Logical Volume Integrity Descriptor. 1521 */ 1522 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1523 { 1524 struct buffer_head *bh, *final_bh; 1525 uint16_t ident; 1526 struct udf_sb_info *sbi = UDF_SB(sb); 1527 struct logicalVolIntegrityDesc *lvid; 1528 int indirections = 0; 1529 1530 while (++indirections <= UDF_MAX_LVID_NESTING) { 1531 final_bh = NULL; 1532 while (loc.extLength > 0 && 1533 (bh = udf_read_tagged(sb, loc.extLocation, 1534 loc.extLocation, &ident))) { 1535 if (ident != TAG_IDENT_LVID) { 1536 brelse(bh); 1537 break; 1538 } 1539 1540 brelse(final_bh); 1541 final_bh = bh; 1542 1543 loc.extLength -= sb->s_blocksize; 1544 loc.extLocation++; 1545 } 1546 1547 if (!final_bh) 1548 return; 1549 1550 brelse(sbi->s_lvid_bh); 1551 sbi->s_lvid_bh = final_bh; 1552 1553 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data; 1554 if (lvid->nextIntegrityExt.extLength == 0) 1555 return; 1556 1557 loc = leea_to_cpu(lvid->nextIntegrityExt); 1558 } 1559 1560 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n", 1561 UDF_MAX_LVID_NESTING); 1562 brelse(sbi->s_lvid_bh); 1563 sbi->s_lvid_bh = NULL; 1564 } 1565 1566 /* 1567 * Step for reallocation of table of partition descriptor sequence numbers. 1568 * Must be power of 2. 1569 */ 1570 #define PART_DESC_ALLOC_STEP 32 1571 1572 struct desc_seq_scan_data { 1573 struct udf_vds_record vds[VDS_POS_LENGTH]; 1574 unsigned int size_part_descs; 1575 struct udf_vds_record *part_descs_loc; 1576 }; 1577 1578 static struct udf_vds_record *handle_partition_descriptor( 1579 struct buffer_head *bh, 1580 struct desc_seq_scan_data *data) 1581 { 1582 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data; 1583 int partnum; 1584 1585 partnum = le16_to_cpu(desc->partitionNumber); 1586 if (partnum >= data->size_part_descs) { 1587 struct udf_vds_record *new_loc; 1588 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP); 1589 1590 new_loc = kzalloc(sizeof(*new_loc) * new_size, GFP_KERNEL); 1591 if (!new_loc) 1592 return ERR_PTR(-ENOMEM); 1593 memcpy(new_loc, data->part_descs_loc, 1594 data->size_part_descs * sizeof(*new_loc)); 1595 kfree(data->part_descs_loc); 1596 data->part_descs_loc = new_loc; 1597 data->size_part_descs = new_size; 1598 } 1599 return &(data->part_descs_loc[partnum]); 1600 } 1601 1602 1603 static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident, 1604 struct buffer_head *bh, struct desc_seq_scan_data *data) 1605 { 1606 switch (ident) { 1607 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1608 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]); 1609 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1610 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]); 1611 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1612 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]); 1613 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1614 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]); 1615 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1616 return handle_partition_descriptor(bh, data); 1617 } 1618 return NULL; 1619 } 1620 1621 /* 1622 * Process a main/reserve volume descriptor sequence. 1623 * @block First block of first extent of the sequence. 1624 * @lastblock Lastblock of first extent of the sequence. 1625 * @fileset There we store extent containing root fileset 1626 * 1627 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor 1628 * sequence 1629 */ 1630 static noinline int udf_process_sequence( 1631 struct super_block *sb, 1632 sector_t block, sector_t lastblock, 1633 struct kernel_lb_addr *fileset) 1634 { 1635 struct buffer_head *bh = NULL; 1636 struct udf_vds_record *curr; 1637 struct generic_desc *gd; 1638 struct volDescPtr *vdp; 1639 bool done = false; 1640 uint32_t vdsn; 1641 uint16_t ident; 1642 int ret; 1643 unsigned int indirections = 0; 1644 struct desc_seq_scan_data data; 1645 unsigned int i; 1646 1647 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1648 data.size_part_descs = PART_DESC_ALLOC_STEP; 1649 data.part_descs_loc = kzalloc(sizeof(*data.part_descs_loc) * 1650 data.size_part_descs, GFP_KERNEL); 1651 if (!data.part_descs_loc) 1652 return -ENOMEM; 1653 1654 /* 1655 * Read the main descriptor sequence and find which descriptors 1656 * are in it. 1657 */ 1658 for (; (!done && block <= lastblock); block++) { 1659 1660 bh = udf_read_tagged(sb, block, block, &ident); 1661 if (!bh) 1662 break; 1663 1664 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1665 gd = (struct generic_desc *)bh->b_data; 1666 vdsn = le32_to_cpu(gd->volDescSeqNum); 1667 switch (ident) { 1668 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1669 if (++indirections > UDF_MAX_TD_NESTING) { 1670 udf_err(sb, "too many Volume Descriptor " 1671 "Pointers (max %u supported)\n", 1672 UDF_MAX_TD_NESTING); 1673 brelse(bh); 1674 return -EIO; 1675 } 1676 1677 vdp = (struct volDescPtr *)bh->b_data; 1678 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation); 1679 lastblock = le32_to_cpu( 1680 vdp->nextVolDescSeqExt.extLength) >> 1681 sb->s_blocksize_bits; 1682 lastblock += block - 1; 1683 /* For loop is going to increment 'block' again */ 1684 block--; 1685 break; 1686 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1687 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1688 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1689 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1690 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1691 curr = get_volume_descriptor_record(ident, bh, &data); 1692 if (IS_ERR(curr)) { 1693 brelse(bh); 1694 return PTR_ERR(curr); 1695 } 1696 /* Descriptor we don't care about? */ 1697 if (!curr) 1698 break; 1699 if (vdsn >= curr->volDescSeqNum) { 1700 curr->volDescSeqNum = vdsn; 1701 curr->block = block; 1702 } 1703 break; 1704 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1705 done = true; 1706 break; 1707 } 1708 brelse(bh); 1709 } 1710 /* 1711 * Now read interesting descriptors again and process them 1712 * in a suitable order 1713 */ 1714 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1715 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1716 return -EAGAIN; 1717 } 1718 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block); 1719 if (ret < 0) 1720 return ret; 1721 1722 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) { 1723 ret = udf_load_logicalvol(sb, 1724 data.vds[VDS_POS_LOGICAL_VOL_DESC].block, 1725 fileset); 1726 if (ret < 0) 1727 return ret; 1728 } 1729 1730 /* Now handle prevailing Partition Descriptors */ 1731 for (i = 0; i < data.size_part_descs; i++) { 1732 if (data.part_descs_loc[i].block) { 1733 ret = udf_load_partdesc(sb, 1734 data.part_descs_loc[i].block); 1735 if (ret < 0) 1736 return ret; 1737 } 1738 } 1739 1740 return 0; 1741 } 1742 1743 /* 1744 * Load Volume Descriptor Sequence described by anchor in bh 1745 * 1746 * Returns <0 on error, 0 on success 1747 */ 1748 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1749 struct kernel_lb_addr *fileset) 1750 { 1751 struct anchorVolDescPtr *anchor; 1752 sector_t main_s, main_e, reserve_s, reserve_e; 1753 int ret; 1754 1755 anchor = (struct anchorVolDescPtr *)bh->b_data; 1756 1757 /* Locate the main sequence */ 1758 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1759 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1760 main_e = main_e >> sb->s_blocksize_bits; 1761 main_e += main_s - 1; 1762 1763 /* Locate the reserve sequence */ 1764 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1765 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1766 reserve_e = reserve_e >> sb->s_blocksize_bits; 1767 reserve_e += reserve_s - 1; 1768 1769 /* Process the main & reserve sequences */ 1770 /* responsible for finding the PartitionDesc(s) */ 1771 ret = udf_process_sequence(sb, main_s, main_e, fileset); 1772 if (ret != -EAGAIN) 1773 return ret; 1774 udf_sb_free_partitions(sb); 1775 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1776 if (ret < 0) { 1777 udf_sb_free_partitions(sb); 1778 /* No sequence was OK, return -EIO */ 1779 if (ret == -EAGAIN) 1780 ret = -EIO; 1781 } 1782 return ret; 1783 } 1784 1785 /* 1786 * Check whether there is an anchor block in the given block and 1787 * load Volume Descriptor Sequence if so. 1788 * 1789 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor 1790 * block 1791 */ 1792 static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1793 struct kernel_lb_addr *fileset) 1794 { 1795 struct buffer_head *bh; 1796 uint16_t ident; 1797 int ret; 1798 1799 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1800 udf_fixed_to_variable(block) >= 1801 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits) 1802 return -EAGAIN; 1803 1804 bh = udf_read_tagged(sb, block, block, &ident); 1805 if (!bh) 1806 return -EAGAIN; 1807 if (ident != TAG_IDENT_AVDP) { 1808 brelse(bh); 1809 return -EAGAIN; 1810 } 1811 ret = udf_load_sequence(sb, bh, fileset); 1812 brelse(bh); 1813 return ret; 1814 } 1815 1816 /* 1817 * Search for an anchor volume descriptor pointer. 1818 * 1819 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set 1820 * of anchors. 1821 */ 1822 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock, 1823 struct kernel_lb_addr *fileset) 1824 { 1825 sector_t last[6]; 1826 int i; 1827 struct udf_sb_info *sbi = UDF_SB(sb); 1828 int last_count = 0; 1829 int ret; 1830 1831 /* First try user provided anchor */ 1832 if (sbi->s_anchor) { 1833 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset); 1834 if (ret != -EAGAIN) 1835 return ret; 1836 } 1837 /* 1838 * according to spec, anchor is in either: 1839 * block 256 1840 * lastblock-256 1841 * lastblock 1842 * however, if the disc isn't closed, it could be 512. 1843 */ 1844 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset); 1845 if (ret != -EAGAIN) 1846 return ret; 1847 /* 1848 * The trouble is which block is the last one. Drives often misreport 1849 * this so we try various possibilities. 1850 */ 1851 last[last_count++] = *lastblock; 1852 if (*lastblock >= 1) 1853 last[last_count++] = *lastblock - 1; 1854 last[last_count++] = *lastblock + 1; 1855 if (*lastblock >= 2) 1856 last[last_count++] = *lastblock - 2; 1857 if (*lastblock >= 150) 1858 last[last_count++] = *lastblock - 150; 1859 if (*lastblock >= 152) 1860 last[last_count++] = *lastblock - 152; 1861 1862 for (i = 0; i < last_count; i++) { 1863 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >> 1864 sb->s_blocksize_bits) 1865 continue; 1866 ret = udf_check_anchor_block(sb, last[i], fileset); 1867 if (ret != -EAGAIN) { 1868 if (!ret) 1869 *lastblock = last[i]; 1870 return ret; 1871 } 1872 if (last[i] < 256) 1873 continue; 1874 ret = udf_check_anchor_block(sb, last[i] - 256, fileset); 1875 if (ret != -EAGAIN) { 1876 if (!ret) 1877 *lastblock = last[i]; 1878 return ret; 1879 } 1880 } 1881 1882 /* Finally try block 512 in case media is open */ 1883 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset); 1884 } 1885 1886 /* 1887 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1888 * area specified by it. The function expects sbi->s_lastblock to be the last 1889 * block on the media. 1890 * 1891 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor 1892 * was not found. 1893 */ 1894 static int udf_find_anchor(struct super_block *sb, 1895 struct kernel_lb_addr *fileset) 1896 { 1897 struct udf_sb_info *sbi = UDF_SB(sb); 1898 sector_t lastblock = sbi->s_last_block; 1899 int ret; 1900 1901 ret = udf_scan_anchors(sb, &lastblock, fileset); 1902 if (ret != -EAGAIN) 1903 goto out; 1904 1905 /* No anchor found? Try VARCONV conversion of block numbers */ 1906 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1907 lastblock = udf_variable_to_fixed(sbi->s_last_block); 1908 /* Firstly, we try to not convert number of the last block */ 1909 ret = udf_scan_anchors(sb, &lastblock, fileset); 1910 if (ret != -EAGAIN) 1911 goto out; 1912 1913 lastblock = sbi->s_last_block; 1914 /* Secondly, we try with converted number of the last block */ 1915 ret = udf_scan_anchors(sb, &lastblock, fileset); 1916 if (ret < 0) { 1917 /* VARCONV didn't help. Clear it. */ 1918 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1919 } 1920 out: 1921 if (ret == 0) 1922 sbi->s_last_block = lastblock; 1923 return ret; 1924 } 1925 1926 /* 1927 * Check Volume Structure Descriptor, find Anchor block and load Volume 1928 * Descriptor Sequence. 1929 * 1930 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor 1931 * block was not found. 1932 */ 1933 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1934 int silent, struct kernel_lb_addr *fileset) 1935 { 1936 struct udf_sb_info *sbi = UDF_SB(sb); 1937 loff_t nsr_off; 1938 int ret; 1939 1940 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1941 if (!silent) 1942 udf_warn(sb, "Bad block size\n"); 1943 return -EINVAL; 1944 } 1945 sbi->s_last_block = uopt->lastblock; 1946 if (!uopt->novrs) { 1947 /* Check that it is NSR02 compliant */ 1948 nsr_off = udf_check_vsd(sb); 1949 if (!nsr_off) { 1950 if (!silent) 1951 udf_warn(sb, "No VRS found\n"); 1952 return -EINVAL; 1953 } 1954 if (nsr_off == -1) 1955 udf_debug("Failed to read sector at offset %d. " 1956 "Assuming open disc. Skipping validity " 1957 "check\n", VSD_FIRST_SECTOR_OFFSET); 1958 if (!sbi->s_last_block) 1959 sbi->s_last_block = udf_get_last_block(sb); 1960 } else { 1961 udf_debug("Validity check skipped because of novrs option\n"); 1962 } 1963 1964 /* Look for anchor block and load Volume Descriptor Sequence */ 1965 sbi->s_anchor = uopt->anchor; 1966 ret = udf_find_anchor(sb, fileset); 1967 if (ret < 0) { 1968 if (!silent && ret == -EAGAIN) 1969 udf_warn(sb, "No anchor found\n"); 1970 return ret; 1971 } 1972 return 0; 1973 } 1974 1975 static void udf_open_lvid(struct super_block *sb) 1976 { 1977 struct udf_sb_info *sbi = UDF_SB(sb); 1978 struct buffer_head *bh = sbi->s_lvid_bh; 1979 struct logicalVolIntegrityDesc *lvid; 1980 struct logicalVolIntegrityDescImpUse *lvidiu; 1981 struct timespec ts; 1982 1983 if (!bh) 1984 return; 1985 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 1986 lvidiu = udf_sb_lvidiu(sb); 1987 if (!lvidiu) 1988 return; 1989 1990 mutex_lock(&sbi->s_alloc_mutex); 1991 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1992 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1993 ktime_get_real_ts(&ts); 1994 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts); 1995 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE) 1996 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 1997 else 1998 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT); 1999 2000 lvid->descTag.descCRC = cpu_to_le16( 2001 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 2002 le16_to_cpu(lvid->descTag.descCRCLength))); 2003 2004 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 2005 mark_buffer_dirty(bh); 2006 sbi->s_lvid_dirty = 0; 2007 mutex_unlock(&sbi->s_alloc_mutex); 2008 /* Make opening of filesystem visible on the media immediately */ 2009 sync_dirty_buffer(bh); 2010 } 2011 2012 static void udf_close_lvid(struct super_block *sb) 2013 { 2014 struct udf_sb_info *sbi = UDF_SB(sb); 2015 struct buffer_head *bh = sbi->s_lvid_bh; 2016 struct logicalVolIntegrityDesc *lvid; 2017 struct logicalVolIntegrityDescImpUse *lvidiu; 2018 struct timespec ts; 2019 2020 if (!bh) 2021 return; 2022 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2023 lvidiu = udf_sb_lvidiu(sb); 2024 if (!lvidiu) 2025 return; 2026 2027 mutex_lock(&sbi->s_alloc_mutex); 2028 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2029 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2030 ktime_get_real_ts(&ts); 2031 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts); 2032 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 2033 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 2034 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 2035 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 2036 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 2037 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 2038 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT)) 2039 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 2040 2041 lvid->descTag.descCRC = cpu_to_le16( 2042 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 2043 le16_to_cpu(lvid->descTag.descCRCLength))); 2044 2045 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 2046 /* 2047 * We set buffer uptodate unconditionally here to avoid spurious 2048 * warnings from mark_buffer_dirty() when previous EIO has marked 2049 * the buffer as !uptodate 2050 */ 2051 set_buffer_uptodate(bh); 2052 mark_buffer_dirty(bh); 2053 sbi->s_lvid_dirty = 0; 2054 mutex_unlock(&sbi->s_alloc_mutex); 2055 /* Make closing of filesystem visible on the media immediately */ 2056 sync_dirty_buffer(bh); 2057 } 2058 2059 u64 lvid_get_unique_id(struct super_block *sb) 2060 { 2061 struct buffer_head *bh; 2062 struct udf_sb_info *sbi = UDF_SB(sb); 2063 struct logicalVolIntegrityDesc *lvid; 2064 struct logicalVolHeaderDesc *lvhd; 2065 u64 uniqueID; 2066 u64 ret; 2067 2068 bh = sbi->s_lvid_bh; 2069 if (!bh) 2070 return 0; 2071 2072 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2073 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 2074 2075 mutex_lock(&sbi->s_alloc_mutex); 2076 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 2077 if (!(++uniqueID & 0xFFFFFFFF)) 2078 uniqueID += 16; 2079 lvhd->uniqueID = cpu_to_le64(uniqueID); 2080 mutex_unlock(&sbi->s_alloc_mutex); 2081 mark_buffer_dirty(bh); 2082 2083 return ret; 2084 } 2085 2086 static int udf_fill_super(struct super_block *sb, void *options, int silent) 2087 { 2088 int ret = -EINVAL; 2089 struct inode *inode = NULL; 2090 struct udf_options uopt; 2091 struct kernel_lb_addr rootdir, fileset; 2092 struct udf_sb_info *sbi; 2093 bool lvid_open = false; 2094 2095 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 2096 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */ 2097 uopt.uid = make_kuid(current_user_ns(), overflowuid); 2098 uopt.gid = make_kgid(current_user_ns(), overflowgid); 2099 uopt.umask = 0; 2100 uopt.fmode = UDF_INVALID_MODE; 2101 uopt.dmode = UDF_INVALID_MODE; 2102 uopt.nls_map = NULL; 2103 2104 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 2105 if (!sbi) 2106 return -ENOMEM; 2107 2108 sb->s_fs_info = sbi; 2109 2110 mutex_init(&sbi->s_alloc_mutex); 2111 2112 if (!udf_parse_options((char *)options, &uopt, false)) 2113 goto parse_options_failure; 2114 2115 if (uopt.flags & (1 << UDF_FLAG_UTF8) && 2116 uopt.flags & (1 << UDF_FLAG_NLS_MAP)) { 2117 udf_err(sb, "utf8 cannot be combined with iocharset\n"); 2118 goto parse_options_failure; 2119 } 2120 #ifdef CONFIG_UDF_NLS 2121 if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) { 2122 uopt.nls_map = load_nls_default(); 2123 if (!uopt.nls_map) 2124 uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP); 2125 else 2126 udf_debug("Using default NLS map\n"); 2127 } 2128 #endif 2129 if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP))) 2130 uopt.flags |= (1 << UDF_FLAG_UTF8); 2131 2132 fileset.logicalBlockNum = 0xFFFFFFFF; 2133 fileset.partitionReferenceNum = 0xFFFF; 2134 2135 sbi->s_flags = uopt.flags; 2136 sbi->s_uid = uopt.uid; 2137 sbi->s_gid = uopt.gid; 2138 sbi->s_umask = uopt.umask; 2139 sbi->s_fmode = uopt.fmode; 2140 sbi->s_dmode = uopt.dmode; 2141 sbi->s_nls_map = uopt.nls_map; 2142 rwlock_init(&sbi->s_cred_lock); 2143 2144 if (uopt.session == 0xFFFFFFFF) 2145 sbi->s_session = udf_get_last_session(sb); 2146 else 2147 sbi->s_session = uopt.session; 2148 2149 udf_debug("Multi-session=%d\n", sbi->s_session); 2150 2151 /* Fill in the rest of the superblock */ 2152 sb->s_op = &udf_sb_ops; 2153 sb->s_export_op = &udf_export_ops; 2154 2155 sb->s_magic = UDF_SUPER_MAGIC; 2156 sb->s_time_gran = 1000; 2157 2158 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2159 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2160 } else { 2161 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2162 while (uopt.blocksize <= 4096) { 2163 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2164 if (ret < 0) { 2165 if (!silent && ret != -EACCES) { 2166 pr_notice("Scanning with blocksize %u failed\n", 2167 uopt.blocksize); 2168 } 2169 brelse(sbi->s_lvid_bh); 2170 sbi->s_lvid_bh = NULL; 2171 /* 2172 * EACCES is special - we want to propagate to 2173 * upper layers that we cannot handle RW mount. 2174 */ 2175 if (ret == -EACCES) 2176 break; 2177 } else 2178 break; 2179 2180 uopt.blocksize <<= 1; 2181 } 2182 } 2183 if (ret < 0) { 2184 if (ret == -EAGAIN) { 2185 udf_warn(sb, "No partition found (1)\n"); 2186 ret = -EINVAL; 2187 } 2188 goto error_out; 2189 } 2190 2191 udf_debug("Lastblock=%u\n", sbi->s_last_block); 2192 2193 if (sbi->s_lvid_bh) { 2194 struct logicalVolIntegrityDescImpUse *lvidiu = 2195 udf_sb_lvidiu(sb); 2196 uint16_t minUDFReadRev; 2197 uint16_t minUDFWriteRev; 2198 2199 if (!lvidiu) { 2200 ret = -EINVAL; 2201 goto error_out; 2202 } 2203 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2204 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2205 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2206 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2207 minUDFReadRev, 2208 UDF_MAX_READ_VERSION); 2209 ret = -EINVAL; 2210 goto error_out; 2211 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION && 2212 !sb_rdonly(sb)) { 2213 ret = -EACCES; 2214 goto error_out; 2215 } 2216 2217 sbi->s_udfrev = minUDFWriteRev; 2218 2219 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2220 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2221 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2222 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2223 } 2224 2225 if (!sbi->s_partitions) { 2226 udf_warn(sb, "No partition found (2)\n"); 2227 ret = -EINVAL; 2228 goto error_out; 2229 } 2230 2231 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2232 UDF_PART_FLAG_READ_ONLY && 2233 !sb_rdonly(sb)) { 2234 ret = -EACCES; 2235 goto error_out; 2236 } 2237 2238 if (udf_find_fileset(sb, &fileset, &rootdir)) { 2239 udf_warn(sb, "No fileset found\n"); 2240 ret = -EINVAL; 2241 goto error_out; 2242 } 2243 2244 if (!silent) { 2245 struct timestamp ts; 2246 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2247 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2248 sbi->s_volume_ident, 2249 le16_to_cpu(ts.year), ts.month, ts.day, 2250 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2251 } 2252 if (!sb_rdonly(sb)) { 2253 udf_open_lvid(sb); 2254 lvid_open = true; 2255 } 2256 2257 /* Assign the root inode */ 2258 /* assign inodes by physical block number */ 2259 /* perhaps it's not extensible enough, but for now ... */ 2260 inode = udf_iget(sb, &rootdir); 2261 if (IS_ERR(inode)) { 2262 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n", 2263 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2264 ret = PTR_ERR(inode); 2265 goto error_out; 2266 } 2267 2268 /* Allocate a dentry for the root inode */ 2269 sb->s_root = d_make_root(inode); 2270 if (!sb->s_root) { 2271 udf_err(sb, "Couldn't allocate root dentry\n"); 2272 ret = -ENOMEM; 2273 goto error_out; 2274 } 2275 sb->s_maxbytes = MAX_LFS_FILESIZE; 2276 sb->s_max_links = UDF_MAX_LINKS; 2277 return 0; 2278 2279 error_out: 2280 iput(sbi->s_vat_inode); 2281 parse_options_failure: 2282 #ifdef CONFIG_UDF_NLS 2283 if (uopt.nls_map) 2284 unload_nls(uopt.nls_map); 2285 #endif 2286 if (lvid_open) 2287 udf_close_lvid(sb); 2288 brelse(sbi->s_lvid_bh); 2289 udf_sb_free_partitions(sb); 2290 kfree(sbi); 2291 sb->s_fs_info = NULL; 2292 2293 return ret; 2294 } 2295 2296 void _udf_err(struct super_block *sb, const char *function, 2297 const char *fmt, ...) 2298 { 2299 struct va_format vaf; 2300 va_list args; 2301 2302 va_start(args, fmt); 2303 2304 vaf.fmt = fmt; 2305 vaf.va = &args; 2306 2307 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2308 2309 va_end(args); 2310 } 2311 2312 void _udf_warn(struct super_block *sb, const char *function, 2313 const char *fmt, ...) 2314 { 2315 struct va_format vaf; 2316 va_list args; 2317 2318 va_start(args, fmt); 2319 2320 vaf.fmt = fmt; 2321 vaf.va = &args; 2322 2323 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2324 2325 va_end(args); 2326 } 2327 2328 static void udf_put_super(struct super_block *sb) 2329 { 2330 struct udf_sb_info *sbi; 2331 2332 sbi = UDF_SB(sb); 2333 2334 iput(sbi->s_vat_inode); 2335 #ifdef CONFIG_UDF_NLS 2336 if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP)) 2337 unload_nls(sbi->s_nls_map); 2338 #endif 2339 if (!sb_rdonly(sb)) 2340 udf_close_lvid(sb); 2341 brelse(sbi->s_lvid_bh); 2342 udf_sb_free_partitions(sb); 2343 mutex_destroy(&sbi->s_alloc_mutex); 2344 kfree(sb->s_fs_info); 2345 sb->s_fs_info = NULL; 2346 } 2347 2348 static int udf_sync_fs(struct super_block *sb, int wait) 2349 { 2350 struct udf_sb_info *sbi = UDF_SB(sb); 2351 2352 mutex_lock(&sbi->s_alloc_mutex); 2353 if (sbi->s_lvid_dirty) { 2354 /* 2355 * Blockdevice will be synced later so we don't have to submit 2356 * the buffer for IO 2357 */ 2358 mark_buffer_dirty(sbi->s_lvid_bh); 2359 sbi->s_lvid_dirty = 0; 2360 } 2361 mutex_unlock(&sbi->s_alloc_mutex); 2362 2363 return 0; 2364 } 2365 2366 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2367 { 2368 struct super_block *sb = dentry->d_sb; 2369 struct udf_sb_info *sbi = UDF_SB(sb); 2370 struct logicalVolIntegrityDescImpUse *lvidiu; 2371 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2372 2373 lvidiu = udf_sb_lvidiu(sb); 2374 buf->f_type = UDF_SUPER_MAGIC; 2375 buf->f_bsize = sb->s_blocksize; 2376 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2377 buf->f_bfree = udf_count_free(sb); 2378 buf->f_bavail = buf->f_bfree; 2379 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2380 le32_to_cpu(lvidiu->numDirs)) : 0) 2381 + buf->f_bfree; 2382 buf->f_ffree = buf->f_bfree; 2383 buf->f_namelen = UDF_NAME_LEN; 2384 buf->f_fsid.val[0] = (u32)id; 2385 buf->f_fsid.val[1] = (u32)(id >> 32); 2386 2387 return 0; 2388 } 2389 2390 static unsigned int udf_count_free_bitmap(struct super_block *sb, 2391 struct udf_bitmap *bitmap) 2392 { 2393 struct buffer_head *bh = NULL; 2394 unsigned int accum = 0; 2395 int index; 2396 udf_pblk_t block = 0, newblock; 2397 struct kernel_lb_addr loc; 2398 uint32_t bytes; 2399 uint8_t *ptr; 2400 uint16_t ident; 2401 struct spaceBitmapDesc *bm; 2402 2403 loc.logicalBlockNum = bitmap->s_extPosition; 2404 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2405 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2406 2407 if (!bh) { 2408 udf_err(sb, "udf_count_free failed\n"); 2409 goto out; 2410 } else if (ident != TAG_IDENT_SBD) { 2411 brelse(bh); 2412 udf_err(sb, "udf_count_free failed\n"); 2413 goto out; 2414 } 2415 2416 bm = (struct spaceBitmapDesc *)bh->b_data; 2417 bytes = le32_to_cpu(bm->numOfBytes); 2418 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2419 ptr = (uint8_t *)bh->b_data; 2420 2421 while (bytes > 0) { 2422 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2423 accum += bitmap_weight((const unsigned long *)(ptr + index), 2424 cur_bytes * 8); 2425 bytes -= cur_bytes; 2426 if (bytes) { 2427 brelse(bh); 2428 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2429 bh = udf_tread(sb, newblock); 2430 if (!bh) { 2431 udf_debug("read failed\n"); 2432 goto out; 2433 } 2434 index = 0; 2435 ptr = (uint8_t *)bh->b_data; 2436 } 2437 } 2438 brelse(bh); 2439 out: 2440 return accum; 2441 } 2442 2443 static unsigned int udf_count_free_table(struct super_block *sb, 2444 struct inode *table) 2445 { 2446 unsigned int accum = 0; 2447 uint32_t elen; 2448 struct kernel_lb_addr eloc; 2449 int8_t etype; 2450 struct extent_position epos; 2451 2452 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2453 epos.block = UDF_I(table)->i_location; 2454 epos.offset = sizeof(struct unallocSpaceEntry); 2455 epos.bh = NULL; 2456 2457 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2458 accum += (elen >> table->i_sb->s_blocksize_bits); 2459 2460 brelse(epos.bh); 2461 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2462 2463 return accum; 2464 } 2465 2466 static unsigned int udf_count_free(struct super_block *sb) 2467 { 2468 unsigned int accum = 0; 2469 struct udf_sb_info *sbi; 2470 struct udf_part_map *map; 2471 2472 sbi = UDF_SB(sb); 2473 if (sbi->s_lvid_bh) { 2474 struct logicalVolIntegrityDesc *lvid = 2475 (struct logicalVolIntegrityDesc *) 2476 sbi->s_lvid_bh->b_data; 2477 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) { 2478 accum = le32_to_cpu( 2479 lvid->freeSpaceTable[sbi->s_partition]); 2480 if (accum == 0xFFFFFFFF) 2481 accum = 0; 2482 } 2483 } 2484 2485 if (accum) 2486 return accum; 2487 2488 map = &sbi->s_partmaps[sbi->s_partition]; 2489 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2490 accum += udf_count_free_bitmap(sb, 2491 map->s_uspace.s_bitmap); 2492 } 2493 if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) { 2494 accum += udf_count_free_bitmap(sb, 2495 map->s_fspace.s_bitmap); 2496 } 2497 if (accum) 2498 return accum; 2499 2500 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2501 accum += udf_count_free_table(sb, 2502 map->s_uspace.s_table); 2503 } 2504 if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) { 2505 accum += udf_count_free_table(sb, 2506 map->s_fspace.s_table); 2507 } 2508 2509 return accum; 2510 } 2511 2512 MODULE_AUTHOR("Ben Fennema"); 2513 MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 2514 MODULE_LICENSE("GPL"); 2515 module_init(init_udf_fs) 2516 module_exit(exit_udf_fs) 2517